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Abstract Poisson noise removal problems have attracted much attention in recent years.
The main aim of this paper is to study and propose an alternating minimization algorithm
for Poisson noise removal with nonnegative constraint. The algorithm minimizes the sum of
a Kullback-Leibler divergence term and a total variation term. We derive the algorithm by
utilizing the quadratic penalty function technique.Moreover, the convergence of the proposed
algorithm is also established under verymild conditions.Numerical comparisons between our
approach and several state-of-the-art algorithms are presented to demonstrate the efficiency
of our proposed algorithm.
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1 Introduction

Image deblurring under Poisson noise is an important task in various applications such as
astronomical images [26,39], positron emission tomography (PET) [4,29], and single particle
emission computed tomography (SPECT) [18,31]. In this paper, we focus on the following
image reconstruction model:

g = Poisson(A f + ce), (1.1)

where g ∈ R
n is the observed image, e := (1, . . . , 1)T ∈ R

n is a vector of all ones, c ≥ 0
is a fixed background, A ∈ R

n×n is a spatial-invariant blur matrix, f ∈ R
n is a column

vector concatenated from the original image with size m1 ×m2 (n = m1m2), and Poisson(·)
denotes the degradation by Poisson noise.We remark that A is a matrix of block Toeplitz with
Toeplitz blocks when zero boundary conditions are applied, and block Toeplitz-plus-Hankel
with Toeplitz-plus-Hankel blocks when Neumann boundary conditions are used [27,28].

An approach to dealwith the images corrupted byPoissonnoise is themaximumaposterior
(MAP) estimate [5,7,16,20,49]. Assume that the observed data gi are independent random
variables, then the probability distribution of g is the product of the probability distributions
of all pixels [37], which can be described as follows:

P(g| f ) =
n∏

i=1

[(A f + ce)i ]gi e−(A f +ce)i

gi ! ,

where (A f +ce)i and gi denote the i th components of A f +ce and g, respectively. By taking
the negative logarithm of the probability distribution, the Kullback-Leibler (KL) divergence
DKL (A f + ce, g) of A f + ce from g is given by [13]

DKL (A f + ce, g) :=
n∑

i=1

(A f + ce)i − gi log((A f + ce)i ) + log(gi !),

which is convex, nonnegative, and coercive on the nonnegative orthant. When the constants
are omitted, we obtain the following data fidelity term

�( f ) := eT (A f + ce) − gT log(A f + ce),

where the notation T denotes the transpose operator and log(·) means componentwise. The
maximum likelihood estimator of the original image is the minimizer of �( f ). It is known
that the Richardson-Lucy (RL) algorithm can be applied to solve this problem [24,32]. There
are also a number of important works on RL algorithm, including [9,14,37,41], to name only
a few. However, the RL algorithm converges slowly and yields high noise estimate [43].

To deal with the ill-posed problem, a regularization term should be added to control
the noise. Traditional regularization methods include the Tikhonov-like regularization [42]
and the total variation (TV) regularization [35]. Although the Tikhonov-like regularization
method has the advantage of simple calculations [17], it tends to make images unduly smooth
and often fails to adequately save important image attributes such as sharp edges. By contrast,
the TV regularization, first proposed by Rudin, Osher, and Fatemi for image denoising in [35]
and then extended to image deconvolution in [34], has become very popular to represent the
prior of images due to its ability to preserve sharp edges. In addition, Acar et al. [1] analyzed
the advantages of the TV regularization over the Tikhonov-like regularization for recovering
images including piecewise smooth objects.
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Based on the prior information of an image, we use the TV as the regularization term.
Then, a discrete version of the TV deblurring problem under Poisson noise is given by [23]

min
f ≥0

α
(
eT (A f + ce) − gT log(A f + ce)

)
+

n∑

i=1

‖Di f ‖, (1.2)

where α is a regularization parameter to balance the regularization term and the KL diver-
gence term, the nonnegative constraint f ≥ 0 guarantees that no negative intensities occur
in the restored images, ‖ · ‖ denotes the Euclidean norm of a vector, and Di f ∈ R

2

denotes the first-order finite difference of f at pixel i in both horizontal and vertical
directions. More specifically, let f be extended by periodic boundary conditions, where
f := ( f1, f2, . . . , fn)T . Then, for i = 1, . . . , n, Di f is defined as

Di f := ((Dx f )i , (Dy f )i )
T ,

where

(Dx f )i =
{
fi+m2 − fi , if 1 ≤ i ≤ m2(m1 − 1),
fmod(i,m2) − fi , otherwise,

and

(Dy f )i =
{
fi+1 − fi , if mod(i,m2) �= 0,
fi−m2+1 − fi , otherwise.

Here mod(i,m2) denotes the remainder of i divided by m2.
The computational challenges of this model are that the KL divergence is non-quadratic

and contains a logarithm function. The algorithms of image restoration based on the quadratic
data fitting term cannot be applied to this model directly. Moreover, since the TV term is
non-differentiable, it is difficult to solve the Euler-Lagrange equation associated with the
minimization model (1.2). Recently, some efficient algorithms are proposed to solve the
Poisson noise removal problem. Le et al. [23] proposed a gradient descent method to solve a
variational image restorationmodel under Poisson noise. It iswell known that the convergence
speed of the gradient descent method is very slow. Moreover, Figueiredo et al. [15] proposed
an augmented Lagrangian (PIDAL)method for deconvolving Poissonian images. But it needs
to solve a TV denoising subproblem under their splitting strategy, which cannot be solved
exactly. Furthermore, Setzer et al. [36] proposed an alternating split Bregman algorithm
(called PIDSplit+) for the restoration of blurred images corrupted with Poissonian noise.
Although the resulting subproblems have closed-form solutions, this algorithm converges
slowly after reaching a low accuracy.

