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Abstract In this paper, we consider the product eigenvalue problem for a wide class of
structured matrices containing the well-known Vandermonde and Cauchy matrices. A peri-
odic qd-type reduction method is developed for computing eigenvalues of products of these
rectangular matrices so that no subtraction of like-signed numbers occurs. Consequently, all
the eigenvalues of such a product are computed to high relative accuracy in a preferable com-
plexity. Error analysis and numerical experiments are provided to confirm the high relative
accuracy.
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1 Introduction

The study of high-accuracy computations is an active research topic of great interest in
recent years. For the eigenvalue problem of a single matrix, high-accuracy algorithms have
been constructed for a few classes of matrices such as diagonally dominant matrices [1,
2], tridiagonal matrices [9], acyclic matrices [6], certain sign regular matrices [17,19,20],
matrices with rank-revealing decompositions [11,12] and structured matrices [5,7,8,10,22].
However, there are many situations in which one need to find eigenvalues of a product of
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two or more matrices. Indeed, the product eigenvalue problem arises in many applications
and has been extensively studied, see [29,30] and the references therein for an overview.
Since accuracy is always lost when explicitly forming the product, a variety of algorithms
such as LR-type algorithms [18,28], Jacobi-type algorithms [15] and QR-type algorithms
[4,14,21] have been developed for a product of two or more matrices by implicitly working
with the factors. Our interest of this paper is the high-accuracy computation for the product
eigenvalue problem of large numbers of structured matrices.

Structured matrices such as Vandermonde and Cauchy matrices frequently appear in vari-
ous areas of modern computing [23,26,27]. In this paper, we are concerned with a wide class
of structured matrices containing Vandermonde and Cauchy matrices.

Definition 1 [16] Let A ∈ R
n×m . If{

rankA[s + 1 : i + 1|1 : j] ≤ rankA[s : i |1 : j], ∀ i ≥ j, i − j + 1 ≤ s ≤ i,
rankA[1 : i |s + 1 : j + 1] ≤ rankA[1 : i |s : j], ∀ j ≥ i, j − i + 1 ≤ s ≤ j,

then A is called a consecutive-rank-descending (CRD) matrix. Here, denote by A[i : j |k : l]
the submatrix of A ∈ R

n×m having row and column indexes in the ranges i through j and k
through l, respectively.

Wewill show that Vandermonde andCauchymatrices are special CRDmatrices in Section
2 later. Recall that single Vandermonde and Cauchy matrices are badly ill-conditioned [24].
So, it is an interesting challenge to accurately find eigenvalues of products of these badly ill-
conditioned matrices. When dealing with the product eigenvalue problem, the currently used
algorithms are QR-type algorithms. However, it is known that QR-type algorithms destroy
matrix structures. Thus, we turn to an alternative approach, i.e., LR-type algorithms. One
advantage of LR-type algorithms over QR-type algorithms is that they can preserve matrix
structures, but the disadvantage is the possible instability in floating point arithmetic. In fact,
the works by Parlett and Fernando [13,25] have brought a further for LR-type algorithms.
Indeed, its variants such as qd-type algorithms have been developed to successfully achieve
the desirable high relative accuracy for the eigenvalue problem of single matrices [3,13,25].
Therefore, our main contribution of this paper is to compute all the eigenvalues of products
of rectangular CRD matrices with high relative accuracy by developing a periodic qd-type
reduction.

The rest of the paper is organized as follows. In Sect. 2, we provide the unique representa-
tion for the class of CRDmatrices, and we then verify that the well-known Vandermonde and
Cauchy matrices are special CRD matrices. In Sect. 3, we provide a qd-type algorithm for
updating the representation of the product of two specificCRDmatrices under the assumption
that no breakdown occurs. In Sect. 4, the periodic qd-type method is developed to efficiently
reduce a product of rectangular CRDmatrices into the tridiagonal from by implicitly working
with its factors. In Sect. 5, we identify the subset of these products for which no subtraction of
like-signed numbers occurs throughout the reduction process. Consequently, all the eigenval-
ues of such a product are computed to high relative accuracy in a preferable complexity. Error
analysis is provided to illustrate the high relative accuracy. In Sect. 6, numerical experiments
are presented to confirm the high relative accuracy.

2 The Unique Representation

In our work [16], the unique representation for (p, q)-diagonal consecutive-rank-descending
matrices has been derived, and CRD matrices are just special (0, 0)-diagonal consecutive-
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rank-descending matrices. Therefore, the unique representation for CRD matrices is directly
obtained as follows. Here, In ∈ R

n×n is the identity matrix.

Theorem 1 [16] A ∈ R
n×m (n ≥ m) is CRD if and only if A ∈ R

n×m is uniquely represented
as

A = B1B2 . . . Bn−1DCm−1 . . .C2C1, (1)

where D = diag(pii ) ∈ R
n×m, Bi ∈ R

n×n and Ci ∈ R
m×m (1 ≤ i ≤ m − 1) are the

following

Bi =

⎡
⎢⎢⎢⎢⎢⎣

1
0 1
. . .

. . .
0 1

pn−i+1,1 1

. . .
. . .
pni 1

⎤
⎥⎥⎥⎥⎥⎦

, Ci =

⎡
⎢⎢⎢⎢⎢⎣

1 0
. . .

. . .
1 0

1 p1,m−i+1

. . .
. . .
1 pim

1

⎤
⎥⎥⎥⎥⎥⎦

,

and Bi ∈ R
n×n (m ≤ i ≤ n − 1) is bidiagonal of the form

Bi =
[
B ′
i
Ii−m

]
, B ′

i =

⎡
⎢⎢⎢⎢⎢⎣

1
0 1
. . .

. . .
0 1

pn−i+1,1 1

. . .
. . .

pn−i+m,m 1

⎤
⎥⎥⎥⎥⎥⎦

,

all the nontrivial entries pi j (1 ≤ i ≤ n and 1 ≤ j ≤ m) satisfy that{
pi j = 0, i ≥ j ⇒ ps j = 0 ∀ s ≥ i;
pi j = 0, i ≤ j ⇒ pis = 0 ∀ s ≥ j.

(2)

The case n < m for a CRDmatrix A ∈ R
n×m is dealt with only by transposing the matrix

A. Therefore, any CRD matrix A ∈ R
n×m is represented by these nm independent elements

pi j (1 ≤ i ≤ n and 1 ≤ j ≤ m) satisfying the fact (2), and thus, we store these elements as
the parameter matrix P = (pi j ) ∈ R

n×m . Notice that the parameter matrix of AT is just the
matrix PT . It must be pointed out that

pi j =

⎧⎪⎪⎨
⎪⎪⎩

detA[1,...,i]
detA[1,...,i−1] �= 0, i = j;

detA[i− j+1,...,i |1,..., j]
detA[i− j+1,...,i−1|1,..., j−1] · detA[i− j,...,i−2|1,..., j−1]

detA[i− j,...,i−1|1,..., j] �= 0, i > j;
detA[1,...,i | j−i+1,..., j]

detA[1,...,i−1| j−i+1,..., j−1] · detA[1,...,i−1| j−i,..., j−2]
detA[1,...,i | j−i,..., j−1] �= 0, j > i;

(3)

provided that the involvedminors are nonzero. Thus, one immediately verifies by the formula
(3) thatVandermonde andCauchymatrices are specialCRDmatrices.Here, set the convention∏ j

k=i · = 1 if j < i .

Corollary 1 [19] A Vandermonde matrix A = [x j−1
i ]n,m

i, j=1 with nonzero distinct nodes xi
(1 ≤ i ≤ n) is CRD of full rank whose parameter matrix P = (pi j ) ∈ R

n×m is the following:

pi j =

⎧⎪⎪⎨
⎪⎪⎩

∏i−1
k=1(xi − xk), if i = j;∏i−1
k=i− j+1

xi−xk
xi−1−xk−1

, if i > j;
pi j = xi , if i < j.

(4)

123



1232 J Sci Comput (2018) 75:1229–1261

Corollary 2 [19] A Cauchy matrix A =
[

1
xi+y j

]n,m

i, j=1
with distinct nodes xi and distinct

nodes y j is CRD of full rank whose parameter matrix P = (pi j ) ∈ R
n×m is the following:

pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
xi+yi

· ∏i−1
k=1

(xi−xk )(yi−yk )
(xi+yk )(yi+xk )

, if i = j,

xi− j+y j
xi+y j

∏i−1
k=i− j+1

xi−xk
xi−1−xk−1

∏ j−1
k=1

xi−1+yk
xi+yk

, if i > j,

y j−i+xi
y j+xi

∏ j−1
k= j−i+1

y j−yk
y j−1−yk−1

∏i−1
k=1

y j−1+xk
y j+xk

, if i < j.

(5)

To perform our error analysis later, the standard model for the floating point arithmetic is
adopted:

fl(x ◦ y) = (x ◦ y)(1 + δ)±1, |δ| ≤ μ, ◦ ∈ {+,−, ∗, /},

whereμ is the unit roundoff. Thus, if x and y are initial (thus exact) data, then x− y and x+ y,
as well as their products and quotients, are computable to high relative accuracy [5,7,19].
This means that all the parameters of (4) and (5) are accurately computed for these given
initial nodes, which is very favorable for our high-accuracy computations later.

3 A qd-Type Updating Method

In this section, we provide a qd-type algorithm for updating the representation of the product
of two specific CRD matrices under the assumption that there is no breakdown, i.e., there is
no division by zero.

A nonsingular bidiagonal matrix and its inverse are CRD matrices. We first consider how
to update the representation of the product of these matrices. For a nonzero vector α, denote
sign(α) = 1 or − 1 if all its nonzero elements are positive or negative, respectively. In
addition, sign(α) = 0 if α is a zero vector.

Lemma 1 Let L ,Ur ∈ R
n×n be nonsingular of the following:

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
l2 1

. . .
. . .
lr−1 1

lr 1

. . .
. . .
ln 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ur =

⎡
⎢⎢⎢⎢⎢⎣

1 0
. . .

. . .
1 0

dr−1 ur
. . .

. . .
dn−1 un

dn

⎤
⎥⎥⎥⎥⎥⎦

, 2 ≤ r ≤ n. (6)

Then in the absence of breakdown,

U−1
r L = L̄Ū−1

r =:

⎡
⎢⎢⎢⎢⎢⎢⎣

1
l2 1

. . .
. . .
lr−2 1

l̄r−1 1

. . .
. . .
l̄n 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
. . .

. . .
1 0

d̄r−1 ur
. . .

. . .
d̄n−1 un

d̄n

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

, (7)
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where with the convention ur−1 = 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l̄r−1 = lr−1
dr−1

, if r > 2,

z j = d j − l j u j , ∀ r − 1 ≤ j ≤ n.

t j = z j
z j+1

, d̄ j = t j d j+1, l̄ j+1 = t j l j+1, if j < n,

d̄n = zn,

(8)

Moreover, the transformation (7) is subtraction-free if and only if sign(d j l j u j ) = −1 or 0
for all r ≤ j ≤ n. Consequently, in this case no breakdown occurs for the transformation
(7).

Proof Comparing the entries in both sides of LŪr = Ur L̄ , we have with the convention
ur−1 = 0 that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lr−1 = l̄r−1dr−1, if r > 2,

d̄ j + l j u j = d j + l̄ j+1u j+1, ∀ r − 1 ≤ j ≤ n − 1,

d̄ j l j+1 = d j+1l̄ j+1,

d̄n + lnun = dn,

from which the formula (8) is derived with z j+1 �= 0 for all r − 1 ≤ j ≤ n − 1 because
of the absence of breakdown. Thus, d̄ j �= 0 for all j . So, U−1

r L = L̄Ū−1
r . Moreover, for

all r ≤ j ≤ n, z j = d j − l j u j is subtraction-free if and only if sign(d j l j u j ) = −1 or
0. Consequently, in this case no breakdown occurs because |z j | ≥ |d j | > 0 for all r − 1
≤ j ≤ n. ��

The following result is obtained by a straight computation.

