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Abstract In this paper we study explicit peer methods with the strong stability preserving
(SSP) property for the numerical solution of hyperbolic conservation laws in one space
dimension. A system of ordinary differential equations is obtained by discontinuous Galerkin
(DG) spatial discretizations, which are often used in the method of lines approach to solve
hyperbolic differential equations. We present in this work the construction of explicit peer
methods with stability regions that are designed for DG spatial discretizations and with large
SSP coefficients. Methods of second- and third order with up to six stages are optimized with
respect to both properties. Themethods constructed are tested and comparedwith appropriate
Runge–Kutta methods. The advantage of high stage order is verified numerically.
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1 Introduction

In this paper we consider methods for the numerical solution of hyperbolic conservation laws
in one dimension in space in the form

∂

∂t
u(x, t) + ∂

∂x
( f (u(x, t))) = 0. (1)

Time-dependent hyperbolic differential equations and nonlinear conservation laws model
many physical problems. Because of that their numerical solution has a great importance
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in fields of meteorology, chemical engineering, aeronautics, astrophysics financial modeling
and environmental sciences. The main difficulty for the numerical solution of (1) is the
appearance of shocks or discontinuities even if the initial condition is smooth. Discretization
of spatial derivatives with the method of lines (MOL) gives rise to a system of ordinary
differential equations (ODEs). In recent years discontinuous Galerkin (DG) methods have
become a popular choice for the spatial discretization. This approach introduced by Reed and
Hill [22] was considered in various applications, e.g. [16,17,20,21,23,28]. The ODE system
generated by DG spatial discretizations is often solved in time by explicit Runge–Kutta (RK)
methods. These methods developed by Cockburn and Shu [5] are known as RKDGmethods.

The time steps of RKDG methods must satisfy the Courant–Friedrichs–Levy (CFL) con-
dition. For hyperbolic differential equations there are two kinds of restrictions for the time
steps, first, linear stability to ensure convergence for smooth solutions and second, some
forms of nonlinear stability, e.g. total variation (TV) stability, to prevent non-physical oscil-
lations of the numerical solution around discontinuities or shocks. In order to achieve that
a so-called generalized slope limiter is applied by which RKDG methods are total variation
diminishing (TVD) and total variation bounded (TVB) in the means under a suitable CFL
restriction [5]. The restriction for the time step to ensure TV stability is provided by the
so-called strong stability preserving (SSP) coefficient.

There are many investigations in the field of SSP RK methods to optimize the SSP coeffi-
cient, an overview is given in [8]. However, Kubatko et al. [18] observed that for RKmethods
the condition on linear stability is more restrictive than the condition on nonlinear stability.
This means that methods optimized with respect to the SSP property are not optimal, in gen-
eral, for schemes resulting from DG spatial discretizations. Hence, in [18] SSP RK methods
have been constructed that are optimal for DG spatial discretizations. So, the schemes are
optimal concerning both linear and SSP stability. In this paper we follow this approach for
explicit peer methods. We develop new methods with favourable properties with respect to
both linear and TV stability for DG spatial discretizations.

Explicit peer methods introduced byWeiner et al. [29] are a special class of general linear
methods (GLM), see [1,12]. Constantinescu and Sandu [6] constructed optimal SSPGLMup
to order four. Izzo and Jackiewicz [11] giveSSP coefficients forGLMof order p ≤ 4 and stage
order q ≤ p. Explicit peermethods are considered in several papers [2,19,25,30]. For explicit
peer methods the stage order is equal to the order of consistency. These methods produce
excellent results, especially in the application to nonstiff ordinary differential equations with
step size control. In Horváth et al. [10] proved a sufficient condition for the SSP property of
explicit peer methods and constructed SSP methods up to order 13.

The outline of the paper is as follows: In Sect. 2 we discuss the discretization of the
spatial operator of a hyperbolic conservation law in one space dimension with discontinuous
Galerkin method. An overview of explicit peer methods is given in Sect. 3. We mention
important properties like consistency, zero-stability and convergence. A sufficient condition
for strong stability preserving explicit peer methods is covered and the TVDM (TVD in
the means) property for explicit peer methods is also stated. The construction of explicit
peer methods optimized with respect to both linear and SSP stability is detailed in Sect. 4.
In Sect. 5 numerical tests are presented. We apply the peer methods to a linear transport
equation and the inviscid Burgers equation and compare the results with RK methods. We
show numerically the advantage of high stage order. Finally, we draw some conclusions and
discuss future work in Sect. 6.

The coefficients of the optimized explicit peer methods can be found in an Appendix.
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2 Discontinuous Galerkin Spatial Discretization

We begin by considering a time-dependent hyperbolic conservation law in one dimension in
space

∂

∂t
u(x, t) + ∂

∂x
( f (u(x, t))) = 0, x ∈ � = (a, b) ⊆ R, t > 0 (2)

with periodic boundary conditions u(a, t) = u(b, t) and initial condition u0(x) = u(x, 0).
The function f is usually said to be the flux function.

First, we define for the approach of discontinuousGalerkin spatial discretization a partition
of �

a = x0 < x1 < · · · < xN = b

with
� j = [x j−1, x j ], �x j = x j − x j−1, for all j = 1, . . . , N .

The weak formulation of problem (2) is obtained by multiplying with a sufficiently smooth
test function v : � → R and integrating over each � j , so we have

0 =
∫

� j

∂

∂t
u(x, t)v(x)dx +

∫
� j

∂

∂x
( f (u(x, t)))v(x)dx

=
∫

� j

∂

∂t
u(x, t)v(x)dx + [ f (u(x, t))v(x)]x jx j−1

−
∫

� j

f (u(x, t))
d

dx
v(x)dx, j = 1, . . . , N .

The boundary flux terms are denoted by f j (t) := f (u(x j , t)), which leads to

0 =
∫

� j

∂

∂t
u(x, t)v(x)dx −

∫
� j

f (u(x, t))
d

dx
v(x)dx

+ f j (t)v(x j ) − f j−1(t)v(x j−1), j = 1, . . . , N .

(3)

Second, we replace the exact solution u and the test function v in (3) by the discrete
functions uh ∈ V k

h and vh ∈ V k
h , where the finite-dimensional space of functions is given by

V k
h := {v : v|� j ∈ �k(� j )}.

Here �k(� j ) denotes the space of polynomials over � j of degree at most k. By this choice
the functional continuity is not ensured at the boundaries of � j . We denote the left function
value of vh ∈ V k

h at x j over � j by vh(x
−
j ) and the right function value of vh ∈ V k

h at x j over

� j+1 by vh(x
+
j ), see Fig. 1. We replace the boundary fluxes f j by numerical fluxes

f̂ j (t) = f̂ j
(
uh

(
x−
j , t

)
, uh

(
x+
j , t

))
. (4)

These substitutions lead to the discrete weak formulation of problem (2) for all vh ∈ V k
h in

the form

0 =
∫

� j

∂

∂t
uh(x, t)vh(x)dx −

∫
� j

f (uh(x, t))
d

dx
vh(x)dx + f̂ j (t)vh(x

−
j )

− f̂ j−1(t)vh(x
+
j−1), j = 1, . . . , N .