In this paper,we focus on developing a fast algorithm to solve the constrainedminimization
model (1.2). By putting the constrained set into the objective function,we obtain the following
unconstrained optimization problem

min
f

α
(
eT (A f + ce) − gT log(A f + ce)

)
+

n∑

i=1

‖Di f ‖ + δRn+( f ), (1.3)

where δRn+(·) is the indicator function over R
n+. Let u ∈ R

n be an auxiliary variable that

approximates A f + ce in (1.3). Similarly, we introduce wi ∈ R
2 to approximate Di f and z

to approximate f . By adding the quadratic terms to penalize the differences between every
pair of original and auxiliary variables, we obtain the following problem
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min
u,z,w, f

Q(u, z, w, f ) := α
(
eT u − gT log(u)

)
+ δRn+(z) + β1‖u − (A f + ce)‖2

+
n∑

i=1

‖wi‖ + β2

n∑

i=1

‖Di f − wi‖2 + β3‖z − f ‖2, (1.4)

where β1, β2, β3 are positive penalty parameters, respectively. It is clear that when β1, β2, β3

are sufficiently large, the objective function in (1.4) is close to that in (1.3).
An alternating minimization algorithm is proposed to solve the model (1.4). Alternating

minimization algorithms have been applied to the cases of recovering blurred images cor-
rupted by impulse, Gaussian, and multiplicative noises successfully [19,21,22,44,46–48].
For more details about multiplicative noise removal, the interested readers are referred to the
papers [2,38,40]. Since u, z, w are decoupled, we can minimize f and (u, z, w), alternately.
When β1, β2, β3 are sufficiently large, the minimizer of (1.4) is close to that of (1.3). The
main advantages of the proposed algorithm are that the resulting subproblems have closed-
form solutions or can be solved by fast Fourier transforms [27,28]. Moreover, based on the
fixed point iteration [8,30], we show that, for any fixed β1, β2, β3, the sequence generated
by the alternating minimization algorithm converges to a solution of (1.4). Our numerical
results show that the proposed algorithm is faster than PIDAL [15], PIDSplit+ [36], and the
primal dual (PD) algorithm [45].

The remaining parts of this paper are organized as follows. In Sect. 2, we give some
notation that will be used throughout this paper. The alternating minimization algorithm is
presented in Sect. 3. We establish the convergence of the proposed algorithm in Sect. 4.
In Sect. 5, some numerical experiments are presented to demonstrate the efficiency of our
proposed algorithm. Finally, we give some concluding remarks in Sect. 6.

2 Preliminaries

In this section, we briefly introduce some notation that will be used throughout this paper.Rn

denotes the n-dimensional Euclidean space. Rn+ denotes the nonnegative orthant of R
n , i.e.,

R
n+ := {x = (x1, . . . , xn)T ∈ R

n |xi ≥ 0, i = 1, . . . , n}. R
n++ denotes the positive orthant

of R
n , i.e., R

n++ := {x = (x1, . . . , xn)T ∈ R
n |xi > 0, i = 1, . . . , n}. The set of all m × n

matrices with real entries is denoted by R
m×n . For any matrix A ∈ R

m×n , ‖A‖ denotes the
spectral norm of A.

Let D(1) and D(2) be the first-order finite difference matrices in the horizontal and vertical
directions, respectively. Di ∈ R

2×n is a matrix formed by stacking the i th rows of D(1)

and D(2). Let D := (DT
1 , . . . , DT

n )T . A � B denotes that A − B is positive semidefinite.
The identity matrix is denoted by I , whose dimension should be clear from the context. The
relative interior of a set G is denoted by int(G). The indicator function of a set G is defined
as

δG(x) :=
{
0, if x ∈ G,

+∞, otherwise.

Next, we give the definition of a convex function [33, Definition 2.1].

Definition 2.1 (a) A subset C of R
n is convex if it includes for every pair of points the line

segment that joins them, or in other words, if for every choice of x0 ∈ C and x1 ∈ C one
has [x0, x1] ∈ C :

(1 − τ)x0 + τ x1 ∈ C f or all τ ∈ (0, 1).
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(b) A function ψ on a convex set C is convex relative to C if for every choice of x0 ∈ C and
x1 ∈ C one has

ψ((1 − τ)x0 + τ x1) ≤ (1 − τ)ψ(x0) + τψ(x1) f or all τ ∈ (0, 1).

The effective domain of a function ψ : R
n → R ∪ {+∞} is defined as

dom(ψ) := {x : ψ(x) < +∞}.
We say that ψ is proper if it never equals −∞ and dom(ψ) �= ∅. For any proper convex
function ψ : R

n → R ∪ {+∞} and any point x ∈ dom(ψ), the subgradient of ψ at x is
defined as

∂ψ(x) := {v : ψ(y) ≥ ψ(x) + 〈v, y − x〉,∀y}.
Let ψ : X → R ∪ {+∞} be a closed, proper, convex function, where X is a real finite
dimensional Euclidean space equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖.
The operator

Proxψ : X → X : x �→ arg min
y∈X

{
ψ(y) + 1

2
‖x − y‖2

}

is called the proximal mapping of ψ [12].
Other notation will be defined in appropriate sections if necessary.

