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Abstract In this paper, we investigate numerical solution of the diffuse interface model
with Peng–Robinson equation of state, that describes real states of hydrocarbon fluids in the
petroleum industry. Due to the strong nonlinearity of the source terms in this model, how to
design appropriate time discretizations to preserve the energy dissipation law of the system
at the discrete level is a major challenge. Based on the “Invariant Energy Quadratization”
approach and the penalty formulation, we develop efficient first and second order time step-
ping schemes for solving the single-component two-phase fluid problem. In both schemes
the resulted temporal semi-discretizations lead to linear systems with symmetric positive
definite spatial operators at each time step. We rigorously prove their unconditional energy
stabilities in the time discrete sense. Various numerical simulations in 2D and 3D spaces
are also presented to validate accuracy and stability of the proposed linear schemes and to
investigate physical reliability of the target model by comparisons with laboratory data.
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1 Introduction

Subsurface flow often involves multiple fluid phases, and the phenomena of subsurfaces
often allow for the mixing of immiscible and partially miscible fluids. A typical well-known
application is the subsurface gas and oil reservoir, which contains gas phase, water phase
and oil phase, together with the solid phase (soil or rock) [9]. There have been many efforts
to study multiphase fluids, especially in reservoir engineering [13,20,25–27,30]. It is highly
important to model and numerically simulate these interfaces between phases to understand
physical phenomena, such as gas bubbles, liquid droplets, and capillary pressure.

At least three methodologies have been proposed to model the interfaces between phases.
Based on the molecular scale, the first approach is to model it by applying the molecular
Monte Carlo simulation or the molecular dynamics simulation with a given intermolecular
potential function (e.g., Lennard–Jones potential) [3,10]. Although this method can describe
the interfaces in detail, the central processing unit intensive property limits its application to a
small part of simple substance. The second approach is knownas the sharp interfacemodeling.
The interface is modeled by a zero-thickness two-dimensional entity [23]. Assuming that the
interface tension is given, this approach can be successfully applied to predict the shape and
dynamics of the interface. However, it can not provide information within the interface itself.
The third methodology is the diffuse interface theory, also called the phase field method see
[22]. This method regards the molar or mass density as constants in the regions occupied
by either single phase, but changes continuously within the interface. It provides an easier
treatment of topological changes of the interface, since the free interface can be automatically
tracked without imposing any mathematical conditions on the moving interface. Moreover,
the phase field model is usually obtained by an energy-based variational formulation, thus it
leads to well-posed nonlinear systems that satisfies the energy dissipation law. This approach
has become a well-known effective modeling and simulated tool to resolve the motion of
free interfaces betweenmultiple material components, and also has been successfully applied
to problems in many fields of science and engineering, see [1,12,14,15,24,28,29] and the
references cited therein.

The diffuse interface model with Peng–Robinson equation of state [21] has been widely
studied and applied for describing the real states of hydrocarbon fluids in the petroleum
industry, and the structure of its energy functional is highly nonlinear and more complicated
than many conventional phase field models. Therefore, designing accurate, efficient and
stable numerical solution schemes for this model is a very useful but challenging task. Some
efforts have been devoted to developing numerical schemes with energy stability. Qiao and
Sun [22] adopted the well-known convex splitting approach [8], where the convex part of the
nonlinear system is treated implicitly and the concave part explicitly in the time marching.
This scheme is proved to be unconditionally energy stable. However, the computational
costs are usually high since it produces stiff nonlinear systems to be solved at each time
step. Kou and Sun [16] proved the maximum principle of the molar density and proposed a
modified Newton’s method to solve the nonlinear model. About some recent developments in
numerical algorithms for the diffuse interface model with Peng–Robinson equation of state,
we refer to [17,18].
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The main purpose of this paper is to design efficient and effective linear energy stable
numerical schemes to solve the diffuse interface model with Peng–Robinson equation of
state. Instead of using the linear stabilization or the convex splitting approach, we will take
the “Invariant Energy Quadratization” (IEQ) approach, which is a novel method and have
been successfully applied to many phase field models for gradient flows [31–37]. The IEQ
approach generalizes the Lagrange Multiplier approach (which is for double well potential
only) proposed in [11], and extends its applicability greatly to a unified framework for general
dissipative stiff systems with high nonlinearity. The essential idea of the IEQ approach is to
transform the free energy into a quadratic form of a set of new variables via the change of
variables. Then, we obtain a new but equivalent system, which still retains a similar energy
dissipation law in terms of the new variables. The major advantage of this method is that all
nonlinear terms in the new system then can be discretized by semi-explicit schemes in time
to produce a linear system at each time step, while certain analogs of the energy dissipation
law in the discrete sense are also preserved. Moreover, the operator of the obtained linear
system is symmetric positive definite, and thus it can be numerically solved bymany efficient
linear solvers such as preconditioned CG method.

The rest of this paper is organized as follows. The diffuse interface model of the fluid
system with Peng–Robinson equation of state is first briefly reviewed in Sect. 1.1. Our study
especially focuses on the case of single-component two-phase fluids in this paper. In Sect. 2,
we derive a gradient flow problem (a system of evolution equations) associated with the
diffuse interface model, based on the the penalty formulation and the IEQ approach. In
Sect. 3, we propose two numerical schemes with respective first order and second order
temporal accuracy for solving the model, and both of them only require solution of linear
systems in space at each time step. We also prove the symmetric positive definiteness of the
resulted linear systems and the unconditional energy stabilities of these schemes. In Sect. 4
various numerical experiments in 2D and 3D spaces are carried out to illustrate accuracy
and stability of the proposed schemes and to investigate physical reliability of the diffuse
interface model by comparisons with laboratory data. Finally, some concluding remarks are
given in Sect. 5.