Lemma 2 Let Ur ∈ R
n×n (2 ≤ r ≤ n) be as in (6), and let D = diag(pii ) ∈ R

n×m be
diagonal of full rank. Then

U−1
r D = D̄Ū−1

r , (9)

where D̄ = diag( p̄ j j ) ∈ R
n×m with p̄ j j = p j j

d j
for r − 1 ≤ j ≤ min{n,m} and p̄ j j = p j j

otherwise; and Ūr ∈ R
m×m is bidiagonal with unit diagonal whose ( j − 1, j)th entries

ū j = u j p̄ j j
p j−1, j−1

for r ≤ j ≤ min{n,m} and ū j = 0 otherwise. In particular, for r − 1 ≤ j ≤
min{n,m}, if d j > 0, then sign( p̄ j j ) = sign(p j j ) and sign(ū j ) = sign(u j p j−1, j−1 p j j ).

Lemma 3 Let Ur ,C ∈ R
m×m be the following:

Ur =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

. . .
. . .

1 0

1 ur

. . .
. . .

1 um

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c2

. . .
. . .

1 cr−1

1 cr

. . .
. . .

1 cm

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2 ≤ r ≤ m.
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Then in the absence of breakdown,

U−1
r C = C̄Ū−1

r+1 =:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c2

. . .
. . .

1 cr−1

1 c̄r

. . .
. . .

1 c̄m

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

. . .
. . .

1 0

1 ūr+1

. . .
. . .

1 ūm

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

, (10)

where with the convention ur−1 = 0,⎧⎪⎨
⎪⎩
z j = c j − u j ,

ū j = 0, c̄ j = z j , if u j−1 = 0,

t j = z j
z j−1

, ū j = t j u j−1, c̄ j = t j c j−1, if u j−1 �= 0,

∀ r ≤ j ≤ m. (11)

Moreover, the transformation (10) is subtraction-free if and only if sign(c j u j ) = −1 or 0 for
all r ≤ j ≤ m. Consequently, in this case no breakdown occurs for the transformation (10).

Proof Comparing the entries in both sides of CŪr+1 = UrC̄ , we have that{
cr = ur + c̄r ,

c j−1ū j = u j−1c̄ j , ū j + c j = u j + c̄ j ,
∀ r + 1 ≤ j ≤ m,

from which the formula (11) is derived under the assumption that there is no breakdown.
Moreover, for all r ≤ j ≤ m, z j = c j −u j is subtraction-free if and only if sign(c j u j ) = −1
or 0. Consequently, in this case no breakdown occurs because |z j−1| ≥ |u j−1| > 0 for the
case u j−1 �= 0 (r ≤ j ≤ m). ��

Our main result of this section is the following:

Theorem 2 Let A ∈ R
n×m be CRD of full rank, and let Ur ∈ R

n×n (2 ≤ r ≤ n) be as in
(6). Then in the absence of breakdown, A′ = U−1

r A is CRD of full rank.

Proof Let A = B1B2 . . . Bn−1DCm−1 . . .C2C1 be as in (1), and let P = (pi j ) ∈ R
n×m be

its parameter matrix satisfying the fact (2). In the absence of breakdown, we recursively get
by using the transformation (7) that

A′ = U−1
r B1 . . . Bn−1DCm−1 . . .C1 = B ′

1U
′−1
r B2 . . . Bn−1DCm−1 . . .C1

= · · · = B ′
1 . . . B ′

n−1Ū
−1
r DCm−1 . . .C1, (12)

where each B ′
k (1 ≤ k ≤ n−1) has the same form as that of Bk , whose corresponding entries

p′
i,i−n+k = 0 if and only if pi,i−n+k = 0 for all n − k < i ≤ n. So,

p′
i j = 0, i > j ⇒ p′

s j = 0, ∀ s ≥ i. (13)

Further, by the transformation (9),

A′ = B ′
1 . . . B ′

n−1Ū
−1
r DCm−1 . . .C1 = B ′

1 . . . B ′
n−1D

′Ũ−1
r Cm−1 . . .C1, (14)

where Ũr ∈ R
m×m is upper bidiagonal with unit diagonal, D′ = diag(p′

kk) ∈ R
n×m is

diagonal with

p′
kk �= 0, ∀ 1 ≤ k ≤ min{n,m}. (15)
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Finally, in the absence of breakdown, we recursively get by using the transformation (10)
that

A′ = B ′
1 . . . B ′

n−1D
′Ũ−1

r Cm−1 . . .C1 = B ′
1 . . . B ′

n−1D
′C ′

m−1Ũ
−1
r+1Cm−2 . . .Cr−1Cr−2 . . .C1

= . . . = B ′
1 . . . B ′

n−1D
′C ′

m−1 . . .C ′
r−1Cr−2 . . .C1 (16)

where for all 1 ≤ s ≤ m − r + 1, Ũ−1
r+s−1Cm−s = C ′

m−sŨ
−1
r+s (here, Ũ

−1
m+1 = Im), C ′

m−s is
bidiagonal different form Cm−s only in the entries p′

i j for r − 1 ≤ i ≤ min{m − 1, n} and
j = i + s, which are computed from the entries pi j of Cm−s by the formula (11) as follows:

⎧⎪⎨
⎪⎩
z j = pi j − u j ,

ū j = 0, p′
i j = z j , if u j−1 = 0,

t j = z j
z j−1

, p′
i j = t j pi−1, j−1, ū j = t j u j−1, if u j−1 �= 0,

(17)

here, denote by u j and ū j the ( j − 1, j)th entries of Ũr+s−1 and Ũr+s , respectively. For
showing the fact (2), let p′

i j = 0 ofC ′
m−s for some r −1 ≤ i ≤ min{m−1, n} and j = i + s,

then it need to prove p′
i, j+1 = 0 with j + 1 ≤ m. Notice that 1 ≤ s ≤ m − r + 1. If

s = m − r + 1, then j + 1 > m. So, assume that 1 ≤ s < m − r + 1 and j < m. According
to (17), there are the following cases to be considered.

– For the case u j−1 = 0, we have that ū j = 0 and 0 = p′
i j = z j = pi j − u j . If u j �= 0,

then by the formula (17), t j+1 = z j+1
z j

= z j+1

p′
i j

is a breakdown. So, we must have that

u j = 0, and then, pi j = 0. Thus,

pi j = 0 ⇒ pi, j+1 = 0 by the fact (2); u j = 0 ⇒ ū j+1 = 0 by the formula (17).

Hence, for the next transformation Ũ−1
r+sCm−s−1 = C ′

m−s−1Ũ
−1
r+s+1, since ū j = 0, we

have by the formula (11) that p′
i, j+1 = pi, j+1 − ū j+1 = 0.

– For the case u j−1 �= 0, we have 0 = p′
i j = t j pi−1, j−1, which means that t j = 0 or

pi−1, j−1 = 0.

– If t j = 0, then z j = pi j − u j = 0. Assume that u j �= 0. Then by the formula (17),
t j+1 = z j+1

z j
is a breakdown. So, we must have u j = 0, and then, pi j = 0. Thus,

pi j = 0 ⇒ pi, j+1 = 0; u j = 0 ⇒ ū j+1 = 0.

Hence, for the next transformation Ũ−1
r+sCm−s−1 = C ′

m−s−1Ũ
−1
r+s+1, since ū j =

t j u j−1 = 0, we have by the formula (11) that p′
i, j+1 = pi, j+1 − ū j+1 = 0.

– If pi−1, j−1 = 0 and t j �= 0, then pi−1, j = 0 by the fact (2). Hence, for the next
transformation Ũ−1

r+sCm−s−1 = C ′
m−s−1Ũ

−1
r+s+1, since ū j = t j u j−1 �= 0, we have

by the formula (11) that

p′
i, j+1 = t̄ j+1 pi−1, j = pi, j+1 − ū j+1

pi−1, j − ū j
pi−1, j = 0.

Hence, we conclude that

p′
i j = 0, j > i ⇒ p′

is = 0, ∀ s ≥ j. (18)

Thus, we get that A′ is of the form (1) satisfying the fact (2) because of the facts (13), (15)
and (18). Therefore, by Theorem 1, A′ is CRD of full rank. ��

By applying a transpose transformation, we immediately get the following result.
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Corollary 3 Let A ∈ R
n×m be CRD of full rank, and let Lr ∈ R

m×m (2 ≤ r ≤ m) be
nonsingular whose transpose is as in (6). Then in the absence of breakdown, A′ = AL−1

r is
CRD of full rank.

Therefore, we have Algorithm 1 for updating the representation of the product of two
specific CRD matrices.

Algorithm 1 The algorithm computes the parameter matrix P = (p′
i j ) of A′ = U−1

r A

(2 ≤ r ≤ n), where A ∈ R
n×m is CRD of full rank, and Ur ∈ R

n×n is as in (6).
1: First, compute the elements p′

i j (i > j) of (12) by the formula (8).

2: Further, compute the elements p′
i j (i = j) of (14) by the formula of (9).

3: Finally, compute the elements p′
i j (i < j) of (16) by the formula (11).

Observe that the formulas of (8), (9) and (11) cost at most 6, 3 and 4 arithmetic operations,
respectively. So, the cost of Algorithm 1 is at most

6(n − r + 2)(n − 1) + 3 · (min{m, n} − r + 2) + 4 · (min{m, n} − r + 2)(m − r + 1)

≤
n∑

j=r−1

12 j + (min{m, n} − r + 2)(4m − 4r + 7) ≤
n∑

j=r−1

(4m + 12 j).

4 The Periodic qd-Type Reduction Method

In this section, we provide a periodic qd-type reduction for a product of rectangular CRD
matrices of full rank

A = A1A2 . . . AK , where Ai ∈ R
ni×ni+1 , 1 ≤ i ≤ K , n1 = nK+1, (19)

under the assumption that no breakdown occurs. First, we illustrate the reduction for K = 3
where each factor is a 4 × 4 CRD matrix of full rank, i.e.,

A = A1A2A3 =

⎡
⎢⎢⎣
x x x x
x x x x
x x x x
x x x x

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y y y y
y y y y
y y y y
y y y y

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z z z z
z z z z
z z z z
z z z z

⎤
⎥⎥⎦ .

Denote by xi j , yi j and zi j the parameters of A1, A2 and A3, respectively. For the first stage,
we perform the following operations.