(5)
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xj−2 xj−1 xj xj+1
x

Ωj−1 Ωj Ωj+1

vh(x−
j )vh(x−

j−1)

vh(x+
j )vh(x+

j−1)

vh ∈V k
h

Fig. 1 Illustration of discontinuities of vh ∈ V k
h at boundaries of � j

Let a set of basic functions � = (ϕ0, j , . . . , ϕk, j )
� for the finite-dimensional space V k

h
over � j be given. The discrete solution uh over � j can be expressed as

uh |� j =
k∑

i=0

yi, j (t)ϕi, j (x).

With y j = (y0, j (t), . . . , yk, j (t))� and the notation

Fj (ϕi, j ) =
∫

� j

f (uh(x, t))
d

dx
ϕi, j (x)dx + f̂ j (t)ϕi, j

(
x−
j

)
− f̂ j−1(t)ϕi, j

(
x+
j−1

)

and

M j = (Mil)
k
i,l=0 =

(∫
� j

ϕi, j (x)ϕl, j (x)dx

)k

i,l=0

, F j = (Fj (ϕ0, j ), . . . , Fj (ϕk, j ))
�

the discrete weak formulation (5) can be written as

M j
d

dt
y j = F j , j = 1, . . . , N .

The DG approach is also applied to the initial condition. By inverting the element mass
matrices M j we obtain with

y =
(

y�
1 , . . . , y�

N

)�
, L =

[(
M−1

1 F1

)�
, . . . ,

(
M−1

N FN

)�]�

a system of ordinary differential equations in the form

d

dt
y = L(y)

y(0) = y0 ∈ R(k+1)N ,

(6)

where L is the DG spatial operator. In the case of a linear flux function f (u) = cu, c ∈ R,
problem (6) leads to a linear initial value problem, i.e. we have L(y) = Ly. In the linear case
the integrals appearing in the DG approach can be solved exactly. Otherwise, they can be
computed by using suitable numerical quadrature rules.
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3 Strong Stability Preserving Explicit Peer Methods

3.1 Explicit Peer Methods

We consider a system of ODEs in the form

y′ = f (t, y), y(t0) = y0 ∈ Rn, t ∈ [t0, te]. (7)

Explicit peer methods for an initial value problem (7) as introduced in [29] are given by

Um,i =
s∑

j=1

bi jUm−1, j + hm

s∑
j=1

ai j f (tm−1, j ,Um−1, j )

+ hm

i−1∑
j=1

ri j f (tm, j ,Um, j ), i = 1, . . . , s.

(8)

Here bi j , ai j , ci and ri j , i, j = 1, . . . , s are the parameters of the method. At each step s
stage values Um,i , i = 1, . . . , s are computed. They approximate the exact solution y(tm,i )

where tm,i = tm + ci hm . The nodes ci are assumed to be pairwise distinct, we always
assume cs = 1. The coefficients of the method (8) depend, in general, on the step size ratio
σm = hm/hm−1. Defining matrices Bm = (bi j )si, j=1, Am = (ai j ), Rm = (ri j ) and vectors
Um = (Um,i )

s
i=1 ∈ Rsn and Fm = ( f (tm,i ,Um,i ))

s
i=1 leads to the compact form

Um = (Bm ⊗ I )Um−1 + hm(Am ⊗ I )Fm−1 + hm(Rm ⊗ I )Fm,

where Rm is strictly lower triangular. Likemultistepmethodspeermethodsneed also s starting
values U0,i . We collect here some results from [29].

Conditions for the order of consistency of explicit peer methods can be derived by con-
sidering the residuals �m,i obtained when the exact solution is put into the method

�m,i := y(tm,i ) −
s∑

j=1

bi j y(tm−1, j ) − hm

s∑
j=1

ai j y
′(tm−1, j )

− hm

i−1∑
j=1

ri j y
′(tm, j ), i = 1, . . . , s.

Definition 1 A peer method (8) is consistent of order p if

�m,i = O
(
h p+1
m

)
, i = 1, . . . , s.

	

Note that the stage order of peer methods is equal to the order of consistency so that order
reduction is avoided. By Taylor series expansion follows, see e.g. [29]

Theorem 1 A peer method (8) has order of consistency p iff

ABi (l) :=cli −
s∑

j=1

bi j
(c j − 1)l

σ l
m

− l
s∑

j=1

ai j
(c j − 1)l−1

σ l−1
m

− l
i−1∑
j=1

ri j c
l−1
j = 0, i = 1, . . . , s

(9)
is satisfied for all l = 0, . . . , p. 	
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We setAB(l) := (ABi (l))si=1. The condition (9) can also be written in the form

exp(cσmz) − Bm exp(z(c − 1)) − Amσmz exp(z(c − 1)) − Rmσmz exp(cσmz)=O(z p+1),

where 1 = (1, . . . , 1)�. The exponentials are defined componentwise. The condition (9) for
order l = 0 is referred to as preconsistency. It takes the form

Bm1 = 1. (10)

Definition 2 A peer method (8) is zero stable if there is a constant K > 0, so that for all
m, k ≥ 0 holds

‖Bm+k · · · Bm+1Bm‖ ≤ K .

	

Consistency and zero stability are necessary for convergence of peer methods. One has [30]

Theorem 2 Let a peer method (8) be given. If the method is consistent of order p and
zero stable and the starting values satisfy U0,i − y(t0,i ) = O(h p

0 ), then the peer method is
convergent of order p. 	

Let the scalar test equation [7]

y′(t) = λy(t), λ ∈ C, λ ≤ 0

be given. The application of a peer method (8) with constant step size h leads to

Um = M(z)Um−1, z = λh,

where M : C → Cs,s with M(z) = (I − zR)−1(B + zA) denotes the stability matrix [29].
The stability domain of a peer method (8) is defined by

S = {z ∈ C : 
(M(z)) ≤ 1; eigenvalues λz of M(z) with |λz | = 1 are simple} ,

where 
(·) is the spectral radius.
Explicit peer methods were tested successfully with step size control. Methods of order

of consistency p = s and order of convergence p = s + 1 were constructed and applied to
nonstiff ODE systems in [30]. In the following investigations we always consider a constant
time step size.

3.2 SSP Property for Explicit Peer Methods

Strong stability preserving (SSP) explicit peermethods are investigated in [10].Methods up to
order 13 are constructed and tested on semidiscretized hyperbolic equations. We summarize
here some results from [10].

Definition 3 Let an autonomous initial value problem (7) be given and let there exist�tFE >

0 so that
‖y + �t f (y)‖ ≤ ‖y‖, for all y ∈ Rn and 0 ≤ �t ≤ �tFE

holds true, where ‖ · ‖ is a norm or a convex functional. An explicit peer method (8) is strong
stability preserving with SSP coefficient C > 0 if for all 0 ≤ �t ≤ C�tFE the condition

max
i=1,...,s

‖Um,i‖ ≤ max
i=1,...,s

‖Um−1,i‖

is satisfied. 	
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We indicate the following sufficient condition for SSP property of explicit peer methods [10]

Theorem 3 Let an explicit peer method (8) be given. Assume that

C = max
r∈R+

{
r : g(r) = (I + r R)−1[R, A, B − r A] ≥ 0

}
> 0 (11)

holds true, where the inequalities are meant componentwise. Then this explicit peer method
is strong stability preserving with SSP coefficient C. 	