1.1 Mathematical Model of the Fluid System by the Diffuse Interface
and Peng–Robinson Equation of State

We now give a brief introduction on the diffuse interface model of fluid system with Peng–
Robinson equation of state, consisting of fixed species inside a domain with a spatially
uniform-distributed temperature. The total Helmholtz free energy achieves a globalminimum
at the equilibrium state due to the second law of thermodynamics. Let M denote the number of
components in the fluid mixture, Ω be the open, bounded, and connected domain occupied
by the M-component two-phase fluid, and T (measured in Kelvin) be the temperature of
the fluid mixture. Let ni (x) > 0 represent the molar concentration of the component i
and denote by n = (n1, n2, . . . , nM )T the molar concentrations of all components and by
n = n1+n2+· · ·+nM the totalmolar density of the fluid. The diffusive interfacemodel states
that the total Helmholtz energy density of an inhomogeneous fluid has two contributions, one
from the thermodynamic theory of homogeneous fluid and the other one from inhomogeneity
of the fluid, in the following form [9]

F(n; T ) = F0(n; T ) + F∇(n; T )

=
∫

Ω

f0(n; T ) dx +
∫

Ω

f∇(n; T ) dx. (1)
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Here f0(n; T ) and f∇(n; T ) are respectively the contribution of Helmholtz free energy
densities from the homogeneous fluid theory and the concentration gradient. Since the molar
concentration n at equilibrium minimizes the Helmholtz free energy (1) for a closed and
conserved fluid system with a spatially uniform-distributed temperature T , the mathematical
statement of the problem is formulated as follows: find n∗ ∈ H satisfying

F(n∗) = min
n∈H

F(n), (2)

subject to the constraint ∫
Ω

n dx = N, (3)

where H is a space of functions with certain regularity. Under the condition (3), N =
(N1, N2, · · · , NM )T denotes a pre-given constant vector, with Ni representing the fixed
amount of material mass for the component i in the system.

The Peng–Robinson equation of state is one of the most popular model for computing the
fluid equilibrium properties of petroleum fluids in reservoir engineering and oil industries,
where the homogeneous Helmholtz free energy density f0(n) is given by [15,16,18]

f0(n) = f01(n) + f02(n)

with

f01(n) = RT
M∑

i=1

ni (ln ni − 1) − n RT ln(1 − bn),

f02(n) = a(T )n

2
√
2b

ln

(
1 + (1 − √

2)bn

1 + (1 + √
2)bn

)
,

where R is the universal gas constant and the (temperature-dependent) energy parameter
a = a(T ) and the co-volume parameter b are related to themixing rules of the pure fluids. The
gradient contribution or the inhomogeneous term f∇(n) can be computed by the following
simple quadratic relation

f∇(n) = 1

2

M∑
i, j=1

ci j∇ni · ∇n j ,

where the influence parameter ci j is a function of the molar concentrations and the temper-
ature. We refer to the “Appendix” for details.

2 The Modified Total Free Energy and the Gradient Flow Problem

In this paper, we will focus our study on the case of single-component (M = 1) two-phase
fluid system, which can be simplified to the following problem

min
n

F(n) =
∫

Ω

( f0(n) + f∇(n)) dx, (4)

subject to ∫
Ω

n dx = N , (5)
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where f∇(n) = c

2
∇n · ∇n and f0(n) = f01(n) + f02(n) with

f01(n) = RT n(ln n − 1) − n RT ln(1 − bn)

and

f02(n) = a(T )n

2
√
2b

ln

(
1 + (1 − √

2)bn

1 + (1 + √
2)bn

)
.

Theoretically the possible value of n in the problem (4), (5) falls into the open interval
(0, 1/b). It is obvious that f02(n) is a continuous function at the interval (−(

√
2− 1)/b,∞)

and thus is naturally bounded from below in [0, 1/b]. As for the function f01(n), it is singular
at end points of its physically reasonable region (0, 1/b), n = 0 and n = 1/b. Following the
works in [2,7,35], we will regularize f01(n) by replacing it with a C2 continuous, convex,
piecewise function defined in (−∞,∞). For any ε > 0, let us define the regularized f01(n)

by

f̂01(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RT n(ln ε
b − 1) − RT n ln (1 − bn) + RT ( bn2

2ε − ε
2b ), if n < ε

b ,

RT n(ln n − 1) − RT n ln (1 − bn), if n ∈ [ ε
b , 1−ε

b ],
RT n(ln n − 1) − RT n ln ε

+RT
[

bε+b
2ε2

(n − 1−ε
b + ε(1−ε)

b(1+ε)
)2 − (1−ε)2

2b(1+ε)

]
, if n > 1−ε

b .

(6)

When ε → 0, f̂01(n) → f01(n). It can be proven that the error bound between f01(n)

and f̂01(n) in (0, 1/b) is controlled by ε up to a constant. In order to avoid any numerical
singularity caused by f01(n) during the solution process, we use the regularized function
f̂0(n) = f̂01(n) + f02(n) to replace f0(n) in the problem (4), (5).