– First, according to the form (1) of A1, i.e., A1 = B1B2B3DC3C2C1, it can be rewritten
as

A1 =
⎛
⎜⎝B1B2B3D

⎡
⎢⎣

1 x12

1 x23

1 x34

1

⎤
⎥⎦
⎡
⎣

1

1 x13

1 x24

1

⎤
⎦
⎡
⎣

1

1

1 x14

1

⎤
⎦
⎡
⎢⎣

1 −x12

1 −x13

1 −x14

1

⎤
⎥⎦
⎞
⎟⎠

×
⎡
⎢⎣

1 −x12

1 −x13

1 −x14

1

⎤
⎥⎦

−1
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=
⎛
⎝B1B2B3D

⎡
⎣

1

1 x23

1 x34

1

⎤
⎦
⎡
⎣

1

1

1 x24

1

⎤
⎦
⎞
⎠
⎡
⎢⎣

1 −x12

1 −x13

1 −x14

1

⎤
⎥⎦

−1

=
⎡
⎢⎣

x ′ 0 0 0

x ′ x ′ x ′ x ′

x ′ x ′ x ′ x ′

x ′ x ′ x ′ x ′

⎤
⎥⎦
⎡
⎢⎣

1 −x12

1 −x13

1 −x14

1

⎤
⎥⎦

−1

=: A′
1S

−1
1 ,

this means that A′
1 is obtained form A1 only by setting its parameters x12 = x13 = x14 =

0. So,

A = A1A2A3 = A′
1(S

−1
1 A2)A3,

where by Theorem 2, A2 =: S−1
1 A2 is CRD of full rank whose parameters are still

denoted as yi j .
– Further, using a similar argument, the updated CRD matrix A2 can be rewritten as

A2 =

⎡
⎢⎢⎣

y′ 0 0 0

y′ y′ y′ y′

y′ y′ y′ y′

y′ y′ y′ y′

⎤
⎥⎥⎦
⎡
⎢⎣

1 −y12

1 −y13

1 −y14

1

⎤
⎥⎦

−1

=: A′
2S

−1
2 ,

where A′
2 is obtained from A2 only by setting its parameters y12 = y13 = y14 = 0. So,

A = A′
1A2A3 = A′

1A
′
2(S

−1
2 A3),

where by Theorem 2, A3 =: S−1
2 A3 is CRD of full rank whose parameters are still

denoted as zi j .
– Finally, the updated CRD matrix A3 can be rewritten as

A3 =
[

z′ z′ 0 0
z′ z′ z′ z′
z′ z′ z′ z′
z′ z′ z′ z′

][
1
1 −z13

1 −z14
1

]−1

=: A′
3S

−1
3 ,

where A′
3 is obtained from A3 only by setting its parameters z13 = z14 = 0. So,

S−1
3 AS3 = S−1

3 (A′
1A

′
2A

′
3S

−1
3 )S3 = (S−1

3 A′
1)A

′
2A

′
3,

where by Theorem 2, A′
1 =: S−1

3 A′
1 is CRD of full rank whose parameters are still

denoted as xi j with x1 j = 0 ( j = 2, 3, 4) not being disturbed. So far, the product
A = A1A2A3 has been reduced by a similarity transformation into the form:

A′ = A′
1A

′
2A

′
3 =

[
x ′ 0 0 0
x ′ x ′ x ′ x ′
x ′ x ′ x ′ x ′
x ′ x ′ x ′ x ′

]⎡
⎣ y′ 0 0 0

y′ y′ y′ y′
y′ y′ y′ y′
y′ y′ y′ y′

⎤
⎦
[

z′ z′ 0 0
z′ z′ z′ z′
z′ z′ z′ z′
z′ z′ z′ z′

]
.

For the second stage, we perform the following operations.

– First, taking into account the form (1), A′
3 can be rewritten as

A′
3 =

[
1−z21 1

−z31 1
−z41 1

]−1 [ z′′ z′′ 0 0
0 z′′ z′′ z′′
0 z′′ z′′ z′′
0 z′′ z′′ z′′

]
=: W−1

3 A′′
3,
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where A′′
3 is obtained from A′

3 only by setting its parameters z21 = z31 = z41 = 0. So,

A′ = A′
1A

′
2A

′
3 = A′

1(A
′
2W

−1
3 )A′′

3,

where by Corollary 3, A′
2 =: A′

2W
−1
3 is CRD of full rank whose parameters are still

denoted as yi j with y1 j = 0 ( j = 2, 3, 4) not being disturbed.
– Further, the updated CRD matrix A′

2 can be rewritten as

A′
2 =

[
1−y21 1

−y31 1
−y41 1

]−1
⎡
⎣ y′′ 0 0 0

0 y′′ y′′ y′′
0 y′′ y′′ y′′
0 y′′ y′′ y′′

⎤
⎦ =: W−1

2 A′′
2,

where A′′
2 is obtained from A′

2 only by setting its parameters y21 = y31 = y41 = 0. So,

A′ = A′
1A

′
2A

′′
3 = (A′

1W
−1
2 )A′′

2A
′′
3,

where by Corollary 3, A′
1 =: A′

1W
−1
2 is CRD of full rank whose parameters are still

denoted as xi j with x1 j = 0 ( j = 2, 3, 4) not being disturbed.
– Finally, the updated CRD matrix A′

1 can be rewritten as

A′
1 =

[
1

1−x31 1
−x41 1

]−1 [ x ′′ 0 0 0
x ′′ x ′′ x ′′ x ′′
0 x ′′ x ′′ x ′′
0 x ′′ x ′′ x ′′

]
=: W−1

1 A′′
1,

where A′′
1 is obtained from A′

1 only by setting its parameters x31 = x41 = 0. So,

W1A
′W−1

1 = W1(W
−1
1 A′′

1A
′′
2A

′′
3)W

−1
1 = A′′

1A
′′
2(A

′′
3W

−1
1 ),

where by Corollary 3, A′′
3 =: A′′

3W
−1
1 is CRD of full rank whose parameters are still

denoted as zi j with zi1 = 0 (i = 2, 3, 4) and z1 j = 0 ( j = 3, 4) not being disturbed.
Thus, the product A = A1A2A3 has been reduced into the form:

A′′
1A

′′
2A

′′
3 =

[
x ′′ 0 0 0
x ′′ x ′′ x ′′ x ′′
0 x ′′ x ′′ x ′′
0 x ′′ x ′′ x ′′

]⎡
⎣ y′′ 0 0 0

0 y′′ y′′ y′′
0 y′′ y′′ y′′
0 y′′ y′′ y′′

⎤
⎦
[

z′′ z′′ 0 0
0 z′′ z′′ z′′
0 z′′ z′′ z′′
0 z′′ z′′ z′′

]
.

When proceeding with the analogous operations on rows/columns 2 to 4, we conclude that
A = A1A2A3 is reduced by similarity transformations into the tridiagonal form:⎡

⎢⎢⎣
x̃ 0 0 0
x̃ x̃ 0 0
0 x̃ x̃ 0
0 0 x̃ x̃

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ỹ 0 0 0
0 ỹ 0 0
0 0 ỹ 0
0 0 0 ỹ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z̃ z̃ 0 0
0 z̃ z̃ 0
0 0 z̃ z̃
0 0 0 z̃

⎤
⎥⎥⎦ .

For the general product (19), let r = min1≤t≤K {nt }, then by performing the above reduc-
tions on rows/columns 1 to r , we conclude that the product A = A1A2 . . . AK is reduced by
similarity transformations into the form

T = A′
1A

′
2 . . . A′

K−1A
′
K

=

⎡
⎢⎢⎢⎢⎣

x
x x
. . .

. . .
x x

x x ··· x
... ···

...
x ··· x

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

. . .
y
y ... y
... ···

...
y ··· y

⎤
⎥⎥⎥⎥⎦ . . .

⎡
⎢⎢⎢⎢⎣

y

. . .
y
y ... y
... ···

...
y ··· y

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

z z

. . .
. . .
z z

z ... z
... ···

...
z ··· z

⎤
⎥⎥⎥⎦ ,
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where if n1 = nK+1 = r , then

A′
1 =

⎡
⎣

x 0 ··· 0
x x 0 ··· 0
. . .

. . .
... ···

...
x x 0 ··· 0

⎤
⎦ ∈ R

n1×n2 , A′
K =

⎡
⎢⎢⎢⎢⎣

z z

. . .
. . .
z z

z
0 ··· 0 0
... ···

...
...

0 ··· 0 0

⎤
⎥⎥⎥⎥⎦ ∈ R

nK×nK+1 ,

and if nt = r for some 2 ≤ t ≤ K , then

A′
t−1 =

⎡
⎢⎢⎢⎢⎣

y

. . .
y

0 ··· 0
... ···

...
0 ··· 0

⎤
⎥⎥⎥⎥⎦ ∈ R

nt−1×nt (t �= 2), A′
t =

[ y 0 ··· 0

. . .
... ···

...
y 0 ... 0

]
∈ R

nt×nt+1 (t �= K ).

So, the product A = A1A2 . . . AK has been reduced by similarity transformations into

T =
[
T ′ 0
0 0

]
, (20)

where if n1 = r , then

T ′ = A′
1[1 : r ] · (A′

2[1 : r ] . . . A′
K−1[1 : r ]) · A′

K [1 : r ]

=
[ x

x x
. . .

. . .
x x

]⎡
⎣

y
y

. . .
y

⎤
⎦ · · ·

⎡
⎣

y
y

. . .
y

⎤
⎦
⎡
⎣

z z

. . .
. . .
z z

z

⎤
⎦ ∈ R

r×r ,

and if n1 > r , then

T ′ = A′
1[1 : r + 1|1 : r ] · (A′

2[1 : r ] . . . A′
K−1[1 : r ]) · A′

K [1 : r |1 : r + 1]

=
⎡
⎣

x
x x
. . .

. . .
x x

x

⎤
⎦
⎡
⎣

y
y

. . .
y

⎤
⎦ · · ·

⎡
⎣

y
y

. . .
y

⎤
⎦
[ z z

. . .
. . .
z z

]
∈ R

(r+1)×(r+1).

According to the analysis above, we finally have Algorithm 2 (here, denote by
Ui (xi , . . . , xn) ∈ R

n×n the unit bidiagonal matrix with the (t−1, t)th entry xt for i ≤ t ≤ n)
to reduce the general product (19) into the tridiagonal form (20), which costs the arithmetic
operations of at most

r∑
i=1

⎧⎨
⎩

K−1∑
t=1

nt+1∑
j=i

(4nt+2 + 12 j) +
nK+1∑
j=i+1

(4n2 + 12 j) +
K∑
t=2

nt∑
j=i

(4nt−1 + 12 j) +
n1∑

j=i+1

(4nK + 12 j)

⎫⎬
⎭

≈ O(r(n1n2 + n2n3 + · · · + nK nK+1)).

So, the complexity of our periodic qd-type reduction is very preferable when r is small.
Observe that the matrix T ′ of (20) is tridiagonal of the factored form. Consequently, all

the eigenvalues of the product A are obtained by applying various tridiagonal eigensolvers
such as LR-type algorithms to T ′. More interestingly, it turns out that our method can achieve
the high relative accuracy, as shown in the next section.
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Algorithm 2 The algorithm reduces the product (19) into the tridiagonal form (20) by virtue
of the parameter matrices Pt = (p(t)

i j ) ∈ R
nt×nt+1 of the factors At ∈ R

nt×nt+1 (1 ≤ t ≤ K
and n1 = nK+1).
1: for i = 1 : min1≤t≤K {nt } do
2: for t = 1 : K do
3: if t < K then
4: At+1 =: [Ui+1(−p(t)

i,i+1, . . . , −p(t)
i,nt+1

)]−1At+1 by Algorithm 1

5: p(t)
i,i+1 = · · · = p(t)

i,nt+1
= 0

6: else
7: A1 =: [Ui+2(−p(K )

i,i+2, . . . , −p(K )
i,nK+1

)]−1A1 by Algorithm 1

8: p(K )
i,i+2 = · · · = p(K )

i,nK+1
= 0

9: end if
10: end for
11: for t = K : −1 : 1 do
12: if t > 1 then
13: ATt−1 = [Ui+1(−p(t)

i+1,i , . . . ,−p(t)
nt ,i

)]−1ATt−1 by Algorithm 1

14: p(t)
i+1,i = · · · = p(t)

nt ,i
= 0

15: else
16: ATK =: [Ui+2(−p(1)

i+2,i , . . . , −p(1)
n1,i

)]−1ATK by Algorithm 1

17: p(1)
i+2,i = · · · = p(1)

n1,i
= 0

18: end if
19: end for
20: end for

5 Accurate Eigenvalue Computations

In this section, we first identify the subset of the general product (19) for which no subtraction
of like-signed numbers occurs throughout the periodic qd-type reduction. We then compute
all the eigenvalues of such a product to high relative accuracy. Error analysis is presented to
illustrate the high relative accuracy.

