
J Sci Comput (2018) 75:830–858
https://doi.org/10.1007/s10915-017-0561-1

Divergence-Free H(div)-FEM for Time-Dependent
Incompressible Flows with Applications to High Reynolds
Number Vortex Dynamics

Philipp W. Schroeder1 · Gert Lube1

Received: 29 May 2017 / Revised: 29 August 2017 / Accepted: 12 September 2017 /
Published online: 27 September 2017
© Springer Science+Business Media, LLC 2017

Abstract In this article, we consider exactly divergence-free H (div)-conforming finite ele-
mentmethods for time-dependent incompressible viscous flowproblems. This is an extension
of previous research concerning divergence-free H1-conforming methods. For the linearised
Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented
whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-
dominated problems, the proposed method relies on a velocity jump upwind stabilisation
which is not gradient-based. Complementing the theoretical results, H (div)-FEM are applied
to the simulation of full nonlinear Navier–Stokes problems. Focussing on dynamic high
Reynolds number examples with vortical structures, the proposed method proves to be capa-
ble of reliably handling the planar lattice flow problem, Kelvin–Helmholtz instabilities and
freely decaying two-dimensional turbulence.
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1 Introduction

In this paper, we consider time-dependent incompressible flows fulfilling [20,41,46]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − νΔu + (β ·∇)u + ∇ p = f in (0, T ] × Ω,

∇ · u = 0 in (0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(1a)

(1b)

(1c)

(1d)

For the space dimension d ∈ {2, 3}, Ω ⊂ R
d denotes a bounded connected domain.

Moreover, u : (0, T ] × Ω → R
d represents the velocity field. For β = u, the nonlinear

Navier–Stokes equations are recovered. A linearisation of the problem, known as the Oseen
problem, can be consideredwhenever an a priori knownconvective velocityβ : (0, T ]×Ω →
R
d is taken instead. In both cases, p : (0, T ]×Ω → R is the (zero-mean) kinematic pressure,
f : (0, T ] × Ω → R

d represents external body forces and u0 : Ω → R
d stands for a

suitable initial condition for the velocity. The underlying fluid is assumed to be Newtonian
with constant (dimensionless) kinematic viscosity 0 < ν � 1.

We want to use an H(div)-conforming, inf–sup stable and exactly divergence-free finite
element method (FEM) for solving (1) approximately. Divergence-free FEMs enable a strict
separation between the approximation of velocity and pressure in the sense that it is possible
to obtain error estimates where the quality of the pressure approximation does not influence
the velocity error. This property is referred to as ‘pressure-robustness’; cf. [32,35].

Moreover, using an H(div)-conforming FEM allows the usage of the whole machinery
known fromDiscontinuous Galerkin FEM (dG-FEM). Especially an upwind treatment of the
convective term can be incorporated quite naturally. In this context, whenever problems with
high Reynolds numbers Re (equivalently with small viscosity ν) are considered, it is sensible
to strive for methods for which ‘Re-semi-robustness’ can be shown—that is, methods whose
error estimates, including Gronwall constants, do not explicitly depend on Re (equivalently
on ν−1); cf. [39]. The price to be paid usually are certain regularity assumptions for the exact
solution.

Thus, this work can be seen as an advancement and extension of the authors’ previous
work [42], where divergence-free H1-conforming FEM have been analysed for the time-
dependent Navier–Stokes problem. For a literature overview concerning H1-conforming
FEM, we also refer to [42]. The present contribution is split into the following parts:

– Numerical Analysis For a semi-discrete numerical error analysis, we consider the time-
dependent Oseen equations with a known convective field β. The analysis of linearised
incompressible flow problems shall act as a proof of concept and a first step towards the
nonlinear Navier–Stokes problem. Moreover, due to the above mentioned possibility of
strictly separating velocity and pressure, this work exclusively focusses on the velocity
approximation.

– Application In contrast to the theoretical part, for our numerical experiments, we apply
the H(div)-FEM to the full nonlinear Navier–Stokes problem with β = u. There, for
high Reynolds number problems, we assess the quality of H(div)-FEM in comparison
with other discretisation schemes. The considered problems all have a strong vortical
structure and vary in their behaviour from rather static to considerably dynamic.

Concerning previous research, in [48,49], H(div)-conforming and divergence-free FEMs
are introduced for the stationary Stokes problem; but they do not provide pressure-robust
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error estimates. On the other hand, in [32], a pressure-robust estimate for H(div)-FEM in a
discrete energy norm is given for the stationary Stokes problem; but without many details.

For the stationaryNavier–Stokes equations, H(div)-FEMare considered in [16].However,
for the error analysis, one is referred to the Local Discontinuous Galerkin method [15] and
in this work, neither pressure- nor Re-semi-robustness plays a role. Actually, in the context
of stationary problems, the high Reynolds number case is usually excluded. For the time-
dependent incompressible Euler equations (ν = 0), on the other hand, H(div)-FEM are
applied in [27]. But viscous effects do not play a role in the Euler problem. Therefore, to the
best of the authors’ knowledge, this contribution is the first one which analyses and applies
H(div)-FEM to time-dependent viscous incompressible flows. Additionally, we attach great
importance to the aspects of pressure- and Re-semi-robustness.
Organisation of the Article In Sect. 2, we introduce divergence-free H(div)-conforming
and inf–sup stable FEM for time-dependent incompressible flow problems. This includes
weak formulations with their corresponding function spaces, assumptions which are needed
subsequently and a brief discussion of the stability and well-posedness of the proposed
method. Then, Sect. 3 is concerned with the derivation of a priori, pressure- and Re-semi-
robust error estimates for the spatially discretised velocity of the linearised problem. Finally,
in Sect. 4, the H(div)-FEM is applied to the simulation of highReynolds number flows for the
full nonlinear Navier–Stokes problem. There, we present numerical examples for the planar
lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-dimensional
turbulence.

2 H(div)-FEM for Time-Dependent Incompressible Flows

Notation In what follows, for K ⊆ Ω we use the standard Sobolev spaces Wm,p(K ) for
scalar-valued functions with associated norms ‖·‖Wm,p(K ) and seminorms |·|Wm,p(K ) for
m � 0 and p � 1. Spaces and norms for vector- and tensor-valued functions are indi-
cated with bold letters. We obtain the Lebesgue space W 0,p(K ) = L p(K ) and the Hilbert
spaceWm,2(K ) = Hm(K ). Additionally, the closed subspaces H1

0 (K ) consisting of H1(K )-
functions with vanishing trace on ∂K and the set L2

0(K ) of L2(K )-functions with zero mean
in K play an important role. The L2(K )-inner product is denoted by (·, ·)K and, if K = Ω ,
we usually omit the domain completely when no confusion can arise. Furthermore, with
regard to time-dependent problems, given a Banach space X and a time instance t∗, the
Bochner space L p(0, t∗; X) for p ∈ [1,∞] is used. In the case t∗ = T , we frequently use
the abbreviation L p(X) = L p(0, T ; X).

2.1 Time-Dependent Oseen Problem

With V = H1
0(Ω) and Q = L2

0(Ω), we introduce the spaces for velocity and pressure as

V T = {v ∈ L2(0, T ; V ) : ∂tv ∈ L2(0, T ; L2)}, QT = L2(0, T ; Q). (2)

Note that throughout this work, we thus assume at least the mild regularity ∂tu ∈
L2
(
0, T ; L2

)
for the exact velocity. Then, provided the forcing term f is sufficiently smooth,

the following well-known variational formulation of problem (1) on the continuous level is
obtained:

{
? (u, p) ∈ V T × QT with u(0) = u0 s.t., ∀ (v, q) ∈ V × Q,

(∂tu, v) + νa(u, v) + c(β; u, v) + b(v, p) − b(u, q) = ( f , v).

(3a)

(3b)
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The multilinear forms are given by

a(w, v) =
∫

Ω

∇w :∇v dx, c(β;w, v) =
∫

Ω

(β ·∇)w · v dx, (4a)

b(w, q) = −
∫

Ω

q(∇ ·w) dx. (4b)

In this work, β : (0, T ]× Ω → R
d denotes the known convective velocity. We assume that

β ∈ L∞(0, T ; L∞) with ∇ ·β = 0 pointwise and β · n∣∣
∂Ω

= 0, where n denotes the outer
unit normal vector to ∂Ω . In applications, the field β can be thought of as an approximation
of u. We abbreviate ‖β‖L∞(L∞) = ‖β‖∞. Weakly divergence-free velocities belong to

V div = {v ∈ V : b(v, q) = 0, ∀ q ∈ Q}. (5)

2.2 Discrete Setting and Assumptions

In this work, we focus on FEM which are H(div)-conforming, where

H(div;Ω) = {w ∈ L2(Ω) : ∇ ·w ∈ L2(Ω)
}
. (6)

Let Th be a shape-regular FE partition of Ω without hanging nodes and mesh size h =
maxK∈Th hK , where hK denotes the diameter of the particular element K ∈ Th . Since the
subsequent velocity approximation will not be H1-conforming, the broken Sobolev space

Hm(Th) = {w ∈ L2(Ω) : w
∣
∣
K ∈ Hm(K ), ∀ K ∈ Th

}
(7)

is introduced. Define the broken gradient ∇h : H1(Th) → L2(Ω) by (∇hw)
∣
∣
K = ∇(w∣∣K

)
.