We define the total material mass for the component in the system as U (n) =
∫

Ω

n dx,

which should be fixed according to the constraint (5). Then, by adopting the the penalty
formulation [4–6], we can transform the constrained minimization problem (4) and (5) to the
following unconstrained minimization problem

min
n

E(n) =
∫

Ω

( c

2
|∇n|2 + f̂0(n)

)
dx + Q

2
(U (n) − N )2, (7)

where Q > 0 is a large constant penalty parameter. It is clear that f̂0(n) is bounded from
below in [0, 1/b] although it is not always positive in the whole domain. To use the IEQ
method proposed in [31–37], we rewrite the free energy functional in (7) to the following
form:

E(n) =
∫

Ω

(
c

2
|∇n|2 +

(√
f̂0(n) + B

)2

− B

)
dx + Q

2
(U (n) − N )2, (8)

where B is a positive constant to ensure f̂0(n) + B > 0. Since we simply add a zero term
B − B therein, thus, we emphasize that the free energy is invariant. Next we define two
auxiliary variables to be the square roots of f̂0(n) + B and (U (n) − N )2 respectively as

W =
√

f̂0(n) + B, (9)

V = U (n) − N . (10)
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Then the free energy functional (8) can be expressed as the following new but equivalent
functional

E(n, W, V ) =
∫

Ω

( c

2
|∇n|2 + W 2 − B

)
dx + Q

2
V 2. (11)

The governing dynamical equation (or the gradient flow) for n(x, t) based on the variational
approach is given by

nt = − δE(n)

δn
= cΔn − W H(n) − QV, (12)

where H(n) = f̂0
′
(n)√

f̂0(n) + B
. Thuswe obtain a system of evolution equations of the variables

n, W, V as follows

nt = cΔn − W H(n) − QV, (13)

Wt = 1

2
H(n)nt , (14)

Vt =
∫

Ω

nt dx. (15)

According to the theory of gradient flow, the steady state solutions of the above partial
differential equation system (13)–(15) will give us (local) minimizers of (11) and thus of
(7). We finally close the system (13)–(15) by adding the periodic boundary (or the no-flux)
condition and the following compatible initial conditions:⎧⎪⎪⎨

⎪⎪⎩

n(t = 0) = n0,

W (t = 0) =
√

f̂0(n0) + B,

V (t = 0) = 0.

(16)

Denote by (h(x), g(x)) =
∫

Ω

h(x)g(x)dx the L2 inner product of two arbitrary functions

h(x) and g(x), and by ‖g‖ = √
(g, g) the L2 norm of any function g(x). Taking the L2 inner

product of (13) with nt , of (14) with W , and taking the simple multiplication of (15) with
QV , we have

(nt , nt ) = c(Δn, nt ) − (W H(n), nt ) − (QV, nt ), (17)

(Wt , W ) = 1

2
(H(n)nt , W ), (18)

QV Vt = Q(V, Vt ). (19)

Summing (17)–(19) up, we then get the energy dissipation law of the modified system (13)–
(15) as follows

d

dt
E(n, W, V ) = −‖nt‖2 ≤ 0. (20)

3 Numerical Schemes for Time Stepping

In this section we will focus on designing numerical schemes for time discretization of the
PDE system (13)–(15), that lead to solutions of linear systems with self-adjoint positive
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definite spatial operators at each time step, and satisfy discrete analogues of the energy
dissipation law (20). Let δt > 0 denote the time step size and set tk = kδt for 0 ≤ k ≤ K
with the final time T = K δt .

3.1 First Order Scheme

Assuming that nk , W k and V k are already calculated, we then solve nk+1, W k+1 and V k+1

from the following temporally semi-discretized system

nk+1 − nk

δt
= cΔnk+1 − W k+1H(nk) − QV k+1, (21)

W k+1 − W k

δt
= 1

2
H(nk)

nk+1 − nk

δt
, (22)

V k+1 − V k

δt
=

∫
Ω

nk+1 − nk

δt
dx (23)

with the periodic boundary condition. We note that (22) and (23) can be rewritten as

W k+1 = W k − 1

2
H(nk)nk + 1

2
H(nk)nk+1 = A1 + A2(n

k+1), (24)

V k+1 = V k −
∫

Ω

nk dx +
∫

Ω

nk+1 dx = A3 + A4(n
k+1), (25)

where

A1 =W k − 1

2
H(nk)nk, A2(n) = 1

2
H(nk)n,

A3 =V k −
∫

Ω

nk dx, A4(n) =
∫

Ω

n dx.

Thus, (21) can be rearranged as the reduced linear system

nk+1

δt
− cΔnk+1 + H(nk)A2(n

k+1) + Q A4(n
k+1) = nk

δt
− H(nk)A1 − Q A3. (26)

The linear system (26) can be expressed as Ank+1 = b, and we need solve for nk+1 from it.

Theorem 1 The linear spatial operator A is symmetric positive definite.

Proof It is not hard to verify that

(An, ϕ) = 1

δt
(n, ϕ) − c(Δn, ϕ) + H(nk)(A2(n), ϕ) + Q(A4(n), ϕ)

= 1

δt
(ϕ, n) − c(n,Δϕ) + H(nk)(n, A2(ϕ)) + Q A4(n)A4(ϕ)

= (n,Aϕ),

and

(An, n) = 1

δt
(n, n) − c(Δn, n) + H(nk)(A2(n), n) + Q(A4(n), n) ≥ 1

δt
||n||2.

Therefore, the operator A is symmetric positive definite. �
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Let us define ‖n‖A = √
(An, n) for any n ∈ L2

per (Ω) and the subset X = {n ∈ L2
per (Ω) :

‖n‖A < ∞}, where L2
per (Ω) denotes the subspace of all functions n ∈ L2(Ω) with the

periodic boundary condition. It is easy to show that ‖n‖A is a norm for L2
per (Ω) and X is

a Hilbert subspace associated with the norm ‖n‖A. Then the well-posedness of the linear
system An = b in the weak sense comes from the Lax–Milgram theorem, i.e., the linear
system (26) admits a unique weak solution in X.