5.1 The Subtraction-Free Algorithm 1

Lemma 4 Let A = B1B2 . . . Bn−1 ∈ R
n×n be CRD whose parameter matrix P = (pi j ) ∈

R
n×n and each factor Bt ∈ R

n×n (1 ≤ t ≤ n−1) is as in (1), and letU ∈ R
n×n be bidiagonal

whose diagonal entries d j > 0 (1 ≤ j ≤ n) and ( j − 1, j)th entries u j (2 ≤ j ≤ n). Then
the qd-type transformation

U−1A = B ′
1B

′
2 . . . B ′

n−1U
′−1

is subtraction-free if and only if

sign(u j P[ j |1 : j − 1]) = −1 or 0, ∀ 2 ≤ j ≤ n. (21)

Consequently, in this case no breakdown occurs such that each B ′
t (1 ≤ t ≤ n − 1) has the

same form as that of Bt all of whose corresponding entries p′
i j satisfy that

sign(p′
i j ) = sign(pi j ), ∀ i > j, (22)

and U ′ is bidiagonal whose diagonal entries d ′
j > 0 (1 ≤ j ≤ n) and ( j − 1, j)th entries

u′
j = u j (2 ≤ j ≤ n).
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Proof We use induction on the total number of the factors in A to prove the result. By
Lemma 1, the qd-type transformation U−1B1 = B ′

1Ū
−1 is subtraction-free if and only if

sign(dn pn1un) = sign(pn1un) = −1 or 0; (23)

and consequently, no breakdown occurs such that Ū ∈ R
n×n is bidiagonal whose diagonal

entries d̄ j and ( j − 1, j)th entries ū j are the following:⎧⎪⎨
⎪⎩
d̄ j = d j > 0, 1 ≤ j ≤ n − 2,

d̄n = dn − un pn1 > 0, d̄n−1 = dn−1

d̄n
dn > 0,

ū j = u j , ∀ 2 ≤ j ≤ n,

and B ′
1 has the same form as that of B1 with the corresponding entry p′

n1 = dn−1

d̄n
pn1 such

that
sign(p′

n1) = sign(pn1). (24)

Notice that B2 . . . Bn−1 is CRD whose parameters pi j (0 < i − j ≤ n − 2) satisfy the
fact (2). Hence, by applying our induction assumption, the qd-type transformation

Ū−1B2 . . . Bn−1 = B ′
2 . . . B ′

n−1U
′−1

is subtraction-free if and only if

sign(u j P[ j |1 : j − 1]) = −1 or 0, ∀ 2 ≤ j ≤ n − 1; sign(un P[n|2 : n − 1]) = −1 or 0;
(25)

and consequently, no breakdown occurs such that each B ′
t (2 ≤ t ≤ n−1) has the same form

as that of Bt all of whose corresponding entries p′
i j satisfy that

sign(p′
i j ) = sign(pi j ), ∀ i > j and (i, j) �= (n, 1), (26)

and U ′ ∈ R
n×n is bidiagonal whose diagonal entries d ′

j > 0 (1 ≤ j ≤ n) and ( j − 1, j)th
entries u′

j = u j (2 ≤ j ≤ n). Therefore, the fact (25) together with the fact (23) implies that

the qd-type transformation A′ = U−1A is subtraction-free if and only if the fact (21) holds.
Consequently, the facts (24) and (26) imply that the fact (22) is true. ��
Lemma 5 Let A = Cm−1 . . .C2C1 ∈ R

m×m be CRD whose parameter matrix P ∈ R
m×m

and each factor Ct ∈ R
m×m (1 ≤ t ≤ m − 1) is as in (1), and let U ∈ R

m×m be bidiagonal
with unit diagonal whose ( j−1, j)th entries u j �= 0 for all l ≤ j ≤ h and u j = 0 otherwise.
Then the qd-type transformation

U−1A = C ′
m−1 . . .C ′

2C
′
1

is subtraction-free if and only if{
sign(u j P[l − 1, . . . , j − 1| j]) = −1 or 0, ∀ l ≤ j ≤ h;
sign(P[l − 1, . . . , h| j]) = s j , ∀ h + 1 ≤ j ≤ m.

(27)

Consequently, no breakdown occurs such that A′ = U−1A is CRD whose parameter matrix
P ′ satisfies that ⎧⎪⎨

⎪⎩
sign(u j P ′[l − 1, . . . , j − 1| j]) = −1, ∀ l ≤ j ≤ h;
sign(P ′[l − 1, . . . , h| j]) = s j , ∀ h + 1 ≤ j ≤ m;
P ′[i | j] = P[i | j], otherwise;

(28)
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Proof We use induction on the total number of the factors in A to prove the result. By
Lemma 3, the qd-type transformationU−1Cm−1 = C ′

m−1Ū
−1 is subtraction-free if and only

if
sign(u j p j−1, j ) = −1 or 0, ∀ l ≤ j ≤ h; (29)

and consequently, no breakdown occurs such that Ū ∈ R
m×m is bidiagonal with unit diagonal

whose ( j − 1, j)th entries ū j (2 ≤ j ≤ m) are the following:

ū j = p j−1, j − u j

p j−2, j−1 − u j−1
u j−1, l + 1 ≤ j ≤ min{h + 1,m}; otherwise ū j = 0,

from which it follows that{
sign(ū j ) = −sign(p j−1, j − u j ) = sign(u j ), l + 1 ≤ j ≤ h;
sign(ūh+1) = −sign(ph,h+1 − uh+1) = −sign(ph,h+1), if h + 1 ≤ m; (30)

and C ′
m−1 has the same form as that of Cm−1 with the corresponding bidiagonal entries

⎧⎪⎨
⎪⎩
p′
l−1,l = pl−1,l − ul �= 0,

p′
j−1, j = p j−1, j−u j

p j−2, j−1−u j−1
p j−2, j−1, ∀ l + 1 ≤ j ≤ min{h + 1,m},

p′
j−1, j = p j−1, j , otherwise,

from which it follows that⎧⎪⎨
⎪⎩
sign(ul p′

l−1,l) = sign(ul(pl−1,l − ul)) = −1,

sign(u j p′
j−1, j ) = −1 or 0, ∀ l + 1 ≤ j ≤ h,

sign(p′
h,h+1) = sign(ph,h+1) or 0, if h + 1 ≤ m.

(31)

Notice that Cm−2 . . .C1 is CRD whose parameters pi j ( j − i ≥ 2) satisfy the fact (2). There
are the following cases that we need to consider.

– For the case ph,h+1 �= 0, we have by the fact (30) that

ū j �= 0, l + 1 ≤ j ≤ h + 1; otherwise ū j = 0.

Thus, by our induction assumption, the qd-type transformation

A′′ = Ū−1Cm−2 . . .C1 = C ′
m−2 . . .C ′

1

is subtraction-free if and only if{
sign(ū j P[(l + 1) − 2, . . . , j − 2| j]) = −1 or 0, ∀ l + 1 ≤ j ≤ h + 1;
sign(P[(l + 1) − 2, . . . , (h + 2) − 2| j]) = s j , ∀ h + 2 ≤ j ≤ m; (32)

and consequently, no breakdown occurs such that the parameter matrix P ′ = (p′
i j ) of

A′′ satisfies that⎧⎪⎨
⎪⎩
sign(ū j P ′[(l + 1) − 2, . . . , j − 2| j]) = −1, ∀ l + 1 ≤ j ≤ h + 1;
sign(P ′[(l + 1) − 2, . . . , (h + 2) − 2| j]) = s j , ∀ h + 2 ≤ j ≤ m;
p′
i j = pi j ( j − i �= 1), otherwise.

(33)

Therefore, the fact (32) together with the facts (29), (30) implies that the qd-type transfor-
mation A′ = U−1A is subtraction-free if and only if the fact (27) is true. Consequently,
the fact (33) with (30), (31) implies that the fact (28) is true.
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– For the case ph,h+1 = 0, we have by the fact (30) that

ū j �= 0, l + 1 ≤ j ≤ h; otherwise ū j = 0.

Thus, by our induction assumption, the qd-type transformation

A′′ = Ū−1Cm−2 . . .C1 = C ′
m−2 . . .C ′

1

is subtraction-free if and only if{
sign(ū j P[(l + 1) − 2, . . . , j − 2| j]) = −1 or 0, ∀ l + 1 ≤ j ≤ h;
sign(P[(l + 1) − 2, . . . , (h + 1) − 2| j]) = s j , ∀ h + 1 ≤ j ≤ m; (34)

and consequently, no breakdown occurs such that the parameter matrix P ′ = (p′
i j ) of

A′′ satisfies that⎧⎪⎨
⎪⎩
sign(ū j P ′[(l + 1) − 2, . . . , j − 2| j]) = −1, ∀ l + 1 ≤ j ≤ h;
sign(P ′[(l + 1) − 2, . . . , (h + 1) − 2| j]) = s j , ∀ h + 1 ≤ j ≤ m;
p′
i j = pi j ( j − i �= 1), otherwise.

(35)

Notice that by the fact (2), ph,h+1 = 0 implies that phj = 0 for all j ≥ h+1. Therefore,
the fact (34) together with the facts (29), (30) implies that the qd-type transformation
A′ = U−1A is subtraction-free if and only if the fact (27) is true. Consequently, the fact
(35) with (30), (31) implies that the fact (28) is true.

The result is proved. ��
By Lemmas 4 and 5, we identify Algorithm 1 to be subtraction-free as follows.

Theorem 3 Let A ∈ R
n×m be CRD of full rank with the parameter matrix P ∈ R

n×m, and
let U ∈ R

n×n be bidiagonal whose diagonal entries d j > 0 (1 ≤ j ≤ n) and ( j − 1, j)th
entries u j (2 ≤ j ≤ n) are the following:

sign(u j ) = g j �= 0, lr ≤ j ≤ hr , r = 1, 2, . . . , t; otherwise u j = 0,

here, lr+1 − hr ≥ 2 for all 1 ≤ r ≤ t − 1. Denote sign(P[ j | j]) = w j for all 1 ≤ j ≤
min{n,m}. Then the qd-type transformation A′ = U−1A by Algorithm 1 is subtraction-free
if and only if⎧⎪⎨
⎪⎩
sign(P[ j |1 : j − 1]) = −g j or 0, ∀ lr ≤ j ≤ hr ;
sign(P[lr − 1, . . . , j − 1| j]) = −g jw j−1w j or 0, ∀ lr ≤ j ≤ h′

r ;
sign(P[lr − 1, . . . , h′

r | j]) = s j , ∀ h′
r + 1 ≤ j ≤ m;

r = 1, 2, . . . , t,

here h′
r = min{hr , n,m}. Consequently, in this case no breakdown occurs such that A′ is

CRD of full rank whose parameter matrix P ′ ∈ R
n×m satisfies that⎧⎪⎨

⎪⎩
sign(P ′[lr − 1, . . . , j − 1| j]) = −g jw j−1w j , ∀ lr ≤ j ≤ h′

r ;
sign(P ′[lr − 1, . . . , h′

r | j]) = s j ,∀ h′
r + 1 ≤ j ≤ m;

sign(P ′[i | j]) = sign(P[i | j]), otherwise;
r = 1, 2, . . . , t.