The relation of (11) to general conditions for GLM given in [27] is discussed in [10].

3.3 TVDM Property for Explicit Peer Methods

We consider a system of ODEs in the form (6) resulting from the DG spatial discretization.
Applying the forward Euler method in time and a generalized slope limiter [3] yields a
scheme, which is TVDM (total variation diminishing in the means) under the condition [5]

�t ≤ �tFE = min j �x j
2(L1 + L2)

. (12)

Here L1 and L2 denote the Lipschitz constants of the numerical flux f̂ with respect to the
first and second argument. Generalized slope limiter enforce stability without degrading the
accuracy achieved by the space and time discretizations. For an overview of slope limiters
and TVDM we refer to [3] and [5].

In the following we consider the linear case of the hyperbolic equation (2)

∂

∂t
u(x, t) + c

∂

∂x
u(x, t) = 0

with periodic boundary conditions. Considering a uniform mesh of width �x and numerical
upwind flux

f̂
(
uh

(
x−
j , t

)
, uh

(
x+
j , t

))
=

⎧⎨
⎩
cuh

(
x−
j , t

)
, c ≥ 0,

cuh
(
x+
j , t

)
, c < 0

(13)

results in the linear system of ordinary differential equations

y′ = Ly. (14)

Condition (12) gives rise to

|c| �t

�x
≤ �tFE = 1

2
.

This can be applied to high order RK schemes [5]. Under the assumptions above, a RKDG
method is TVDM under the condition [5]

|c| �t

�x
≤ ν(C) = 1

2
min
i, j

αi j

βi j
= 1

2
C, (15)

where C is referred to as SSP coefficient of the RK method. Moreover, αi j and βi j are the
coefficients of the RK method in Shu-Osher representation [14]. Note that the ratio

αi j
βi j

is set
to be infinite if βi j = 0.

A similar result can be proved for peermethods. Considering again the assumptions above,
these schemes are TVDM under the condition

|c| �t

�x
≤ ν(C) = 1

2
max
r∈R+

{
r : (I + r R)−1[R, A, B − r A] ≥ 0

} = 1

2
C, (16)

123



1064 J Sci Comput (2018) 75:1057–1078

where C is the SSP coefficient of the peer method, cf. Theorem 3. A proof and more details
are stated in [15].

Besides TV-stability properties numerical methods for hyperbolic problems must satisfy
linear stability properties in order to guarantee convergence. When polynomials of degree
k > 0 are used in the DG discretization the forward Euler method becomes unstable for all
time step sizes [4]. Higher order RKDG schemes or DG peer methods are linearly stable
under a condition of the form

�tλ ∈ S for all λ ∈ �,

where � denotes the set of eigenvalues of the DG spatial operator L in (14). This leads to a
restriction of the form

|c| �t

�x
≤ μ(k, S), (17)

where μ depends on the degree k of the DG spatial discretization and the absolute stability
region S of the method.

SSP methods with optimal SSP coefficient are studied in many applications, the results
are e.g. summarized in [8] for RK methods and [10] for peer methods. But in the context of
methods applied to ODEs resulting from the DG spatial discretization the condition

|c| �t

�x
≤ κ = min(μ(k, S), ν(C)) (18)

must be satisfied to guarantee both linear and SSP stability.
Kubatko et al. [18] observed that for RKDG methods (17) is more restrictive than (15).

They constructed SSP RKDG methods with optimal stability up to order four. For this they
first optimized the stability function of the RKDG method. The free parameters of the RK
scheme are then used to optimize the SSP stability. For all considered stages and orders a
method with ν ≥ μopt could be found, i.e. condition (18) is successfully optimized with
κ = μopt.

4 DGSSP-Optimized Explicit Peer Methods

In this section, we present an approach of constructing SSP explicit peer methods that are
suitable for discontinuous Galerkin spatial discretizations.

The optimization of DG-optimized SSP RK methods is split in two main steps. First, the
coefficients of the stability function are optimized with respect to linear stability depending
on the degree of the DG spatial discretization. This procedure is described in detail in [13].
Second, the coefficients of the RK method are determined subject to the stability polynomial
found in the previous step with the goal of maximization the SSP coefficient, see [14].

This principle cannot be applied to peer methods directly, since a stability matrix must
be considered instead of a scalar stability function, the optimization can be done iteratively,
only. We proceed therefore as follows:

Step 1 Optimization of μ:
We compute a numerical approximation μ̃ for μ(k, S). Let an explicit peer method (8) of
order p and a DG spatial operator L (14) be given. We denote by� a finite set of eigenvalues
of the DG spatial operator. A finite set of eigenvalues � ⊆ C of the DG spatial operator
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with |�| ≈ 150 was chosen. Then the optimization problem can be written as

max
A,B,R,c,�t

�t

subject to 
(M(�tλ)) ≤ 1, for all λ ∈ �,

AB(l) = 0, l = 0, . . . , p.

(19)

Analogously to [13] we reformulate problem (19) in terms of the least deviation problem and
apply a bisection approach. This is summarized in Algorithm 1. The output�tε of Algorithm
1 gives μ̃ by [cf. (17)]

Algorithm 1: Optimization of μ for peer methods by bisection

1 Inputs : s, p, �, δ, ε

2 Outputs: �tε, A, B, R, c
3 �tmin ← 0
4 �tmax ← δ > 0
5 tol ← ε > 0
6 while �tmax − �tmin ≥ tol do
7 �t ← 1

2 (�tmax + �tmin)

8 PM ← min
A,B,R,c

[
max
λ∈�



(
M (�tλ)

)]

9 s.t. AB(l) = 0, l = 0, . . . , p
10 i f PM ≤ 1 then
11 �tmin ← �t
12 else
13 �tmax ← �t
14 end if
15 end while
16 return �tε ← �tmin, A, B, R, c

μ̃ = |c|�tε
�x

.

Here ε denotes the tolerance used for the stopping criterion inAlgorithm1,we used ε = 10−6.
The internal numerical optimization in lines 8 and 9 of Algorithm 1 is done using fmincon
from the optimization toolbox in Matlab. The algorithm also gives the coefficients of the
corresponding method, which however are not used for Step 2. Note, that Algorithm 1 is a
modification of the algorithm from [18] for peermethods. Algorithm 1workswell in practice,
despite the fact that a stabilitymatrix has to be considered instead of a scalar stability function.
In all cases considered the algorithm converged to a bound for linear stability.

Step 2 Optimization of C:
We set μ = μ̃ and search for coefficients A, B, R and nodes c of a peer method with respect
to the following optimization problem [9,10]:

max
A,B,R,c,r

r

subject to g(r) = (I + r R)−1[R, A, B − r A] ≥ 0,

AB(l) = 0, l = 0, . . . , p.

