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Abstract In this work, a model for shallow water flows that accounts for the effects of
horizontal density fluctuations is presented and derived. While the density is advected by
the flow, a two-way feedback between the density gradients and the time evolution of the
fluid is ensured through the pressure and source terms in the momentum equations. The
model can be derived by vertically averaging the Euler equations while still allowing for
density fluctuations in horizontal directions. The approach differs from multi-layer shallow
water flows where two or more layers are considered, each of them having their own depth,
velocity and constant density. A Roe-type upwind scheme is developed and the Roe matrices
are computed systematically by going from the conservative to the quasi-linear form at a
discrete level. Properties of the model are analyzed. The system is hyperbolic with two
shock-wave families and a contact discontinuity associated to interfaces of regions with
density jumps. This new field is degenerate with pressure and velocity as the corresponding
Riemann invariants. We show that in some parameter regimes numerically recognizing such
invariants across contact discontinuities is important to correctly compute the flow near
those interfaces. We present a numerical algorithm that correctly captures all waves with a
hybrid strategy. The method integrates the Riemann invariants near contact discontinuities
and switches back to the conserved variables away from it to properly resolve shock waves.
This strategy can be applied to any numerical scheme. Numerical solutions for a variety of
tests in one and two dimensions are shown to illustrate the advantages of the strategy and the
merits of the scheme.

Research supported in part by Grants UNAM-DGAPA-PAPIIT IA103015 and IA104517.

B Gerardo Hernandez-Duenas
hernandez@im.unam.mx

1 Institute of Mathematics, National University of Mexico, Blvd. Juriquilla 3001, Querétaro, Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0553-1&domain=pdf


754 J Sci Comput (2017) 73:753–782

1 Introduction

Modelling in geophysical fluid dynamics have gained relevance in recent years due to the
importance in predicting and understanding the time evolution of a rich variety of atmospheric
and oceanic flows. Such flows occur at different spatial and temporal scales. Models aiming
at simulating geophysical flows are derived according to the characteristic of the flows and
to the scales associated to them. Many geophysical and atmospheric flows are characterized
by their large horizontal length scale compared to their depth. That is, they are shallow, and
in those cases the shallow water equations are suitable to model their time evolution.

The shallow water equations form a non-linear hyperbolic balance law with geometric
source terms involving the topography, and can be derived by vertically averaging the Euler
equations together with appropriate assumptions. The correct modelling of shallow water
flows rely on the use of numerical methods satisfying desirable properties. For instance,
steady-state flows (those independent of time) arise when a delicate balance between flux
gradients and source terms occurs. A careful consideration of that balance in the numerical
method is necessary for the correct and accurate computation of flows that are near steady
states. On the other hand, positivity-preserving is another important property that enhances
stability to any numerical scheme when treating near wet-dry states. A scheme enjoying
such property guarantees that if the water depth is initially non-negative, the numerical
approximation in subsequent steps preserves the non-negativity of that quantity. Professor
Chi-Wang Shu and his group have extensively studied those properties and contributed in that
direction. In [38], a WENO scheme with the exact conservation property is developed. The
scheme is high-order accurate and a suit of one- and two- dimensional examples were used
to test the numerical method. A high-order finite volume WENO scheme that is exactly well
balanced for steady states with vanishing (at rest) and non-vanishing velocity was proposed in
[28].Thiswasdonebyusing equilibriumvariables to includemovingflowequilibria and avoid
spurious oscillations. More advantages of such extended property were presented in [41]. A
well-balanced and positivity-preserving discontinuous Galerkin method was presented in
[42]. A WENO scheme with the same two properties can be found in [39]. In [40], a survey
of numerical methods for shallow water flows exposes various approaches proposed over the
years, including unstructured meshes. In the present work for shallow water equations with
horizontal density gradients, we extend the well-balanced property to more general steady
states that arise in still water with a balance between water depth and density compensating
for a constant pressure. Additionally, we use Riemann invariants and a hybrid algorithm that
avoids spurious oscillations near interfaces of water with density jumps.

Other numerical frameworks can be found in [1,6,7,14,18,22,23,25,27,30,33,34] and
references therein. A clear illustration of the interplay between flux gradients and the topog-
raphy to generate a variety of steaty states appears in flows in channels with variable
geometry. Upwind schemes recognizing steady states at rest have been derived [15,16,37].
The Q-scheme introduced in [12] is used in [9] to solve the two layer shallow water sys-
tem. Well-balanced and positivity preserving central and central-upwind schemes have been
derived in [6,23].

The shallow water equations considered in the above references consist of conservation
of mass and balance of momentum, and have shown to be a good approximation for a variety
of geophysical flows. Furthermore, the density is assumed constant. In stratified flows the
density fluctuations are weak. Despite such small variations, the effect in the dynamics is
important in the study of stratified fluids and marine density flows, among others. In that
direction, a model for two-layer shallow water flows in channels was analyzed in [9] with
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applications to simulations of the flow through the Strait of Gibraltar. On the other hand, a
model for two-layer shallow water flows was considered in [4]. The model look upon two
layers of immiscible fluids where exchange of momentum is allowed. The authors observed
that such system does not provide an explicit formula for the eigenstructure, which is needed
for numerical schemes based on approximate Riemann solvers. A relaxation approach was
proposed to better access to the eigenstructure of the system. A multi-layer shallow water
flow model can be found in [5], and robust well balanced schemes have been derived in [8].

In the present work, we propose a model for shallow water flows where horizontal den-
sity fluctuations are taken into account. The model is obtained by vertically averaging the
Euler equations. All variables, including the density are vertically averaged and can have
horizontal variations. In a two-layer or multi-layer shallow water flow, one can assume that
the density is piece-wise constant and changing across each layer. The variables evolved
in the present model can be interpreted as the total contribution of all layers by vertically
averaging each conserved variable from the bottom to the top surface. Under such procedure,
we lose information about the interface between each layer and can only observe the overall
contribution. However, we note that the eigenstructure in the new setting has explicit simple
formulas that reduce back to the standard equations when the density does not fluctuate. The
system is hyperbolic with an eigenstructure that includes the usual shock/rarefaction waves
of the shallow water equations plus a contact discontinuity associated to density jumps. The
contact discontinuity is a degenerate field across which the pressure and velocity are pre-
served, representing the corresponding Riemann invariants. Steady states in this model arise
when a delicate balance between flux gradients and source terms occurs. For constant den-
sity, smooth steady states are characterized by constant discharge and energy. A new class of
steady states at rest appears in the present setting. For a flat topography, such steady states at
rest are characterized by a constant pressure.

In this work we also propose a Roe-type upwind scheme for the model, and a technique is
used to systematically find Roe matrices and ensure conservation of the scheme at a discrete
level. Our numerical scheme preserves both types of steady states at rest. The usual steady
states at rest are preserved by finding an appropriate local linearizations of the source terms
that recognize their equilibrium with the flux differences. Recognition of the other type of
steady states at rest is a straightforward consequence of conservation.Asmentioned above, the
two Riemann invariants associated to the contact discontinuity are the pressure and velocity.
Pressure spurious oscillations can arise near those waves if no additional mechanisms are
implemented in the scheme to recognize such invariants. A detailed analysis of pressure
oscillations in compressible multifluids is done in [3]. A primitive formulation to remove
such oscillations is implemented in [19], and hybrid approaches to multimaterial/multiphase
flows can be found in [20,21]. In the present setting,we considerwaterwith different densities
as two different phases and apply a hybrid strategy consisting of integrating the Riemann
invariants near the contact discontinuity (primitive equations), and reverting back to the
conserved variables away from it. This process enables the scheme to recognize the Riemann
invariants and correctly captures the flow near all the waves and jump discontinuities. We
note that this hybrid algorithm can be applied to any numerical scheme.