Proof Denote by Ulr ∈ R
n×n (1 ≤ r ≤ t) the bidiagonal matrix whose diagonal entries d̃ j

(1 ≤ j ≤ n) and ( j − 1, j)th entries ũ j (2 ≤ j ≤ n) are the following:{
d̃ j = d j , lr − 1 ≤ j ≤ hr ; otherwise d̃ j = 1;
ũ j = u j , lr ≤ j ≤ hr ; otherwise ũ j = 0.
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Consider that lr+1 − hr ≥ 2 for all 1 ≤ r ≤ t − 1. Then U = Ult . . .Ul2Ul1 . Hence, the
qd-type transformation U−1A = U−1

l1
U−1
l2

. . .U−1
lt

A is subtraction-free if and only if the

sequence qd-type transformations Ar−1 = U−1
lr

Ar (denote At = A) for r = t, . . . , 2, 1 are
subtraction-free. Therefore, we conclude by Lemmas 4, 2 and 5 that the result is true. ��
Remark 1 In Theorem 3, all the diagonal entries of U have been assumed to be positive.
Clearly, a general case can be easily dealt with by choosing a signature matrix S such that
all the diagonal entries of SU are positive.

5.2 The Subtraction-Free LR Algorithm

Given the LU factorization T0 = L0U0, the basic LR algorithm is performed as follows:{
Tk = LkUk,

Tk+1 = L−1
k Tk Lk = UkLk,

k = 0, 1, . . . (36)

Lemma 6 Let T ∈ R
n×n be nonsingular as follows

T = LU =
⎡
⎣

1
l2 1

. . .
. . .
ln 1

⎤
⎦
⎡
⎣

d1 u2
. . .

. . .
dn−1 un

dn

⎤
⎦ . (37)

Then in the absence of breakdown, the LR transformation

UL = L̄Ū =:
⎡
⎢⎣

1
l̄2 1

. . .
. . .
l̄n 1

⎤
⎥⎦
⎡
⎢⎣

d̄1 u2
. . .

. . .
d̄n−1 un

d̄n

⎤
⎥⎦ , (38)

where with the convention ln+1 = un+1 = 0,{
z1 = d1, d̄ j = z j + l j+1u j+1,

l̄ j+1 = d j+1

d̄ j
l j+1, z j+1 = d j+1

d̄ j
z j ,

∀ 1 ≤ j ≤ n. (39)

Moreover, the transformation (38) is subtraction-free if and only if sign(d j l j+1u j+1) = 1 or 0
for all 1 ≤ j ≤ n − 1. Consequently, in this case no breakdown occurs such that for all
1 ≤ j ≤ n, sign(d̄ j ) = sign(d j ), sign(d̄ j l̄ j+1u j+1) = sign(d jd j+1) or 0, and l̄ j+1 = 0 if
and only if l j+1 = 0.

Proof Comparing the entries in both sides of (38), we have with the convention ln+1 =
un+1 = 0 that⎧⎪⎨

⎪⎩
d̄1 = d1 + l2u2,

d̄ j l̄ j+1 = d j+1l j+1,

d̄ j+1 + l̄ j+1u j+1 = d j+1 + l j+2u j+2,

j = 1, 2, . . . , n − 1,

from which it follows that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = d̄1 − l2u2 = d1, d̄1 = z1 + l2u2,

l̄ j+1 = d j+1

d̄ j
l j+1,

z j+1 = d̄ j+1 − l j+2u j+2 = d j+1 − l̄ j+1u j+1 = d j+1

d̄ j
z j ,

d̄ j+1 = z j+1 + l j+2u j+2,

j = 1, 2, . . . , n − 1.

123



J Sci Comput (2018) 75:1229–1261 1245

So, the formula (39) is derived. Moreover, by the formula (39), since z1 = d1 �= 0
with sign(z1) = sign(d1), we have that d̄1 = z1 + l2u2 is subtraction-free if and only if
sign(z1l2u2) = sign(d1l2u2) = 1 or 0. Consequently, d̄1 �= 0 with sign(d̄1) = sign(z1) =
sign(d1) such that z2 = d2

d̄1
z1 �= 0 with sign(z2) = sign(d2). So, assume that z j �= 0

with sign(z j ) = sign(d j ) for some 1 ≤ j ≤ n − 1. Then d̄ j = z j + l j+1u j+1 is
subtraction-free if and only if sign(z j l j+1u j+1) = sign(d j l j+1u j+1) = 1 or 0, and con-

sequently, d̄ j �= 0 with sign(d̄ j ) = sign(z j ) = sign(d j ) such that z j+1 = d j+1

d̄ j
z j �= 0 with

sign(z j+1) = sign(d j+1). Notice that d̄n = zn . Thus, we conclude that the LR transformation
(38) is subtraction-free if and only if sign(d j l j+1u j+1) = 1 or 0 for all 1 ≤ j ≤ n − 1.
Consequently, no breakdown occurs such that for all 1 ≤ j ≤ n, sign(d̄ j ) = sign(d j ), and
sign(d̄ j l̄ j+1u j+1) = sign(d jd j+1) or 0 because d̄ j l̄ j+1 = d j+1l j+1 and sign(l j+1u j+1) =
sign(d j ) or 0. Clearly, l̄ j+1 = 0 if and only if l j+1 = 0. ��

Now, we identify the basic LR algorithm to be subtraction-free as follows.

Theorem 4 Let T ∈ R
n×n be as in (37). Then the basic LR algorithm of T is subtraction-

free if and only if sign(l j+1u j+1) = sign(d j ) = sign(d j+1) whenever l j+1u j+1 �= 0 for all
1 ≤ j ≤ n − 1. Consequently, in this case no breakdown occurs.

Proof By Lemma 6, the first LR iteration of (36) is subtraction-free if and only if
sign(d j l j+1u j+1) = 1 whenever l j+1u j+1 �= 0 for all j ; and then, the second LR itera-
tion of (36) is subtraction-free if and only if sign(d jd j+1) = 1 whenever l j+1u j+1 �= 0 by
considering that l̄ j+1 = 0 if and only if l j+1 = 0; and afterwards, the r th (r = 3, 4, . . .) iter-
ation of (36) must be subtraction-free by considering sign(d̄ j ) = sign(d j ) for all j . Notice
that the facts sign(d j l j+1u j+1) = 1 and sign(d jd j+1) = 1 imply that sign(l j+1u j+1) =
sign(d j ) = sign(d j+1). ��
5.3 Computing Eigenvalues with High Relative Accuracy

Now we are ready to show that our eigensolver of combining Algorithm 2 with the LR
algorithm can achieve the high relative accuracy for computing all the eigenvalues of the
product A = A1A2 . . . AK ∈ R

n×n of (19). For simplicity, assume that each factor At

(1 ≤ t ≤ K ) is square of full rank, which can be generalized to the rectangular case by
taking account into Theorems 3 and 4.

Before proceeding, we remark that if there exists 2 ≤ r ≤ n such that Pt [1 : r − 1|r ] = 0
for all 1 ≤ t ≤ K , then by the fact (2), Pt [1 : r − 1|r : n] = 0 such that

At =
[
A(t)
11 0

A(t)
21 A(t)

22

]
∈ R

n×n, where A(t)
11 ∈ R

r×r , ∀ 1 ≤ t ≤ K ,

consequently, the eigenvalue problem of the product A is split into two subproblems of the
products A11 = ∏K

t=1 A
(t)
11 and A22 = ∏K

t=1 A
(t)
22 . A similar splitting fact holds if there exists

2 ≤ r ≤ n such that Pt [r |1 : r − 1] = 0 for all 1 ≤ t ≤ K . Hence, assume that for all
2 ≤ r ≤ n, there exist 1 ≤ t (r)1 , t (r)2 ≤ K such that

P
t (r)1

[1 : r − 1|r ] �= 0 and P
t (r)2

[r |1 : r − 1] �= 0. (40)

Now, we identify the subset of these products for which the periodic qd-type reduction
method is subtraction-free. Recall the convention

∏h
l · = 1 if h < l.
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Theorem 5 Let A = A1 . . . AK−1AK ∈ R
n×n, where each factor At ∈ R

n×n (1 ≤ t ≤ K)
is a nonsingular CRD matrix with the parameter matrix Pt ∈ R

n×n such that the fact (40) is
satisfied. Then the periodic qd-type reduction method, i.e., Algorithm 2, is subtraction-free
to reduce A into a tridiagonal matrix whose basic LR algorithm is subtraction-free if and
only if for all 1 ≤ t ≤ K,⎧⎪⎨

⎪⎩
sign(Pt [ j |1 : j − 1]) = f (t)

j ,

sign(Pt [1 : j − 1| j]) = s(t)
j ,

sign(Pt [ j | j]) = w
(t)
j ,

∀ 1 ≤ j ≤ n, (41)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∏K
l=1 w

(l)
j−1w

(l)
j = 1,

f (t1)
j f (t2)

j = ∏t2−1
l=t1

w
(l)
j−1w

(l)
j , if f (t1)

j f (t2)
j �= 0 for t1 < t2,

s(t1)
j s(t2)

j = ∏t2
l=t1+1 w

(l)
j−1w

(l)
j , if s(t1)

j s(t2)
j �= 0 for t1 < t2,

s(t1)
j f (t2)

j = ∏max{t1,t2−1}
l=min{t1+1,t2} w

(l)
j−1w

(l)
j , if s(t1)

j f (t2)
j �= 0,

∀ 2 ≤ j ≤ n. (42)

Proof We use induction on the total number h of the eliminated rows and columns of the
factors to prove the result. If h = 0, then A itself is of the tridiagonal form with A = LU ,
where L ∈ R

n×n is bidiagonal with unit diagonal whose ( j, j − 1)th entries l j = p(1)
j, j−1

(2 ≤ j ≤ n), and U ∈ R
n×n is bidiagonal whose diagonal entries d j = ∏K

l=1 p
(l)
j j (1 ≤

j ≤ n) and ( j − 1, j)th entries u j = d j−1 p
(K )
j−1, j (2 ≤ j ≤ n). Because of the fact (40),

l j �= 0 and u j �= 0 for all 2 ≤ j ≤ n. Thus, by Theorem 4, the basic LR algorithm of A is
subtraction-free if and only if

sign(l j u j ) = sign(d j−1) = sign(d j ), ∀ 2 ≤ j ≤ n,

i.e., for all 2 ≤ j ≤ n,

sign(p(1)
j, j−1 p

(K )
j−1, j ) = f (1)

j s(K )
j = 1, sign(d j−1d j ) =

K∏
l=1

w
(l)
j−1w

(l)
j = 1,

this means that the result is true for the case h = 0. Now assume that the result is true for the
case that the total number of the eliminated rows and columns is less than h. Notice that for
the periodic qd-type method, the eliminations on columns of A1 . . . AK−1AK are equivalent
to the eliminations on rows of (A1 . . . AK−1AK )T . So, without loss of generality, assume
the first elimination of the method is performed on the first row of the factor At for some
1 ≤ t ≤ K . There are the following cases to be considered.

– The case 1 ≤ t < K . For the parameter matrix Pt = (p(t)
i j ) ∈ R

n×n of At , if p
(t)
1 j = 0

for all 2 ≤ j ≤ n, then all the off-diagonal entries on the 1th row of At are zero, and so,
there is nothing to be eliminated. Thus, by the fact (2), we assume that

p(t)
11 �= 0, . . . , p(t)

1h �= 0 (h ≥ 2); p(t)
1 j = 0, ∀ j > h.