3 An Alternating Minimization Algorithm

In this section, we present an alternating minimization algorithm to solve (1.4). Alternating
minimization algorithms have been applied to the cases of recovering blurred images cor-
rupted by impulse, Gaussian, and multiplicative noises successfully [19,21,22,44,46–48].
The alternating minimization algorithm for solving (1.4) can be described in Algorithm 1.

Algorithm 1: An alternating minimization algorithm for solving problem (1.4).
Input: α, β1, β2, β3, u0 > 0, z0, w0. For k = 0, 1, . . ., perform the following steps:
Step 1. Compute

f k+1 := argmin
f

{
β1‖uk − (A f + ce)‖2 + β2

n∑

i=1

‖Di f − wk
i ‖2 + β3‖ f − zk‖2

}
.

(3.1)
Step 2. Compute

uk+1 := argmin
u

{
α(eT u − gT log(u)) + β1‖u − (A f k+1 + ce)‖2

}
. (3.2)

Step 3. Compute

zk+1 := argmin
z

{
δRn+(z) + β3‖z − f k+1‖2

}
. (3.3)

Step 4. For i = 1, . . . , n, compute wi

wk+1
i := argmin

wi

{‖wi‖ + β2‖Di f k+1 − wi‖2
}
. (3.4)
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Since the objective function in (3.1) is differentiable, f k+1 can be computed by solving
the following equation:

(β1A
T A + β2D

T D + β3 I ) f
k+1 = β1A

T (uk − ce) + β2D
Twk + β3z

k, (3.5)

where wk := ((wk
1)

T , . . . , (wk
n)

T )T . Let M := β1AT A+β2DT D+β3 I , then M is positive
definite. Thus, we have

f k+1 = M−1
(
β1A

T (uk − ce) + β2D
Twk + β3z

k
)

. (3.6)

Remark 3.1 In image restoration problems, A is usually a blurring matrix and D is a dif-
ference matrix under period boundary conditions that can be diagonalized by fast Fourier
transforms. The computational cost of the method is dominated by three fast discrete trans-
forms for solving the linear system in (3.5) [27,28]. The interested readers are refered to
[27,28] for a detailed discussion on how to handle blurring matrices with other boundary
conditions.

Since A is a blurring matrix, the entries of A are nonnegative, and c ≥ 0. Notice that, for
any u0 > 0, we have uk > 0. Therefore, the closed-form solution for (3.2) is given by

uk+1 = A f k+1 + ce
2

− αe
4β1

+
√

(αe − 2β1(A f k+1 + ce))2 + 8αβ1g

4β1
. (3.7)

Here, the root square of a vector means componentwise.
As for the subproblem about z in (3.3), we have

zk+1 = PR
n+( f k+1),

where P is the projection onto R
n+, i.e.,

(PR
n+( f ))i :=

{
fi , if fi ≥ 0,
0, otherwise.

As for the subproblem about wi in (3.4), by the well-known two-dimensional shrinkage
[3], wk+1

i is given by

wk+1
i = max

{
‖Di f

k+1‖ − 1

2β2
, 0

}
Di f k+1

‖Di f k+1‖ , i = 1, . . . , n, (3.8)

where 0 · (0/0) = 0 is assumed.

Remark 3.2 Algorithm 1 could be applied to both the isotropic and anisotropic TV. For
simplicity, we will only discuss the isotropic case in detail since it is similar to deal with the
anisotropic case.

Remark 3.3 Compared with PIDAL [15], the subproblems of the alternating minimization
algorithm can be solved exactly in each iteration.

4 Convergence Analysis

In this section, we establish the convergence of Algorithm 1. The following results in [8,30]
are utilized to show that the iteration sequence {( f k, uk, zk, wk)} generated by Algorithm 1
converges to a minimizer ( f ∗, u∗, z∗, w∗) of Q.
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Theorem 4.1 Let X be a Hilbert space, and let T be a nonexpansive self-mapping of X
such that T is asymptotically regular, i.e., for any x in X , ‖T n+1x − T nx‖ tends to 0 as n
tends to +∞. Assume that T has at least one fixed point. Then, for any x in X , a weak limit
of a weakly convergent subsequence of the sequence of successive approximations {T nx} is
a fixed point of T .

Although Theorem 4.1 shows the general case of the fixed point iteration in Hilbert spaces,
we only use the finite dimension case for the sequence generated by Algorithm 1. Thus the
weak and strong convergence coincide for Algorithm 1, i.e., the limit point of {T nx} is a
fixed point of T . For the finite dimensional case about this theorem, a simplified proof can
be found in [10, Theorem 5]. When X is R

n , the sequence of successive approximations can
converge to a fixed point. Therefore, we only need to prove that the operator T about the
iteration sequence is nonexpansive, asymptotically regular, and has a fixed point.

For the proximal operator of a function, we have the following proposition [12, Lemma
2.4].

Proposition 4.1 Let φ : X → R ∪ {+∞} be a closed, proper and convex function. Then,
for any x, y ∈ X ,

‖Proxφ(x) − Proxφ(y)‖2 ≤ 〈
Proxφ(x) − Proxφ(y), x − y

〉
.

In the following, we define the nonexpansive operator [6], which is important for the
analysis of the convergence.

Definition 4.1 An operator T is called nonexpansive in X if for any x1, x2 ∈ X , we have

‖T (x1) − T (x2)‖ ≤ ‖x1 − x2‖.
By Proposition 4.1, we obtain that Proxφ is nonexpansive, i.e.,

‖Proxφ(x) − Proxφ(y)‖ ≤ ‖x − y‖, ∀x, y ∈ X .