A related model for shallow water flows with horizontal potential temperature gradients
was presented in [11] for the study of the formation of ocean currents. It is based on [31], and
it is known as the Ripa system. The high-resolution non-oscillatory central-upwind scheme
presented in [11] is well balanced and satisfies the positivity-preserving property. As in the
model with density fluctuations, jumps between warm and cold water are represented by
contact discontinuities, with pressure and velocity as the corresponding Riemann invariants.
The numerical scheme in [11] avoids spurious pressure oscillations near those interfaces

123



756 J Sci Comput (2017) 73:753–782

using the interface tracking method in [10] and treating warm and cold water as two different
fluids. Different contributions and approaches have appeared recently for the Ripa system.
A relaxation technique for the exact capture of steady states is implemented in [13], where
entropy inequalities of the system are provided. The scheme is also positivity preserving and
entropy satisfying. A well-balanced central finite volume scheme was derived in [36]. A suit
of numerical example carefully chosen are also included to test different aspects of the scheme
such as the effect of removing well-balance in the algorithm. In [35], Riemann solvers are
analyzed to derive a HLLC scheme that enjoys the well-balance, positivity preserving and
entropy dissipative properties. A well-balanced WENO scheme can also be found in [17].

The paper is structured as follows. In Sect. 2 we provide a description of the system (5), its
properties, and the challenges that these properties pose for the numericalmethods considered
here.We leave the derivation of themodel to Appendix B. In Sect. 3 we describe the proposed
hybrid numerical scheme and prove that it is well balanced, i.e., it preserves steady states at
rest, steady states appearing due to a balance between water depth and density to keep the
pressure constant, and correctly computes the flow near water interfaces with density jumps.
We provide all the details of the 1-D scheme and briefly describe the 2-D extension, leaving
the details to Appendix A. In Sect. 4, one shows 1-D numerical results to illustrate all the
properties the scheme. Section 5 adds 2-D numerical tests including perturbations to steady
states, radial dam breaks and formation of coherent structures as a result of the interaction
between fluids with different densities. We end this section with the conclusions.

2 The Model and Its Properties

The model for shallow water flows in one and two dimension has been extensively used in
the past to test a variety of numerical models. Here we account for the effects of horizontal
density gradients in the time evolution of the fluid. In conservation form, the model reads

⎛
⎜⎜⎝

ρh
ρhu
ρhv

h

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎝

ρhu
ρhu2 + g

2ρh2

ρhuv

hu

⎞
⎟⎟⎠

x

+

⎛
⎜⎜⎝

ρhv

ρhuv

ρhv2 + g
2ρh2

hv

⎞
⎟⎟⎠

y

=

⎛
⎜⎜⎝

0
−gρhBx

−gρhBy

0

⎞
⎟⎟⎠ , (1)

where h(x, y, t) denotes the depth of the layer at a location (x, y) and time t , u(x, y, t)
and v(x, y, t) the velocities in each direction x and y respectively, ρ(x, y, t) is the vertically
averaged density, B(x, y) the bottom topography and g the acceleration of gravity. Themodel
can be derived by vertically averaging the Euler equations and allowing for horizontal density
fluctuations. We leave the details to Appendix B. For ease of notation, we will denote the
pressure by p = g

2ρh2, which is actually the vertically integrated pressure, as observed in
Appendix B. The density is horizontally advected by the fluid. This can be seen by combining
the first and last equations.

The model in [11] with applications to ocean currents is derived by vertically averaging
a multi-layer ocean model. Their model incorporates the horizontal temperature gradients,
which results in the variation of fluid density in each layer. Despite the fact that our extra
variable is the density ρ and the extra variable in [11] is a rescaled potential temperature θ ,
one can go mathematically from their model to system (1) by replacing h by ρh and θ by
1/ρ, except in the source term where θ is replaced by ρ.

System (1) consists of conservation of mass; balance of momentum with source terms
given by the topography and a hydrostatic pressure; and advection of the vertically averaged
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density. In quasilinear form, the system reads
⎛
⎜⎜⎝
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ρhu
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t
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⎟⎟⎠ ,

(2)
where the coefficientmatrices and their corresponding eigenvalues and eigenvectors are given
by

A =

⎛
⎜⎜⎝

0 1 0 0
c2
2 − u2 2u 0 ρc2

2−uv v u 0
−u/ρ 1/ρ 0 u

⎞
⎟⎟⎠ ,�A =

⎛
⎜⎜⎝
u − c 0 0 0
0 u 0 0
0 0 u 0
0 0 0 u + c

⎞
⎟⎟⎠ ,RA =
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1 1 0 1
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v 0 1 v

1/ρ −1/ρ 0 1/ρ

⎞
⎟⎟⎠ ,

(3)
and

B =

⎛
⎜⎜⎝

0 0 1 0
−uv v u 0

c2
2 − v2 0 2v ρc2

2−v/ρ 0 1/ρ v

⎞
⎟⎟⎠ ,�B =

⎛
⎜⎜⎝
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0 v 0 0
0 0 v 0
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⎞
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⎛
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1/ρ −1/ρ 0 1/ρ

⎞
⎟⎟⎠ ,

(4)
where c = √

gh is the speed of sound.
Each coefficient matrix has a double eigenvalue. However, each coefficient matrix has a

complete set of eigenvectors provided that c > 0. Formally, the system is hyperbolic and for
each unit vector (α, β), the matrix

αA + βB =

⎛
⎜⎜⎜⎜⎝

0 α β 0

α
(
c2
2 − u2

)
− βuv 2αu + βv βu α

ρc2

2

β
(
c2
2 − v2

)
− αuv αv αu + 2βv β

ρc2

2

−(αu + βv)/ρ α/ρ β/ρ αu + βv

⎞
⎟⎟⎟⎟⎠

has eigenstructure

�αA+βB =

⎛
⎜⎜⎝

αu + βv − c 0 0 0
0 αu + βv 0 0
0 0 αu + βv 0
0 0 0 αu + βv + c

⎞
⎟⎟⎠ ,

RαA+βB =

⎛
⎜⎜⎝

1 1 0 1
u − αc u β u + αc
v − βc v −α v + βc
1/ρ −1/ρ 0 1/ρ

⎞
⎟⎟⎠ ,

which forms a complete set of eigenvectors provided that c > 0. That is, strict hyperbolicity
is lost for h = 0, when eigenvectors coincide, representing a so-called “dry state”.

We note that the model reduces to the standard form when ρ is uniform in x and y. In
that case, we recover the familiar shallow water equations if we remove one of the redundant
equation for h, and combining the first and last columns in the coefficient matrices
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hu
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⎠ .
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The term (c2 − u2)(ρh)x in Eq. (3) that usually appears in the x- momentum equation has
now split into (c2/2−u2)(ρh)x +gρh/2hx , and analogously for the y- momentum equation
in the 2-D case.

2.1 The 1-D System

A simpler 1-D version of the above system is obtained when we assume that the flow moves
only in, say, the x direction. In that case the velocity in the y direction v = 0 vanishes, and
all the quantities are independent of y. The model for shallow water flows in one dimension
has been extensively used in the past to test a variety of numerical models. The derivation of
the numerical scheme, as well as important properties of the model and numerical method
are easier to analyze in one dimension. For instance, steady-sate flows are easy to visualize
in those cases. The model is given by the following set of equations:

∂t (ρh) + ∂x (ρhu) = 0, (5a)

∂t (ρhu) + ∂x

(
ρhu2 + g

2
ρh2

)
= −gρhBx , (5b)

∂t h + ∂x (hu) = 0. (5c)

One can connectwith the two-layermodel in [4] as follows. Each layer has a corresponding
depth (hk, k = 1, 2), velocity (uk, k = 1, 2) and constant density (ρk, k = 1, 2). Any quantity
can be vertically integrated as (·) = (h1(·)1 + h2(·)2)/(h1 + h2). In particular, one can think
of our density as ρ̄ = (h1ρ1 + h2ρ2)/(h1 + h2), which satisfies the equation

∂t ρ̄ = 1

h1 + h2
[ρ̄∂x ((h1 + h2)ū) − ∂x ((h1 + h2)ρu)] ≈ −ū∂x ρ̄,

when ρu ≈ ρ̄ū. This supports the idea that the density is simply advected by the flow.
Conservation of mass and balance of momentum can be approximated similarly by adding
the corresponding equations in each layer.