Theorem 2 The first order linear system (21)–(23) is unconditionally energy stable, that is,
it satisfies the following discrete energy dissipation law

Ek+1
1st ≤ Ek

1st −
∥∥nk+1 − nk

∥∥2
δt

, (27)

where

Ek
1st = c

2

∥∥∥∇nk
∥∥∥2 +

∥∥∥W k
∥∥∥2 + Q

2
(V k)2.

Proof By taking the L2 inner product of (21) with nk+1 − nk , we have

1

δt

∥∥∥nk+1 − nk
∥∥∥2 = c

(
Δnk+1, nk+1 − nk

)
−

(
H(nk)W k+1, nk+1 − nk

)

− Q
(

V k+1, nk+1 − nk
)

. (28)

By taking the L2 inner product of (22) with W k+1 and applying the following identities

2(a − b, a) = |a|2 − |b|2 + |a − b|2,
we obtain∥∥∥W k+1

∥∥∥2 −
∥∥∥W k

∥∥∥2 +
∥∥∥W k+1 − W k

∥∥∥2 =
(

H(nk)W k+1, nk+1 − nk
)

. (29)

By taking the simple multiplication of (23) with QV k+1 and applying (29), we have

Q

2

(
(V k+1)2 − (V k)2 + (V k+1 − V k)2

)
= Q

(
V k+1, nk+1 − nk

)
. (30)

Combining (28)–(30) gives us

c

2

( ∥∥∥∇nk+1
∥∥∥2 −

∥∥∥∇nk
∥∥∥2 +

∥∥∥∇nk+1 − ∇nk
∥∥∥2

)

+
( ∥∥∥W k+1

∥∥∥2 −
∥∥∥W k

∥∥∥2 +
∥∥∥W k+1 − W k

∥∥∥2
)

+ Q

2

(
(V k+1)2 − (V k)2 + (V k+1 − V k)2

)
= − 1

δt

∥∥∥nk+1 − nk
∥∥∥2 ,

and thus
c

2

( ∥∥∥∇nk+1
∥∥∥2 +

∥∥∥∇nk+1 − ∇nk
∥∥∥2

)
+

( ∥∥∥W k+1
∥∥∥2 +

∥∥∥W k+1 − W k
∥∥∥2

)

+ Q

2

(
(V k+1)2 + (V k+1 − V k)2

)

= c

2

∥∥∥∇nk
∥∥∥2 +

∥∥∥W k
∥∥∥2 + Q

2
(V k)2 − 1

δt

∥∥∥nk+1 − nk
∥∥∥2 . (31)

Then, we dropping some positive terms from above Eq. (31), we have the discrete energy
laws (27). �
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3.2 Second Order Scheme

Based on the Adam–Bashforth backward differentiation formulas (BDF2). Assuming that
we have solved nk−1, W k−1, V k−1 and nk , W k , V k , then we compute nk+1, W k+1 and V k+1

as follows

3nk+1 − 4nk + nk−1

2δt
= cΔnk+1 − H(n∗)W k+1 − QV k+1, (32)

3W k+1 − 4W k + W k−1

2δt
= 1

2
H(n∗)3nk+1 − 4nk + nk−1

2δt
, (33)

3V k+1 − 4V k + V k−1

2δt
=

∫
Ω

3nk+1 − 4nk + nk−1

2δt
dx, (34)

where n∗ = 2nk − nk−1. For (33), (34), we have

W k+1 = 4W k − W k−1

3
− 1

2
H(n∗)4nk − nk−1

3
+ 1

2
H(n∗)nk+1,

V k+1 = 4V k − V k−1

3
−

∫
Ω

4nk − nk−1

3
dx +

∫
Ω

nk+1 dx.

Set

B1 = W + − 1

2
H(n∗)n+, B2(n) = 1

2
H(n∗)n,

B3 = V + −
∫

Ω

n+ dx, B4(n) =
∫

Ω

n dx,

where S+ = 4Sk−Sk−1

3 . Thus, we obtain

W k+1 = B1 + B2(n
k+1), V k+1 = B3 + B4(n

k+1).

In turn, we have the following reduced linear system

3

2δt
nk+1 − cΔnk+1 + H

(
n∗) B2

(
nk+1

)
+ Q B4

(
nk+1

)

= 1

2δt

(
4nk − nk−1

)
− H

(
n∗) B1 − Q B3. (35)

The above linear system can be written as Ânk+1 = b̂, and we need solve for nk+1 from it.

Theorem 3 The linear spatial operator Â is symmetric positive definite.

Proof We can verify that

(Ân, ϕ) = 3

2δt
(n, ϕ) − c(Δn, ϕ) + H(n∗)(B2(n), ϕ) + Q(B4(n), ϕ)

= 3

2δt
(ϕ, n) − c(n,Δϕ) + H(n∗)(n, B2(ϕ)) + Q B4(n)B4(ϕ)

= (n, Âϕ),

and

(Ân, n) = 3

2δt
(n, n) − c(Δn, n) + H(n∗)(B2(n), n) + Q(B4(n), n) ≥ 3

2δt
‖n‖2 .

Therefore, the operator Â is symmetric positive definite. �
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Let us define ‖n‖
Â

=
√

(Ân, n) for any n ∈ L2
per (Ω) and the subset X̂ = {n ∈ L2

per (Ω) :
‖n‖

Â
< ∞}. Similarly as before, we can show that the linear system (35) admits a unique

weak solution in X̂.

Theorem 4 The second order linear system (32)–(34) is unconditionally energy stable, that
is, it satisfies the following discrete energy dissipation law

Ek+1,k
2 ≤ Ek,k−1

2 − δt

∥∥∥∥3nk+1 − 4nk + nk−1

2δt

∥∥∥∥
2

, (36)

where

Ek+1,k
2 = c

4

( ∥∥∥∇nk+1
∥∥∥2 +

∥∥∥2∇nk+1 − ∇nk
∥∥∥2

)

+ 1

2

( ∥∥∥W k+1
∥∥∥2 +

∥∥∥2W k+1 − W k
∥∥∥2

)
+ Q

4

(
(V k+1)2 + (2V k+1 − V k)2

)
.