Actually, the proximal operator is a special kind of an averaged operator, which is nonex-
pansive [10, Lemma 3]. Next, we construct the iteration sequence of Algorithm 1. Let

H :=
⎛

⎝
√

β1A√
β3 I√
β2D

⎞

⎠ and v :=
⎛

⎝
u
z
w

⎞

⎠ ,

then M = HT H by the definition of M . Thus, (3.5) is equivalent to

M f k+1 = β1A
T (uk − ce) + β2D

Twk + β3z
k

= (BH)T vk − β1cA
T e,

where

B :=
⎛

⎝

√
β1 I 0 0
0

√
β3 I 0

0 0
√

β2 I

⎞

⎠ .

Since M is positive definite, we obtain

f k+1 = M−1((BH)T vk − β1cA
T e) := T f (v

k). (4.1)

Let ϕ(u) := eT u − gT log(u). Since u > 0 and A f + ce > 0, by (3.2), we get

uk+1 = Prox α
2β1

ϕ(A f k+1 + ce) := T1( f k+1) = T1(T f (v
k)). (4.2)
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Moreover, by (3.3), we have

zk+1 = PR
n+( f k+1) := T2( f k+1) = T2(T f (v

k)). (4.3)

Note that, forwi , the minimizer is the two-dimensional shrinkage operator [3]. Let g(x) =
‖x‖, by (3.8), we obtain that

wk+1 :=
⎛

⎜⎝
wk+1
1
...

wk+1
n

⎞

⎟⎠ =

⎛

⎜⎜⎝

Prox 1
2β2

g(D1 f k+1)

...

Prox 1
2β2

g(Dn f k+1)

⎞

⎟⎟⎠ := T3( f k+1) = T3(T1(vk)). (4.4)

Thus, combining (4.2), (4.3), and (4.4), we get

vk+1 =
⎛

⎝
T1(T f (v

k))

T2(T f (v
k))

T3(T f (v
k))

⎞

⎠ .

Let

T :=
⎛

⎝
T1(T f )

T2(T f )

T3(T f )

⎞

⎠ , (4.5)

we have vk+1 = T (vk), which is the iteration of Algorithm 1. In the following, we show that
T is nonexpansive.

Lemma 4.1 The operator T in (4.5) is nonexpansive.

Proof For any v1, v2, by the definition of T , we have

‖T (v1) − T (v2)‖2 =
∥∥∥∥∥∥

⎛

⎝
T1(T f (v1)) − T1(T f (v2))

T2(T f (v1)) − T2(T f (v2))

T3(T f (v1)) − T3(T f (v2))

⎞

⎠

∥∥∥∥∥∥

2

= ‖T1(T f (v1)) − T1(T f (v2))‖2 + ‖T2(T f (v1)) − T2(T f (v2))‖2
+‖T3(T f (v1)) − T3(T f (v2))‖2. (4.6)

Let f1 := T f (v1) and f2 := T f (v2), then, by the definition of T f , we obtain that

f1 − f2 = T f (v1) − T f (v2) = M−1(BH)T (v1 − v2). (4.7)

Thus, we have
‖T1(T f (v1)) − T1(T f (v2))‖

= ‖T1( f1) − T1( f2)‖
=

∥∥∥Prox α
2β1

ϕ(A f1 + ce) − Prox α
2β1

ϕ(A f2 + ce)
∥∥∥

≤ ‖A( f1 − f2)‖ = ‖AM−1(BH)T (v1 − v2)‖,

(4.8)

where the inequality follows from Proposition 4.1 and the last equality follows from (4.7).
For the operator T2(T f ), we get

‖T2(T f (v1)) − T2(T f (v2))‖
= ‖T2( f1) − T2( f2)‖
≤ ‖ f1 − f2‖ = ‖M−1(BH)T (v1 − v2)‖,

(4.9)
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where the inequality holds since T2 is nonexpansive. For the operator T3(T f ), we have

‖T3(T f (v1)) − T3(T f (v2))‖2
= ‖T3( f1) − T3( f2)‖2

≤
n∑

i=1

‖Di ( f1 − f2)‖2

= ‖D( f1 − f2)‖2 = ‖DM−1(BH)T (v1 − v2)‖2,

(4.10)

where the inequality holds by Proposition 4.1. Therefore, combining (4.8), (4.9), (4.10) and
(4.6), we obtain that

‖T (v1) − T (v2)‖2
≤ ‖AM−1(BH)T (v1 − v2)‖2 + ‖M−1(BH)T (v1 − v2)‖2 + ‖DM−1(BH)T (v1 − v2)‖2

=
∥∥∥∥

⎛

⎝
A
I
D

⎞

⎠ M−1(BH)T (v1 − v2)

∥∥∥∥
2

= ‖B−1HM−1(BH)T (v1 − v2)‖2 = ‖v1 − v2‖2,

where the last equality follows from the definition ofM . This implies that ‖T (v1)−T (v2)‖ ≤
‖v1 − v2‖. Thus, T is nonexpansive. ��

The following lemma shows that T is asymptotically regular.

Lemma 4.2 Let vk := ((uk)T , (zk)T , (wk)T )T be generated by Algorithm 1, then∑+∞
k=1 ‖vk − vk−1‖2 converges and T is asymptotically regular.