The resulting system (5) is hyperbolic. The spectral information extends that of the regular
shallow water equations. Namely, the Jacobian matrix has three eigenvalues, two of which
reduce to the standard eigenvalues when ρ is constant. The extra eigenvalue is a degenerate
field and is associated to the horizontal density fluctuations.

The quasilinear form of the reduced system becomes

∂t

⎛
⎝

ρh
ρhu
h

⎞
⎠ +

⎛
⎝

0 1 0
c2
2 − u2 2u ρ c2

2−u/ρ 1/ρ u

⎞
⎠ ∂x

⎛
⎝

ρh
ρhu
h

⎞
⎠ =

⎛
⎝

0
−gρhBx

0

⎞
⎠ , (6)

with eigenvectors and eigenvalues

Rc =
⎛
⎝

1 1 1
u − c u u + c
1/ρ −1/ρ 1/ρ

⎞
⎠ � =

⎛
⎝
u − c 0 0
0 u 0
0 0 u + c

⎞
⎠ . (7)

Strict hyperbolicity is lost for h = 0, when eigenvectors coincide, representing a so-called
“dry state”.
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2.2 Steady States

Steady-state flows arise when a delicate balance between flux gradients and source terms
occurs. That is,

(ρhu)x = 0, (hu)x = 0, (ρhu2 + gρh2/2)x = −gρhBx . (8)

Here Q = ρhu, known as the flow rate or discharge, is constant. We immediately conclude
that either the state is at rest u = 0, or the density ρ is constant. Smooth steady-state solutions
in the absence of density gradients are characterized by two invariants, the flow rate Q, and
E , the energy per unit of cross sectional area

ρ = Constant, Q ≡ ρhu = Constant, E ≡ 1

2
ρu2 + gρ(h + B) = Constant,

(9)
among which it is easy to recognize the steady state at rest

ρ = Constant, u = 0, h + B = Constant. (10)

After some manipulations of the equations that are valid for smooth flows, we get

Qt + uQx + hEx + −h
(
u2
2 + gB + c2

2

)
ρx = 0,

Et + gQx + uEx + uc2
2 ρx = 0,

ρt + uρx = 0.

(11)

As mentioned above, the Eqs. (11) are valid only when the flow is smooth. Near jump
discontinuities, the conserved variables (ρh, ρhu, h)T must be integrated to well resolve the
flow. In the case of constant density, the equilibrium variables Q and E have been used in
[28] to preserve steady states with non-vanishing velocity.

Other smooth steady states at rest, due to a balancing between the topography and pressure,
are characterized by

u = 0, ∂x

(
gρh2

2

)
= −gρhBx . (12)

Since three variables are involved and just two conditions are imposed, the class has one
degree of freedom. For any positive function h(x) and topography B(x), the solution for ρ is

gρ(x)h(x)2

2
= po exp

(
−2

∫ x

xo

Bx (x)

h(x)
dx

)
. (13)

For a flat topography, it simplifies to

B = Constant, u = 0,
gρh2

2
= po = Constant. (14)

We note that the steady states at rest described in (14) are not stable to perturbations in
the following sense. For given boundary conditions and any steady state at rest of the form
(14) gρ(x)h(x)2/2 = po, there are infinitely many states arbitrarily close to the initial state.
For instance, any perturbation in the water depth h(x)+ ε(x) with ε supported in the interior
of the domain, a corresponding ρε = 2po/(h(x) + ε(x))2/g defines a new steady state. In
Sect. 4.3, a numerical test is done where the water depth is initially perturbed. Once the
perturbation leaves the domain, the flow returns to a steady state. However, the ending state
is not necessarily the same as the initial one.
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2.3 Entropy Functions

For a given conservation law, finding entropy functions can help choosing the correct weak
solution [24,29]. The regular shallow water equations [1] and the Ripa system [13] are both
endowed with entropy functions. The following proposition shows the details for model (5).

Proposition 1 System (5) is endowed with an entropy function

E = hE − p, (15)

and entropy inequality
Et + (u(E + p))x ≤ 0. (16)

Proof We consider the quasilinear form of system (5) plus a friction term in the momentum
equation

(ρh)t + (ρhu)x = 0,

(ρhu)t +
(
c2
2 − u2

)
(ρh)x + 2u(ρhu)x + g

2ρh(h)x = −ghρBx − εu,

ht − u
ρ
(ρh)x + 1

ρ
(ρhu)x + u(h)x = 0,

(17)

where ε is the corresponding friction coefficient.
The kinetic part of the equation satisfies ( 12ρhu

2)t = u(ρhu)t − 1
2u

2(ρh)t , implying
(
1

2
ρhu2

)

t
+ 3

2
u2(ρhu)x − u3(ρh)x + uc2

(
1

2
(ρh)x + ρ

2
(h)x + ρBx

)
= −εu2 (18)

We note that E = hE − p = ρhu2/2 + gBhρ + p. The pressure p = g
2ρhh satisfies

pt = −g

2
h(ρhu)x − g

2
ρh(hu)x . (19)

Re-writing hu = ρhuh/(ρh), we get

pt = −gh(ρhu)x − g

2
ρhu(h)x + g

2
hu(ρh)x . (20)

Combining Eqs. (18) and (20), we get

Et =−(ghQ)x−(gQB)x+u3(ρh)x−3

2
u2Qx−εu2=−(ghQ)x−(gQB)x−1

2

(
ρhu3

)
x−εu2,

(21)
concluding the proof. ��
We note that the entropy function reduces to E = ρh 1

2u
2 + g

2ρ−1(ρh)2 + c2ρB. It is in
fact a convex function of the variables ρh, u, ρ.

2.4 The Riemann Invariants Across Waves

Further information about the type of waves can be obtained for the simplified 1-D model.
This is crucial for the type of numerical algorithm to be considered in this work. We now
proceed to compute theRiemann invariants across eachwave. The first family has eigenvector
rc1 = (1, u − c, 1/ρ)T . Changes across this wave satisfy

δ(ρh)

1
= δ(ρhu)

u − c
= ρδ(h), (22)
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which implies

δρ = 0, δu = − c

ρh
δ(ρh) = −√

gh−1/2δh = −√
g2δh1/2, (23)

and it gives us the two Riemann invariants for the first family: ρ, u + 2c. Analogously, the
Riemann invariants for the third family are ρ and u − 2c.

The second family is associated with the interfaces between regions of water with density
jumps. The eigenvector for this family is rc2 = (1, u,−1/ρ)T . Changes across this wave
satisfy

δ(ρh)

1
= δ(ρhu)

u
= −ρδ(h). (24)

Since δ(ρhu) = uδ(ρh), then δu = 0, providing the first Riemann invariant. On the other
hand,

δ(ρh) = −ρδ(h), (25)

or 2δ log(h) = −δ log(ρ). The second Riemann invariant is the vertically integrated pressure
p = g

2ρh2. This indicates that the second family is a contact discontinuity and a degenerate
field. That information together with the eigenvector and eigenvalues are summarized in
Table 1. We have 2 shock or rarefaction waves and a contact discontinuity. In Table 1, we
also show the information for a primitive formulation to be explained in the next section.