Proof By taking the L2 inner product of (32) with 3nk+1 − 4nk + nk−1, we have

1

2δt

∥∥∥3nk+1 − 4nk + nk−1
∥∥∥2 = c

(
Δnk+1, 3nk+1 − 4nk + nk−1

)

−
(

H(n∗)W k+1, 3nk+1 − 4nk + nk−1
)

− Q
(

V k+1, 3nk+1 − 4nk + nk−1
)

. (37)

By taking the L2 inner product of (33) with W k+1, we get

(
3W k+1 − 4W k + W k−1, W k+1

)
= 1

2
H(n∗)

(
3nk+1 − 4nk + nk−1, W k+1

)
,

and then by applying the following identity

2(3a − 4b + c, a) = |a|2 − |b|2 + |2a − b|2 − |2b − c|2 + |a − 2b + c|2,

we derive

∥∥∥W k+1
∥∥∥2 −

∥∥∥W k
∥∥∥2 +

∥∥∥2W k+1 − W k
∥∥∥2 −

∥∥∥2W k − W k−1
∥∥∥2

+
∥∥∥W k+1 − 2W k + W k−1

∥∥∥2 =
(

H(n∗)W k+1, 3nk+1 − 4nk + nk−1
)

. (38)

By taking the simple multiplication of (34) with QV k+1 and applying (38), we have

Q

2

(
(V k+1)2 − (V k)2 + (2V k+1 − V k)2 − (2V k − V k−1)2

+ (V k+1 − 2V k + V k−1)2
)

= Q
(

V k+1, 3nk+1 − 4nk + nk−1
)

. (39)
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Combination of (37), (38) and (39) gives us

c

2

( ∥∥∥∇nk+1
∥∥∥2 −

∥∥∥∇nk
∥∥∥2 +

∥∥∥2∇nk+1 − ∇nk
∥∥∥2 −

∥∥∥2∇nk − ∇nk−1
∥∥∥2

+
∥∥∥∇nk+1 − 2∇nk + ∇nk−1

∥∥∥2
)

+
( ∥∥∥W k+1

∥∥∥2 −
∥∥∥W k

∥∥∥2 +
∥∥∥2W k+1 − W k

∥∥∥2

−
∥∥∥2W k − W k−1

∥∥∥2 +
∥∥∥W k+1 − 2W k + W k−1

∥∥∥2
)

+ Q

2

(
(V k+1)2 − (V k)2 + (2V k+1 − V k)2

− (2V k − V k−1)2 + (V k+1 − 2V k + V k−1)2
)

= − 1

2δt

∥∥∥3nk+1 − 4nk + nk−1
∥∥∥2 ,

i.e.,

c

2

(∥∥∥∇nk+1
∥∥∥2 +

∥∥∥2∇nk+1 − ∇nk
∥∥∥2 +

∥∥∥∇nk+1 − 2∇nk + ∇nk−1
∥∥∥2

)

+
∥∥∥W k+1

∥∥∥2 +
∥∥∥2W k+1 − W k

∥∥∥2 +
∥∥∥W k+1 − 2W k + W k−1

∥∥∥2

+ Q

2

(
(V k+1)2 + (2V k+1 − V k)2 + (V k+1 − 2V k + V k−1)2

)

= c

2

(∥∥∥∇nk
∥∥∥2 +

∥∥∥2∇nk − ∇nk−1
∥∥∥2

)
+

∥∥∥W k
∥∥∥2 +

∥∥∥2W k − W k−1
∥∥∥2

+ Q

2

(
(V k)2 + (2V k − V k−1)2

)
− 1

2δt

∥∥∥3nk+1 − 4nk + nk−1
∥∥∥2 . (40)

Then, we dropping some positive terms from above Eq. (40) to obtain the discrete energy
law (36). �

Remark 1 Heuristically, the discrete energy law (36) is a second order approximation of
d
dt E(n, W, V ) in (20) for any variable Z , we have

∥∥Zk+1
∥∥2 + ∥∥2Zk+1 − Zk

∥∥2
2δt

−
∥∥Zk

∥∥2 + ∥∥2Zk − Zk−1
∥∥2

2δt

∼=
∥∥Zk+2

∥∥2 − ∥∥Zk
∥∥2

2δt
+ o(δt2) ∼= d

dt

∥∥∥Z(tk+1)

∥∥∥2 + o(δt2).

4 Numerical Experiments

In all numerical examples, we consider the specie of isobutane (nC4) in the domain Ω =
(0, L)d with L = 2.0E−08m andd denotes the dimensionof the space.The critical properties
and the normal boiling point of the specie are listed in Table 1 (see the “Appendix” for
explanation of these parameters). The two linear schemes, the first order one (denoted by
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Table 1 Critical properties of
isobutane (nC4)

Symbol Tc(K) Pc (MPa) ω m

nC4 425.18 3.797 0.1990 0.6709

IEQ-1) and the second order one (denoted by IEQ-BDF2), will be thoroughly tested for
solving the problem (13)–(15).

4.1 Temporal Accuracy Test

We first present numerical experiments in the 2D space to demonstrate the temporal accu-
racy of the two numerical schemes. For the initial configuration, we adopt the case of single
droplet—the liquid density of isobutane under a saturated pressure condition at the tempera-
ture 350K is imposed in the square subregion of

( 3L
8 , 3L

4

)2, and a saturated gas of isobutane
under the same temperature is full of the rest of the domain. That is, about 86% is saturated
gas, while the rest 14% of the total volume is saturated liquid.