Proof The proof follows the lines of the proof of Lemma 3.6 in [19]. For the sake of com-
pleteness, we give it here. We consider the Taylor expansion ofQ( f, uk, zk, wk) at f k+1 and
let f = f k . Since Q( f, uk, zk, wk) about f is a quadratic function, we have

Q( f k, uk, zk, wk) = Q( f k+1, uk, zk, wk) + (∇ fQ( f k+1, uk, zk, wk))T ( f k − f k+1)

+ 1

2
( f k − f k+1)T∇2

fQ( f k+1, uk, zk, wk)( f k − f k+1),

(4.11)
where ∇ fQ( f k+1, uk, zk, wk) and ∇2

fQ( f k+1, uk, zk, wk) denote the gradient and Hes-

sian matrix of Q( f, uk, zk, wk) at f k+1, respectively. Since f k+1 is a minimizer of
Q( f, uk, zk, wk), we have

∇ fQ( f k+1, uk, zk, wk) = 0. (4.12)

Moreover,

∇2
fQ( f k+1, uk, zk, wk) = 2β1A

T A + 2β2D
T D + 2β3 I � 2β3 I. (4.13)

Thus, by substituting (4.12) and (4.13) into (4.11), we get

Q( f k, uk, zk, wk) − Q( f k+1, uk, zk, wk) ≥ β3‖ f k − f k+1‖2.
Since Q( f k+1, uk+1, zk+1, wk+1) ≤ Q( f k+1, uk, zk, wk), we obtain

Q( f k, uk, zk, wk) − Q( f k+1, uk+1, zk+1, wk+1) ≥ β3‖ f k − f k+1‖2. (4.14)
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Combining (4.2), (4.3) and (4.4), we have

‖vk − vk+1‖2
= ‖T1( f k) − T1( f k+1)‖2 + ‖T2( f k) − T2( f k+1)‖2 + ‖T3( f k) − T3( f k+1)‖2
≤ ‖A( f k − f k+1)‖2 + ‖ f k − f k+1‖2 + ‖D( f k − f k+1)‖2
≤ (‖A‖2 + ‖D‖2 + 1)‖ f k − f k+1‖2,

where the first inequality holds by Proposition 4.1. From [11], we know that ‖D‖2 ≤ 8 and
from [25], we have ‖A‖ ≤ 1. Thus,

‖vk − vk+1‖2 ≤ 10‖ f k − f k+1‖2. (4.15)

Substituting (4.15) into (4.14), we have

β3

10
‖vk − vk+1‖2 ≤ Q( f k, uk, zk, wk) − Q( f k+1, uk+1, zk+1, wk+1).

Since Q is bounded below, it follows that
∑+∞

k=0 ‖vk − vk+1‖2 converges. Moreover,

lim
k→+∞ ‖vk − vk+1‖ = 0.

Note that vk = T (vk−1) = T 2(vk−2) = · · · = T k−1(v1) = T k(v0), we obtain that

lim
k→+∞ ‖T k(v0) − T k+1(v0)‖ = 0.

This implies that T is asymptotically regular. Thus, we complete the proof. ��
By [45], we know that eT u − gT log(u) is proper, which implies that Q( f, u, z, w) is

proper. Notice that Q( f, u, z, w) : R
n × R

n++ × R
n × R

2n → R ∪ {+∞} is continuous,
we obtain that Q( f, u, z, w) is closed [33, Thoerem 1.6]. In order to show the existence of
minimizers ofQ( f, u, z, w), by [33, Theorem 1.9], we only need to prove thatQ( f, u, z, w)

is coercive, i.e., Q( f, u, z, w) tends to infinity as ‖( f T , uT , zT , wT )T ‖ tends to infinity.

Lemma 4.3 If Ker(A) ∩ Ker(D) = {0}, where Ker(·) denotes the null space of a matrix,
then Q(u, z, w, f ) is coercive.

Proof When
∥∥∥∥∥∥∥∥

⎛

⎜⎜⎝

f
u
z
w

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥
→ +∞,

we have ‖u‖ → +∞, or ‖w‖ → +∞, or
∥∥∥∥

(
f
z

)∥∥∥∥ → +∞.

Thus, we proceed the discussions by three cases.
Case 1. Suppose that ‖u‖ → +∞. We note that u − log(u) tends to infinity when u tends

to infinity. Thus, we have Q( f, u, z, w) tends to infinity.
Case 2. Suppose that ‖w‖ → +∞. Then,

∑n
i=1 ‖wi‖ tends to infinity. Since u − log(u)

is bounded below, we obtain that Q( f, u, z, w) tends to infinity.
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Case 3. Suppose that
∥∥∥∥

(
f
z

)∥∥∥∥ → +∞.

We assume that ‖u‖, ‖w‖ are bounded, otherwise the result holds by Cases 1 and 2. If ‖ f ‖
tends to infinity and ‖z‖ is bounded, we have ‖z − f ‖2 tends to infinity. Thus,Q( f, u, z, w)

tends to infinity. If ‖z‖ tends to infinity and ‖ f ‖ is bounded, we have ‖z − f ‖2 tends to
infinity. Then, Q( f, u, z, w) tends to infinity. If ‖ f ‖ tends to infinity, ‖z‖ tends to infinity,
since Ker(A) ∩ Ker(D) = {0}, we have ‖A f ‖ tends to infinity or ‖Df ‖ tends to infinity
as ‖ f ‖ tends to infinity. Since ‖u‖, ‖w‖ are bounded, we obtain that Q( f, u, z, w) tends to
infinity. Together with Cases 1 and 2, we complete the proof. ��

Remark 4.1 The condition Ker(A) ∩ Ker(D) = {0} in Lemma 4.3 is easy to satisfy. If A
is a blurring matrix, then their rows sum up to one, while the differences matrix D (under
appropriate boundary conditions) has kernel consisting of constant vectors so that their joint
kernel must be the zero vector.

We now show that the set of fixed points of T is nonempty.

Lemma 4.4 Suppose that Ker(A) ∩ Ker(D) = {0}. Then the set of fixed points of T is
nonempty.