2.5 A Hybrid Strategy to Avoid Spurious Pressure Oscillations

Shallowwater flows have a rich variety of steady states when the flux gradients are in balance
with the corresponding source terms. From all of them, most numerical methods attempt to
recognize those at rest, where the velocity vanishes and the total height is constant. Recog-
nizing more general steady-states may involve non-trivial rootfinding to go from conserved
to equilibrium variables [28]. The model here offers a larger family of steady states when
the topography is flat, the velocity vanishes, and a balance between the density and the
water depth occurs, eventuating in a constant pressure. The state-of-the-art upwind scheme
will trivially recognize those states because the flux gradient vanishes and the scheme is
conservative.

In the case where the pressure and velocity are constant but not necessarily vanishing,
the corresponding data is associated with the contact discontinuity. The pressure equilibrium
may be disturbed by the numerical scheme in such situations. The density changes are weak
in stratified flows and such errors may not be too strong. However, strong spurious pressure
oscillations may arise in other potential applications with strong density interfaces. Further-
more, the same techniques here can be implemented in the model in [11] where changes in
potential temperature can be more pronounced. Spurious oscillations have also been reported
in multimaterial flows [3,10,19,20]. The density here plays the role of the fluid composition,
where regions of water separated by density interfaces are considered to be the two species.
To rectify those numerical artifacts in the pressure and velocity, the authors in [11] followed
their interface tracking strategy in [10]. In the present paper, we use a hybrid algorithm that
detects the lack of changes in pressure and velocity across the contact discontinuity.

The hybrid strategy consists of the following idea. The use of the conserved variables
Wc = (ρh, ρhu, h)T is necessary for the numerical scheme to correctly capture the flow near
shock waves. A disadvantage of this procedure occurs near the contact discontinuity, where
the numerical scheme is in general not able to maintain the pressure equilibrium. However,
such contact discontinuity is a degenerate field with parallel characteristics, allowing us
to use non-conservative formulations. A particularly helpful choice is the use of primitive
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Table 1 Spectral information and Riemann invariants for each wave family for the conservative and primitive
formulations

Wave Eigenvalue Eigenvector Riemann inv.

Cons. form First family u − c rc1 = (1, u − c, 1/ρ)T u + 2c, ρ

Variables Second family u rc2 = (1, u, −1/ρ)T u, p

Wc = (ρh, ρhu, h)T Third family u + c rc3 = (1, u + c, 1/ρ)T u − 2c, ρ

Primitive form First family u − c rnc1 = (c, −ρhc2, 0)T u + 2c, ρ

Variables Second family u rnc3 = (0, 0, 1)T u, p

Wnc = (u, p, ρ)T Third family u + c rnc1 = (c, ρhc2, 0)T u − 2c, ρ

variables Wnc = (u, p, ρ)T . Any consistent discretization of the primitive equations will
trivially recognize the Riemann invariants for that wave, maintaining constant velocity and
pressure at a discrete level. We also require that the hybrid strategy recognizes when ρ is
constant, reducing back to the standard shallow water system. This can be done by using the
two Riemann invariants plus the density as the primitive variables. The primitive equations
are ⎛

⎝
u
p
ρ

⎞
⎠

t

+
⎛
⎝

u (ρh)−1 0
ρhc2 u 0
0 0 u

⎞
⎠

⎛
⎝
u
p
ρ

⎞
⎠

x

=
⎛
⎝

−gBx

0
0

⎞
⎠ . (26)

The switch from the conservative to primitive variables has to be done near density inter-
faces. We determine those interfaces when the difference between values of ρ at neighboring
cells exceed a threshold. The hybrid strategy is then

Update cell i using

⎧⎨
⎩
Wc if maxi−1≤i ′≤i+1(|ρi ′+1 − ρi ′ |) < ρo,

Wnc otherwise.
(27)

Unless otherwise noted, we choose the threshold to be 10% of the maximum variation in the
density at the initial time

ρo = maxi ρi − mini ρi
10

. (28)

The strategy described above can be applied to any numerical scheme. In the present
work we are using the upwind scheme, for which we need to know the eigenvalues and
eigenvectors. For the non-conservative system (26), the eigenvectors are

Rnc =
⎛
⎝

c 0 c
−ρhc2 0 ρhc2

0 1 0

⎞
⎠ . (29)

We now summarize in Table 1 all the spectral information derived above for the conser-
vative and primitive formulations.

3 Numerical Scheme

Hyperbolic conservation laws involve several theoretical and numerical difficulties. Themost
known of them being the formation of shock waves in finite time [24]. Numerically, the
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schemes need to be conservative and accurate near shock waves. On the other hand, a partic-
ular aspect of shallow water flows is the existence of steady-state solutions when a balance
between the flux gradients and the corresponding source terms occurs. Numerical schemes
that respect steady states at rest are known as well-balanced schemes. The well-balance
property is important as it enables the scheme to be accurate near steady states.

Different advantages can be obtained in different numerical schemes. Central schemes are
advantageous in that the positivity-preserving property can be incorporated with a special
polynomial reconstruction of the data and a modified CFL restriction [22,23]. Roe-type
upwind schemes on the other hand are usually less dissipative near shockwaves. In this section
we present a Roe-type numerical scheme for shallow water flows with horizontal density
gradients. The numerical method is well balanced and preserves non-standard steady-state
flows where the topography is flat and the pressure is constant by a special balance between
the density and the water depth. The well balance property is achieved by systematically
using discrete forms of the product rule in the process of going from the conserved to the
quasi-linear form. Similar techniques have been used in [2].

3.1 Roe-Type Upwind Schemes

Let us consider a general hyperbolic balance law in two-dimensions

Wt + (FA(W))x + (FB(W))y = S(W), (30)

where W is the vector of conserved variables; FA(W),FB(W) are the flux functions in the
x and y directions, respectively; and S is the source term. The flux functions need to satisfy
the conditions for hyperbolicity. Namely, for each unit vector (α, β) the projection αA+βB
of the Jacobians A = ∂FA/∂W, B = ∂FB/∂W has real eigenvalues and a complete set of
eigenvectors. The source terms are known as non-conservative products when they involve
derivatives of the solution. The Rankine–Hugoniot conditions changewhen non-conservative
products are present, resulting in more theoretical challenges. In other circumstances, the
source terms physically derived depend on derivatives of other external parameters involved
in the problem, like the topography, as in the present work. The source terms can usually be
split into two terms involving contributions in the x or y direction only, say S = SA + SB .

In quasi-linear form, the system reads

Wt + A(W)Wx + B(W)Wy = SA(W) + SB(W), (31)

where A(W), B(W) are the two coefficient matrices in the x and y directions, respec-
tively, such that (FA(W ))x = A(W)Wx , (FB(W))y = B(W)Wy as described above. In
the upwind scheme shown below and following [32], we require Roe matrices A(W
,Wr )

and B(Ws,Wn) satisfying the following conditions:

(a) A(W
,Wr ), B(Ws,Wn) have real eigenvalues and a complete set of eigenvectors,
(b) �xFA = A(W
,Wr )�xW , �yFB = B(Ws,Wn)�yW , and
(c) A(W
,Wr ) → A(W) as W
,Wr → W, B(Ws,Wn) → B(W) asWs,Wn → W.

Here�x (·) = (·)
−(·)r is the data difference between right and left cells,�y(·) = (·)n−(·)s
is the data difference between north and south cells.