The skeleton Fh denotes the set of all facets with FK = {F ∈ Fh : F ⊂ ∂K } and N∂ =
maxK∈Th card(FK ). Moreover, Fh = F i

h ∪ F∂
h where F i

h is the subset of interior facets and
F∂
h collects all boundary facets F ⊂ ∂Ω . To any F ∈ Fh we assign a unit normal vector nF

where, for F ∈ F∂
h , this is the outer unit normal vector n. If F ∈ F i

h , there are two adjacent

elements K+ and K− sharing the facet F = ∂K+ ∩ ∂K− and nF points in an arbitrary but
fixed direction. Let φ be any piecewise smooth (scalar-, vector- or tensor-valued) function
with traces from within the interior of K± denoted by φ±, respectively. Then, we define the
jump �·�F and average

{{ · }}F operator across interior facets F ∈ F i
h by

�φ�F = φ+ − φ− and
{{
φ
}}

F = 1

2

(
φ+ + φ−). (8)

For boundary facets F ∈ F∂
h we set �φ�F = {{

φ
}}

F = φ. These operators act component-
wise for vector- and tensor-valued functions. Frequently, the subscript indicating the facet is
omitted. It is important to have in mind the following characterisation of H(div)-functions.

Lemma 2.1 (Characterisation of H(div;Ω)) Let w ∈ H1(Th). If �w� · nF = 0 for all
F ∈ F i

h , then w ∈ H(div;Ω).

Proof Cf., for example, [19, Lemma 1.24]. ��
In the following, Pk(K ) (vector-valued: PPPk(K )) denotes either the space of all polynomials
on K with degree less or equal to k (simplicial mesh) or with degree less or equal to k in
each variable (tensor-product mesh), depending on the particular situation.
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Let us turn to specifying the assumptions which are needed in the remainder of this paper.
Define the following discrete FE spaces for velocity and pressure, respectively:

V h = {vh ∈ H(div;Ω) : vh
∣
∣
K ∈ V k(K ), ∀ K ∈ Th; vh · n

∣
∣
∂Ω

= 0
} �⊂ V (9a)

Qh = {qh ∈ L2
0(Ω) : qh

∣
∣
K ∈ P�(K ), ∀ K ∈ Th

} ⊂ Q (9b)

Here, the local space V k(K ) is a set of vector-valued piecewise polynomials of order k � 1,
which, in order to keep the theory in Sect. 3 widely applicable, is not explicitly specified
further. Instead, we shall only introduce several required global and local properties for the
resulting FE pair. For the pressure space, � ∈ {k − 1, k} is assumed. Some valid and explicit
examples for V h/Qh are given below.

Assumption A1 The global spaces V h and Qh are divergence-conforming. That is,

∇ · V h ⊆ Qh . (10)

Property (10) ensures that the velocity approximation will be exactly divergence-free [32].

Assumption A2 The global spaces V h and Qh form a discretely inf–sup stable FE pair.
That is, there exists β > 0, independent of the mesh size h, such that

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

|||vh |||e ‖qh‖L2
� β. (11)

Here, |||·|||e denotes a suitable energy norm.Due to the H(div)-conformity ofV h , the pressure-
velocity coupling b(·, ·) does not have to be modified in the discrete setting. Note that (11)
ensures that the space of discretely divergence-free velocities V div

h is non-trivial, that is

V div
h = {vh ∈ V h : b(vh, qh) = 0, ∀ qh ∈ Qh} �= {0}. (12)

Assumption A3 The space V h has optimal approximation properties in the following sense.
There exists a velocity approximation operator jh : V → V h such that, for all w ∈ Hr (Ω)

with r > 3/2 and ru = min {r, k + 1},
∥
∥w − jhw

∥
∥
L2(K )

+ hK
∥
∥w − jhw

∥
∥
H1(K )

� ChruK |w|Hru (K ), ∀ K ∈ Th . (13)

A direct consequence of the optimal approximation property (13), together with a continuous
trace inequality [19], is the ability to bound polynomial approximation errors on facets:
∥
∥w − jhw

∥
∥
L2(F)

+ hK
∥
∥∇(w − jhw

) · nK
∥
∥
L2(F)

� Ch
ru− 1

2
K |w|Hru (K ), ∀ F ∈ FK , K ∈ Th .

(14)

Furthermore, concerning the pressure, it is well-known that for all q ∈ Q ∩ Hs(Ω) with
s � 1 and rp = min {s, � + 1} the local orthogonal L2-projection π0 : L2(K ) → P�(K )

fulfils

‖q − π0q‖L2(K ) � Ch
rp
K |q|Hrp (K ), ∀ K ∈ Th . (15)

Assumption A4 jh fulfils the following commuting diagram property:

∇ · ( jhw
) = π0(∇ ·w) (16)

Note that ∇ ·w = 0 pointwise implies that ∇ · ( jhw
) = 0 also holds in a pointwise sense.

Therefore, property (16) will ensure that our analysis yields pressure-robust error estimates
for the velocity. However, note that not every choice of velocity approximation operator
automatically leads to pressure-robust estimates.
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Assumption A5 Let 0 � m � � and 1 � p, q � ∞. The local space V k(K ) satisfies the
local inverse inequality [21, Lemma 1.138]

∀ vh ∈ V k(K ) : ‖vh‖W�,p(K ) � Cinvh
m−�+d

(
1
p − 1

q

)

K ‖vh‖Wm,q (K ) , ∀ K ∈ Th . (17)

We will not distinguish between different applications of (17) and in the end, Cinv can be
thought of as a maximum over all occurring constants. Also on shape-regular meshes, the
following assumption is fulfilled.

Assumption A6 The space V k(K ) satisfies the discrete trace inequality [19, Remark 1.47]

∀ vh ∈ V k(K ) : ‖vh‖L2(∂K ) � CtrN
1/2
∂ h−1/2

K ‖vh‖L2(K ) , ∀ K ∈ Th . (18)

Remark 2.2 Several classical examples of spaces fulfilling these properties can be found in
the monograph [7]. For � = k, let us specifically mention the family of Raviart–Thomas
elements on simplicial meshes. We will use this element later for our numerical experiments.
For � = k−1, the family of Brezzi–Douglas–Marini elements on either simplicial or tensor-
product meshes is also applicable. Note that both type of elements comewith an interpolation
operator fulfilling Assumptions A3 and A4. More recent developments in the direction of
creating new H(div) elements can be found, for example, in [49]. ��
2.3 FEM and Well-Posedness

Our discrete space-time velocity and pressure spaces are

V T
h = {vh ∈ L2(0, T ; V h) : ∂tvh ∈ L2(0, T ; V h)

}
, QT

h = L2(0, T ; Qh). (19)

The space-semidiscrete variational formulation of (3) reads as follows:
{
? (uh, ph) ∈ V T

h × QT
h with uh(0) = u0h s.t., ∀ (vh, qh) ∈ V h × Qh,

(∂tuh, vh) + νah(uh, vh) + ch(β; uh, vh) + b(vh, ph) − b(uh, qh) = ( f , vh).

(20a)

(20b)

Here, u0h denotes an approximation of u0 belonging to V h and the occurring forms are
defined below. First note that due to (10), discretely divergence-free functions are even
divergence-free pointwise; that is,

V div
h = {vh ∈ V h : ∇ · vh(x) = 0, ∀ x ∈ Ω}. (21)

The solution uh of (20) is by construction a pointwise divergence-free approximation to u.

Remark 2.3 In the context of div-free, H1-conformingFEM,we know that the corresponding
set of discretely divergence-free functions is also exactly divergence-free and thus contained
in V div. Here, V h �⊂ V and therefore one has to be careful: even though discretely div-free
functions are div-free pointwise, we have V div

h �⊂ V div. ��

The below appearance of certain traces of velocity facet values and normal derivatives thereof

dictates that the involved velocities at least belong to H
3
2+ε(Th) for some ε > 0; cf. [38,

Section 2.1.3]. Thus, for ε > 0, define the compound space

V (h) = V h ⊕
[
V ∩ H

3
2+ε(Th)

]
. (22)

123



836 J Sci Comput (2018) 75:830–858

For the discretisation of the diffusion term,we employ the standard symmetric interior penalty
(SIP) form ah : V (h) × V h → R; cf. [19,38]. For σ > 0, this form is given by

ah(w, vh) =
∫

Ω

∇hw :∇hvh dx −
∑

F∈Fh

∮

F

{{∇w
}}
nF · �vh� ds (23a)

−
∑

F∈Fh

∮

F
�w� · {{∇vh

}}
nF ds +

∑

F∈Fh

∮

F

σ

hF
�w� · �vh� ds, (23b)

where [∇w]i j = ∂wi
∂x j

denotes the entries of the Jacobian. Furthermore, hF represents an
appropriate length scale for the facet F . It is well-known that the jump penalty parameter σ >

0 has to be chosen sufficiently large such that coercivity on the discrete level is guaranteed.

Remark 2.4 The solution uh to (20) is automatically normal continuous since uh(t) ∈ V h ⊂
H(div;Ω) for a.e. t ∈ (0, T ). If τ F denotes one tangential vector to F ∈ Fh , we obtain

vh = (vh · nF )nF + (vh · τ F )τ F ⇒ �vh�F = �(vh · τ F )�τ F , ∀ vh ∈ V h . (24)

In fact, the jumps in (23) only act on tangential components of discrete velocities. ��
Remark 2.5 Concerning Dirichlet (no-slip) boundary conditions, note that the normal com-
ponent is prescribed in V h to fulfil uh · n

∣
∣
∂Ω

= 0—the no-penetration condition. Thus, the
boundary facet contribution for F∂

h ⊂ Fh in (23) only acts on tangential components. This
weak imposition of the no-slip condition is therefore consistent with the limiting case of
ν → 0. Even more, for high Reynolds numbers, imposing Dirichlet boundary conditions
by means of a Nitsche penalty method can be considered as an implicit wall model [23]. To
this end, the parameter σ can also be designed using Spalding’s law of the wall [4]. Thus, in
certain situations, it may be advantageous to assign a different value of σ to no-slip facets
F ∈ F∂

h than to interior facets F ∈ F i
h . ��

In conjunction with the viscous term ah , the following expressions are used:

∀ w ∈ V (h) : |||w|||2e = ‖∇hw‖2
L2 +

∑

F∈Fh

σ

hF
‖�w�‖2

L2(F)
(25a)

|||w|||2e,� = |||w|||2e +
∑

K∈Th

hK ‖∇w · nK ‖2
L2(∂K )

(25b)

Here, |||·|||e denotes a discrete energy norm and the index � indicates a stronger norm.
The pressure-velocity coupling b : V (h) × Q → R remains unchanged:

b(w, q) = −
∫

Ω

q(∇ ·w) dx (26)

For the (linearised) inertia term, we choose a convection term ch : V (h) × V h → R with
optional upwinding controlled by the parameter γ � 0:

ch(β;w, vh) =
∫

Ω

(β ·∇h)w · vh dx −
∑

F∈F i
h

∮

F
(β · nF )�w� · {{vh

}}
ds (27a)

+
∑

F∈F i
h

∮

F

γ

2
|β · nF |�w� · �vh� ds (27b)

123



J Sci Comput (2018) 75:830–858 837

Note that due to the strong imposition of the no-penetration conditionβ · n∣∣
∂Ω

= 0 in V h , the
convective form ch does not contain any surface integrals over boundary facets. Therefore,
as long as there is no in- or out-flow across ∂Ω , the weak imposition of tangential boundary
conditions is handled exclusively by ah . Moreover, a modification of ch which ensures skew-
symmetry is redundant since ∇ ·β = 0 has been assumed.