(20)
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To apply a bisection approach we rewrite problem (20) for a given r in the form

min
A,B,R,c

max(max(−g(r)))

subject to AB(l) = 0, l = 0, . . . , p,
(21)

where max(max(·)) denotes the largest element of a matrix. In order to respect the linear
stability bound from μ we add for a given μ the constraint

max
λ∈�


(M(λμ)) ≤ 1.

For practical computations it is useful to include constraints for the nodes c. We take [29,30]

−s ≤ ci < 1, i = 1, . . . , s − 1, cs = 1.

Our approach is given by Algorithm 2 where we used ε = 10−6 and δ = s. The output rε
gives an approximation ν(C) = rε/2. Again, we use fmincon for the internal optimization.

Algorithm 2: Optimization of C for peer methods by bisection

1 Inputs : s, p, �, μ, δ, ε

2 Outputs: rε, A, B, R, c
3 rmin ← 0
4 rmax ← δ > 0
5 tol ← ε > 0
6 while rmax − rmin ≥ tol do
7 r ← 1

2 (rmax + rmin)

8 FV ← min
A,B,R,c

−min (min (g(r)))

9 s.t. max
λ∈�



(
M (λμ)

) ≤ 1

10 AB(l) = 0, l = 0, . . . , p
11 i f FV ≤ 0 then
12 rmin ← r
13 else
14 rmax ← r
15 end if
16 end while
17 return rε ← rmin, A, B, R, c

The optimization in Step 2 is successful, if the condition ν(C) ≥ μ is satisfied. In contrast
to RKmethods this was not achieved for μ̃ from Step 1 for the studiedmethods. Therefore we
reduce stepwise μ and repeat with that Algorithm 2 until the condition ν(C) ≥ μ is satisfied.
Through this approach Algorithms 1 and 2 determine methods where κ = min(μ, ν) = μ

with ν ≈ μ. The methods are neither DG-optimal nor SSP-optimal, but they are optimized
with respect to condition (18). Hence we denote our new explicit peer methods DGSSP-
optimized.

Remark 1 We cannot guarantee that our optimization in Algorithms 1 and 2 converges to
the global extremum. However, the obtained values for μ and ν are quite satisfactory and in
general larger than those for corresponding RK methods, cf. Tables 1 and 2.

We denote an s-stage explicit peer method of order p with SSPEP(s, p) and, accordingly,
a RK method with SSPRK(s, p). The DG spatial discretization of degree k is referred to as
DG(k + 1). We consider the following explicit peer methods in our search:
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– SSPEP(s, 2) with DG(2) spatial operator, s = 2, 3, 4, 5, 6 and
– SSPEP(s, 3) with DG(3) spatial operator, s = 3, 4, 5.

The results of our optimizations are presented inTables 1 and 2. For comparisonwe include
the CFL restrictions for the DG-optimized [18] and SSP-optimized [14] RKmethods and for
the SSP-optimized explicit peer methods [10]. In Tables 1 and 2 the third column shows for
the SSP-optimized methods the obtained value νopt for SSP stability and the second column
lists the corresponding CFL restriction μ for linear stability. The fourth column indicates
κ = min(μ, νopt), cf. condition (18). The maximal obtained value μ̃ for linear stability is
given in the fifth column. To have the same notation as for RK methods we denote it by μopt,
too. For RK methods it holds ν ≥ μopt, see [18], i.e. κ = μopt. For peer methods we have to
decrease the value μ̃ to find a corresponding method with ν ≥ μ. This value μ is given in
column six. Nevertheless, the resulting κ for the DGSSP-optimized peer methods is, except
for the case s = p = 2 with DG(2) spatial operator, greater than for the DG-optimized RK
methods. Whereas for p = 2 there is only a small advantage, for p = 3 the difference of the
κ-values for peer and RKmethods is more visible. The percentage improvements in the CFL
restrictions κ are denoted with εκ (%). In all cases considered we observe an improving in
the CFL restrictions compared to the SSP explicit peer methods of [10]. For peer methods we
indicate withμ/μopt (%) the percentage ofμ relative toμopt. Note thatμ/μopt (%) increases
with larger s. So, the method s = 6, p = 2 with DG(2) spatial operator has nearlyμ = μopt.

Figures 2 and 3 illustrate the stability regions and the eigenvalues of theDGspatial operator
scaled with the maximum linearly stable time step size. It shows that the stability domains of
the new methods are better suited with respect to the set of eigenvalues, which allows using
a larger time step size.

Table 1 CFL restrictions for linear stability μ and SSP stability ν of SSP-optimized and DGSSP-optimized
explicit peer methods (top) and SSP-optimized and DG-optimized RK methods (bottom) of order p = 2 with
DG(2) spatial operator

SSPEP(s, 2) + DG(2) SSPEP(s, 2) + DG(2)
SSP-optimized DGSSP-optimized

s μ νopt κ μopt μ ν κ εκ (%) μ/μopt (%)

2 0.2950 0.3535 0.2950 0.3465 0.3158 0.3159 0.3158 7.05 91.14

3 0.5504 0.9845 0.5504 0.6442 0.6237 0.6242 0.6237 13.31 96.82

4 0.7030 1.5362 0.7030 0.8590 0.8564 0.8784 0.8564 21.82 99.70

5 0.8153 2.0638 0.8153 1.0739 1.0735 1.0789 1.0735 31.66 99.96

6 0.9050 2.5810 0.9050 1.2886 1.2885 1.2890 1.2885 42.37 99.99

SSPRK(s, 2) + DG(2) SSPRK(s, 2) + DG(2)
SSP-optimized DG-optimized

s μ νopt κ μopt μ ν κ εκ (%)

2 0.3333 0.5000 0.3333 0.3333 0.3333 0.5000 0.3333 0.00

3 0.5882 1.0000 0.5882 0.5904 0.5904 0.9470 0.5904 0.37

4 0.7612 1.5000 0.7612 0.8257 0.8257 1.2298 0.8257 8.47

5 0.8966 2.0000 0.8966 1.0520 1.0520 1.5392 1.0520 17.32

6 1.0090 2.5000 1.0090 1.2740 1.2740 1.8425 1.2740 26.26
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Table 2 CFL restrictions for linear stability μ and SSP stability ν of SSP-optimized and DGSSP-optimized
explicit peer methods (top) and SSP-optimized and DG-optimized RK methods (bottom) of order p = 3 with
DG(3) spatial operator

SSPEP(s, 3) + DG(3) SSPEP(s, 3) + DG(3)
SSP-optimized DGSSP-optimized

s μ νopt κ μopt μ ν κ εκ (%) μ/μopt (%)

3 0.2062 0.5018 0.2062 0.2588 0.2460 0.2463 0.2460 19.30 95.05

4 0.3064 1.0601 0.3064 0.4153 0.3958 0.3963 0.3958 29.17 95.30

5 0.3606 1.4373 0.3606 0.5290 0.5214 0.5233 0.5214 44.59 98.56

SSPRK(s, 3) + DG(3) SSPRK(s, 3) + DG(3)
SSP-optimized DG-optimized

s μ νopt κ μopt μ ν κ εκ (%)

3 0.2097 0.5000 0.2097 0.2097 0.2097 0.5000 0.2097 0.00

4 0.3062 1.0000 0.3062 0.3160 0.3160 0.8417 0.3160 3.27

5 0.4061 1.3253 0.4061 0.4330 0.4330 1.1937 0.4330 6.62

Fig. 2 Stability domains (black) of the SSP-optimized SSPEP methods (left) and DGSSP-optimized SSPEP
methods (right) of order p = 2 and also the with the maximum linearly stable time step size scaled eigenvalues
of the DG(2) spatial operator. (blue, dotted), s = 2, . . . , 6 (Color figure online)

All peer methods are consistent of order p. Due to the SSP property it holds B ≥ 0, cf.
Theorem 3. Together with preconsistency (10) this is sufficient for zero stability, i.e. the peer
methods are convergent of order p, see Theorem 2.