We partition the 2-D domain into the grid cells I(i, j) := [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
],

where �x,�y are the spatial scales, xi± 1
2

= xi ± �x
2 , y j± 1

2
= y j ± �y

2 , and (xi , y j ) is the

center of the grid cell. For ease of notation, we denote the Roe matrices in each cell (i, j) by
Ai± 1

2 , j , Bi, j± 1
2
. The 2-D scheme has the general form

Wn+1
i, j = Wn

i, j − �t

�x

{
A+
i− 1

2 , j

(
Wn

i, j − Wn
i−1, j

)
− �x S+

A,i− 1
2 , j
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+ A−
i+ 1

2 , j

(
Wn

i+1, j − Wn
i, j

)
− �x S−

A,i+ 1
2 , j

}

− �t

�y

{
B+
i, j− 1

2

(
Wn

i, j − Wn
i, j−1

)
− �y S+

B,i, j− 1
2

+ B−
i, j+ 1

2

(
Wn

i, j+1 − Wn
i, j

)
− �y S−

B,i, j+ 1
2

}
.

(32)

Here,

A+�xW−�x S+
A =

∑

λA
k >0

(αA
k λA

k − β A
k )rAk , A−�xW−�x S−

A =
∑

λA
k ≤0

(αA
k λA

k − β A
k )rAk ,

B+�yW − �y S+
B =

∑

λB
k >0

(αB
k λB

k − βB
k )rBk , B−�yW − �y S−

B =
∑

λB
k ≤0

(αB
k λB

k − βB
k )rBk .

(33)
where λA

k , λB
k and rAk , rBk are the eigenvalues and eigenvectors of some local linearization

of each coefficient matrix, to be specified, and αA
k , αB

k and β A
k , βB

k are the wave strengths
associated with the flux gradient and the source

�xW =
∑
k

αA
k r

A
k , �x SA =

∑
k

β A
k r

A
k , �yW =

∑
k

αB
k r

B
k , �y SB =

∑
k

βB
k r

B
k .

(34)

Numerical Scheme in One Dimension
For a one-dimensional hyperbolic balance law

Wt + (F(W))x = S, Wt + A(W)Wx = S(W), (35)

the upwind scheme [32] becomes

Wn+1
i = Wn

i −
�t

�x

{
A+
i− 1

2

(
Wn

i − Wn
i−1

) − �x S+
i− 1

2
+ A−

i+ 1
2

(
Wn

i+1 − Wn
i

) − �x S−
i+ 1

2

}
.

(36)
Here,

A+�W−�x S+ =
∑
λk>0

(αkλk −βk)rk , A−�W−�x S− =
∑
λk≤0

(αkλk −βk)rk (37)

where λk and rk are the eigenvalues and eigenvectors of some local linearization of the
flux jacobian, to be specified, and αk and βk are the wave strengths associated with the flux
gradient and the source

�W =
∑
k

αkrk, �x S =
∑
k

βkrk . (38)

A superbee limiter has been used as described in [24] tomake the numericalmethod second
order accurate. The primitive formulation is applied in a number of cells near the contact
discontinuity, and the scheme is second order accurate. The same happens to the conservative
formulation away from the contact discontinuity. Formally, the order of accuracy could be
affected only at the cells where the switch between formulations occurs. An entropy fix as in
[24] have also been included. Such extensions do not not affect any of the properties described
for the numerical scheme such as conservation or well balance. In the primitive formulation,
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the second order extension of the numerical scheme does not affect the preservation of the
Riemann invariants u, p across a contact discontinuity. In such cases, the amplitudes in (37)
vanish and the same happens when the second order correction is included.

3.2 Local Linearizations for the 1-D Model

Roe Matrices
In the setting above, the vector of conserved variables is W = (ρh, ρhu, h)T . For sim-

plicity, we show the derivation of the Roe matrix in the one-dimensional case, leaving the
two-dimensional version to Appendix A. We systematically derive Roe matrices using the
following idea. The coefficient matrix A appears when we decompose the momentum and
density flux gradients quasi-linearly in derivatives of the conserved variables

∂x
(
ρhu2 + g

2ρh2
) = ( g

2 h − u2
)
∂x (ρh) + 2u∂x (ρhu) + g

2ρh∂x (h),

∂x (hu) = −u/ρ∂x (ρh) + 1/ρ∂x (ρhu) + u∂x (h).

One would like to repeat such decomposition by replacing derivatives by finite differences
and the quantities in front of each derivative with a corresponding average/linearization. The
manipulation of the flux differences to go from the conservative to the quasi-linear form at a
discrete level is then done with the aid of the discrete expression

�(ab) = aα�b+bα�a, where aα = αa
 + (1−α)ar , bα = (1−α)b
 +αbr , 0 ≤ α ≤ 1.
(39)

Particularly, we will focus on the values α = 1
2 and α =

√
(ρh)
√

(ρh)
+√
(ρh)r

, resulting in the
following two special averages

(·) = (·)
 + (·)r
2

, and (̂·) =
√

(ρh)
(·)
 + √
(ρh)r (·)r√

(ρh)
 + √
(ρh)r

. (40)

Applying the relation (39) to each component of the flux, we get

�
(
ρhu2 + g

2
ρh2

)
=

(g
2
h − û2

)
�(ρh) + 2û�(ρhu) + g

2
(ρh)�(h), (41)

where ρh = (ρh)
+(ρh)r
2 and û =

√
(ρh)
u
+√

(ρh)r ur√
(ρh)
+√

(ρh)r
= uα for α =

√
(ρh)
√

(ρh)
+√
(ρh)r

. We note

that in the case where ρ is constant we recover the familiar expression �(hu2 + gh/2) =
(gh̄ − û2)�h + 2û�(hu).

Similarly, the last entry of the flux difference decomposes as

�(hu) = hα�u + uα�h. (42)

Defining ̂1/ρ = (h)α
(ρh)α

=
√

(ρh)
(1/ρ)
+√
(ρh)r (1/ρ)r√

(ρh)
+√
(ρh)r

, and using (ρh)α�u = �(ρhu) −
û�(ρh), we get

�(hu) = −û̂1/ρ�(ρh) +̂1/ρ�(ρhu) + û�h. (43)

The Roe matrix reads

A(W
,Wr ) =
⎛
⎝

0 1 0
g
2 h − û2 2û g

2ρh

−û̂1/ρ ̂1/ρ û

⎞
⎠ . (44)
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The linearization for the corresponding eigensystem becomes

R̂ =
⎛
⎜⎝

1 1 1
û − c̃ û û + c̃
̂1/ρ − h

ρh
̂1/ρ

⎞
⎟⎠ , �̂ =

⎛
⎝
û − c̃ 0 0
0 û 0
0 0 û + c̃

⎞
⎠ , (45)

where

c̃ =
√
g

2

[
h + ρĥ1/ρ

]
(46)

is the linearized speed of propagation.
The primitive Eqs. (26) are in non-conservative form, and they are used near a degenerate

field. For simplicity, we use the same averages as above.
Well-Balance Property

One still needs to choose a linearization for the source terms, and that will be done with
considerations of well balance. The linearization in the source term will be chosen so that
it balances with the flux differences in a steady state at rest. Such equilibrium occurs when
h + B = Constant, u = 0, ρ = Constant and appear due to a simple balance between the
source term and the flux gradient. An appropriate discretization of the source termwill ensure
the exact balancing at the discrete level. In a lake at rest, �h = −�B, which implies

�
(g
2
ρh2

)
= gρh�h = −ρgh̄�B, (47)

when ρ is constant. The source term −gρhBx in the conservative formulation must reduce
to the above expression when ρ is constant. A convenient linearization for such source term
that reaches the goals and also gives simplified expressions for the amplitudes is −ρ̄ c̃2�B.
Similarly, the source term in the non-conservative formulation is easily linearized as −g�B.