We perform the refinement test of the time step size (δt = 2.0E−2, 1.0E−2, . . . ,
1.5625E−4) for both the IEQ-1 and IEQ-BDF2 schemes, and choose the approximate solu-
tion obtained by applying the schemes with the small time step size δt = 1.0E−6 as the
benchmark solution for computing errors. The penalty parameter is set to be Q = 1.0E+20.
The spatial discretization is carried out using the central finite difference on the uniform
1024 × 1024 mesh of the domain Ω to remove the effect caused by the errors of spatial
discretization. Define the Lre

2 relative error of the approximate solution for the molar density
n by

Lre
2 = ||n∗ − nh ||

||n∗||
where n∗ denotes the benchmark solution and nh the numerical solution. Table 2 lists
the Lre

2 relative errors and convergence rates of the numerical solutions at t = 0.5 with
different time step sizes. It is easy to see that both the IEQ-1 and IEQ-BDF2 schemes
work very stably for all time step sizes and show almost perfect first order and second
order accurate respectively. In addition, the second order scheme IEQ-BDF2 gives much

Table 2 The Lre
2 relative errors and temporal convergence of the approximate solutions for the molar density

distribution at t = 0.5 produced by the IEQ-1 and IEQ-BDF2 schemes with the penalty parameter Q =
1.0E+20 on the uniform 1024 × 1024 mesh

Time step size IEQ-1 IEQ-BDF2

δt Error Conv. Rate Error Conv. Rate

2.0E−2 9.4836E−3 – 5.2778E−3 –

1.0E−2 4.6670E−3 1.023 1.8632E−3 1.503

5.0E−3 2.2616E−3 1.045 5.8986E−4 1.659

2.5E−3 1.1027E−3 1.036 1.6892E−4 1.804

1.25E−3 5.4286E−4 1.022 4.4680E−5 1.919

6.25E−4 2.6915E−4 1.012 1.1272E−5 1.987

3.125E−4 1.3401E−5 1.006 2.7880E−6 2.015

1.5625E−4 6.6855E−6 1.003 7.0398E−7 1.986
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Fig. 1 The simulated dynamical evolution of the molar density distribution for the case of single droplet in
the 2D space. The snapshots are taken at the times t = 0, 1, 3, 5, 10, 20, respectively

Fig. 2 The simulated surface tension contribution of Helmholtz free energy density for the case of single
droplet in the 2D space at the times t = 0, 1, 3, 5, 10, 20, respectively

better accuracy than the first order scheme IEQ-1 does along the time step size refine-
ment.

4.2 Dynamical Evolution of the Molar Density Distribution and the Gas–Liquid
Interface

We next will numerically investigate the time evolution of the molar density distribution and
the gas–liquid interface under the gradient flow in 2D and 3D spaces. There is a large gradient
contribution to the total Helmholtz free energy due to the jump in molar density between the
liquid and gas regions.
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Fig. 3 Plots of evolution of the total energy and the mass for the case of single droplet in the 2D space,
simulated by the IEQ-BDF2 scheme with δt = 5.0E−3

Fig. 4 The simulated dynamical evolution of the molar density distribution for the case of four droplets in
the 2D space. The snapshots are taken at the times t = 0, 5, 10, 20, 40, 50, respectively

4.2.1 2D Examples

We first perform some experiments in the 2D space. We use the IEQ-BDF2 scheme with
δt = 5.0E−3 and a uniform mesh of 512× 512 and set the penalty parameter Q = 1.0E+20.
Figure 1 presents the simulated molar density distribution for the single-droplet case at
different times (t = 0, 1, 3, 5, 10, 20, respectively) during the evolution. We can see that the
shape of the droplet for the liquid is initially square, but its four corners are slowly rounded
as the time increases, and finally becomes a perfect circle. At the time t = 20 the steady state
seems to be reached. As suggested in [22], the surface tension contribution of Helmholtz free
energy density, fST, is defined by

fST = 2 f∇(n) = c∇n · ∇n, (41)

which can be used to better characterize the gas–liquid interface. The plots of the simulated
surface tension contribution of Helmholtz free energy density at the same times are thus
shown in Fig. 2, and we can clearly see the configuration of the interface and its changes
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Fig. 5 The simulated surface tension contribution of Helmholtz free energy density for the case of four
droplets in the 2D space at the times t = 0, 5, 10, 20, 40, 50, respectively

Fig. 6 Plots of evolution of the total energy and the mass for the case of four droplets in the 2D space,
simulated by the IEQ-BDF2 scheme with δt = 5.0E−3

along with the time. The corresponding plots of evolution of the total energy (8) and the
mass are given in Fig. 3. We observe that the energy decreases monotonically and the mass
is accurately maintained with respect to the time. The energy decay is very fast initially then
slows down as the solution approaches its steady state.