Proof Since Q is coercive, by [33, Theorem 1.9], we obtain that the minimizer ( f ∗, u∗,
z∗, w∗) of Q exists. Then, by [33, Thoerem 6.12], we get

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ∈

⎛

⎜⎜⎝

∂ fQ( f ∗, u∗, z∗, w∗)
∂uQ( f ∗, u∗, z∗, w∗) + NR

n++(u∗)
∂zQ( f ∗, u∗, z∗, w∗)
∂wQ( f ∗, u∗, z∗, w∗)

⎞

⎟⎟⎠ ,

where NR
n++(u∗) denotes the normal cone of R

n++ at u∗. Since u∗ > 0, i.e., u∗ ∈ int(Rn++),
by [33, Proposition 6.5], we have NR

n++(u∗) = {0}. This implies that

⎧
⎪⎪⎨

⎪⎪⎩

f ∗ = T f (v
∗) = argmin f {Q(·, u∗, z∗, w∗)},

u∗ = T1( f ∗) = argminu{Q( f ∗, ·, z∗, w∗)},
z∗ = T2( f ∗) = argminz{Q( f ∗, u∗, ·, w∗)},
w∗ = T3( f ∗) = argminw{Q( f ∗, u∗, z∗, ·)},

where v∗ := ((u∗)T , (z∗)T , (w∗)T )T . Thus, by the definition of T , we obtain that v∗ =
T (v∗), and v∗ is a fixed point of T . ��

Combining Lemmas 4.1, 4.2, 4.4 and Theorem 4.1, we can get the following convergence
result.

Theorem 4.2 Suppose that Ker(A) ∩ Ker(D) = {0}. For any initial point u0 > 0, z0, w0,
the sequence {( f k, uk, zk, wk)} generated by Algorithm 1 converges to a minimizer
( f ∗, u∗, z∗, w∗) of Q.

Remark 4.2 Compared with the alternating minimization algorithms in [19,21,22], we con-
sider some constraints in Algorithm 1.
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Fig. 1 Original images. From left to right: Cameraman, House, Barbara, Livingroom

5 Experimental Results

In this section, we present numerical results to show the efficiency of the proposed algorithm
for the images corrupted by blurs and Poisson noise. The testing images include Cameraman
(256× 256), House (256× 256), Barbara (512× 512), and Livingroom (512× 512), which
are shown in Fig. 1. In our numerical examples, we consider two blurring functions from
MATLAB: Average blur and Gaussian blur. For Average blur, the testing kernel is 9× 9, and
for Gaussian blur, the testing kernel is 9×9 (standard deviation= 3). All the experiments are
performed underWindows 7 andMATLABR2015b running on a laptop (AMDA10-5750M,
@ 2.50GHz, 8G RAM).

Since Poisson noise is data-dependent, the noise levels of the observed images depend on
the pixel intensity M . To test different noise levels, we consider different peak intensities of
the images. The noisy and blurry images in our test are simulated as follows. The original
image f is first scaled with the peak intensities. Then the scaled image is convolved with
the blur kernel A and the background is added. Finally, the Poisson noise is added in Matlab
using the function poissrnd.

To evaluate the performance of different algorithms, the signal-to-noise ratio (SNR) is
used to measure the quality of the restored image:

SNR = 10 log10

( ‖ f ‖2
‖ f − f̂ ‖2

)
,

where f is the original image and f̂ is the restored image. We terminate Algorithm 1 by
checking whether the relative error of the successive iterates satisfies

‖ f k+1 − f k‖
‖ f k‖ ≤ tol, (5.1)

where tol is set to be 10−3 in our experiments. The maximum iteration number of Algorithm
1 is set to be 500. For the penalty parameters β1, β2, β3 in Algorithm 1, the initial values
of β1, β2, β3 are set to 0.4, 0.4 and 0.001, respectively, and then β1, β2, β3 are increased
by τβ1, τβ2, τβ3 every twenty iterations, where τ = 1.01 in our experiments. The reg-
ularization parameter α will be selected from {1, 10, 20, 50, 100, 150, 200, 250, 300} for
the fast convergence and satisfactory accuracy. We remark that β1, β2, β3 should make the
minimizer of (1.4) close to the minimizer of (1.3) in the quadratic penalty (1.4). Unfor-
tunately, large βi , i = 1, . . . , 3, usually cause numerical difficulties, since (1.4) becomes
very ill-conditioned. Hence, it is more practical to minimize (1.4) with moderate values of
βi , i = 1, . . . , 3.
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Table 1 SNR(dB) values and CPU time(s) of different algorithms for the Cameraman, House, Barbara, and
Livingroom images corrupted by Average blur and Poisson noise