The proposed numerical scheme is (36)–(38), with the local linearization λ1 = û−c̃, λ2 =
û, λ3 = û + c̃,

Rc =
⎛
⎜⎝

1 1 1
û − c̃ û û + c̃
̂1/ρ − h

ρh
̂1/ρ

⎞
⎟⎠ ,Rnc =

⎛
⎝

c̃ 0 c̃
−ρhc̃2 0 ρhc̃2

0 1 0

⎞
⎠ , (48)

and

αc
1 =

(
û + g

2
h
c̃

)
�(ρh) − �(ρhu) + g

2
ρh
c̃ �h

2c̃
, αnc

1 = ρhc̃�u−�p
2ρhc̃2

, βc
1 = ρ̄c̃�B

2 , βnc
1 = − g�B

2c̃ ,

αc
2 = − (c̃ − g

2
h
c̃ )�(ρh) − g

2
ρh
c̃ �h

c̃
, αnc

2 = �ρ, βc
2 = 0, βnc

2 = 0,

αc
3 = − (̂u − g

2
h
c̃ )�(ρh) − �(ρhu) − g

2
ρh
c̃ �h

2c̃
, αnc

3 = ρhc̃�u+�p
2ρhc̃2

, βc
3 = − ρ̄c̃�B

2 , βnc
3 = − g�B

2c̃ .

(49)
We note that in the case where ρ is constant we recover the standard expressions for 1-D
shallow water system. Namely, the amplitude for the second wave vanishes and the first and
third expression in the numerator of the first and third amplitude combine into one. The
spectral information for the 2-D system is displayed in Appendix A.
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3.3 Summary of the One-Dimensional Numerical Scheme

The upwind scheme is summarized as follows. The solution is updated as

Wn+1
i = Wn

i − �t

�x

{
A+
i− 1

2

(
Wn

i −Wn
i−1

)−�x S+
i− 1

2
+ A−

i+ 1
2

(
Wn

i+1 − Wn
i

) − �x S−
i+ 1

2

}
.

Here,

A+�W − �x S+ =
∑
λk>0

(αkλk − βk)rk , A−�W − �x S− =
∑
λk≤0

(αkλk − βk)rk

If the jump in density near cell i does not exceed a threshold, i.e., ifmaxi−1≤i ′≤i+1(|ρi ′+1−
ρi ′ |) < ρo, then

W =
⎛
⎝

ρh
ρhu
h

⎞
⎠ , r1 =

⎛
⎝

1
û − c̃
̂1/ρ

⎞
⎠ , r2 =

⎛
⎜⎝

1
û

− h
ρh

⎞
⎟⎠ , r3 =

⎛
⎝

1
û + c̃
̂1/ρ

⎞
⎠ ,

λ1 = û − c̃, α1 =
(
û + g

2
h
c̃

)
�(ρh) − �(ρhu) + g

2
ρh
c̃ �h

2c̃
, β1 = ρ̄c̃�B

2 ,

λ2 = û, α2 = − (c̃ − g
2
h
c̃ )�(ρh) − g

2
ρh
c̃ �h

c̃
, β2 = 0,

λ3 = û + c̃, α3 = − (̂u − g
2
h
c̃ )�(ρh) − �(ρhu) − g

2
ρh
c̃ �h

2c̃
, β3 = − ρ̄c̃�B

2 ,

If the jump in the density exceed the chosen threshold ( maxi−1≤i ′≤i+1(|ρi ′+1−ρi ′ |) ≥ ρo
), then

W =
⎛
⎝
u
p
ρ

⎞
⎠ , r1 =

⎛
⎝

c̃
−ρhc̃2

0

⎞
⎠ r1 =

⎛
⎝
0
0
1

⎞
⎠ r1 =

⎛
⎝

c̃
ρhc̃2

0

⎞
⎠

λ1 = û − c̃, α1 = ρhc̃�u−�p
2ρhc̃2

, β1 = − g�B
2c̃ ,

λ2 = û, α2 = �ρ, β2 = 0,

λ3 = û + c̃, α3 = ρhc̃�u+�p
2ρhc̃2

, β3 = − g�B
2c̃ .

Here the threshold and averages are given by Eqs. (28), (40), (46). In addition, the second
order extension and entropy fix is conducted as in [24].

4 One-Dimensional Numerical Results

A set of numerical tests shown in this segment of the manuscript is aimed at illustrating the
merits of the scheme. In the results that followwe demonstrate that the scheme is very precise
near shock waves, contact discontinuities, that it is conservative, and that it respects steady
states at rest and non-standard steady states associated with the contact discontinuity due to
the horizontal density gradients.
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Fig. 1 Exact (blue solid line) and numerical (dotted red line) solutions for the Riemann problem with initial
conditions given in (50). Top: conservative formulation. Bottom: primitive formulation. In each sequence: we
show total height (left), velocity (middle left), density (middle right) and pressure (right). The resolution here
is �x = 20/200 (Color figure online)

4.1 Case: Interface Data

Spurious oscillations in the pressure and velocity caused by the inability of numerical
schemes to preserve their equilibrium near interfaces with density jumps has been discussed
in previous sections. A hybrid strategy had been proposed to better resolve the flow in those
areas. The first numerical test looks upon this phenomenon and considers interface data in a
Riemann problem. That is, the initial conditions are

(h, u, ρ)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(h
, u
, ρ
) if −10 < x ≤ 0

(hr , ur , ρr ) if 0 < x ≤ 10,

in the domain [−10, 10] with flat topography B = 0, and left and right states connected
through a contact discontinuity where u and p remain constant across it. In particular, we
define

h
 = 13.41, u
 = 5, ρ
 = 0.1,
hr = 3, ur = 5, ρr = 2,

(50)

which represents a moving interface. If the interface was stationary (u
 = ur = 0), then the
standard numerical scheme would preserve the data by conservation. In a moving interface,
the conservative formulation is not capable of maintaining the equilibrium. The primitive
formulation is a more suitable set of equations to consider. Any consistent numerical scheme
recognizes such interface data and respects the Riemann invariants. In this particular test,
there are no shock waves where the conservative variables would be necessary. We use the
Riemann invariants in the entire domain.

The numerical results are shown in Fig. 1 at t = 1, using 200 grid points and free
boundary conditions. Here g = 1. The conservative formulation was used to compute the
results in the top side. That is, the numerical method summarized in Sect. 3.3 is used with
W = (ρh, ρhu, h)T only, and no switch to the primitive variables is done. The exact (blue
solid line) and numerical (red dotted line) results are shown for the total height (left), velocity
(middle left), density (middle right) and vertically integrated pressure (right). As expected,
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the pressure and velocity do not remain constant, and spurious oscillations appear for the
conservative formulation. The alternative primitive formulation is shown in the bottompanels.
No shock waves are present and the primitive formulation can be used in the entire domain.
That is, the numerical method summarized in Sect. 3.3 is used withW = (u, p, ρ)T only, and
no switch to the conservative variables is done. We observe a constant velocity and pressure
when we use the (h, u, p) variables. We observe that the density variation in the ocean is
much smaller than the density difference used here. The chosen parameter regime where
the density jump is strong is away from the regime observed in the ocean. The numerical
error in this interfaces is much smaller when the jump in the density is weak. The choice
for the current test is aimed at illustrating the situation in strong density jumps and the way
to correct it. Other potential applications may involve stronger density jumps than those in
stratified flows. Furthermore, one can apply the hybrid strategy here to the model in [11]
with horizontal temperature gradients where the interfaces can be much stronger. The only
purpose of the exercise here is to show that the strategy works.

A more quantitative comparison between the conservative and primitive formulations can
be done by computing the relative error. That is, for any quantity q and a reference quantity
qref that can be the exact solution if available, the relative error is

err = (q − qref)/qref. (51)

In the present test, the normalized L2 norm of the relative errors for h, u, ρ, p are
6.9 × 10−2, 7.6 × 10−3, 5.4 × 10−1, 2.5 × 10−2 for the conservative formulation and
7.6 × 10−2, 4.9 × 10−17, 1.1, 2.1 × 10−16 for the primitive formulation respectively. We
note that the hybrid scheme improves the results, specially in the velocity and pressure vari-
ables. In particular, the velocity and pressure are computed exactly with the hybrid technique,
to machine precision. The profile across the jump is typical in any numerical method and no
significant improvement is added with the primitive formulation. The purpose of the primi-
tive formulation is aimed at avoiding large spurious oscillations in the velocity and pressure
that can contaminate the rest of the solution in more general initial conditions.