Next, we simulate the dynamical evolution of the molar density distribution for the case
of having four droplets in the initial configuration—the liquid density of isobutane under
a saturated pressure condition at the temperature 350K in the subregion of four squares{( L

4 , L
2

)
,
( 5L

8 , 7L
8

)}2
, and a saturated gas of isobutane under the same temperature is full

of the rest of the domain. We still use the IEQ-BDF2 scheme with the same settings as
in the previous single droplet case. Figure 4 presents the simulated molar density distri-
bution of Helmholtz free energy density for the case of four droplets at different times
(t = 0, 5, 10, 20, 40, 50, respectively) during the evolution, and Fig. 5 the surface tension
contribution of Helmholtz free energy density at the same times. The steady state seems
reached at the time t = 50, which is longer than that needed for the single droplet case.
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Fig. 7 The simulated dynamical evolution of the molar density distribution for the case of single droplet in
the 3D space. The snapshots are taken at the times t = 0, 1, 3, 5, 10, 20, respectively. In each time panel, the
top one represents the approximate solution across the three central planes of the 3D cubic domain and the
bottom one the isosurface

We observe that the shapes of the four droplets are square initially, then four corners of all
droplets are slowly rounded to become four circles as the time increases, and next the four
circular droplets start to merge together and finally form one bigger circle. Figure 6 plots the
evolution of the total energy and the mass, and again it is observed that the energy decreases
monotonically and the mass is accurately maintained along the time. In the case we also find
that there is a quite large energy decay at the very early time and another small energy decay
around the time interval [20, 30] during the whole evolution process.

We remark that extra experiments with a smaller time step size δt = 0.001 and a larger
penalty parameter Q = 1.0E+21 for the above examples are also carried out to make sure
the convergence of the numerical solutions, and very similar simulation results are obtained
for both the single droplet and four droplets cases.
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Fig. 8 Plots of evolution of the total energy and the mass for the case of single droplet in the 3D space,
simulated by the IEQ-BDF2 scheme with δt = 5.0E−3

4.2.2 3D Examples

Nowwecarry out some experiments to simulate the dynamics of themolar density distribution
in the 3D space. We use the IEQ-BDF2 scheme with δt = 5.0E−3 and a uniform mesh of
128 × 128 × 128 and set the penalty parameter Q = 1.0E+30. We first test using a single
droplet as the initial condition—the liquid density of isobutane under a saturated pressure
condition at the temperature 350 K in the cube subregion of ( 3L

8 , 3L
4 )3, and under the same

temperature the rest of the cube is filledwith a saturated gas of isobutane. Figure 7 presents the
simulated molar density distribution for the single droplet case in the 3D space at different
times (t = 0, 1, 3, 5, 10, 20, respectively) during the evolution. We observe that the 3D
dynamical behaviors are very consistent with that of the single droplet case in the 2D space,
and the droplet finally forms a perfect sphere around the time t = 20, which is the steady
state. Figure 8 plots the evolution of the total energy and the mass along the time, and we
again observe that the energy monotonically decays and the mass are well preserved with
respect to time.

For the next example in the 3Dspace, the initial configuration is taken to be eight droplets—

the liquid density of isobutane at 350K in the subregion of eight cubes
{( L

4 , L
2

)
,
( 5L

8 , 7L
8

)}3
,

and at the same temperature the rest of the domain is filled with a saturated gas of isobutane
under a saturated pressure condition. Figure 9 presents the simulated molar density distri-
bution for the eight droplet case in the 3D space at different times (t = 0, 5, 10, 20, 40, 50,
respectively) during the evolution. The eight cubic droplets first evolve into eight separate
spheres, then start to merge and finally form one bigger sphere around the time t = 50. This
dynamic process is very similar to that for the four droplets case in the 2D space. In Fig. 10,
we present the evolution of the total energy and the mass with respect to the time, and observe
again that the energy monotonically decays and the mass always keeps constant.

4.3 Computation of the Interface Tension and Verification Against the
Young–Laplace Equation

As the quantity of interest in many applications, the surface tension σ is defined as the work
for creating a unit area of interface with a unit of J/m2 or the net contractive force per unit
length of interface with a unit of N/m from the thermodynamical or mechanical point of view.
In this model, the surface/interface tension σ is defined by
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Fig. 9 The simulated dynamical evolution of the molar density distribution for the case of eight droplets in
the 3D space. The snapshots are taken at the times t = 0, 5, 10, 20, 40, 50, respectively. In each time panel,
the top one represents the approximate solution across the three central planes of the 3D cubic domain and
the bottom one the isosurface

σ = ∂ F

∂ A
= F(n) − F0(ninitial)

A
∼=

∫
Ω

fST dx

A
,

where A is the area of the interface.
Let us assume that the mass of the liquid droplet does not change along with time and

the steady state droplet has a perfect circular/spherical shape. For the single droplet case
in the 2D space, the radius of the circular droplet is r = 4.231 × 10−9 m. The surface
tension of isobutane in the equilibrium state at the temperature ranging from 250 to 333.82 K
are calculated by using the IEQ-BDF2 scheme with δt = 5.0E−3 on the uniform mesh of
512 × 512 and the penalty parameter Q = 1.0E+20. For example, F(n) − F0(ninitial) ∼=
2.229 × 10−10 J at the temperature T = 333.82K, and the corresponding interface tension
is σ = 8.384 × 10−3 J/m2 by our simulation. The complete results are presented in left
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Fig. 10 Plots of evolution of the total energy and the mass for the case of eight droplets in the 3D space,
simulated by the IEQ-BDF2 scheme with δt = 5.0E−3

panel of Fig. 11 together with the laboratory measured values provided in [19]. From the
engineering point of view, it is clear that the differences between the numerical results and
the experimental data is small.