Remark 2.6 Let us comment on the upwind stabilisation in (27). This kind of convection
stabilisation, as opposed to dissipative viscous stabilisation, does not explicitly include
gradient-based terms. However, as can be seen in [19, Section 2.3] for the stationary transport
problem, upwind stabilisation gives additional control over the streamline derivative—much
like classical SUPG stabilisation. Unfortunately, we are not (yet) aware of how to show (if at
all) an analogous result can be obtained for incompressible flow problems either in the full
dG-FEM setting, or in the H(div)-FEM case. ��
In conjunction with the convection term ch , the following expressions are used:

∀ w ∈ V (h) : |||w|||2β = ‖w‖2
L2 + |w|2β,upw, |w|2β,upw =

∑

F∈F i
h

∮

F

γ

2
|β · nF ||�w�|2 ds

(28a)

|||w|||2β,� = |||w|||2β + ‖β‖2∞
∑

K∈Th

h−2
K ‖w‖2

L2(K )
+ ‖β‖∞

∑

K∈Th

‖w‖2
L2(∂K )

(28b)

Here, |||·|||β measures terms due to convection and again, the index � indicates a stronger
norm since non-zero terms are added. Moreover, |·|β,upw denotes the upwind seminorm,
which represents additional control over β-scaled velocity jumps.

Remark 2.7 Concerning the appearing forms in (20), one could alternatively take any other
inf–sup stable dG-FEM formulation (cf., for example [8,38]), and adapt it by neglecting
all terms with vh · n

∣
∣
∂Ω

and �vh� · nF for F ∈ F i
h . In our setting, these terms vanish auto-

matically due to the strong imposition of the no-penetration condition and the continuity of
normal components of functions in H(div;Ω). ��
Remark 2.8 Until nowwe only considered no-slip conditions. However, the definitions of ah
and ch can be extended directly to the case of weakly imposed periodic boundary conditions
(BCs). To this end, instead of perceiving the set of periodic facets as boundary facets, it
is very natural to treat them analogously to interior facets. In order to keep the H(div)-
conformity intact, only the normal continuity across the periodic boundary has to be ensured
in a strong sense. Thus, the subsequent analysis holds true verbatim for problems involving
periodic BCs. We refer to [47] where periodic BCs for scalar diffusion-reaction problem are
considered in the dG-FEM context. ��
In the following, the Galerkin orthogonality property of (20) is stated.

Corollary 2.9 (Galerkin orthogonality) Let uh ∈ V T
h solve (20), and assume that the

solution u ∈ V T of (3) satisfies the minimum regularity u ∈ L2
(
0, T ; H 3

2+ε(Th)
)
for

ε > 0. Then, for all vh ∈ V div
h :

(∂t [u − uh], vh) + νah(u − uh, vh) + ch(β; u − uh, vh) = 0, for a.e. t ∈ (0, T ) (29)
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Proof Themost important ingredient is the consistency of both SIP formulation of the viscous
term and upwind formulation of the convective term. We will not prove this here, but instead
refer to [19,38]. Having the consistency property inmind, subtracting (20) from (3) and using
arbitrary (vh, qh) ∈ V h × Qh as test functions leads to

(∂t [u − uh], vh) + νah(u − uh, vh) + ch(β; u − uh, vh) (30a)

+ b(vh, p − ph) − b(u − uh, qh) = 0. (30b)

Restricting the velocity test functions to discretely divergence-free ones, that is vh ∈ V div
h ,

we can use ∇ · vh = 0 to remove the first mixed term; see (21). The second mixed term
vanishes by construction because both u and uh are in V div

h and Qh ⊂ Q. ��
In order to obtain stability estimates for (20), the following results have to be established.

Lemma 2.10 (Discrete coercivity of ah and ch) Assume that σ > 0 is sufficiently large.
Then, the SIP bilinear form ah is coercive on V h w.r.t. the energy norm |||·|||e. Moreover, the
convective form ch is coercive on V h w.r.t. the upwind seminorm |·|β,upw. That is, there exists
Cσ > 0, independent of h, such that,

∀ vh ∈ V h : ah(vh, vh) � Cσ |||vh |||2e and ch(β; vh, vh) = |vh |2β,upw. (31)

Proof Cf., for example, [38, Lemma 6.6] or [19, Section 6.1.2.1] for the discrete coercivity
of ah . The non-negativity of ch is shown, for example, in [19, Lemma 6.39]. ��
As already said, we want to decouple velocity and pressure and treat them both separately.
For this separation to work it is essential to work in V div

h which, due to (11), is non-trivial.

Lemma 2.11 (Well-posedness and velocity energy estimate) Let f ∈ L1
(
L2
)
and u0h ∈

L2. Then, there exists a solution uh ∈ V T
h to (20) with

1

2
‖uh‖L∞(L2) +

∫ T

0

[
νCσ |||uh |||2e + |uh |2β,upw

]
dτ � ‖u0h‖2L2 + 3

2
‖ f ‖2

L1
(
L2) . (32)

Provided f is even Lipschitz in time, the solution uh is unique.

Proof Testing (20) with (uh(t), 0) ∈ V div
h × Qh , using the discrete coercivity properties in

Lemma 2.10 on the left-hand side and Cauchy–Schwarz on the right-hand side leads to

1

2

d

dt
‖uh(t)‖2L2 + νCσ |||uh(t)|||2e + |uh(t)|2β,upw � ‖ f (t)‖L2 ‖uh(t)‖L2 , (33)

since (∂tuh, uh) = 1
2

d
dt ‖uh‖2L2 . Now, we directly follow [17], where the estimate

‖uh(t)‖L2 � ‖u0h‖L2 + ‖ f ‖L1
(
L2) (34)

plays a key role. Inserting (34) in (33), applying Young’s inequality and integrating over
(0, T ) shows the estimate. Applying the theorem of Carathéodory (cf. [31, Theorem A.50])
ensures existence and, if f is additionally Lipschitz in time, uniqueness. ��
Remark 2.12 Alternative results can be obtained by estimating the right-hand side of (33)
differently. Firstly, one could useYoung’s and Poincare’s inequalitywith the goal of bounding
‖uh‖L2 in an appropriately scaled energy norm |||uh |||e. This inevitably leads to a ν−1 factor.
Secondly, also after Young’s inequality, the Gronwall lemma could be applied. A factor
exp (T ) appears on the right-hand side. ��
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3 Pressure- and Re-Semi-robust Analysis for the Linearised Problem

From now on, C > 0 denotes a generic constant independent of h and ν. The first subsection
deals with optimal-order, pressure- and Re-semi-robust estimates for the discrete, stationary
Stokes projection in the H(div) context. This is an important step, since, for the analysis
of the Oseen problem in the second subsection, the stationary Stokes projection is used for
the error splitting. In this way, the approximation properties of the projection operator in the
Oseen problem can be derived from error estimates for the stationary Stokes problem.

3.1 Stationary Stokes Projection

In this sectionwe basically consider the stationary Stokes problem.With a sufficiently smooth
forcing term g, the well-known continuous weak formulation reads

{
? (us, ps) ∈ V × Q s.t., ∀ (v, q) ∈ V × Q,

νa(us, v) + b(v, ps) − b(us, q) = (g, v).

(35a)

(35b)

In order to obtain optimal L2-estimates for the velocity, we make the following assumption
which is called ‘elliptic regularity’, ‘Cattabriga’s regularity’ or ‘smoothing property’.

Assumption A7 Assume that Ω is either a convex polygon for d = 2 or of class C1,1 for
d ∈ {2, 3}. Then, for all g ∈ L2, the solution (us, ps) ∈ V×Q of (35) additionally fulfils the
regularity property (us, ps) ∈ H2 × H1 and the a priori estimate

√
ν ‖us‖H2 + ‖ps‖H1 �

C ‖g‖L2 ; cf. [9, Theorem IV.5.8].

Extending [21,31] to the H(div)-conforming case, we give the following definition. Note
that the definition is stated directly in V div

h because this suffices for our considerations.

Definition 3.1 (Stationary Stokes projection) Let w ∈ H
3
2+ε(Th) for ε > 0 fulfil ∇ ·w = 0

pointwise. Then, we define the stationary Stokes projectionπ sw ∈ V div
h ofw to be the unique

FE solution to the problem

ah(π sw, vh) = ah(w, vh), ∀ vh ∈ V div
h . (36)

Analogously to divergence-free H1-conforming FEM, the stationary Stokes projection coin-
cides with a vector-valued elliptic (or Ritz) projection on V div

h ; cf. [42]. Very conveniently,
the approximation properties of the projection operator π s can thus be derived from error
estimates for the stationary Stokes problem.