4.2 Case: Riemann Problem with Left Rarefaction, Contact Discontinuity
and Right Shock Waves

A more challenging Riemann problem where spurious oscillations appear is one where
shock and rarefactions waves are included. The primitive variables are not appropriate any-
more near shock waves. As a result, a switch between primitive and conservative variables
is required, as summarized in Sect. 3.3. Near interface data the primitive variables are used,
and the conservative quantities everywhere else. We use the following initial conditions for
illustration:

h
 = 33.0416, u
 = 5.9484, ρ
 = 0.1,
hr = 4, ur = 6.5, ρr = 4,

(52)

with correspondingRiemann solution consistingof a left rarefaction fan, followedby a contact
discontinuity and a right shock wave. Here g = 10. Figure 2 shows the exact solution (solid
blue line) and the numerical approximation (dotted red line) for comparison. The conservative
formulation is shown in the top panel and the hybrid alternative in the bottom, in the same
sequence as in Fig. 1. Free boundary conditions are used here. From the exact solution
we notice a left rarefaction wave and right shock wave. In the conservative formulation
(top panels), we identify significant pressure and velocity oscillations originated near the
interface and contaminating the rest of the solution. The problem with the pressure and
velocity oscillations near the interface intensifies when the pressure is strong, as it occurs

123



770 J Sci Comput (2017) 73:753–782

C
on

se
rv
at
iv
e

0

10

20

30

h+B

6
6.5
7

7.5

u

0

1

2

3

4
ρ

300

400

500

p

x

H
yb

rid

0

10

20

30

x

6
6.5
7

7.5

x

0

2

4

x

-10 0 10 -10 0 10 -10 0 10 -10 0 10

-10 0 10 -10 0 10 -10 0 10 -10 0 10
300

400

500

Fig. 2 Exact (blue solid line) and numerical (dotted red line) solutions for the Riemann problem with initial
conditions given in (52). Top: conservative formulation. Bottom: primitive formulation. In each sequence: we
show total height (left), velocity (middle left), density (middle right) and pressure (right). The asterisks in the
density plot indicates what cells are classified as being close the interface. The resolution here is�x = 20/200
(Color figure online)

in the case study considered here. Such oscillations do not go away when the resolution is
improved. We also point out that the total height and density do not seem to be affected by
the oscillations in the other fields. The numerical results obtained by the hybrid formulation
are shown in the bottom panel. The improvement is evident, specially in the pressure and
velocity.

Since a switch between the conservative and the primitive variables is needed when shock
waves form, one has to trace the interface. One way to do so is by monitoring the density
differences between cells. When the differences exceed a threshold we identify that cell as
being near an interface and switch to the primitive variables in the evolution of that cell.
In the present work, we say that cell i is near an interface if condition (27) is met with
ρo = 1

10 |ρr −ρ
|, which is consistent with (28). Here ρ
, ρr are given in Eq. (52). Such cells
are plotted with “*” signs in the bottom–middle–right panel in Fig. 2. The interface is very
well captured with the above algorithm and the switch is unnoticeable. The normalized L2

norm of the relative errors for h, u, ρ and p are 8.7 × 10−2, 2.3 × 10−2, 5.2 × 10−1, 2.9 ×
10−2 for the conservative formulation and 7.6 × 10−2, 9.7 × 10−3, 1.3, 1.8 × 10−2 for the
hybrid formulation, respectively. The main improvement of the hybrid formulation is near
the contact discontinuity. The improvement in the velocity and pressure is significant when
the hybrid formulation is used. The conservative formulation does not correctly computes
the pressure and velocity near the contact discontinuity and contaminates the solution in
other parts of the domain. The total height and density are already well approximated by
the conservative formulation. The hybrid formulation also provides good results overall and
it actually improves the approximation of total height near the rarefaction wave in the first
family.

4.3 Case: Perturbation of a Steady State

Typical case studies for 1-D shallowwater systems include perturbations to steady states at
rest or more general ones. General steady states in the regular shallowwater equations appear
when a delicate balance between flux gradients and the corresponding source terms occurs.
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Fig. 3 Initial perturbation (blue solid line) and numerical evolution (dotted red line) for the initial conditions
(53) with ε = 0.1. Each row shows different times t = 0.6, 3, 6, 30. In each row, we show total height (left),
velocity (middle left), density (middle right) and pressure (right). The resolution here is �x = 20/400 (Color
figure online)

When horizontal density gradients are incorporated, a new class of steady states emerge even
in a flat topography and zero velocity, when the water depth and density are related to each
other to compensate for a constant pressure. Consider the domain [−10, 10], the topography
B(x) = (0.2 − 0.05(x + 5)2)χ[−7,−3](x), where χ[a,b] is the characteristic function in the
interval [a, b] , and g = 10. The initial conditions we choose for such scenario is

(h, u, ρ)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(hout − B(x) + εχ[−9,−8](x), 0 , 1) if − 10 < x ≤ 0

(hout − (x/50)2(x − 9)2, 0 , (2/g)pout/h(x)2) if 0 < x ≤ 9,

hout, 0 , (2/g)pout/h(x)2) if 9 < x ≤ 10,

(53)

where hout = 0.6, ρout = 0.9 and pout = (g/2)ρouth2out are the water depth, density and
pressure at the boundaries, and ε is a perturbation’s amplitude. The density in this case does
not varymore than 6%, which is closer to values we encounter in stratified flows.We note that
when there is no perturbation ε = 0, we get a steady-state composed of two distinguished
areas. The left side of the boundary −10 ≤ x ≤ 0 consists of a steady state at rest with
a constant density (h + B = 0.6, u = 0, ρ = 0.9). The right-hand side of the domain
(0 ≤ x ≤ 10) consists of a flat bottom topography with varying water depth and density in
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balance so as to keep the pressure constant (B = 0, u = 0, p = (g/2)ρh2 = 1.62). Small
perturbations to steady states is a challenging test for schemes that are not in balance.

Figure 3 shows the evolution of a small perturbation to the steady state (ε = 0.1) using
the initial conditions (53). We impose Dirichlet boundary conditions hout = 0.6, upout =
0, ρout = 0.9. As the perturbation evolves, it passes through the two areas where the
total height is constant on the left, and where the pressure is constant on the right.
At t = 30, the perturbation leaves the computational domain and recover a steady
state.

We point out that although the solution is converging to a steady state, it is not necessarily
the same state we started with. This is a qualitative difference in the behaviour compared
to the standard shallow water equations, where a given topography, energy, discharge, and
boundary conditions completely determines the steady state. On the contrary, here there are
infinitely many steady states arbitrarily close to the initial one satisfying the same boundary
conditions. For any depth h, one can compute a corresponding ρ to give a constant pressure.
To exemplify this situation, a larger perturbation (ε = 0.5) for (53) is considered. The
initial condition and converging steady state are compared in Fig. 4 at t = 30. As one can
observe, there is a significant difference between the initial condition and the steady-state
solution at the final time. This occurs despite the fact that the pressure is constant in the right-
hand-side and the total height is constant in the left-hand-side, confirming that is is a steady
state.