Let U = U2(−p(t)
12 , . . . ,−p(t)

1h ) ∈ R
n×n with sign(p(t)

1 j ) = s(t)
j �= 0 (2 ≤ j ≤ h). Then

the elimination of these nonzero entries is performed by the periodic qd-type method as
follows

A1 . . . At−1At At+1 . . . AK = A1 . . . At−1A
′
t A

′
t+1 . . . AK , (43)
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where A′
t is a nonsingular CRD matrix obtained from At only by setting its (1, j)th

(2 ≤ j ≤ h) parameters to be zero, i.e., the parameter matrix P ′
t ∈ R

n×n of A′
t is the

following:

P ′
t [1| j] = 0, ∀ 2 ≤ j ≤ n; P ′

t [i | j] = Pt [i | j], otherwise;
and the qd-type transformation A′

t+1 = U−1At+1 is computed by Algorithm 1. Thus,
by Theorem 3, the elimination of (43) is subtraction-free if and only if the fact (41) with
(42) is satisfied for the parameter matrix Pt+1 ∈ R

n×n as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sign(Pt+1[ j | j]) = w
(t+1)
j , ∀ 1 ≤ j ≤ h,

sign(Pt+1[ j |1 : j − 1]) = f (t+1)
j = s(t)

j or 0, ∀ 2 ≤ j ≤ h,

sign(Pt+1[1 : j − 1| j]) = s(t+1)
j = s(t)

j w
(t+1)
j−1 w

(t+1)
j or 0, ∀ 2 ≤ j ≤ h,

sign(Pt+1[1 : h| j]) = s(t+1)
j , ∀ h + 1 ≤ j ≤ n,

(44)

and consequently, A′
t+1 is a nonsingular CRD matrix whose parameter matrix P ′

t+1 ∈
R
n×n satisfies that
⎧⎪⎪⎨
⎪⎪⎩

sign(P ′
t+1[1 : j − 1| j])) = s′(t+1)

j = s(t)
j w

(t+1)
j−1 w

(t+1)
j �= 0, ∀ 2 ≤ j ≤ h,

sign(P ′
t+1[1 : h| j]) = s′(t+1)

j = s(t+1)
j , ∀ h + 1 ≤ j ≤ n,

sign(P ′
t+1[i | j]) = sign(Pt+1[i | j]), otherwise.

(45)

In particular, the fact (40) is satisfied for the product A1 . . . A′
t A

′
t+1 . . . AK .

– For the sufficiency, it need to show that the fact (41) with (42) holds for all the factors
of A1 . . . A′

t A
′
t+1 . . . AK . Consider that the fact (41) with (42) has been satisfied

for all the factors Ai (1 ≤ i ≤ K ). Because of the connections between Pj and

P ′
j ( j = t, t + 1), it remains to show that the fact (42) is satisfied for all s′(t+1)

j
(2 ≤ j ≤ h) of P ′

t+1, which is proved as follows: for all 2 ≤ j ≤ h,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(r)
j s′(t+1)

j = s(r)
j s(t)

j w
(t+1)
j−1 w

(t+1)
j = ∏t+1

l=r+1 w
(l)
j−1w

(l)
j , if s(r)

j �= 0 for r ≤ t,

s′(t+1)
j s(r)

j = s(t)
j w

(t+1)
j−1 w

(t+1)
j s(r)

j = ∏r
l=t+2 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r > t + 1,

f (r)
j s′(t+1)

j = f (r)
j s(t)

j w
(t+1)
j−1 w

(t+1)
j = ∏t+1

l=r w
(l)
j−1w

(l)
j , if f (r)

j �= 0 for r ≤ t + 1,

s′(t+1)
j f (r)

j = s(t)
j w

(t+1)
j−1 w

(t+1)
j f (r)

j = ∏r−1
l=t+2 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r > t + 1.

So, we conclude by the induction assumption that the sufficiency is true.
– For the necessity, by the induction assumption, the fact (41) with (42) is true for all

the factors of A1 . . . A′
t A

′
t+1 . . . AK , and in particular,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ′
t [1| j] = 0, ∀ 2 ≤ j ≤ n;

sign(P ′
t [ j |1 : j − 1]) = sign(Pt [ j |1 : j − 1]) = f (t)

j , 2 ≤ j ≤ n;
sign(P ′

t [1 : j − 1| j]) = sign(Pt [2 : j − 1| j]) = s′(t)
j , 3 ≤ j ≤ h;

sign(P ′
t [1 : j − 1| j]) = sign(Pt [1 : j − 1| j]) = s(t)

j , h + 1 ≤ j ≤ n;
sign(P ′

t [ j | j]) = sign(Pt [ j | j]) = w
(t)
j , 1 ≤ j ≤ n,
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where if s′(t)
j �= 0 for some 3 ≤ j ≤ h, since s′(t+1)

j = s(t)
j w

(t+1)
j−1 w

(t+1)
j �= 0

and s′(t)
j s′(t+1)

j = w
(t+1)
j−1 w

(t+1)
j , we have that s′(t)

j = s(t)
j , which together with

sign(p(t)
1 j ) = s(t)

j �= 0 (2 ≤ j ≤ h) implies that

sign(Pt [1 : j − 1| j]) = s(t)
j �= 0, ∀ 2 ≤ j ≤ h.

For showing that the fact (41) with (42) holds for all the factors Ai (1 ≤ i ≤ K ),
because of the connections between Pj and P ′

j ( j = t, t +1), it remains to show that

the fact (42) is satisfied for all s(t)
j (2 ≤ j ≤ h) of Pt , which is proved as follows: for

all 2 ≤ j ≤ h, by considering that s′(t+1)
j �= 0, since

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(r)
j s′(t+1)

j = ∏t+1
l=r+1 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r < t,

s′(t+1)
j s(r)

j = ∏r
l=t+2 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r ≥ t + 1,

f (r)
j s′(t+1)

j = ∏t+1
l=r w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r ≤ t + 1,

s′(t+1)
j f (r)

j = ∏r−1
l=t+2 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r > t + 1,

we have that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(r)
j s(t)

j = ∏t
l=r+1 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r < t,

s(t)
j s(r)

j = ∏r
l=t+1 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r > t + 1,

f (r)
j s(t)

j = ∏t
l=r w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r ≤ t + 1,

s(t)
j f (r)

j = ∏r−1
l=t+1 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r > t + 1.

Therefore, we conclude that the necessity is true.

– The case t = K . For the parameter matrix PK = (p(K )
i j ) ∈ R

n×n of AK , if p
(K )
1 j = 0 for

all 3 ≤ j ≤ n, then all the (1, j)-th (3 ≤ j ≤ n) entries of AK are zero, and so, there is
nothing to be eliminated. Thus, by the fact (2), we assume that

p(K )
11 �= 0, . . . , p(K )

1h �= 0 (h ≥ 3); p(K )
1 j = 0, ∀ j > h.

Let U = U3(−p(K )
13 , . . . ,−p(K )

1h ) with sign(p(K )
1 j ) = s(K )

j �= 0 (3 ≤ j ≤ h). Then
the elimination of these nonzero entries is performed by the periodic qd-type method as
follows

U−1(A1 . . . AK−1AK )U = A′
1A2 . . . AK−1A

′
K , (46)

where A′
K is a nonsingular CRD matrix obtained from AK only by setting its nonzero

(1, j)th (3 ≤ j ≤ h) parameters to be zero, i.e., the parameter matrix P ′
K ∈ R

n×n of A′
K

is the following:

P ′
K [1| j] = 0, ∀ 3 ≤ j ≤ n; P ′

K [i | j] = PK [i | j], otherwise;
and the qd-type transformation A′

1 = U−1A1 is computed by Algorithm 1. Notice that
all the (1, j)-th (2 ≤ j ≤ n) entries of A1 are zero, this means that P1[1| j] = 0 for all
2 ≤ j ≤ n. Thus, by Theorem 3, the elimination of (46) is subtraction-free if and only
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if the fact (41) with (42) is satisfied for the parameter matrix P1 ∈ R
n×n as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

sign(P1[ j |1 : j − 1]) = f (1)
j = s(K )

j or 0, ∀ 3 ≤ j ≤ h,

sign(P1[1 : j − 1| j]) = s(1)
j = s(K )

j w
(1)
j−1w

(1)
j or 0, ∀ 3 ≤ j ≤ h,

sign(P1[1 : h| j]) = s(1)
j , ∀ h + 1 ≤ j ≤ n,

(47)

and consequently, A′
1 is a nonsingular CRD matrix whose parameter matrix P ′

1 ∈ R
n×n

satisfies that⎧⎪⎪⎨
⎪⎪⎩

sign(P ′
1[1 : j − 1| j])) = s′(1)

j = s(K )
j w

(1)
j−1w

(1)
j �= 0, ∀ 3 ≤ j ≤ h,

sign(P ′
1[1 : h| j]) = s′(1)

j = s(1)
j , ∀ h + 1 ≤ j ≤ n,

sign(P ′
1[i | j]) = sign(P1[i | j]), otherwise.

(48)

In particular, the fact (40) is satisfied for the product A′
1A2 . . . AK−1A′

K .

– For the sufficiency, it need to show that the fact (41)with (42) holds for all the factors of
A′
1A2 . . . AK−1A′

K . Consider that the fact (41) with (42) has been satisfied for all the
factors Ai (1 ≤ i ≤ K ). Because of the connections between Pj and P ′

j ( j = 1, K ),

it remains to show that the fact (42) is satisfied for all s′(1)
j (3 ≤ j ≤ h) of P ′

1, which

is proved as follows: for all 3 ≤ j ≤ h, by considering that
∏K

l=1 w
(l)
j−1w

(l)
j = 1, we

have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′(1)
j s(r)

j = s(K )
j w

(1)
j−1w

(1)
j s(r)

j = w
(1)
j−1w

(1)
j

∏K
l=r+1 w

(l)
j−1w

(l)
j

= ∏r
l=2 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r > 1,

s′(1)
j f (r)

j = s(K )
j w

(1)
j−1w

(1)
j f (r)

j = w
(1)
j−1w

(1)
j

∏K
l=r w

(l)
j−1w

(l)
j

= ∏r−1
l=2 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r > 1,

s′(1)
j f (1)

j = s(K )
j w

(1)
j−1w

(1)
j f (1)

j = w
(1)
j−1w

(1)
j .

Therefore, we conclude by the induction assumption that the sufficiency is true.
– For the necessity, by the induction assumption, the fact (41) with (42) is true for all

the factors of A′
1A2 . . . AK−1A′

K , and in particular,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ′
K [1| j] = 0, ∀ 3 ≤ j ≤ n; P ′

K [1|2] = PK [1|2];
sign(P ′

K [ j |1 : j − 1]) = sign(PK [ j |1 : j − 1]) = f (K )
j , 2 ≤ j ≤ n;

sign(P ′
K [1 : j − 1| j]) = sign(PK [2 : j − 1| j]) = s′(K )

j , 3 ≤ j ≤ h;
sign(P ′

K [1 : j − 1| j]) = sign(PK [1 : j − 1| j]) = s(K )
j , h + 1 ≤ j ≤ n;

sign(P ′
K [ j | j]) = sign(PK [ j | j]) = w

(K )
j , 1 ≤ j ≤ n,

where if s′(K )
j �= 0 for some 3 ≤ j ≤ h, since s′(1)

j = s(K )
j w

(1)
j−1w

(1)
j �= 0 and

s′(1)
j s′(K )

j = ∏K
l=2 w

(l)
j−1w

(l)
j , we have that s′(K )

j s(K )
j = ∏K

l=1 w
(l)
j−1w

(l)
j = 1, which

together with sign(p(K )
1 j ) = s(K )

j �= 0 (3 ≤ j ≤ h) implies that

sign(PK [1 : j − 1| j]) = s(K )
j �= 0, ∀ 3 ≤ j ≤ h.
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For showing that the fact (41) with (42) holds for all the factors Ai (1 ≤ i ≤ K ),
because of the connections between Pj and P ′

j ( j = 1, K ), it remains to show that

the fact (42) is satisfied for all s(K )
j (3 ≤ j ≤ h) of PK , which is proved as follows:

for all 3 ≤ j ≤ h, by considering that s′(1)
j �= 0 and

∏K
l=1 w

(l)
j−1w

(l)
j = 1, since

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s′(1)
j s(r)

j = ∏r
l=2 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r ≥ 1,

s′(1)
j f (r)

j = ∏r−1
l=2 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r > 1,

s′(1)
j f (1)

j = w
(1)
j−1w

(1)
j , if f (1)

j �= 0,

we have that⎧⎨
⎩
s(r)
j s(K )

j = ∏K
l=r+1 w

(l)
j−1w

(l)
j , if s(r)

j �= 0 for r ≥ 1,

f (r)
j s(K )

j = ∏K
l=r w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for r ≥ 1.