Additionally to coercivity of ah (Lemma 2.10) the following continuity result is required.

Lemma 3.2 (Boundedness of diffusion term ah) There exists a Mdif > 0, independent of
h, such that

∀ (w, vh) ∈ V (h) × V h : ah(w, vh) � Mdif |||w|||e,�|||vh |||e. (37)

Proof Cf., for example, [19, Section 4.2.3] for a scalar-valued analogue.Up to positive factors
independent of h, the claim follows from a componentwise application. ��
Theorem 3.3 (Stokes projection error estimate) Let π sw be the Stokes projection of w and
assume elliptic regularity A7. Then,

‖w − π sw‖L2 + h|||w − π sw|||e,� � Csh inf
wh∈V div

h

|||w − wh |||e,�. (38)
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Proof (i) We begin with a pressure-robust estimate in the |||·|||e,�-norm. Let wh ∈ V div
h be

arbitrary and define w0
h = π sw −wh ∈ V div

h . The Galerkin orthogonality being inherent
in Definition 3.1 yields

ah
(
w0

h, vh
) = ah(π sw − wh, vh) = ah(w − wh, vh), ∀ vh ∈ V div

h . (39)

Now, choose vh = w0
h ∈ V div

h , use discrete coercivity of ah (Lemma 2.10) on the left-
hand side and Lemma 3.2 and Young’s inequality (ε > 0) on the right-hand side to
obtain

Cσ

∣
∣
∣
∣
∣
∣w0

h

∣
∣
∣
∣
∣
∣2
e � Mdif |||w − wh |||e,�

∣
∣
∣
∣
∣
∣w0

h

∣
∣
∣
∣
∣
∣
e � 1

2ε
Mdif |||w − wh |||2e,� + ε

2
Mdif

∣
∣
∣
∣
∣
∣w0

h

∣
∣
∣
∣
∣
∣2
e .

(40)

Choosing ε = Cσ M
−1
dif , multiplication by 2 and reordering leads to

Cσ |||π sw − wh |||2e � M2
dif

Cσ

|||u − wh |||2e,�. (41)

Because wh ∈ V div
h is arbitrary, the triangle inequality and |||·|||e � |||·|||e,� yield

|||w − π sw|||2e � 2
[|||w − wh |||2e + |||π sw − wh |||2e

]
� C inf

wh∈V div
h

|||w − wh |||2e,�. (42)

The final step is to acknowledge that the |||·|||e- and |||·|||e,�-norm are uniformly equivalent
on V h , that is, there exists a C > 0 such that C |||·|||e,� � |||·|||e; cf. [19]. Thus,

|||w − π sw|||2e,� � C inf
wh∈V div

h

|||w − wh |||2e,�. (43)

Note that we did not include the viscosity in the definition (36) of the Stokes projection.
Hence, the constant C in the last estimate is not corrupted by negative powers of ν.

(ii) Secondly, in order to obtain an estimate also for the kinetic energy, the elliptic regularity
condition is essential. For brevity, we omit to give full details at this point. However, a
careful inspection of [19, Theorem 6.25] reveals that in our case, it is possible to obtain
the following pressure-robust estimate:

‖w − π sw‖2
L2 � Ch2|||w − π sw|||2e,� � Ch2 inf

wh∈V div
h

|||w − wh |||2e,� (44)

At this point, it is important that we are dealing with a divergence-free method; cf. [22,
Theorem 6.4.2] for an H1-conforming exposition. Otherwise, the L2-estimate would not
readily be pressure-robust. ��

3.2 Velocity Error Estimates for the Oseen Problem

In the previous subsection, we provided estimates for the viscous Stokes term. Now, we
present an estimate for theOseen convection termwhich allows forRe-semi-robust estimates.

Lemma 3.4 (Boundedness of convection term ch) Let Mcnv = max
{
1,C2

inv, γ
−1
}
and

ε1, ε2 > 0. Then, for all (w, vh) ∈ V (h) × V h,

|ch(β;w, vh)| � Mcnv

(
1

2ε1
+ 1

ε2

)

|||w|||2β,� + ε1

2
‖vh‖2L2 + ε2|vh |2β,upw. (45)
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Proof We begin with the following integration by parts variant:

∑

F∈Fh

∮

F
(β · nF )

[
�w� · {{vh

}}+ �vh� ·
{{
w
}}]

ds (46a)

=
∑

K∈Th

∮

∂K
(β · nK )w · vh ds =

∑

K∈Th

∫

K

[
(β ·∇)w · vh + (β ·∇)vh ·w

]
dx (46b)

The first equality is a result of �w · vh� = �w� · {{vh
}}+ �vh� ·

{{
w
}}
and the second equality

can be shown using elementwise integration by parts with ∇ ·β = 0 and the product rule for
the gradient. Inserting this into the convective form (27) leads to

ch(β;w, vh) = −
∑

K∈Th

∫

K
(β ·∇)vh ·w dx +

∑

F∈F i
h

∮

F
(β · nF )�vh� ·

{{
w
}}
ds (47a)

+
∑

F∈F i
h

∮

F

γ

2
|β · nF |�vh� · �w� ds = T1 + T2 + T3. (47b)

For the first term, using the generalised Hölder inequality, the local inverse inequality,
Cauchy–Schwarz and Young’s inequality with ε1 > 0, we infer

|T1| �
∑

K∈Th

‖β‖L∞(K ) ‖∇vh‖L2(K ) ‖w‖L2(K ) (48a)

�
∑

K∈Th

Cinvh
−1
K ‖β‖L∞(K ) ‖vh‖L2(K ) ‖w‖L2(K ) (48b)

�

⎛

⎝
∑

K∈Th

‖vh‖2L2(K )

⎞

⎠

1/2

Cinv

⎛

⎝
∑

K∈Th

h−2
K ‖β‖2L∞(K )

‖w‖2
L2(K )

⎞

⎠

1/2

(48c)

� ‖vh‖L2 Cinv|||w|||β,� � ε1

2
‖vh‖2L2 + 1

2ε1
C2
inv|||w|||2β,�. (48d)

For the first facet term, we use the definition of the absolute value, Cauchy–Schwarz and
Young’s inequality (ε2 > 0) to obtain

T2 �
∑

F∈F i
h

∮

F

[
(γ

2
|β · nF |

)1/2
�vh� ·

(
2

γ
|β · nF |

)1/2{{
w
}}
]

ds (49a)

� |vh |β,upw

⎛

⎜
⎝
∑

F∈F i
h

∮

F

2

γ
|β · nF |∣∣{{w}}∣∣2 ds

⎞

⎟
⎠

1/2

(49b)

� |vh |β,upw

⎛

⎝
1

γ

∑

K∈Th

‖β‖L∞(K ) ‖w‖2
L2(∂K )

⎞

⎠

1/2

(49c)

� |vh |β,upwγ −1/2|||w|||β,� � ε2

2
|vh |2β,upw + 1

2ε2
γ −1|||w|||2β,�, (49d)
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where the third step uses the bound (a + b)2 � 2
(
a2 + b2

)
for a, b ∈ R which yields

∑

F∈F i
h

∮

F
2
∣
∣
{{
w
}}∣
∣2 ds �

∑

F∈F i
h

[∥
∥w+∥∥2

L2(F)
+ ∥∥w−∥∥2

L2(F)

]
�
∑

K∈Th

‖w‖2
L2(∂K )

. (50)

With Young’s inequality (ε2 > 0), the upwind term can be bounded trivially by

T3 � |vh |β,upw|w|β,upw � |vh |β,upw|||w|||β,� � ε2

2
|vh |2β,upw + 1

2ε2
|||w|||β,�. (51)

Collecting the above estimates concludes the proof. ��
Remark 3.5 Note that in [27], H(div)-FEM for the incompressible Euler equations (ν = 0)
have been considered. There, one can find an estimate for the corresponding difference of
convective terms in the nonlinear case β = u. However, it has to be mentioned that the
analysis in [27] heavily relies on the regularity assumption û ∈ W1,∞([0, T ] × Ω) for the
solution û of the incompressible Euler problem; see [27, Theorem 2.2]. This assumption is
very restrictive in the case of ν = 0 as there exists no inherent smoothing mechanism from
the incompressible Euler operator in the crosswind direction(s). ��

Now, we can use the Stokes projection to introduce an error splitting:

u − uh = [u − π su] − [uh − π su] = η − eh (52)

Theorem 3.6 (Velocity discretisation error estimate) Let u ∈ V T solve (3) and uh ∈ V T
h

solve (20). If additionally u ∈ L2
(
H

3
2+ε(Th)

)
for ε > 0, β ∈ L∞(L∞) and uh(0) = π su0,

for arbitrary α > 0, we obtain:

‖eh‖2L∞(L2) +
∫ T

0

[
νCσ |||eh(τ )|||2e + |eh(τ )|2β,upw

]
dτ (53a)

� Cα−1eαT
∫ T

0

[
‖∂tη(τ )‖2

L2 + |||η(τ )|||2β,�

]
dτ (53b)

Proof Galerkin orthogonality (Corollary 2.9) with vh = eh(t) ∈ V div
h and (52) yields

(∂t eh, eh) + νah(eh, eh) + ch(β; eh, eh) = (∂tη, eh) + νah(η, eh) + ch(β; η, eh). (54)

We use (∂t eh, eh) = 1
2

d
dt ‖eh‖2L2 and discrete coercivity of ah and ch (Lemma 2.10) on

the left-hand side. On the right-hand side, we apply Cauchy–Schwarz plus Young (ε3 > 0)
and the definition for the stationary Stokes projection (Definition 3.1). Then, boundedness
of the convective term (Lemma 3.4) leads to