The parameters of the new DGSSP-optimized explicit peer methods can be found in the
Appendix, Tables 5, 6, 7, 8, 9, 10, 11, 12.

5 Numerical Tests

In this section,we test explicit SSPpeermethods and the newDGSSP-optimizedpeermethods
and compare them with RK methods. All numerical tests are performed in Matlab. We
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Fig. 3 Stability domains (black) of the SSP-optimized SSPEP methods (left) and DGSSP-optimized SSPEP
methods (right) of order p = 3 and also the with the maximum linearly stable time step size scaled eigenvalues
of the DG(3) spatial operator. (blue, dotted), s = 3, 4, 5 (Color figure online)

always consider constant mesh grids in space and constant time steps in our experiments.
Explicit peer methods require additional starting values, which are computed with ode45
from the Matlab ODE-suite [26] with tolerances atol = r tol = 5.e−14.

5.1 Test Case 1: Linear Transport Equation

We consider the linear advection equation in one dimension in space [18]

∂

∂t
u(x, t) + ∂

∂x
(cu(x, t)) = 0, x ∈ [−π, π], t ∈ (0, te] (22)

with periodic boundary conditions and initial condition

u(x, 0) = u0(x) = sin(2πx/D). (23)

Here, D = 2π is the length of the domain. The exact solution of the problem (22) with initial
condition (23) is given by

u(x, t) = sin(x − ct). (24)

We use the advection constant c = 1 and integrate the problem to an end point te = 315.
We consider meshes in space of N = 50, 100, 200, 400, 800 elements, i.e. we have �x =
2π/50, 2π/100, 2π/200, 2π/400, 2π/800. The L2-error is calculated from the solution at
te = 315.

First, we test the SSP-optimized and DGSSP-optimized explicit peer method with
s = 3, p = 2 and DG(2) spatial operator. The maximal stable time step for both stabil-
ity properties κ = 0.6237 for the DGSSP-optimized method is used, cf. Table 1. Note that
the SSP-optimized peer method does not meet this CFL restriction for linear stability. We
compute both without a slope limiter and with application of the modified generalized slope
limiter. We take the parameter M = 1 as suggested in [5]. The results are given in Table 3.
Here pnum denotes the observed numerically order of convergence. The DGSSP-optimized
peer method shows the expected order. Even though a slope limiter is applied, the SSP-
optimized method displays only first order. This test case emphasizes the importance of the
linear stability requirement.
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Table 3 SSP and DGSSP
explicit peer method with s = 3
and p = 2, paired with DG(2)
spatial operator, for the linear
transport equation (22), without
application of a slope limiter
(top) and with application of the
modified generalized slope
limiter (bottom)

�x SSP-optimized DGSSP-optimized

L2-error pnum L2-error pnum

2π/50 NaN 8.7004e−02

2π/100 NaN NaN 2.1795e−02 1.9970

2π/200 NaN NaN 5.4502e−03 1.9996

2π/400 NaN NaN 1.3629e−03 1.9995

2π/800 NaN NaN 3.4077e−04 1.9998

2π/50 1.6212e−01 9.4296e−02

2π/100 9.2417e−02 0.8109 2.2677e−02 2.0559

2π/200 4.5682e−02 1.0165 5.5967e−03 2.0185

2π/400 2.3771e−02 0.9424 1.3871e−03 2.0124

2π/800 1.1429e−02 1.0564 3.4470e−04 2.0087

Table 4 Methods used in our numerical tests

Method Stages s Order p μ ν κ Label

Forward Euler 1 1 1.0000 0.5000 0.5000 euler

Runge–Kutta 3 2 0.5904 0.9470 0.5904 dgrk32

Runge–Kutta 4 3 0.3160 0.8417 0.3160 dgrk43

Explicit peer 3 2 0.6237 0.6242 0.6237 dgpeer32

Explicit peer 4 3 0.3958 0.3963 0.3958 dgpeer43

(a) (b)

Fig. 4 Order test for the linear transport equation (22), accuracy versus space step size (a) and accuracy
versus number of function evaluations (b)

Next, we apply for an order test the new DGSSP-optimized explicit peer methods and
compare them with the DG-optimized RKmethods from [18] and the forward Euler method.
The testedmethods are listed inTable 4.We consider�x = 2π/N with N = 20, 40, 80, 160,
320, the maximum stable time step κ for each method and run to a final time te = 2π . The
results are illustrated in Fig. 4a. All methods show the expected order.

The greater CFL requirements allow for peer methods using of a larger time step. Hence,
the tested peer methods need less function evaluations for a similar accuracy compared to
RK methods, see Fig. 4b.
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(a) (b)

Fig. 5 Comparison of the numerical peer solution (DGSSP-optimized, s = 3, p = 2 with DG(2) spatial
operator (blue dashed lines, blue crosses) to the exact solution (black solid lines) for the problem (25) with
κ = 0.6237 at time te = 24 (a) and at time te = 35 (b), without application of a slope limiter (top) and with
application of the modified generalized slope limiter (bottom) (Color figure online)

5.2 Test Case 2: Burgers Equation

We consider a hyperbolic conservation law with nonlinear flux function, namely, Burgers
equation [17]

∂

∂t
u(x, t) + ∂

∂x

(
1

2
u(x, t)2

)
= 0, x ∈ [0, 200], t ∈ (0, te] (25)

with periodic boundary conditions and the initial condition (23) with D = 200. The exact
solution to the problem (25) is given by the implicit formula

u(x, t) = sin(2π/D(x − tu(x, t))).

The exact solution forms a shock in x = 100 at time t = 100/π . We take the local Lax-
Friedrichs flux for numerical flux f̂ , see, e.g. [5].

First, we test the performance of the new explicit peer method dgpeer32. A mesh grid
in space of N = 100 elements is taken and we use the maximum allowable time step size
κ = 0.6237, cf. Table 1. We work out an advantage of applying the modified generalized
slope limiter and compute for that with and without slope limiter. As proposed in [5] the
parameter M = π2/10000 is used. Figure 5a illustrates the results for problem (25) before
a shock wave forms at time te = 24. There are no spurious oscillations in the numerical
solution. The results after a shock wave builds up at time te = 35 are shown in Fig. 5b. We
observe oscillations around the discontinuity in the numerical solution.