Therefore, we conclude that the necessity is true.

The result is proved. ��
Remark 2 It must be pointed out that according to the proof of Theorem 5, the condition
(40) can be removed for the sufficiency.

Corollary 4 Let A = A1 . . . AK−1AK ∈ R
n×n, where each factor At ∈ R

n×n (1 ≤ t ≤ K)
is a nonsingular CRD matrix whose parameter matrix Pt ∈ R

n×n satisfies that

Pt [1 : r − 1|r ] �= 0 and Pt [r |1 : r − 1] �= 0, ∀ 1 ≤ r ≤ n.

Then Algorithm 2 is subtraction-free to reduce A into a tridiagonal matrix whose basic LR
algorithm is subtraction-free if and only if for all 1 ≤ t ≤ K,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

sign(Pt [ j |1 : j − 1]) = f (t)
j ,

sign(Pt [1 : j − 1| j]) = s(t)
j ,

sign(Pt [ j | j]) = w
(t)
j ,

∀ 1 ≤ j ≤ n,

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏K
l=1 w

(l)
j−1w

(l)
j = 1,

f (t)
j s(t)

j = w
(t)
j−1w

(t)
j , ∀ 1 ≤ t ≤ K ,

s(t)
j = f (t+1)

j , ∀ 1 ≤ t ≤ K − 1; s(K )
j = f (1)

j ,

∀ 1 ≤ j ≤ n.

Corollary 5 Let A = A1AT
2 . . . A2K−1AT

2K ∈ R
n×n be the product of Vandermonde matri-

ces At = [(x (t)
i ) j−1]n,n

i, j=1 (1 ≤ t ≤ 2K) with 0 ≥ x (t)
1 > x (t)

2 > · · · > x (t)
n . Then

Algorithm 2 is subtraction-free to reduce A into a tridiagonal matrix whose basic LR algo-
rithm is subtraction-free.

Proof By the formula (4), the parameter matrix Pt ∈ R
n×n of At (1 ≤ t ≤ 2K ) satisfies

that ⎧⎪⎨
⎪⎩
sign(Pt [ j |1 : j − 1]) = 1,

sign(Pt [1 : j − 1| j]) = −1,

sign(Pt [ j | j]) = (−1) j−1,

∀ 1 ≤ j ≤ n.
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Thus, we conclude by Corollary 4 that the result is true. ��
Beside of the example by Corollary 5, more examples can be given for the periodic qd-

type reduction method to be subtraction-free. Fox example, by the formula (4), the parameter
matrix of a Vandermode matrix A = (x j−1

i ) ∈ R
n×m is nonnegative if 0 ≤ x1 < x2 <

· · · < xn ; and by the formula (5), the parameter matrix of a Cauchy matrix A = ( 1
xi+y j

) ∈
R
n×m is positive (or all the diagonal and off-diagonal parameters are negative and positive,

respectively) if x1 < x2 < · · · < xn , y1 < y2 < · · · < yn , x1 + y1 > 0 (or xn + yn < 0). So,
any product consisting of these Vandermonde and Cauchymatrices is our desired example. In
what follows, we illustrate how to specifically compute all the eigenvalues of such products
to high relative accuracy.

For the product A = A1 . . . AK−1AK ∈ R
n×n with parameter matrices Pt = (p(t)

i j ) of
the factors At (1 ≤ t ≤ K ) satisfying the fact (41) with (42), the periodic qd-type method is
subtraction-free to reduce A into a tridiagonal matrix T ∈ R

n×n as follows:

T = Ā1 . . . ĀK−1 ĀK = LDU, (49)

where let P̄t = ( p̄(t)
i j ) be the parameter matrix of Āt (1 ≤ t ≤ K ), then D = diag(dii ) with

dii = ∏K
l=1 p̄

(l)
i i and sign( p̄(l)

i i ) = sign(p(l)
i i ) for all i and l, L andU are lower and upper bidi-

agonal with unit diagonal whose bidiagonal entries li = p̄(1)
i,i−1 and ui = p̄(K )

i−1,i , respectively;

and sign(li ui ) = 1 or 0 for all i . Consequently, let X = diag(x1,
∏2

i=1 xi , . . . ,
∏n

i=1 xi ) ∈
R
n×n , where

xi =
{
max{sign(li ), sign(ui )}, if li �= 0 or ui �= 0,

1, otherwise,
1 ≤ i ≤ n,

then by the fact
∏K

l=1 sign( p̄
(l)
i−1,i−1 p̄

(l)
i i ) = ∏K

l=1 sign(p
(l)
i−1,i−1 p

(l)
i i ) = 1 for all i ,

X−1T X =
⎧⎨
⎩

|L||D||U |, if
∏K

l=1 sign(p
(l)
11 ) = 1,

−|L||D||U |, if
∏K

l=1 sign(p
(l)
11 ) = −1,

here, | · | is interpreted componentwise. Further, |L||D||U | has the same eigenvalues as those
of the symmetric tridiagonal matrix

T ′ = (D′U ′)T (D′U ′) = BT B, D′ = diag
(√|dii |

)
, (50)

where U ′ is bidiagonal with unit diagonal whose (i − 1, i)th entries u′
i =

√
| p̄(1)

i,i−1 p̄
(K )
i−1,i |

(2 ≤ i ≤ n). So, all the eigenvalues of A are positive or negative squares of singular values
of B according to

∏K
l=1 sign(p

(l)
11 ) = 1 or −1. It is well known that all the singular values of

a bidiagonal matrix is accurately computed by the dqds algorithm [13]. Therefore, we have
Algorithm 3 to compute eigenvalues of the product satisfying (41) with (42).

5.4 Error Analysis

In this subsection, error analysis is provided to illustrate the high relative accuracy of Algo-
rithm 3. We first show that for the product (19) satisfying the fact (41) with (42), all its
eigenvalues are determined by its parameters to high relative accuracy.

Theorem 6 Let A = A1 . . . AK−1AK ∈ R
n×n be the product of nonsingular CRD matrices

At ∈ R
n×n (1 ≤ t ≤ K) whose parameter matrices Pt = (p(t)

i j ) ∈ R
n×n satisfy the fact (41)
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Algorithm 3 The algorithm computes eigenvalues of A = A1 . . . AK−1AK ∈ R
n×n with

parameter matrices Pt = (p(t)
i j ) of the factors At (1 ≤ t ≤ K ) satisfying (41) with (42).

1: First, A is reduced by Algorithm 2 into the tridiagonal matrix T of (49).
2: Compute singular values of the bidiagonal B of (50) by the dqds algorithm. Then all the eigenvalues of A′

are obtained as the positive or negative squares of these singular values according to
∏K

l=1 sign(p
(l)
11 ) = 1

or −1.

with (42), and let Ã ∈ R
n×n be obtained from A by replacing one of these parameters p(t)

i j

with p̃(t)
i j = p(t)

i j (1+ ε
(t)
i j ) (1 ≤ i, j ≤ n and 1 ≤ t ≤ K), where |ε(t)

i j | ≤ ε and 2ε < 1. Then

for the descending-ordered eigenvalues λi and λ̃i of A and Ã, respectively;

|λ̃i − λi | ≤ 2ε

1 − 2ε
|λi |, ∀ 1 ≤ i ≤ n.

Proof According to the fact (41), let X = diag(x1,
∏2

j=1 x j , . . . ,
∏n

j=1 x j ) ∈ R
n×n , where

for all 1 ≤ j ≤ n,

x j =

⎧⎪⎪⎨
⎪⎪⎩

f (r)
j

∏r−1
l=1 w

(l)
j−1w

(l)
j , if f (r)

j �= 0 for some 1 ≤ r ≤ K ;
s(r)
j

∏r
l=1 w

(l)
j−1w

(l)
j , if f (l)

j = 0 for all 1 ≤ l ≤ K , but s(r)
j �= 0 for some 1 ≤ r ≤ K ;

1, otherwise;
and thus, let Zt = XYt = diag(z(t)j ) ∈ R

n×n where Yt = diag(
∏t

l=1 w
(l)
j ) ∈ R

n×n for all
0 ≤ t ≤ K with the convention Y0 = In . Then

Z0AZK = (Z0A1Z1)(Z1A2Z2) . . . (ZK−1AK ZK ) = Ā1 Ā2 . . . ĀK ,

where for each 1 ≤ t ≤ K , since At = B1 . . . Bn−1DCn−1 . . .C1 is as in (1) satisfying the
fact (41), we have

Āt = Zt−1At Zt = |B1| . . . |Bn−1|(Zt−1D)Cn−1 . . .C1Zt

= |B1| . . . |Bn−1||D|(ZtCn−1 . . .C1)Zt

= |B1| . . . |Bn−1||D||Cn−1| . . . |C1|(Zt Zt )

= |B1| . . . |Bn−1||D||Cn−1| . . . |C1|,
because the following statements hold by using the fact (42):

– first, for any f (t)
j �= 0 (2 ≤ j ≤ n),

f (t)
j z(t−1)

j−1 z(t−1)
j = f (t)

j x j

t−1∏
l=1

w
(l)
j−1w

(l)
j = f (t)

j

(
f (r)
j

r−1∏
l=1

w
(l)
j−1w

(l)
j

)
t−1∏
l=1

w
(l)
j−1w

(l)
j = 1,

such that

Zt−1Bi Zt−1 = |Bi |, ∀ 1 ≤ i ≤ n − 1;
– further, for any w

(t)
j (1 ≤ j ≤ n),

w
(t)
j z(t−1)

j = z(t)j , ∀ 1 ≤ j ≤ n

such that

Zt−1D = |D|Zt ;
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– finally, for any s(t)
j �= 0 (2 ≤ j ≤ n),

s(t)
j z(t)j−1z

(t)
j = s(t)

j x j

t∏
l=1

w
(l)
j−1w

(l)
j = s(t)

j

(
s(r)
j

r∏
l=1

w
(l)
j−1w

(l)
j

)
t∏

l=1

w
(l)
j−1w

(l)
j = 1,

such that

ZtCi Zt = |Ci |, ∀ 1 ≤ i ≤ n − 1.

The fact
∏K

l=1 w
(l)
j−1w

(l)
j = 1 implies that

∏K
l=1 w

(l)
j−1 = ∏K

l=1 w
(l)
j for all j . So, Zk =

(
∏K

l=1 w
(l)
1 ) · X , and thus,

X−1AX =
(

K∏
l=1

w
(l)
1

)
· Ā1 Ā2 . . . ĀK = ± (

Ā1 Ā2 . . . ĀK
)

where each Āt (1 ≤ t ≤ K ) is a nonsingular CRD matrix whose parameter matrix P̄t =
(|p(t)

i j |) ∈ R
n×n . This means that Ā1 Ā2 . . . ĀK is just a product of nonnegative bidiagonal

matrices. Therefore, we conclude by [19, Theorem 7.2] that the result is true. ��
Now we are ready to show the high relative accuracy of Algorithm 3 as follows.

Theorem 7 Let A = A1 . . . AK−1AK ∈ R
n×n be the product of nonsingular CRD matrices

At ∈ R
n×n (1 ≤ t ≤ K) satisfying the fact (41)with (42), and let λi and λ̂i be its descending-

ordered exact and computed eigenvalues by Algorithm 3, respectively. Then

|λ̂i − λi | ≤ O(2Kn3)μ

1 − O(2Kn3)μ
|λi |, i = 1, 2, . . . , n.