1

2

d

dt
‖eh‖2L2 + νCσ |||eh |||2e + |eh |2β,upw � 1

2ε3
‖∂tη‖2

L2 + ε3

2
‖eh‖2L2 (55a)

+ Mcnv

(
1

2ε1
+ 1

ε2

)

|||η|||2β,� + ε1

2
‖eh‖2L2 + ε2|eh |2β,upw. (55b)

Choosing ε1 = ε3 = α
2 > 0, ε2 = 1

2 , and multiplication by 2 yields, for a.e. t ∈ (0, T ),

d

dt
‖eh(t)‖2L2 + νCσ |||eh(t)|||2e + |eh(t)|2β,upw (56a)

� 2α−1 ‖∂tη‖2
L2 + α ‖eh‖2L2 + Mcnv

(
2α−1 + 4

)|||η(t)|||2β,�. (56b)

Gronwall’s lemma [21, Lemma 6.9] and uh(0) = π su0 conclude the proof. ��
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Remark 3.7 In Theorem 3.6, one can choose α = T−1 and thereby transform the exponential
factor Cα−1eαT in the end-of-simulation time T into the linear one CT . Note that such a
weaker linear dependence is generally not possible to obtain in the nonlinear Navier–Stokes
case; cf. Sect. 4.1. Alternatively to our approach, it is also possible to use a change of variables
of (u, p) on the continuous level to obtain a transformed Oseen problem with an additional
positive zeroth order reaction term; cf. [24]. ��
Remark 3.8 Instead of using the discrete stationary Stokes projectionπ s in the error splitting
(52), one could also use the discrete Helmholtz projection; cf. [3,35]. As a consequence, in
Theorem 3.6, the term involving the time derivative would vanish. However, the disadvantage
is that the approximation properties of the Helmholtz projection in H(div) would have to be
quantified. ��
Corollary 3.9 (Velocity convergence rate) Under the assumptions of the previous theorem,
assume a smooth solution according to

u ∈ L∞(0, T ; Hr ), ∂tu ∈ L2(0, T ; Hr ), r >
3

2
. (57)

Then, with ru = min {r, k + 1} and a constant C independent of h and ν−1, we obtain the
following convergence rate:

‖u − uh‖2L∞(L2) +
∫ T

0

[
νCσ |||(u − uh)(τ )|||2e + |(u − uh)(τ )|2β,upw

]
dτ (58a)

� CTh2(ru−1) ×
[
h2
(
‖∂tu‖2L2(Hru )

+ ‖u‖2L∞(Hru )

)
(58b)

+ h ‖β‖∞ (γ + 1) ‖u‖2L2(Hru )
+ ‖β‖∞ ‖u‖2L2(Hru )

]
(58c)

Proof The aim is to estimate the terms on the right-hand side of Theorem 3.6. Thus, the
approximation properties of the stationary Stokes projection have to be assessed. If w = η

and w = ∂tη is inserted in Theorem 3.3, respectively, we can directly bound L2-errors.
Indeed, using that ∂t and π s commute, the optimal approximation properties together with
the commuting diagram property (Assumptions A3, A4) yield

‖∂tη(τ )‖2
L2 � Csh

2 inf
vh∈V div

h

|||∂tu − vh |||2e,� � Ch2ru |∂tu|2Hru . (59)

Details are omitted since this is a fairly standard result; cf. [19]. Proceeding, recall the |||·|||β,�-
norm from (28):

|||η|||2β,� = ‖η‖2
L2 +

∑

F∈F i
h

∮

F

γ

2
|β · nF ||�η�|2 ds (60a)

+ ‖β‖2∞
∑

K∈Th

h−2
K ‖η‖2

L2(K )
+ ‖β‖∞

∑

K∈Th

‖η‖2
L2(∂K )

(60b)

The first term can be bound analogously to the time derivative, thus ‖η‖2
L2 � Ch2ru |u|2Hru .

Due to the presence of a negative power of h, the third term is the one which actually reduces
the overall convergence order of the method. We obtain

‖β‖2∞
∑

K∈Th

h−2
K ‖η‖2

L2(K )
� C ‖β‖2∞ h2(ru−1)|u|2Hru . (61)
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For the remaining two terms, we have to use the discrete trace inequality (18). As an example
we present the estimate for the first one explicitly:

∑

F∈F i
h

∮

F

γ

2
|β · nF ||�η�|2 ds �

∑

F∈F i
h

∮

F
γ |β · nF |

[∣
∣η+∣∣2 + ∣∣η−∣∣2

]
ds (62a)

� ‖β‖∞
∑

K∈Th

γ ‖η‖2
L2(∂K )

� ‖β‖∞
∑

K∈Th

γC2
trN∂h

−1
K ‖η‖2

L2(K )
(62b)

� Cγ ‖β‖∞ h2ru−1|u|2Hru (62c)

After applying a similar argument to the last remaining term, we obtain

‖β‖∞
∑

K∈Th

‖η‖2
L2(∂K )

� C ‖β‖∞ h2ru−1|u|2Hru . (63)

Thus,

‖eh‖2L∞(L2) +
∫ T

0

[
νCσ |||eh(τ )|||2e + |eh(τ )|2β,upw

]
dτ (64a)

� Cα−1eαT h2(ru−1) ×
[
h2
(
‖∂tu‖2L2(Hru )

+ ‖u‖2L2(Hru )

)
(64b)

+ h ‖β‖∞ (γ + 1) ‖u‖2L2(Hru )
+ ‖β‖∞ ‖u‖2L2(Hru )

]
. (64c)

To finish the proof, choose α = T−1 (see Remark 3.7) and use the triangle inequality to
extend this estimate to the full error. At this point, the regularity assumption of u being in
L∞ in time is needed. ��
Remark 3.10 Provided u is sufficiently smooth, Corollary 3.9 implies that the error in the
kinetic energy, the error in the energy dissipation rate and scaled jumps of the discrete velocity
uh all converge with order k to zero. Thus, our H(div)-FEM has the same asymptotical
behaviour as h → 0 as the analysis in [17,24] proves for other inf–sup stable FEM. For equal-
order FEM, Burman et al. [13] shows that one can even get half an order more. Also, (58)
reveals that the limiting factor, which reduces the overall convergence to order k, originates
from the convective term. Therefore, with β ≡ 0, an order k+1 convergence of the L2-error
for the time-dependent Stokes problem can be concluded directly. ��

4 High Reynolds Number Numerical Experiments

Our numerical experiments are conducted for the fully nonlinear Navier–Stokes equations
in the high Reynolds number regime. We take advantage of the FEM package COMSOL
Multiphysics 5.1. The time discretisation is performed with a fully coupled adaptive BDF(2)-
scheme. In order to solve nonlinear systems, a modified Newton method with out-of-date
Jacobians is used. An iteration is considered converged if its relative residual is below 10−6.
Linear system are solved with the direct solver PARDISO.

All subsequent examples are two-dimensional problems with vortical structures. We
always employ unstructured triangular Delaunay meshes to solve them. In order to assess the
performance of H(div)-conforming FEM, we compare our results with different FE-based
numerical schemeswhich alsomakeuse of the following spaces (correspondingvector-valued
spaces are written in bold):

Pk = {vh ∈ C
(
Ω
) : vh

∣
∣
K ∈ Pk(K ), ∀ K ∈ Th

}
(65a)
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P
dc
k = {vh ∈ L2(Ω) : vh

∣
∣
K ∈ Pk(K ), ∀ K ∈ Th

}
(65b)

Then, for an H(div)-FEM we use the Raviart–Thomas element [7]

RTRTRTk = {vh ∈ H(div;Ω) : vh
∣
∣
K ∈ PPPk(K ) ⊕ xPk(K ), ∀ K ∈ Th

}
. (66)

The resulting inf–sup stable FE pair is thus given byRTRTRTk/P
dc
k , which is abbreviated as ‘RTk’.

Due to the fact that ∇ ·RTRTRTk ⊆ P
dc
k (cf. [7, Proposition 2.3.3]), Assumption A1 is fulfilled

and we obtain an exactly divergence-free method. For the jump penalisation parameter,
σ = 6 (k+1)(k+d)

d is chosen in all examples. Here, we follow the asymptotic behaviour w.r.t.
the polynomial degree k � 1 suggested by [28]. However, we found that the results are
rather insensitive towards this parameter as long as it is large enough to guarantee discrete
coercivity.

Moreover, as a divergence-free H1-conforming method, we employ the Scott–Vogelius
element [43] with velocity/pressure space PPPk/P

dc
k−1. Inf-sup stability is guaranteed by using

barycentre-refined meshes. This method is denoted ‘SVk’; for more information, we refer to
the authors’ previous work [42].

As a representative of inf–sup stable H1-conforming methods which are not exactly
divergence-free, we take the well-known Taylor–Hood method of order k with veloc-
ity/pressure pair PPPk/Pk−1. The nonlinear term is treated with the EMAC formulation [14].
Therein, as well as in the authors’ work [42], it is shown that the EMAC formulation holds
several theoretical and practical advantages over more common formulations as, for exam-
ple, the convective or skew-symmetric formulation. This method is abbreviated as ‘eTHk’.
Nevertheless, we also tried the convective and skew-symmetric formulations. However, the
EMAC formulation is never inferior to them (mostly, it yields significantly better results) and
therefore, we restrict ourselves to showing results exclusively for the EMAC formulation.