Image c M PIDAL PIDSplit+ PD Algorithm 1

SNR Time SNR Time SNR Time SNR Time

Cameraman 1 20 15.26 7.58 15.15 6.72 15.10 2.67 15.34 0.64

40 15.57 6.21 15.47 5.73 15.08 2.21 15.79 0.78

60 15.78 6.14 15.62 4.56 15.00 2.87 16.11 0.82

80 15.99 5.55 16.01 3.72 14.63 2.39 16.30 0.91

10 20 15.13 7.77 15.05 7.36 14.70 3.13 15.08 0.75

40 15.75 7.47 15.64 5.29 14.60 3.50 15.55 0.83

60 16.03 7.06 16.00 5.84 13.94 3.47 15.96 1.00

80 16.12 6.08 16.13 3.95 16.09 2.69 16.17 0.98

House 1 20 18.68 9.01 18.33 8.97 18.59 2.98 18.74 0.56

40 19.15 6.26 18.91 4.88 18.54 2.46 19.76 0.74

60 19.53 6.36 19.35 3.96 19.19 2.80 20.01 0.84

80 19.92 6.15 19.76 3.82 19.40 2.72 20.14 0.89

10 20 18.47 9.07 18.07 8.12 18.35 3.14 18.27 0.75

40 19.54 7.66 19.27 5.17 19.53 3.53 19.33 0.82

60 19.95 6.27 19.79 4.48 19.65 3.29 19.79 0.87

80 20.21 6.50 20.01 3.69 19.89 2.69 20.22 0.91

Barbara 1 20 16.07 56.50 15.91 64.84 16.09 16.78 16.77 3.08

40 16.35 43.29 16.22 46.23 16.23 16.22 16.46 4.74

60 16.45 40.58 16.34 36.45 16.17 16.04 16.52 4.69

80 16.53 36.79 16.44 31.84 16.02 16.27 16.55 4.95

10 20 15.84 57.62 15.74 69.74 15.69 23.03 15.64 4.32

40 16.28 51.44 16.18 48.91 16.23 26.83 16.35 3.62

60 16.49 48.81 16.41 38.74 16.35 23.65 16.56 3.93

80 16.62 47.93 16.55 34.60 16.72 24.45 16.68 3.14

Livingroom 1 20 16.58 68.75 16.40 69.41 16.52 16.35 16.77 3.08

40 16.91 41.91 16.75 48.36 16.81 15.34 17.31 3.91

60 17.08 40.04 16.95 39.40 16.83 17.51 17.50 4.49

80 17.21 36.81 17.11 32.00 17.10 16.53 17.55 4.86

10 20 16.47 57.57 16.19 58.62 16.31 24.99 16.27 4.26

40 17.01 49.01 16.94 48.88 16.98 23.05 17.03 4.49

60 17.28 44.16 17.24 38.76 17.35 24.46 17.35 3.93

80 17.44 41.79 17.41 34.73 17.58 22.53 17.46 4.28

5.1 Comparisons to the Existing Methods

In this subsection, we compare our algorithmwith PIDAL [15], PIDSplit+ [36], and PD [45].
The stopping criterion of PIDAL, PIDSplit+, and PD is the same as (5.1) and the maximum
iteration number of the three algorithms is set to be 1000. For the PIDAL algorithm [15], the
Chambolle’s projection algorithm [11] is used to solve the TV denoising subproblem. The
number of iterations of Chambolle’s algorithm is set to 20 and the corresponding step size is
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Fig. 2 Recovered images (with SNR(dB) andCPU time(s)) of different algorithms on the Cameraman, House,
Barbara and Livingroom images corrupted by Average blur and Poisson noise with peak intensity M = 80
and c = 10. First row: Noisy and blurry images. Second row: Images recovered by PIDAL. Third row: Images
recovered by PIDSplit+. Fourth row: Images recovered by PD. Fifth row: Images recovered by Algorithm 1

set to 0.248, which were suggested in [15]. We use the final values of an inner iteration loop
as the initial values for the next loop. Moreover, as suggested in [15,36], we set γ = 50/α
for the PIDAL and PIDSplit+ algorithms, where α is the regularization parameter and γ is
the penalty parameter. In the PIDAL, PIDSplit+, and PD algorithms, the parameter α is also
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Fig. 3 Difference images of House image among different algorithms in Fig. 2. a Difference image between
PIDAL and PIDSplit+. b Difference image between PD and PIDAL. c Difference image between PD and
PIDSplit+. d Difference image between Algorithm 1 and PIDAL. e Difference image between Algorithm 1
and PIDSplit+. f Difference image between Algorithm 1 and PD

tested from {1, 10, 20, 50, 100, 150, 200, 250, 300} to get the best recovery performance in
terms of SNR values and CPU time.

In Table 1, we show the SNR values and CPU time (in seconds) for the Cameraman,
House, Barbara, and Livingroom images corrupted by Average blur and Poisson noise with
different peak intensities M and c, respectively. We can see that our proposed algorithm
outperforms PIDAL, PIDSplit+, and PD for these images in terms of CPU time, and the
SNR values of the proposed algorithm are almost the same as those of the other algorithms.
Therefore, under almost the same accuracies, our proposed algorithm is much faster than
the other three algorithms. Moreover, the PIDAL and PIDSplit+ algorithms need more CPU
time than PD for these images.

The visual comparison of the Cameraman, House, Barbara, and Livingroom images cor-
rupted by Average blur and Poisson noise with peak intensity M = 80 and c = 10 is shown
in Fig. 2. We can observe that these images restored by Algorithm 1 are almost the same as
those restored by the PIDAL, PIDSplit+, and PD algorithms. However, the CPU time of the
proposed algorithm is much less than those of the other three algorithms. Moreover, one can
hardly see the differences among these images restored by the four algorithms. In Fig. 3, we
show the difference images of the House image of Fig. 2 for different algorithms. It is shown
that there are still some differences in these images restored by PIDAL, PIDSplit+, PD, and
Algorithm 1.