Proof For the first stage of Algorithm 3, let T and T̂ be the exact and computed tridiag-
onal forms obtained from A without any subtractions of like-signed numbers in O(Kn3)
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100
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Eigenvalues of the product of  matrices

Alg. 3
eig

Fig. 1 The computed eigenvalues of the product in Example 1
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Relative errors when computing eigenvalues
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Fig. 2 The relative errors for the computed eigenvalues of the product in Example 1
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Eigenvalues of the product of  matrices
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svd

Fig. 3 The computed eigenvalues of the product in Example 2

arithmetic operations, respectively. Consider that every single subtraction-free arithmetic
operation causes at most μ relative perturbation in at most one parameter of the factors of A.
So, by Theorem 6, all the descending-ordered eigenvalues λi (T̂ ) and λi (T ) satisfy that

|λi (T̂ ) − λi (T )| ≤ O(2Kn3)μ

1 − O(2Kn3)μ
|λi (T )|, λi (T ) = λi (A), i = 1, 2, . . . , n.

Further, for the second stage ofAlgorithm3, let B and B̂ be the exact and computed bidiagonal
matrices obtained form T̂ without any subtractions of like-signed numbers, respectively; then
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Fig. 4 The relative errors for the computed eigenvalues of the product in Example 2
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Fig. 5 The computed eigenvalues of the product in Example 3

by [8, Theorem 2], all the descending-ordered singular values σi (B̂) and σi (B) satisfy that

|σi (B̂) − σi (B)| ≤ O(n3)μ

1 − O(n3)μ
σi (B), σ 2

i (B) = |λi (T̂ )|, i = 1, 2, . . . , n.

In addition, the dqds algorithm computes each singular value of B̂ with a relative error not
exceeding O(n2)μ [13,25]. Therefore, we conclude that the result is true. ��
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Table 1 The relative errors for
computing nonzero eigenvalues
in Example 3

i λi
|λ̂i−λi ||λi | by Algorithm 3 |λ̂i−λi ||λi | by eig

1 −4.8724e+139 8.4661e−015 4.3416e−016

2 −1.2781e+118 7.3602e−015 6.4850e+000

3 −4.8453e+101 3.0792e−015 1.7106e+017

4 −7.3031e+087 5.6854e−015 2.0035e+026

5 −8.6151e+075 6.1553e−015 8.0932e+031

6 −2.8816e+065 3.4083e−015 4.3360e+039

7 −3.7381e+055 3.9325e−015 1.4411e+047

8 −1.4449e+048 1.1230e−016 3.6239e+054

9 −6.9586e+040 4.4475e−015 6.6380e+059

10 −1.0817e+034 2.9844e−015 9.6114e+064

11 −5.4507e+026 4.1605e−015 1.5851e+070

12 −8.3721e+019 5.6752e−015 1.0319e+077

13 −6.4044e+012 1.3723e−015 7.1694e+083

14 −5.5881e+005 4.5832e−015 3.8750e+089

15 −4.3688e−002 3.4942e−015 2.6230e+096

16 −3.1274e−009 6.6123e−015 5.6140e+102

17 −2.0928e−016 4.3584e−015 1.8387e+109

18 −1.3072e−023 6.6319e−015 8.8989e+114

19 −7.7185e−031 6.4678e−015 5.2738e+121

20 −4.2582e−038 5.8844e−015 9.4070e+127

21 −2.3239e−045 4.5523e−015 1.7237e+135

22 −1.1738e−052 4.4242e−015 2.7974e+142

23 −5.5002e−060 2.2108e−015 2.7510e+149

24 −3.5171e−067 3.3721e−015 6.6886e+155

25 −8.5208e−075 4.7242e−015 1.0864e+163

26 −1.5318e−081 1.0697e−015 1.0389e+169

27 −1.9844e−088 1.2656e−015 1.9823e+175

28 −4.3120e−096 1.7358e−015 8.9878e+182

29 −1.6576e−105 3.5045e−016 2.3786e+191

30 −1.8062e−115 2.2464e−015 1.8034e+201

6 Numerical Experiments

In this section, we provide numerical experiments to confirm the high relative accuracy of our
proposed method by measuring the relative error |λ̂i − λi |/|λi | of the computed eigenvalues
λ̂i , where λi is the exact descending-ordered eigenvalue by Mathematica with 200-decimal
digit arithmetic. All the tests are conducted by MATLAB 7.0 in double precision arithmetic.

Example 1 Consider the product A = B6 with B =
[

n2
xi+y j

]n,n

i, j=1
, where the descending-

ordered vectors x = (xi ), y = (y j ) ∈ R
1×n are randomly chosen by the command rand.

Set n = 30. The spectral condition number k2(B) = 7.3453e + 049 by Mathematica. We
compute eigenvalues of A by Algorithm 3 and Matlab command (eig(B))6, respectively.
The absolute values and relative errors of the computed eigenvalues are plotted in Figs. 1
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Fig. 6 The computed eigenvalues of the product in Example 4

and 2, respectively; where the maximum relative errors by Algorithm 3 and (eig(B))6 are
8.6766e − 013 and 6.5770e + 179, respectively.

Example 2 Consider the product A = (BBT )3 with B = [
(−xi · 10) j−1

]n,m
i, j=1, where the

ascending-ordered vector x = (xi ) ∈ R
1×n is randomly chosen by the command rand.

Set n = 100 and m = 30. Then k2(B) = 2.5298e + 036 by Mathematica. We compute
eigenvalues of A byAlgorithm 3 andMatlab command (svd(B))6, respectively. The absolute
values and relative errors of the computed eigenvalues are plotted inFigs. 3 and4, respectively;
where the maximum relative errors by Algorithm 3 and (svd(B))6 are 1.5229e − 014 and
2.4737e + 023, respectively.

Example 3 Consider the product A = A1A2A3A4A5A6 ∈ R
n1×n1 , where

A1 =
[(

1

n1 − i + 1

) j−1
]n1,n2

i, j=1

, A2 =
[(−i2

n2

) j−1
]n2,n3

i, j=1

, A3 =
[
(−n4 − j)i−1

]n3,n4
i, j=1

,

and

A4 =
[

n4
i + j − 1

]n4,n5
i, j=1

, A5 =
[

n6
−i − j

]n5,n6
i, j=1

, A6 =
[

n1
i + j

]n6,n1
i, j=1

.

By the formulas (4) and (5), the fact (41) with (42) is satisfied. Set n1 = 100, n2 = 30, n3 =
40, n4 = 50, n5 = 60, n6 = 70. Then k2(A1) = 1.7796e+ 042, k2(A2) = 1.9307e+ 060,
k2(A3) = 4.0401e+109, k2(A4) = 3.9278e+069, k2(A5) = 1.5132e+085 and k2(A6) =
1.4911e + 095 by Mathematica. Notice that 70 eigenvalues of A are zero. We compute
eigenvalues of A by Algorithm 3 and Matlab command eig(A), respectively. The absolute
values of all the computed eigenvalues are plotted in Fig. 5. As observed, these 70 zero
eigenvalues are not correctly computed by eig(A). The relative errors for computing 30
nonzero eigenvalues are reported in Table 1, which confirms that all the eigenvalues of A are
computed by Algorithm 3 to high relative accuracy.
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Table 2 The relative errors for
computing nonzero eigenvalues
in Example 4

i λi
|λ̂i−λi ||λi | by Algorithm 3 |λ̂i−λi ||λi | by eig

1 6.6697e+259 6.9205e−014 0

2 1.1167e+209 8.0081e−015 3.1584e+030

3 1.0489e+176 1.4342e−014 3.3624e+063

4 4.2646e+150 6.8175e−016 6.2668e+078

5 4.4801e+129 1.9239e−015 1.1570e+096

6 4.3630e+111 8.5675e−016 4.6432e+110

7 6.7572e+095 1.1757e−014 1.7433e+126

8 5.9600e+081 5.2303e−015 8.8005e+136

9 1.5994e+069 1.0779e−014 1.4047e+149

10 8.9595e+057 7.4672e−015 9.3269e+159

11 8.7307e+047 2.4160e−015 8.7218e+166

12 1.4460e+039 4.1803e−016 4.5678e+174

13 3.0661e+031 3.2314e−015 2.5934e+181

14 4.1342e+024 3.2465e−015 7.3640e+187

15 1.8062e+018 7.0866e−016 3.0872e+192

16 1.3232e+012 2.5831e−015 7.1353e+197

17 1.4289e+006 5.0514e−015 1.3590e+202

18 2.2126e+000 8.0284e−016 7.7413e+207

19 5.0581e−006 2.1770e−015 5.9630e+212

20 1.6060e−011 4.6275e−015 6.2198e+217

21 4.3162e−017 3.8552e−015 1.5661e+223

22 6.9029e−023 1.5326e−015 6.2890e+228

23 6.3271e−029 2.1262e−015 2.5401e+234

24 3.1936e−035 2.6781e−015 1.3179e+240

25 8.5503e−042 0 6.1700e+244

26 1.1847e−048 7.6948e−016 9.8083e+250

27 8.2274e−056 0 1.2125e+258

28 2.6994e−063 7.7982e−015 7.6503e+264

29 3.7202e−071 1.5134e−015 9.7380e+271

30 1.6077e−079 2.0501e−015 1.1712e+280

Example 4 Consider the product A = A1A2A3A4A5A6 ∈ R
n1×n1 , where

A1 =
[( −1

n1 − i + 1

) j−1
]n1,n2

i, j=1

, A2 = [(−n3 − j)i−1]n2,n3i, j=1, A3 =
[( −1

n3 − i + 1

) j−1
]n3,n4

i, j=1

,

and

A4 = [(−n5 − j)i−1]n4,n5i, j=1, A5 =
[( −1

n5 − i + 1

) j−1
]n5,n6

i, j=1

, A6 = [(−n1 − j)i−1]n6,n1i, j=1.

By the formula (4), the fact (41) with (42) is satisfied. Set n1 = 70, n2 = 30, n3 =
40, n4 = 40, n5 = 50, n6 = 60. Then k2(A1) = 8.3931e+ 042, k2(A2) = 1.9573e+ 078,
k2(A3) = 9.2919e+068, k2(A4) = 4.0401e+109, k2(A5) = 6.2048e+089 and k2(A6) =
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Fig. 7 The computed eigenvalues of the product in Example 5
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Fig. 8 The relative errors for the computed eigenvalues of the product in Example 5

3.0557e + 175 by Mathematica. Notice that 40 eigenvalues of A are zero. We compute
eigenvalues of A by Algorithm 3 and Matlab command eig(A), respectively. The absolute
values of all the computed eigenvalues are plotted in Fig. 6. As observed, these 40 zero
eigenvalues are not correctly computed by eig(A). The relative errors for computing 30
nonzero eigenvalues are reported in Table 2, which confirms the high relative accuracy of
Algorithm 3.

Finally, we show the accuracy of our method even though the fact (41) with (42) is not
satisfied.
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Example 5 Consider the product A = B6 ∈ R
n×n with B =

[
( n
n+i )

j−1
]n,n

i, j=1
. Set n = 30.

Then k2(B) = 7.9202e + 037 by Mathematica. The fact (41) with (42) is not satisfied for
A. Nevertheless, Algorithm 3 computes eigenvalues of A with more accuracy than those by
the command (eig(B))6, especially for eigenvalues with small magnitudes. All the absolute
values and relative errors of the computed eigenvalues are plotted inFigs. 7 and8, respectively.
Themaximum relative error by Algorithm 3 is 2.5882e−011, whereas the maximum relative
error by (svd(B))6 is 3.1404e + 117.
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