Furthermore, we want to consider an H1-conforming equal-order method (not exactly
divergence-free), and thus choose the FE pair PPPk/Pk . For the convective part, as is probably
most common, a skew-symmetric formulation is applied and we dub the resulting method
‘EOk’. Note that, in order to obtain a stable method with equal-order interpolation, the
pressure always has to be stabilised; cf. [12]. In accordancewith [11],we choose the parameter
γPS = 0.01 and, for all applications of EOk, add the term

γPS
∑

F∈F i
h

∮

F
h2F �∇ ph� · �∇qh� ds. (67)

For all above introduced FE schemes, additionally to the corresponding ‘Galerkin’ for-
mulations (those formulations which guarantee stability), we also consider the possibility
of adding suitable stabilisation terms. For non-divergence-free methods, the divergence of
discrete velocities is stabilised using a grad-div term (GD) with parameter γGD � 0 [31]

γGD
∑

K∈Th

∫

K
(∇ · uh)(∇ · vh) dx. (68)

Whenever we add grad-div stabilisation the parameter γGD = 0.01 is chosen. Choosing γGD
as a constant is of course not necessary. For a more elaborate discussion on the choice of
the grad-div parameter and associated difficulties and specialities we refer to [1,29] where
stationary incompressible flow problems are considered. For divergence-free methods, grad-
div stabilisation is of course superfluous. However, it might be advantageous to explicitly
include some (additional) kind of convection stabilisation in the numerical schemes. Note
that in the H(div)-FEM, the natural upwind stabilisation is already included as a form of
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convection stabilisation. From the plethora of available stabilisations we choose the gradient
jump stabilisation which is usually considered in the context of continuous interior penalty
(CIP) methods with parameter γCIP � 0; cf., for example, [12]:

γCIP
∑

F∈F i
h

∮

F
h2F |uh · nF |2�∇uh� : �∇vh� ds (69)

CIP stabilisation can be added to eTHk, EOk, SVk and RTk since all methods yield globally
discontinuous discrete velocity gradients. Whenever we add it, γCIP = 0.1 is chosen.

Results are often compared in terms of kinetic energyK and enstrophy E . For a 2D velocity
w = (w1, w2)

†, we agree on ω = ∇ × w = ∂x1w2 − ∂x2w1 and use the following:

K(w, t) = 1

2
‖w(t)‖2

L2 = 1

2

∫

Ω

|w(t, x)|2 dx (70a)

E(w, t) = 1

2
‖∇h × w(t)‖2L2 = 1

2

∫

Ω

|∇h × w(t, x)|2 dx (70b)

In the remainder of this section, our approach is as follows.We concentrate on 2Dproblems
exclusively becausewe believe that it is important to first understand how a numerical method
performs in this situation. If it does not work for 2D, there is no real possibility (or hope)
that it will work satisfactorily in 3D. Our first example is the planar lattice flow for which an
exact solution is known. For this problem we compare the above introduced methods and try
to single out something like the ‘best’ H(div) method for this problem. Then, we consider
the Kelvin–Helmholtz instabilities triggered by a mixing layer. Here, we only consider one
H(div)-FEM but show how sensitive the solution is towards mesh refinement. Finally, we
apply this method on one fixed mesh to the simulation of freely decaying 2D turbulence.
We include aspects of energy and enstrophy, but also of the self-organisation into large-scale
structures involving energy spectra.

4.1 Planar Lattice Flow

In this section we consider the evolution of an initial velocity, which solves the stationary
incompressibleEuler equation, in a viscous incompressibleNavier–Stokesflow.This example
has also been investigated in detail in [42] and is called ‘planar lattice flow’ [5]. For x ∈ Ω =
(0, 1)2, both the initial condition u0 and the corresponding known exact velocity/pressure
pair (u, p) for ν � 0 are given as follows:

u0(x) =
[
sin (2πx1) sin (2πx2)
cos (2πx1) cos (2πx2)

]

, u(t, x) = u0(x)e−8π2νt (71a)

p(t, x) = 1

4

[
cos (4πx1) − cos (4πx2)

]
e−16π2νt (71b)

Here, the initial velocity u0 induces a flow structurewhich, due to its saddle point character,
is ‘dynamically unstable so that small perturbations result in a very chaotic motion’ [36]. We
impose periodic boundary conditions on the vertical and horizontal walls of ∂Ω , respectively,
and the integral zero-mean condition is imposed on the pressure. There is no external forcing
in this problem, that is, f = 0, and ν = 4 × 10−6 is fixed. For a more qualitative approach
to this problem, we refer to [42], where one can get a better feeling for the appearance and
behaviour of this particular flow problem.

In Table 1, an overview of the meshes and DOFs for this problem is given. Especially, the
number of DOFs is split based on how many are used for the velocity and pressure discreti-
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Table 1 Overview of meshes and DOFs for all methods which are compared for the planar lattice flow

Method maxK∈Th hK minK∈Th hK #{triangles} #{uDOFs} #{pDOFs} #{DOFs}
RT2 0.0267 0.0104 8414 88,617 50,484 139,101

SV2 0.0292 0.0087 20,574 82,618 61,722 144,340

eTH2 0.0134 0.0048 35,204 141,546 17,785 159,331

EO2 0.0158 0.0058 25,400 102,218 51,109 153,327

RT3 0.0583 0.0247 1680 30,400 16,800 47,200

SV3 0.0667 0.0221 3930 35,588 23,580 59,168

eTH3 0.0319 0.0140 5586 50,720 11,321 62,041

EO3 0.0368 0.0136 4080 37,094 18,547 55,641

Abbreviations of different methods: Non-div-free H1 EMAC Taylor–Hood (eTHk) and equal-order (EOk),
div-free H1 Scott–Vogelius (SVk) and div-free H(div) Raviart–Thomas (RTk)

sation, respectively. Note that for SVk, unstructured barycentre-refined Delaunay meshes
are used while eTHk, EOk and RTk are based on unstructured Delaunay triangulations. The
use of unstructured meshes introduces an additional difficulty because it makes it harder for
any numerical method to preserve the symmetric nature of the flow. The meshes are chosen
in such a way that the total number of DOFs for all methods approximately coincides. It is
interesting to acknowledge the different distribution of DOFs for velocity and pressure for
the different schemes. Especially, the SVk methods spend a lot for the pressure, which can
be considered as a disadvantage in problems where the pressure is not of primary interest.

Let us begin with the comparison of results for second-order FE pairs. In Fig. 1, the
evolution of errors w.r.t. kinetic energy K and enstrophy E can be seen for the particular
‘Galerkin’ formulations and for some suitably stabilised variants thereof. The first apparent
conclusion is that, for each method, the stabilised variant significantly outperforms its basic,
stable counterpart. For the ‘Galerkin’ methods, eTH2 yields worse results than SV2 which,
in turn, is inferior to EO2, which is not as good as RT2. After adding suitable stabilisation,
however, eTH2 and SV2 now yield comparable results. The potential advantage of a div-free
H1-conforming method is thus relativised if the EMAC method is equipped with sufficient
additional stabilisation. Furthermore, we observe that after adding CIP and grad-div stabilisa-
tion to the H1-conforming EO2 method, RT2 and EO2 now yield comparable results. Here,
the H(div)-conforming RT2 method benefits from the possibility to include upwinding. At
this point, we want to mention that equal-order methods EOk turned out to be relatively sen-
sible towards the stabilisation parameters (especially the pressure gradient jump penalisation
parameter γPS), which is not very attractive from the application-oriented perspective. The
main conclusion from Fig. 1 is that we can discard the pure ‘Galerkin’ methods and instead
exclusively concentrate on suitably stabilised schemes.

In Fig. 2, results for third-order FE pairs are shown. In view of Table 1, it should be
noted that even though the 3rd order methods use considerably less DOFs compared to the
2nd order methods, for the inf–sup stable methods, the total errors are still significantly
smaller. This is a strong argument for using higher-order methods. Only for the equal-order
methods, going from second to third-order, while coarsening the mesh, does not yield a
considerable improvement. Returning to Fig. 2, we observe that the overall tendency observed
for the second-order methods can be updated: RT3 yields the best results, followed closely
by EO3, and SV3 and eTH3 are roughly on par with each other. Next, the possibility of
changing the convection stabilisation for RT3 is explored. To begin with, we add the same
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Fig. 1 Evolution of errors w.r.t. kinetic energyK and enstrophy E for 2nd order methods with ν = 4×10−6.
The mesh data and DOFs are displayed in Table 1. γ is the upwind parameter and PS denotes pressure
stabilisation. For the other parameters, γCIP = 0.1 and γGD = 0.01 are chosen. ‘Galerkin’ denotes the stable
basic variant of each method, respectively
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Fig. 2 Evolution of errors w.r.t. kinetic energyK and enstrophy E for 3rd order methods with ν = 4× 10−6.
Themesh data and DOFs are displayed in Table 1. γ is the upwind parameter, PS denotes pressure stabilisation
and γCIP = 0.1, γGD = 0.01 (Color figure online)

CIP gradient jump penalisation term to RT3 which improves all H1-conforming methods.
The solid blue line indicates that this kind of stabilisation corrupts the H(div)-conforming
method significantly. Another possibility is to adjust the upwind parameter γ . However,
the dotted and dashed blue lines show that neither increasing nor decreasing γ away from
the standard value γ = 1.5 seems to be promising. Thus, RT3 with γ = 1.5 yields very
convincing results for the planar lattice flow problem which are better than the ones obtained
by comparable schemes. In addition, the effort of fine-tuning stabilisation parameters can
be minimised with such a method—upwinding represents a natural stabilisation which, very
importantly, is not gradient-based.Moreover, numerical experiments revealed that in practice,
an upwind parameter between 1 and 2 always leads to good results.