For an order test we apply the methods given in Table 4. Analogous to the linear test
case meshes in space of N = 50, 100, 200, 400, 800 elements are considered. We run in our
experiment to te = 24, well before a shock wave forms. The maximum stable time step is
always used. The results are presented in Fig. 6. The expected orders can be seen. We can
clearly observe the good properties of the new DGSSP-optimized peer methods due to the
larger maximum stable time step in comparison with RK methods.

5.3 Test Case 3: Test of Order Reduction

The stage order of explicit RK methods is only one. For explicit peer methods the stage
order is equal to the order of consistency. In the next test, we show the advantage of higher
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Fig. 6 Order test for the Burgers equation (25), accuracy versus space step size (left) and accuracy versus
number of function evaluations (right)

(a) (b)

Fig. 7 Numerical tests for problem (26), order test (a) and test of order reduction (b)

stage orders. For that, we consider a hyperbolic conservation law with source term in the
form [6]

∂

∂t
u(x, t) + ∂

∂x
(cu(x, t)) = b(x, t), x ∈ [0, 1], t ∈ (0, te], (26)

where the right-hand side of the problem (26) is given by

b(x, t) = t − x

(1 + t)2
.

The initial condition u0(x) = u(x, 0) and the right boundary condition are taken from the
exact solution u(x, t) = (1 + x)/(1 + t). Sanz-Serna et al. [24] show, that explicit RK
methods of order p ≥ 3 applying to problems of the form (26) suffer from order reduction.
We test again the methods listed in Table 4.

First, we consider a fixedmesh in space of equal width, i.e. N = 8 respectively�x = 1/8.
We decrease the time step size h, or, to be more precise, we take h = 1/nstep, nstep =
32, 48, 64, . . . , 240. The L∞-errors are calculated for the solution at te = 1. The results are
presented in Fig. 7a. All methods show the classical order of convergence.

Next, we decrease the space step size �x and the time step size h simultaneously,
i.e. we choose N = 8, 12, 16, . . . , 60 elements in space and as stated above nstep =
32, 48, 64, . . . , 240 in time. Figure 7b shows that the RK method dgrk43 suffers clearly
from order reduction, while there is no order reduction for the peer methods.
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6 Conclusions

In this paper, we have constructed new SSP explicit peer methods for discontinuous Galerkin
spatial discretizations, which are optimized concerning both linear and SSP stability. In
general, the CFL restrictions for linear stability of peer methods are greater compared to
RK methods. The methods were tested successfully on linear and nonlinear test examples
and have shown a good performance when compared with the SSP-optimized explicit peer
methods. The advantage of high stage order was verified numerically.

New methods up to order three were constructed. The optimization of methods of higher
order and the investigation of explicit DGSSP peer methods with variable step sizes will be
topic of future work.

Acknowledgements The authors are grateful to the anonymous referees for their valuable remarks and
comments on the paper.

7 Appendix: Coefficients of the New DGSSP-Optimized Explicit Peer
Methods

See Tables 5, 6, 7, 8, 9, 10, 11, 12.

Table 5 DGSSP-optimized explicit peer method, s = 2, p = 2 with DG(2) spatial operator

DGSSPEP(2, 2) + DG(2)
κ = 3.1588074378967268e−1 ν = 3.1591415405273438e−1 C = 6.3182830810546875e−1

c1 = 3.8726962960561184e−1 c2 = 1.0000000000000000e+0

b11 = 3.9958685046510062e−1 b12 = 6.0041314953489944e−1 b21 = 6.2506046658626291e−1

b22 = 3.7493953341373720e−1

a11 = 3.4700795141929923e−5 a12 = 6.3207392770067794e−1 a21 = 6.5839010776148262e−5

a22 = 3.9471578972569848e−1

r21 = 9.8821190247381530e−1

Table 6 DGSSP-optimized explicit peer method, s = 3, p = 2 with DG(2) spatial operator

DGSSPEP(3, 2) + DG(2)
κ = 6.2372738968642072e−1 ν = 6.2425704827922901e−1 C = 1.2485140965584580e+0

c1 = 2.2107967672604620e−1 c2 = 5.0656061487914328e−1 c3 = 1.0000000000000000e+0

b11 = 1.7952939714598981e−1 b12 = 1.0983573212036590e−1 b13 = 7.1063487073364429e−1

b21 = 1.6546028637722482e−1 b22 = 6.8924488331683104e−2 b23 = 7.6561522529109205e−1

b31 = 2.8842915333335345e−1 b32 = 5.8794812071492383e−2 b33 = 6.5277603459515410e−1

a11 = 5.0771387854624527e−7 a12 = 8.7943496946377028e−2 a13 = 3.2717204424969554e−1

a21 = 4.3824219953913792e−5 a22 = 4.5887927863455927e−2 a23 = 2.0559689382563109e−1

a31 = 4.4898724414544013e−5 a32 = 3.9133320858599295e−2 a33 = 1.7530621608580127e−1

r21 = 4.1792240586620660e−1 r31 = 3.5632252223207406e−1 r32 = 6.8286804737201279e−1
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Table 7 DGSSP-optimized explicit peer method, s = 4, p = 2 with DG(2) spatial operator

DGSSPEP(4, 2) + DG(2)

κ = 8.5643142648664095e−1 ν = 8.7849845862641618e−1 C = 1.7569969172528324e+0

c1 = −1.1017990086977755e−2 c2 = 3.0086416786435727e−1 c3 = 5.8652086055378594e−1

c4 = 1.0000000000000000e+0

b11 = 3.1117533862087359e−2 b12 = 4.6509168053559952e−3 b13 = 6.3128571517354726e−1

b14 = 3.3294583415900925e−1 b21 = 6.8763467565832972e−2 b22 = 1.1278132944089411e−1

b23 = 4.5234068545279221e−1 b24 = 3.6611451754048069e−1 b31 = 7.4023725231017259e−2

b32 = 8.1976955267757265e−2 b33 = 3.6530531065842953e−1 b34 = 4.7869400884279600e−1

b41 = 1.3420243385704098e−1 b42 = 7.5967299859526563e−2 b43 = 3.3975813045900088e−1

b44 = 4.5007213582443156e−1

a11 = 1.7578286279728319e−2 a12 = 2.6239504152038009e−3 a13 = 1.2415836181630931e−1

a14 = 1.4035689478904412e−1 a21 = 1.2612004135562042e−2 a22 = 2.9382335254034284e−3

a23 = 8.9068933371323530e−2 a24 = 1.2494665236285137e−1 a31 = 9.1170106617451882e−3

a32 = 2.2218189554709306e−3 a33 = 6.4252681383924565e−2 a34 = 9.0385891751268224e−2

a41 = 2.7174224172487665e−1 a42 = 2.0735662657640716e−3 a43 = 5.9530677838877874e−2

a44 = 8.3820284681580828e−2

r21 = 4.0670235320459108e−1 r31 = 2.9332670557121748e−1 r32 = 4.1041522245522255e−1

r41 = 2.7174224172487665e−1 r42 = 3.8012579385879725e−1 r43 = 5.2351717940348785e−1