Table 2 shows the SNR values and CPU time for the Cameraman, House, Barbara, and
Livingroom images corrupted by Gaussian blur and Poisson noise with different peak inten-
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Table 2 SNR(dB) values and CPU time(s) of different algorithms for the Cameraman, House, Barbara, and
Livingroom images corrupted by Gaussian blur and Poisson noise

Image c M PIDAL PIDSplit+ PD Algorithm 1

SNR Time SNR Time SNR Time SNR Time

Cameraman 1 20 15.81 6.47 15.70 7.01 15.75 2.43 15.82 0.52

40 16.21 5.54 16.14 4.67 15.88 2.11 16.35 0.71

60 16.35 5.59 16.29 5.18 15.93 2.86 16.42 0.78

80 16.43 4.44 16.40 3.03 16.15 2.22 16.58 0.83

10 20 15.57 6.92 15.49 6.74 15.37 3.11 15.22 0.72

40 16.27 6.25 16.23 4.64 16.31 3.26 16.09 0.77

60 16.48 5.30 16.43 3.94 16.46 3.24 16.19 0.85

80 16.63 5.10 16.60 3.39 16.60 3.02 16.33 0.88

House 1 20 19.48 8.17 18.99 7.14 19.39 2.65 19.67 0.56

40 20.17 4.98 19.88 4.04 19.87 2.01 20.39 0.71

60 20.47 5.20 20.19 3.38 20.07 2.19 20.53 0.75

80 20.75 4.64 20.53 2.83 20.30 2.10 20.69 0.81

10 20 19.26 6.70 18.97 6.63 19.45 2.99 18.54 0.71

40 20.44 6.70 20.13 5.53 20.25 3.21 20.02 0.77

60 21.07 7.08 20.71 4.39 21.01 3.44 20.35 0.84

80 21.29 6.42 20.94 4.14 21.23 3.44 21.09 0.88

Barbara 20 16.37 49.74 16.22 64.44 16.41 15.73 16.38 3.18

40 16.60 36.47 16.48 40.91 16.67 13.44 16.68 4.17

60 16.73 41.72 16.62 41.57 16.70 19.37 16.75 4.37

80 16.81 37.40 16.71 35.20 16.63 18.97 16.80 4.61

10 20 16.17 49.99 16.10 63.29 16.03 22.30 15.79 4.18

40 16.60 36.47 16.48 40.91 16.67 21.66 16.46 4.50

60 16.81 38.86 16.71 36.06 16.65 24.40 16.57 4.77

80 16.89 38.32 16.80 31.88 16.73 23.38 16.99 5.05

Livingroom 1 20 17.00 48.54 16.84 59.84 17.07 17.25 17.20 3.05

40 17.33 35.54 17.18 43.67 17.54 15.61 17.75 3.81

60 17.54 34.65 17.42 35.70 17.67 15.62 17.90 4.26

80 17.66 34.02 17.58 31.35 17.60 15.88 18.00 4.55

10 20 16.79 56.58 16.75 88.72 16.73 22.49 16.61 4.26

40 17.43 45.00 17.37 47.12 17.35 29.29 17.34 4.40

60 17.73 38.62 17.67 36.89 17.62 24.34 17.63 4.67

80 17.95 37.57 17.89 31.47 17.83 23.52 17.79 4.96

sities M and c, respectively. It can be seen that the CPU time of the proposed algorithm is
less than the other three algorithms. The accuracies of the proposed algorithm are almost
the same as those of PIDAL, PIDSplit+, and PD in terms of SNR values. Moreover, the PD
algorithm performs better than PIDAL and PIDSplit+ in terms of CPU time.

Figure 4 shows the comparison on the Cameraman, House, Barbara, and Livingroom
images corrupted by Gaussian blur and Poisson noise with peak intensity M = 40 and
c = 1. We can observe that the SNR values of the restored images by the four algorithms
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Fig. 4 Recovered images (with SNR(dB) andCPU time(s)) of different algorithms on the Cameraman, House,
Barbara, and Livingroom images corrupted by Gaussian blur and Poisson noise with peak intensity M = 40
and c = 1. First row: Noisy and blurry images. Second row: Images recovered by PIDAL. Third row: Images
recovered by PIDSplit+. Fourth row: Images recovered by PD. Fifth row: Images recovered by Algorithm 1

are almost the same, and the computational time required by the proposed algorithm is much
less than those required by PIDAL, PIDSplit+, and PD.

In Fig. 5, we plot the SNR values versus CPU time for the Cameraman, House, Barbara,
and Livingroom images corrupted by Gaussian blur and Poisson noise with M = 20, c = 1.
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(a) (b)

(c) (d)

Fig. 5 SNR(dB) values versus CPU time(s) for the images corrupted by Gaussian blur and Poisson noise
with M = 20, c = 1. a Cameraman. b House. c Barbara. d Livingroom

We can observe that the PIDAL and PIDSplit+ algorithms are fast at the initial iterations. But
the convergence speed of the two algorithms is slow after reaching a low accuracy. Algorithm
1 needs less CPU time than PIDAL, PIDSplit+, and PD for reaching high accurate solutions.
Moreover, the PD algorithm is slower than the proposed algorithm for all the stages. It
needs more iterations to reach the same accuracy than the proposed algorithm. The proposed
algorithm is fast in all the iterations for low and high accurate solutions. Thus, Algorithm 1
outperforms PIDAL, PIDSplit+ in terms of CPU time.

6 Concluding Remarks

In this paper, we have proposed an alternating minimization algorithm for the restoration
of blurred images corrupted by Poisson noise, which minimizes the KL divergence plus
TV regularization regularization model with nonnegative constraint. By introducing new
variables, the objective function is separable. The approximation model (1.4) is derived
from the classical penalty method. Then, we can minimize each variables, alternatingly.
Furthermore, based on the fixed point theory, we establish the convergence of the proposed
algorithm under very mild assumptions. Our preliminary numerical experiments show that
the proposed algorithm is much faster than PIDAL [15], PIDSplit+ [36] and PD [45].
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