Lastly, we want to take a closer look at the quality of the pressure approximation for each
particularmethod.As can be seen inTable 1, the amount ofDOFs spend for the pressure varies
widely. The Scott–Vogelius methods have the most pressure DOFs, followed by the equal-
order and Raviart–Thomas methods. A discretisation based on Taylor–Hood elements is
rather inexpensive in terms of pressure DOFs. However, whilst eTHk and SVk use piecewise
polynomials of order k − 1, the corresponding pressure spaces for RTk and EOk consist
of piecewise kth order polynomials. In Fig. 3, the evolution of the pressure errors for all
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Fig. 3 Evolution of pressure errors for second- and third-order methods with ν = 4 × 10−6

considered methods is shown. We conclude that for 2nd order methods, EO2 and RT2 are
again comparable. However, RT3 (γ = 1.5) yields the best pressure approximation for the
third-order methods. Thus, even though SVk always uses much more DOFs, this additional
cost does not seem to pay off in terms of accuracy.
Intermediate Summary The application of different methods for the planar lattice flow
revealed the following insights. Independent of which method is chosen, a suitable sta-
bilisation always improves the method compared with the particular stable basic (‘Galerkin’)
variant. Gradient-based CIP convection stabilisation corrupts H(div)-conforming methods,
whereas all H1-conforming discretisations benefit from it. Going to higher-order approx-
imations is always worthwhile because, all in all, more accurate results can be achieved
with less DOFs. For the equal-order methods, this improvement is not as pronounced as for
the inherently inf–sup stable ones. Third-order div-free H(div)-FEMs with upwinding yield
the best results. Stabilised equal-order FEM (H1, non-div-free) are generally only slightly
inferior. Considerably inferior are stabilised Scott–Vogelius (H1, div-free) and stabilised
EMAC Taylor–Hood (H1, non-div-free) methods, which, in turn, are roughly of equal value.
Remarkably, all above shown error plots clearly show an exp (Ct) behaviour (see the black
asymptotes) for the Navier–Stokes problem. This is in contrast to the Oseen problem, where
it is possible to prove a linear in t growth of the error; cf. Remark 3.7.

4.2 2D Kelvin–Helmholtz Instability

From the point of view of practical applications, we now turn to a more relevant example.
Two-dimensional Kelvin–Helmholtz instabilities of plane mixing layers are important test
cases in fluid dynamics. Even though this kind of flow does not lead to what is typically
called ‘turbulence’, it is extremely sensitive towards initial conditions and shows an energy
spectrum E(κ) of slope between κ−3 and κ−4 [34].

Based on [2,11,25], we briefly summarise the setting of the problem. On Ω = (0, 1)2,
periodic boundary conditions for x1 ∈ {0, 1} and free-slip boundary conditions at x2 ∈ {0, 1}
are imposed. There is no external forcing, that is, f = 0. Similarly to the planar lattice
flow, the whole problem is determined by an initial condition which evolves in a viscous
incompressible flow.However, the behaviour of the flowwill bemore dynamic. Let δ0 = 1/28
denote the initial vorticity thickness, u∞ = 1 be a reference velocity, cn = 10−3 define a
scaling factor and choose the viscosity according to ν−1 = 28 × 104. Thus, the Reynolds
number associated with this problem is Re = u∞δ0ν

−1 = 104. Introducing the stream

123



850 J Sci Comput (2018) 75:830–858

Table 2 Overview of meshes and DOFs for the 2D Kelvin–Helmholtz instability

Name maxK∈Th hK #{triangles} #{uDOFs} #{pDOFs}

RT3-a 2.425 × 10−2 10,602 191,236 106,020

RT3-b 1.159 × 10−2 47,646 858,476 476,460

RT3-c 7.487 × 10−3 119,602 2,154,172 1,196,020

RT3-d 4.924 × 10−3 268,762 4,839,716 2,687,620

function

ψ(x1, x2) = cnu∞ exp

(

− (x2 − 0.5)2

δ20

)
[
cos (8πx1) + cos (20πx1)

]
, (72)

the initial velocity field for our simulation is given as follows:

u0(x) =
[
u∞ tanh

(
2x2−1

δ0

)

0

]

+
[

∂x2ψ

−∂x1ψ

]

(73)

For the evaluation, the scaled time unit t = δ0/u∞ is introduced. All simulations are
computed up until T = 7.1429 = 200t . Moreover, in the context of this mixing layer
problem, it is an established procedure to consider the following vorticity thickness δ(t):

δ(t) = 2u∞
ωmax(t)

, ωmax(t) = sup
x2∈[0,1]

|〈ω〉(t, x2)| = sup
x2∈[0,1]

∣
∣
∣
∣

∫ 1

0
ω(t, x) dx1

∣
∣
∣
∣ (74)

In practice, however, the spatial supremum in ωmax is always approximated by taking the
maximum absolute value of the integral over 64 equidistantly spaced lines parallel to the
x1-axis. Note that these evaluation lines do not coincide with mesh lines since unstructured
Delaunay triangulations are used. Moreover, in our experience, using more than 64 lines does
not noticeably change the resulting vorticity thickness. In time, δ(t) is evaluated 200 times
for t ∈ {1, . . . , 200} × t which yields a sufficiently resolved evolution.

In Sect. 4.1 we compared various different FEM for a problemwith an analytical solution.
As a conclusion, we singled out that the third-order H(div)-conforming and divergence-
free FEM RT3 with upwind stabilisation (γ = 1.5) gives very convincing results. Thus,
we exclusively use this method for the simulation of the 2D Kelvin–Helmholtz instability.
However, we compare different levels of resolution by employing RT3 on a sequence of
meshes which represent under-resolved to reasonably well-resolved situations; see Table 2.
Note that all methods in [2,11,25] are 2nd order. Moreover, the particular number of velocity
DOFs in those references is always about 100,000 and thus comparable atmost to our coarsest
mesh. Better resolving simulations can be found, for example, in [30] where a second-order
method is used also on a mesh with h ≈ 5×10−3 (note that the problem considered in [30] is
not comparable quantitatively since it considers a larger initial vorticity thickness of 1/14).
However, to the best of our knowledge, with our third-order simulations this work presents
the most resolved results for this 2D Kelvin–Helmholtz instability in the literature.

Prior to a more quantitative analysis, let us first understand the general behaviour of the
flow and compare our results to [2,11,25]. To this end, the evolution of the vorticity ∇ × uh ,
obtained with RT3-d, can be seen in Fig. 4. We draw the following conclusions:

123



J Sci Comput (2018) 75:830–858 851

Fig. 4 Vorticity ∇ × uh(t) for 2D Kelvin–Helmholtz instability at (from left to right and top to bottom)
t ∈ {10, 20, 30, 40, 100, 155, 165, 180, 200} × t . Obtained with div-free H(div)-FEM RT3-d; cf. Table 2

– Four Primary Vortices and Their Pairing In agreement with the other references, 4 pri-
mary vortices develop between 10 and 20 time units t . These vortices merge at about 35t
which is also observed in [2,25]. In [11] this pairing takes place later.

– Pairing of Two Secondary Vortices The two secondary vortices are standing for a certain
amount of time. However, the instance in timewhere the second pairing begins is strongly
dependent on which method and resolution is used. For example, considering t = 100t ,
our two primary vortices in Fig. 4 are still clearly separated and are aligned on a line
parallel to the x1-axis. In contrast, the two vortices in [2,25] are already moving towards
each other near the periodic boundary. In [11], the pairing has already begun but the last
vortex seems to be located in the center of the domain.

– Position of Last Rotating Vortex Independent of when the last pairing occurs, there is no
consensus concerning the location of the last vortex. Our results here, as well as the ones
presented in [11], support the claim that the last vortex should rotate in the centre of the
domain. In [2,25], the last rotation takes place across the periodic boundary.

Moreover, we want to draw attention to the fact that between the main vortices, fine-scale
flow structures can be observed very well. Such structures are not dissipated numerically by
the H(div)-FEM. For a more detailed description of the mechanisms behind vortex merging,
we refer to [37].

Furthermore, the evolution of both kinetic energyK and enstrophy E can be seen in Fig. 5.
Roughly independent of the mesh size, the kinetic energy decays only very slowly in our
simulations (decay in energy is about 0.3%). This is in agreement with [11] but in contrast to
[25] (about 1% energy loss) and [2] (about 5% energy loss). We interpret this observation as
an indicator that H(div)-FEMdo have amuch less dissipative nature (even on coarsemeshes)
compared to other methods. We conjecture that the main reason for this behaviour lies in the
minimum amount of stabilisation (only upwinding) which is needed for H(div)-conforming
FEM. Regarding the evolution of enstrophy we observe that a more accurate method with a

123



852 J Sci Comput (2018) 75:830–858

0 20 40 60 80 100 120 140 160 180 200
0.4804
0.4806
0.4808
0.481

0.4812
0.4814
0.4816
0.4818
0.482

0.4822

time unit t = δ0/u∞

K
(u

h
,t

)

RT3-a
RT3-b
RT3-c
RT3-d

0 20 40 60 80 100 120 140 160 180 200
20
22
24
26
28
30
32
34
36
38

time unit t = δ0/u∞

E (
u

h
,t

)

RT3-a
RT3-b
RT3-c
RT3-d

Fig. 5 Evolution of kinetic energy K (left) and enstrophy E (right); cf. (70)
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Fig. 6 Evolution of scaled vorticity thickness δ(t)/δ0; cf. (74)

higher resolution leads to a later decrease in enstrophy. Actually, the stages of the enstrophy
are directly connected to the pairing of vortices in the simulation. Especially the occurrence
of the last pairing is very clearly observable by the sudden decrease in enstrophy towards the
end of the simulations.

In Fig. 6, the scaled vorticity thickness is shown. Mainly, this plot illustrates in more
detail when the pairing processes occur in time. The general tendency that a well-resolved
simulation tends to preserve multiple vortices as long as possible is again clearly reflected.
Particularly the last pairing process, where two vorticesmerge to become one, is very sensible
with respect to how accurate the simulation is. Despite a temporal shift of the last pairing
compared to [25], however, the total values and the general behaviour of our scaled vorticity
thickness agrees quite well. Whilst our simulations indicate a maximum over time of δ(t)/δ0
of about 10, the results in [2] show a higher maximum value of about 12.