Based on the values of the surface tension, we can test another physically concerned
quality, the capillary pressure Pc, which defined by the well-knownYoung–Laplace equation

Pc = Pliquid − Pgas ≈ σ

r
, (42)

where the thermodynamic pressure for the liquid Pliquid or the gas Pgas is defined by

P = n RT

1 − bn
− n2a(T )

1 + 2bn − b2n2 . (43)

According to the Eq. (42), there are two different ways to numerically calculate the capillary
pressure, one is to adopt the difference between the liquid drop pressure and the pressure
of the gas phase and the other is to apply the numerical results obtained for the interface
tension σ . For example, at the temperature 333.28K, Pliquid = 2.634 × 106Pa and Pgas =
0.701× 106 Pa, thus the difference is Pc = 1.933× 106 Pa. On the other hand, the capillary
pressure obtained from the approximated interface tension is Pc = σ

r = 1.981× 106 Pa. It is
clear that the Young–Laplace prediction is well matched with the capillary pressure obtained
by our numerical schemes with about an error of 2%. The right panel of Figure 11 plots
the capillary pressure from 250 to 333.82K, which are calculated by above two ways. The
matching errors are all about or smaller than 2% at tested temperatures (similar to the results
obtained by the convex splitting schemes [16]). In this case, the diffuse interface model with
Peng–Robinson equation of state and the proposed numerical schemes are physically reliable
to be used to simulate the two-phase fluid of the substance isobutane (nC4).

We next use the results from the single droplet case in the 3D space to compare with
the laboratory data. The IEQ-BDF2 scheme with δt = 5.0E−3 on the uniform mesh of
128 × 128 × 128 and the penalty parameter Q = 1.0E+30 is used for all simulations, and
the results are given in Fig. 12. The simulated interface tensions at all tested temperatures
still match the laboratory data from the engineering point of view. For the capillary pressure,
the results calculated from the Young–Laplace equation are close to those obtained from the
approximate interface tensions when the temperature is in the high end of the [250, 333.28],
but the difference becomes larger and larger along with the decreasing of the temperature.
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Fig. 11 Comparison between the numerical predictions and the laboratory data in the 2D space. Left: interface
tension; Right: capillary pressure

Fig. 12 Comparison between the numerical predictions and the laboratory data in the 3D space. Left: interface
tension; Right: capillary pressure

This issue on the capillary pressure may be worthy of further investigation from the modeling
side on the causes.

5 Conclusions

In this paper, we design a first order and a second order schemes for temporal discretization
of the diffusive interface model with Peng–Robinson equation of state based on the IEQ
approach; in particular, the single-component two-phase fluid system is specially consid-
ered. These schemes are based on the recently developed “Invariant Energy Quadratization”
approach and the penalty formulation, and are accurate (up to the second order), uncondi-
tionally energy stable, and easy to implement in practice. Moreover, the resulted semilinear
system in space at each time step is proven to be symmetric positive definite so that one can
implement the Krylov subspace approaches to solve such system effectively and efficiently.
Numerical experiments in 2D and 3D spaces are also performed to demonstrate the accuracy
and stability of the proposed schemes and to investigate reliability of the target model by
comparisons with laboratory data. We also would like to point out that since the IEQ system
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is not strictly equal to the original system in the discrete sense, in particular, the dissipative
energy, it would not be an easy work to prove error estimates for the proposed numerical
schemes as done for the convex-splitting method. This is an interesting open problem wor-
thy of further investigation. Another of our future work is to generalize the method to the
diffusive interface model for multi-component and multi-phase fluid system.

Appendix

All the following parameters are classical definitions, and can be found in the references
[15,16,18,22] and the references cited therein. The universal gas constant R has a value
of approximately 8.31432 JK−1mol−1, and the (temperature-dependent) energy parameter
a = a(T ) and the co-volume parameter b in the Peng–Robinson equation of state are defined
as

a(T ) =
M∑

i=1

M∑
j=1

(1 − ki j )yi y j

√
ai (T )a j (T ), b =

M∑
i=1

yi bi ,

with yi = ni

n
being the mole fraction of component i . The binary interaction coefficient

0 ≤ ki j ≤ 1 is assumed to be a constant for a fixed species pair and usually computed from
experimental correlation. The Peng–Robinson parameters for the pure-substance component
i , ai and bi , are calculated from the critical properties of the specie

ai (T ) = 0.45724
R2T 2

ci

Pci

(
1 + mi

(
1 −

√
T

Tci

))2

,

bi = 0.07780
RTci

Pci

,

where Tci and Pci represent the critical temperature and pressure of the pure substance
component i respectively, which are intrinsic properties of the specie and available for most
substances encountered in engineering applications. The parameter mi for modeling the
influence of temperature on ai is experimentally correlated to the acentric parameter of the
specie ωi by{

mi = 0.37464 + 1.54226ωi − 0.26992ω2
i , ωi ≤ 0.49,

0.379642 + 1.485030ωi − 0.164423ω2
i + 0.016666ω3

i , ωi > 0.49,

with

ωi = 3

7

⎛
⎝ log10

(
Pci

14.695 PSI

)
Tci
Tbi

− 1

⎞
⎠ − 1 = 3

7

⎛
⎝ log10

(
Pci

1 atm

)
Tci
Tbi

− 1

⎞
⎠ − 1,

where Tbi represents the normal boiling point of the pure substance i , “PSI” is “pounds per
square inch”, and “atm” refers to the standard atmosphere pressure (equal to 101325Pa).

The dependence of the influence parameter ci j on the molar concentrations is practice
very weak, thus it is common to assume that ci j = ci j (T ) is just a temperature-dependent
parameter, which often can be obtained by adopting the modified geometric mean

ci j (T ) = (1 − βi j )

√
ci (T )c j (T ).
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Note βi j is the binary interaction coefficient for the influence parameter, usually required to
be included between 0 and 1 and βi j = β j i to maintain the stability of the interfaces, and ci

is the influence parameter of the pure substance component i , computed by

ci = ai b
2
3
i

(
mc

1,i

(
1 − T

Tci

)
+ mc

2,i

)

with mc
1,i and mc

2,i being the coefficients correlated merely with the acentric factor ωi by

mc
1,i = − 10−16

1.2326 + 1.3757ωi
, mc

2,i = 10−16

0.9051 + 1.5410ωi
.
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