Table 8 DGSSP-optimized explicit peer method, s = 5, p = 2 with DG(2) spatial operator

DGSSPEP(5, 2) + DG(2)

κ = 1.0735938603991406e+0 ν = 1.0789608929793362e+0 C = 2.1579217859586723e+0

c1 = 2.7742011894826051e−2 c2 = 1.6740580589509829e−1 c3 = 3.8645514443940826e−1

c4 = 6.5648295647166943e−1 c5 = 1.0000000000000000e+0

b11 = 1.6561451717599946e−2 b12 = 5.1543012462882801e−2 b13 = 2.4235052989736338e−2

b14 = 3.7093807640333870e−1 b15 = 5.3672240642644231e−1 b21 = 5.1003289257488704e−2

b22 = 9.0839354925312893e−2 b23 = 6.9279104843613687e−2 b24 = 4.4566635507224261e−1

b25 = 3.4321189590134216e−1 b31 = 8.9469150942903863e−2 b32 = 6.1834520299016558e−2

b33 = 1.1252453345421667e−1 b34 = 2.9653147102141436e−1 b35 = 4.3964032428244865e−1

b41 = 1.0010471672836012e−1 b42 = 5.0287706382909005e−2 b43 = 8.9879923092870295e−2

b44 = 2.4794489219634647e−1 b45 = 5.1178276159951419e−1 b51 = 1.4185784754583605e−1

b52 = 4.8356562311313148e−2 b53 = 8.6541711605316221e−2 b54 = 2.3784783003028959e−1

b55 = 4.8539604850724505e−1

a11 = 6.4317723978225805e−4 a12 = 2.3873232958995679e−2 a13 = 1.1198546480224131e−2

a14 = 7.0979582944989336e−2 a15 = 1.2235673234541407e−1 a21 = 1.9490070113088873e−2

a22 = 4.2081142386328187e−2 a23 = 3.2064655079903082e−2 a24 = 4.2551326354372386e−2

a25 = 8.6673201282555526e−2 a31 = 2.8770766492468184e−2 a32 = 2.8583535892912390e−2

a33 = 1.9589831821235741e−2 a34 = 3.9819710434687024e−2 a35 = 1.4522379819848988e−1

a41 = 2.3005603104551180e−2 a42 = 2.3244404663516533e−2 a43 = 1.5990526359860903e−2

a44 = 3.2102608379892331e−2 a45 = 1.2234823934180945e−1 a51 = 2.2153614246397991e−2

a52 = 2.2345370625525482e−2 a53 = 1.5381011279929436e−2 a54 = 3.0882207814213070e−2
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Table 8 continued

DGSSPEP(5, 2) + DG(2)

κ = 1.0735938603991406e+0 ν = 1.0789608929793362e+0 C = 2.1579217859586723e+0

a55 = 1.1729006476220023e−1

r21 = 2.6536591265523851e−1 r31 = 1.6381368834413768e−1 r32 = 2.7002643540849952e−1

r41 = 1.3356037957367423e−1 r42 = 2.2057146114463183e−1 r43 = 3.6517525751620039e−1

r51 = 1.2835056792896077e−1 r52 = 2.1190032306216625e−1 r53 = 3.5173070081288632e−1

r54 = 4.1295196327532063e−1

Table 9 DGSSP-optimized explicit peer method, s = 6, p = 2 with DG(2) spatial operator

DGSSPEP(6, 2) + DG(2)

κ = 1.2885962890624989e+0 ν = 1.2890531122502580e+0 C = 2.5781062245005160e+0

c1 = −8.3647136532497349e−2 c2 = 8.7831420264993687e−2 c3 = 2.8213745150635866e−1

c4 = 4.4330817693066960e−1 c5 = 7.0652444866883590e−1 c6 = 1.0000000000000000e+0

b11 = 3.8641043158428111e−2 b12 = 4.4232011779101452e−2 b13 = 9.9889471500482732e−2

b14 = 3.0685748625566667e−1 b15 = 2.1165238737722669e−1 b16 = 2.9872759992909437e−1

b21 = 6.0850380026999114e−2 b22 = 6.8282568594205145e−2 b23 = 2.1395905200081788e−1

b24 = 2.1975239683638229e−1 b25 = 2.1776376220817134e−1 b26 = 2.1939184033342427e−1

b31 = 6.2566000786014292e−2 b32 = 4.6800358552182279e−2 b33 = 1.6512683572752163e−1

b34 = 1.6367974585222511e−1 b35 = 1.6143599703058481e−1 b36 = 4.0039106205147185e−1

b41 = 5.4914792451267902e−2 b42 = 7.0969957147218252e−2 b43 = 1.8845955134871700e−1

b44 = 1.7322709781768988e−1 b45 = 2.0268051042812646e−1 b46 = 3.0974809080698051e−1

b51 = 7.0900964515960882e−2 b52 = 6.2579343518510869e−2 b53 = 1.6935494538856111e−1

b54 = 1.5553350748289188e−1 b55 = 2.1614720790293024e−1 b56 = 3.2548403119114500e−1

b61 = 9.5346592557543089e−2 b62 = 6.0964362811776439e−2 b63 = 1.6773648956268339e−1

b64 = 1.5171234778306664e−1 b65 = 2.0734919214222294e−1 b66 = 3.1689101514270757e−1

a11 = 9.9781019186123299e−3 a12 = 1.7110167064243832e−2 a13 = 1.2180057897467796e−2

a14 = 1.1717718982741167e−1 a15 = 6.6774754716575277e−2 a16 = 7.9999664279063298e−2

a21 = 2.0022727472542023e−2 a22 = 2.3295396490237163e−2 a23 = 4.1065518496485987e−2

a24 = 8.3762065747880823e−2 a25 = 5.9024483929204334e−2 a26 = 6.0232939120099256e−2

a31 = 1.3237629376995122e−2 a32 = 1.6210156162414120e−2 a33 = 2.6122539250869044e−2

a34 = 6.2356190990293325e−2 a35 = 4.2379185220326097e−2 a36 = 5.5203140321455985e−2

a41 = 1.3183901615091328e−2 a42 = 2.5661015544193120e−2 a43 = 2.4772372096300586e−2

a44 = 6.5954686104383195e−2 a45 = 5.0264167645655639e−2 a46 = 5.2375690944478782e−2

a51 = 1.1962045502518876e−2 a52 = 2.2573210361251560e−2 a53 = 2.2598265126438841e−2

a54 = 5.9139007403067954e−2 a55 = 4.4992032582584954e−2 a56 = 5.0688753005090945e−2

a61 = 1.1808444171549790e−2 a62 = 2.1882516163669988e−2 a63 = 2.2064663109906128e−2

a64 = 5.7661389016855066e−2 a65 = 4.3772319457984148e−2 a66 = 4.9524118045136144e−2

r21 = 2.6848973563223300e−1 r31 = 2.0040238370394139e−1 r32 = 2.0040238370394139e−1

r41 = 2.1170563959111202e−1 r42 = 2.0598962138841381e−1 r43 = 2.0884984185923972e−1

r51 = 1.8970738702010317e−1 r52 = 1.8684389626107969e−1 r53 = 1.9758088925136094e−1

r54 = 3.2594522576213791e−1 r61 = 1.8486403826946798e−1 r62 = 1.8278919415720252e−1

r63 = 1.9535084239777523e−1 r64 = 3.1113185450651065e−1 r65 = 3.4380314477186164e−1
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Table 10 DGSSP-optimized explicit peer method, s = 3, p = 3 with DG(3) spatial operator