A likely reason for the mentioned time lag of the last pairing is the above discussed
difference w.r.t. diffusivity (or dissipativity) of a numerical method. It is much easier for
a more diffusive numerical method to show behaviour resembling mesh convergence since
the fine scales of the flow, which would normally need a higher resolution to be resolved
properly, are smoothed out by means of numerical diffusion. Therefore, our simulations of
the 2D Kelvin–Helmholtz instability problem can be understood as another example which
emphasises the importance of approximation schemes with as little as possible numerical
smearing.
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4.3 Freely Decaying 2D Turbulence

In this section we combine both the planar lattice flow problem and the 2DKelvin–Helmholtz
instability and extend them to obtain an even more difficult situation. The original idea in
Sect. 4.1 was to place four oppositely rotating vortices into a periodic square domain at t = 0
and study their evolution in absence of external forcing and boundary conditions. In doing
so, the main question was to assess the ability of numerical schemes to preserve the structure
of the flow, given by means of the initial condition—a good numerical method gives four
standing vortices which decay in a stable manner over time. In Sect. 4.2, on the other hand,
an inherently dynamic problem arises due to an initially imposed shear layer and merging of
co-rotating vortices (like-signed vorticity regions) can be observed.

In this new example, however, the initial velocity u0 = (
∂x2ψ,−∂x1ψ

)† shall represent
n2v = 322 = 1024 pairwise oppositely rotating vortices resulting from the stream function

ψ(x) = 10−2
nv∑

k, j=1

(−1)k+ j exp

(

−104
[(

x1 − k

nv + 1

)2

+
(

x2 − j

nv + 1

)2
])

. (75)

Here, u0 evolves unimpeded; thus f = 0 and therefore we have a freely decaying problem.
The domain isΩ = (0, 1)2 and periodic boundary conditions are imposed on the vertical and
horizontal walls of ∂Ω , respectively. Thus, the integral zero-mean condition is required for
the pressure. Fully intentionally, we do not distribute the vortices equidistantly—the distance
of vortices across the periodic boundaries is greater than in the ‘interior’ of the domain.

A flow with such an initial condition, especially for high Reynolds numbers, is very
unstable and tends to evolve into a rather chaotic motion. This phenomenon is known as
two-dimensional turbulence; we refer to [6,44] for more information. 2D turbulence follows
the Kraichnan–Batchelor–Leith (KBL) theory [18] and typical properties of freely decaying
flows are the energy spectrum E(κ) ∼ κ−3 and, in stark contrast to 3D turbulence, the self-
organisation of small-scale features of the flow into constantly growing large-scale coherent
vortices; cf. [26]. The last aspect is connected to the presence of an additional inverse cascade
in 2D turbulence. Studying such problems is not novel; see, for example, [10] where freely
decaying 2D turbulence has been studied in the vorticity-stream function formulation. Also,
we would like to mention [40] where a comparison of different numerical schemes (no
FEM, though) for the DNS of freely decaying 2D turbulence in ω/ψ-formulation has been
presented. Also, in the context of atmospheric flows, the transfer of energy and enstrophy
between scales is very important and a comparable flow configuration for the study of freely
decaying 2D turbulence can be found in [45] (also in ω/ψ-formulation).

However, to the best of the authors’ knowledge, in the literature, there are no comparable
studies available for the original velocity-pressure formulation. Thus, we want to fill this
gap by showing that our H(div)-FEM is able to produce trustworthy simulations for freely
decaying 2D turbulence. To this end, let us consider simulations with the three different
viscosities ν ∈ {5 × 10−5, 10−5, 4 × 10−6

}
. Concerning the mesh resolution, the Kelvin–

Helmholtz instability in Sect. 4.2 already revealed that it is extremely expensive to obtain
mesh-converged solutions. Therefore, for this example, we restrict ourselves to exclusively
one unstructured Delaunay mesh consisting of 119,602 triangles. With our favourite RT3
method (γ = 1.5), this leads to 2,154,172 velocity and 1,196,020 pressure DOFs.

First of all, Fig. 7 shows the evolution of the kinetic energy and enstrophy for the three
different viscosities. We observe the expected behaviour that with smaller ν,K decays much
more slowly.More interesting is the behaviour of the enstrophy. Especially for the two smaller
viscosities, one can observe a small initial range up to t ≈ 0.75 where the enstrophy decays
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Fig. 7 Evolution of kinetic energy K (left) and enstrophy E (right) for ν ∈
{
5 × 10−5, 10−5, 4 × 10−6

}

Fig. 8 Vorticity ∇ × uh(t) for freely decaying 2D turbulence. From left to right: t ∈ {2, 4, 8}. From top to

bottom: ν ∈
{
5 × 10−5, 10−5, 4 × 10−6

}
. Results are obtained by div-free H(div)-FEM RT3 with γ = 1.5

upwinding. Black triangles denote the maximum and minimum value attained over Ω (Color figure online)

only slowly. In accordance with [18, Chapter 10] this describes a transition zone in which
2D turbulence develops out of the ordered initial condition. After that, a stronger decay in E
can be observed which corresponds to fully developed 2D turbulence.

In Fig. 8, snapshots of the vorticity can be seen for the different viscosities (columns) at
certain time instances. At first, it becomes clear how viscous forces attack the initial vorticity
field, consisting of 1024 clearly separated vortices, and therefore, depending on which ν is
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Fig. 9 Energy spectrum E(κ) and wave number κ for ν ∈ ×
{
5 × 10−5, 10−5, 4 × 10−6

}
at particular time

instances. Spectra are computed with the MATLAB-based post-processing toolbox AnaFlame [50]

considered, a more or less chaotic motion can be observed. Here, a smaller viscosity leads
to a more small-scale structure of the flow. As time proceeds, one can directly observe that
while the multitude of vortices moves trough the domain, like-signed vortices merge and
oppositely rotating vortices repel each other. One can see clearly that over time, more and
more large-scale structures develop and the flow tends to self-organise itself into large-scale
structures; cf. [26].

A more quantitative comparison of the distribution of small- and large-scale structures
can be obtained by considering the energy spectra; see Fig. 9. A mutual characteristic of all
simulations is that kinetic energy, which is initially concentrated in highwave numbers (small
eddies), with time, is transferred to smaller wave numbers (large eddies). For small wave
numbers, and in agreement with the literature [33], one can observe a behaviour E(κ) ∼ κ3

which is connected to spectral backscatter. After attaining a maximum energy, the spectra
show a decaying behaviour from which, with decreasing viscosity (increasing Reynolds
number), the classical E(κ) ∼ κ−3 slope can be determined. However, the slope is sometimes
slightly steeper and thus shows more a κ−4 behaviour at some later time instances. As
mentioned in Sect. 4.2, a similar phenomenon of a slope between κ−3 and κ−4 has also been
observed for the Kelvin–Helmholtz instability.

Returning to Fig. 8, the last observation we want to make concerns the decaying nature
of the flow. A smaller viscosity implies less molecular diffusion and, therefore, the colour
bars show that the maximum and minimum values of the vorticity are considerably higher
than for larger viscosities. In this context, Fig. 7 shows the evolution of the kinetic energy
and enstrophy over time for all three different simulations.
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5 Summary and Conclusions

In this work, we have considered inf–sup stable, exactly divergence-free H(div)-conforming
FEM for time-dependent incompressible flow problems. To the authors’ knowledge, this
represents the first contribution which examines H(div)-FEM for time-dependent viscous
incompressible flows. Our considerations can be split into a theoretical analysis part and an
application-oriented numerical examples part.

For the continuous-in-timeOseen problem, a numerical error analysis has been carried out
with a special focus on obtaining pressure- and Re-semi-robustness. Because divergence-free
methods allow for a separationof the velocity andpressure approximation,weonly considered
the velocity approximation in this work and, provided the exact solution is smooth enough,
our derived estimates are of order O

(
hk
)
. A very important part of the analysis has been

the usage of the discrete, stationary Stokes projection for the error splitting. For the Oseen
problem it has been possible to show that the growth of the error w.r.t. time is only linear.

In the future, keeping pressure- and Re-semi-robustness in mind, we clearly intend to
analyse the nonlinear Navier–Stokes problem, as well. In doing so, the discrete Helmholtz
projection might be applied to fine-tune the error estimates. Furthermore, taking a closer
look at the pressure approximation and discovering if divergence-free H(div)-FEM also
hold advantages for the pressure could be interesting.

For the applications part, on the other hand, we have considered the nonlinear Navier–
Stokes equations with a particular emphasis on two-dimensional high Reynolds number
problems, which possess profound vortical structures. The first example, the planar lattice
flow, has revealed that higher-order H(div)-FEM do have advantages over more common
finite element schemes. Especially the incorporation of a non-dissipative velocity jump
upwind stabilisation for dominant convection seems to be very attractive and efficient. Con-
trary to the theory for the Oseen problem, this example has also shown that the error of
the Navier–Stokes problem increases exponentially in time. Furthermore, H(div)-FEM have
been applied to the simulation of 2D Kelvin–Helmholtz instabilities, triggered by a plane
mixing layer. We have shown that the problem is extremely sensitive in the sense that even
though a very highly resolved method (3rd order FEM with nearly 5 million velocity DOFs)
has been applied, such a thing as mesh convergence for the enstrophy is still not achieved
and thus would be extremely expensive. However, the evolution of the kinetic energy is
invariant with respect to mesh refinement. Lastly, the H(div)-FEM have been applied to the
simulation of freely decaying 2D turbulence. Our results are in agreement with theoretical
considerations—both the behaviour of kinetic energy and enstrophy and the velocity spectra
are consistent with previous research in this direction.

In the future, we intend to extend our numerical examples towards problems with no-slip
conditions (in this work, we only considered periodic boundary conditions for the applica-
tions) and, therefore, problems involving boundary layers, separation and reattachment. In
this context, also an extension to three-dimensional problems is planned where one has to
deal with the aspect of efficient solvers. With regard to 3D problems, the question of suitable
turbulence modelling also arises.
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