DGSSPEP(3, 3) + DG(3)

κ = 2.4602189440780711e−1 ν = 2.4633121489023324e−1 C = 4.9266242978046648e−1

c1 = 1.9661571175497836e−1 c2 = 5.0528002223731205e−1 c3 = 1.0000000000000000e+0

b11 = 2.0890195008065693e−1 b12 = 2.4702575909385212e−4 b13 = 7.9085102416024922e−1

b21 = 2.5112724350902732e−1 b22 = 1.5099471253417268e−1 b23 = 5.9787804395680011e−1

b31 = 6.5276026744051063e−1 b32 = 7.0419303423422813e−2 b33 = 2.7682042913606658e−1

a11 = 5.9869500731058144e−2 a12 = 3.7500208245775736e−5 a13 = 3.0465946387226572e−1

a21 = 1.0819725355402451e−1 a22 = 1.3039816144885929e−4 a23 = 8.7883536425709521e−2

a31 = 3.0773114844308813e−1 a32 = 1.3344851947888053e−4 a33 = 4.0812438919617153e−2

r21 = 5.8552061670875277e−1 r31 = 2.7104000238063714e−1 r32 = 9.3953814081320286e−1

Table 11 DGSSP-optimized explicit peer method, s = 4, p = 3 with DG(3) spatial operator

DGSSPEP(4, 3) + DG(3)

κ = 3.9582823166165310e−1 ν = 3.9634551296715331e−1 C = 7.9269102593430663e−1

c1 = 4.3839003669994735e−2 c2 = 2.6786916750388512e−1 c3 = 5.4953332512948561e−1

c4 = 1.0000000000000000e+0

b11 = 7.3546754048809115e−2 b12 = 4.1817700777738304e−5 b13 = 4.4229916709791539e−1

b14 = 4.8411226115249789e−1 b21 = 2.9274780474800307e−2 b22 = 2.7520134456599044e−1

b23 = 1.1912582541306244e−1 b24 = 5.7639804954614682e−1 b31 = 1.9034417339865942e−1

b32 = 1.0525773136912379e−1 b33 = 4.5708933536631198e−2 b34 = 6.5868916169558567e−1

b41 = 4.5099543943421483e−1 b42 = 7.4772026638373540e−2 b43 = 5.0180646464117427e−2

b44 = 4.2405188746329436e−1

a11 = 1.5731692935638650e−5 a12 = 7.0838243086917061e−6 a13 = 1.7210064909648287e−1

a14 = 1.4130972781309412e−1 a21 = 1.1879749733938127e−2 a22 = 6.2722620374107349e−2

a23 = 4.6486414785873606e−2 a24 = 9.0656047393412598e−2 a31 = 8.1585243681312855e−2

a32 = 2.4053807223148774e−2 a33 = 1.7872345721743028e−2 a34 = 9.3765373767690105e−2

a41 = 2.3228544088457373e−1 a42 = 1.7136996247339362e−2 a43 = 1.2750693934711080e−2

a44 = 5.9855299597249750e−2

r21 = 3.3926134244885719e−1 r31 = 1.2992036651196920e−1 r32 = 4.8198864450214773e−1

r41 = 9.2162066058127295e−2 r42 = 3.4202961192953996e−1 r43 = 7.5235175512388408e−1

Table 12 DGSSP-optimized explicit peer method, s = 5, p = 3 with DG(3) spatial operator

DGSSPEP(5, 3) + DG(3)
κ = 5.2146838980310806e−1 ν = 5.2331666596248216e−1 C = 1.0466333319249643e+0

c1 = −1.2896056199244499e−1 c2 = 1.1276392078374278e−1 c3 = 2.6059913091639131e−1

c4 = 5.6174317378048244e−1 c5 = 1.0000000000000000e+0

b11 = 6.0791034060216624e−2 b12 = 9.5852635551357563e−4 b13 = 2.0761291589709338e−2

b14 = 7.6893982550132378e−1 b15 = 1.4854932249323674e−1 b21 = 9.2119500718257225e−2

b22 = 8.3230371978585932e−2 b23 = 1.1123482685038859e−1 b24 = 2.3763252592429643e−1

b25 = 4.7578277452847179e−1 b31 = 6.8649835323895902e−2 b32 = 1.8690649740809420e−1
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Table 12 continued

DGSSPEP(5, 3) + DG(3)
κ = 5.2146838980310806e−1 ν = 5.2331666596248216e−1 C = 1.0466333319249643e+0

b33 = 3.9451688536070409e−2 b34 = 4.0818405950290310e−1 b35 = 2.9680791922903649e−1

b41 = 9.6128424921121600e−2 b42 = 1.9224001060936594e−1 b43 = 2.0769577547696039e−2

b44 = 2.1231969239092871e−1 b45 = 4.7854229453088798e−1 b51 = 3.0122334909900167e−1

b52 = 1.4217321423769702e−1 b53 = 1.5881084749237162e−2 b54 = 1.5684287241466940e−1

b55 = 3.8387947949939499e−1

a11 = 3.4769170227165767e−4 a12 = 1.7177250110356332e−4 a13 = 1.9534705415881343e−2

a14 = 2.1752911879250800e−1 a15 = 5.5281313260734842e−2 a21 = 2.7371585237199354e−2

a22 = 1.7713695470402191e−2 a23 = 3.5952405868642588e−2 a24 = 6.4987051933669632e−2

a25 = 4.6760180866391832e−2 a31 = 9.3083739401898530e−3 a32 = 3.6712897752350336e−2

a33 = 1.4681364872864635e−2 a34 = 2.3344431655384051e−1 a35 = 1.5446714488978745e−2

a41 = 6.2440356373707991e−2 a42 = 1.9199900681709219e−2 a43 = 7.6777210563701535e−3

a44 = 1.2121562382482404e−1 a45 = 3.3602830148094974e−2 a51 = 1.8596259860281633e−1

a52 = 1.4441148030210472e−2 a53 = 5.6748989961926703e−3 a54 = 8.9476839801155866e−2

a55 = 2.8662811204002939e−2

r21 = 2.8421447787842696e−1 r31 = 9.2967942710790979e−2 r32 = 3.0943072842725872e−1

r41 = 4.8445608346641161e−2 r42 = 1.6074044475707289e−1 r43 = 4.9591576071642379e−1

r51 = 3.5877294969278155e−2 r52 = 1.1843396321287454e−1 r53 = 3.6500090055420653e−1

r54 = 7.0315997862832713e−1
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