5 Two-Dimensional Numerical Results

We now consider the 2-D dynamics with the numerical scheme in Sect. 3.1, with the details
provided inAppendixA for the current system. The first two test cases are taken fromexample
5 and 6 in [11].
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Fig. 5 Contours of total height
(w = h + B), density and
pressure in the left, middle and
right panels respectively at time
t = 0.3 for the initial conditions
in (55), and topography in (54).
The resolution here is
�x = 2/100, �y = 2/100
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5.1 Hybrid Steady State

The details of our first two-dimensional simulation is as follows. The topography in the
domain (x, y) ∈ [−1, 1] × [−1, 1] is given as

B(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 exp

(
−100

(
x + 1

2

)2 − 100
(
y + 1

2

)2)
if −1 < x ≤ 0

1
2 exp

(
−100

(
x − 1

2

)2 − 100
(
y − 1

2

)2)
if 0 < x ≤ 1.

(54)

The gravitational constant is chosen g = 1. The initial conditions are

(h, u, v, ρ)(x, y, t = 0) =

⎧⎪⎨
⎪⎩

(
1/

√
0.9 − B(x, y), 0, 0, 0.9

)
if x2 + y2 ≤ 1

4

(1 − B(x, y), 0, 0, 1) otherwise.

(55)

We note that the initial conditions above correspond to a steady state, consisting of two
types of equilibrium. The topography consists of two Gaussian functions with centers at
(x, y) = ±(1/2, 1/2). Outside the circle of radius r = 0.5 and center at the origin, the total
height w = h + B is constant, the velocity field is zero and the density is constant. The
initial conditions in that part of the domain correspond to a steady state at rest as in Eq. (10).
On the other hand, inside the circle the topography is very small, the depth h ≈ 1/

√
0.9 is

approximately uniform, and the pressure p = 1
2 gρh

2 ≈ 1/2 is almost constant. Since the
velocity field is zero, the state inside the circle is a steady state corresponding to Eq. (14).
Thus, the initial conditions in this numerical test is a hybrid steady state, composed of the
two types of equilibrium solutions. We chose a weak jump in the density to stay closer to
more realistic values in oceanic flows. However, the well-balance property is valid for all
parameter regimes.

We also note that while the steady state outside the circle corresponds to a contact disconti-
nuity, it is stationary. The well-balance property actually enables its preservation. As a result,
we do not even need the hybrid strategy to preserve this initial condition. Figure 5 shows con-
tours of the numerical solution at time t = 0.3 with resolution �x = 2/100,�y = 2/100.
We observe no noise in the contours due to the well-balance property.

5.2 Perturbation of a Hybrid Steady State

A perturbation of the hybrid steady state in the previous section is analyzed here for
completeness. The topography is given by Eq. (54), and the same gravitational constant
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respectively. Bottom: contours of the corresponding quantities in the top panel. Here, the initial conditions are
given by Eq. (56), and the resolution is �x = �y = 2/200

g = 1 is used. The initial conditions are taken analogously from example 7 in [11]

(h, u, v, ρ)(x, y, t = 0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + 0.1 − B(x, y), 0, 0, 0.9) if 0.01 < x2 + y2 ≤ 0.09,

(1 − B(x, y), 0, 0, 0.9) if 0.09 < x2 + y2 ≤ 0.25
or x2 + y2 ≤ 0.01,

(1 − B(x, y), 0, 0, 1) otherwise.
(56)

Figure 6 shows the numerical solution of the initial conditions in (56) at time t = 0.3 with
resolution�x = �y = 2/200. We note a correct evolution of the initial perturbation. In case
of strong density interfaces and without the hybrid strategy, the contours in the bottom row
would not be as symmetric.

5.3 Radial Dam Break Over Flat Bottom

As a last comparison with the examples in [11], we now analyze a radial dam break problem.
The topography is chosen flat B = 0, g = 1, and the initial conditions is

(h, u, v, p)(x, y, t − 0) =
⎧⎨
⎩

(2, 0, 0, 0.9) if x2 + y2 ≤ 0.25

(1, 0, 0, 1) otherwise.
(57)

As it was explained in [11], once the dam is removed, a shockwave travels radially, while a
rarefaction wavemoves inward and a contact discontinuity wave stays between the other two.
Figure 7 (top panels) shows the three types of waves in the height (left), density (middle) and
pressure (right). The 3D plot of the pressure exhibits a flat region near the middle wave, well
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resolving the contact discontinuity. The contact discontinuity is weak due to the weak density
interface. However, the scheme works well in all parameter regimes. A radial expansion is
observed in the numerical results, as a response to the dam break.

5.4 Coherent Structure Created by Density Fluctuations

The last numerical experiment consists of putting a region of heavier fluid in the middle of
the domain. The topography is composed of three bumps surrounding the heavier fluid. The
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purpose is to analyze the interactions of the density fluctuations with the topography. The
topography in this exercise is given by

B(x, y) = max
(
1 − 9(x − 0.5)2 − 9y2, 0

) + max
(
1 − 9(x − 1.5)2 − 9(y − 0.5)2, 0

)
+max

(
1 − 9(x − 1.5)2 − 9(y + 0.5)2, 0

)
,

(58)
which represents three bumps with centers at (0.5, 0), (1.5,±0.5), radius 1/3 and height 1.
Initially,

h(x, y, t = 0) = 1.5 − B(x, y)
u(x, y, t = 0) = 0
v(x, y, t = 0) = 0
ρ(x, y, t = 0) = 0.9 + 0.1max(1 − 9(x − 1)2 − 9y2, 0),

(59)

which represents a flow that is initially at rest and with a higher density in between the three
bumps. Here g = 10.

Figure 8 shows the evolution of the total height h + B and velocity field (u, v) at t =
0, 0.1, 0.2, 1. The density is indicated by colors in the total height’s plot. At t = 0, the flow
has constant height and zero velocity. In the absence of density gradients, the flow is a steady
state and no fluid motions are generated. Instead, the region of water with higher density in
the middle of the three bumps causes a radial expansion which interacts with the topography,
as observed at time t = 0.1 (middle left column). The solution at time t = 0.2 is shown in
the middle right panel. The radial expansion quickly propagates and leaves the domain. We
note that besides the radial expansion, a coherent dipole structure has formed in the middle.
This structure appears as a result of the interactions between the density interface and the
position of the three bumps. The bump in the back projects a flow of water that is forced
to pass through the middle of the other two bumps, generating two vortices with a streak in
the middle of the two poles. The coherent dipole structure persist at time t = 1. Coherent
structures like the dipole above have been observed in different atmospheric and oceanic
flows. For instance, although it was done with a Boussinesq model, s-vortices have been
studied in [26] as a response of geostrophic adjustment when a patch of a well mixed fluid
appears in the ocean.

Conclusions

In this work, the shallow water equations with density gradients are considered. The system
is hyperbolic, and the additional wave associated to interfaces between regions of water with
density jumps is a contact discontinuity. This field is degenerate and standard numerical
methods do not preserve the invariants in that field. An upwind scheme is derived with a
hybrid component to recognize such states is presented.One- and two- dimensional numerical
results were included to show the merits of the scheme. Riemann problems with standard and
hybrid strategies are compared to demonstrate the advantage of the alternative technique. Two
dimensional numerical results test the algorithm in steady states that consists of a combination
of lakes at rest with no density gradients and regions where the flow is not at rest but has
constant pressure and it is associated to contact waves. An example of a radial break problem
was included. Formation of coherent structures as a result of the interactions between density
fluctuations with the topography was analyzed.
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Appendix A: Details and Properties of the 2-D Hybrid Numerical Scheme

The hybrid strategy is now carried over to the two-dimensional space. Local linearizations of
eigenvalues, eigenvectors, and amplitudes are needed for both the conservative and primitive
formulations in 2-D in order to apply the numerical scheme (32), (33), (34).
Conservative Formulation

Let us first consider the 2-D conservative formulation (1) and its quasilinear form (2) for
the variablesWc = (ρh, ρhu, ρhv, h)T . Although not necessary in the description of the
numerical scheme, we include the corresponding local linearizations of the Roe matrices (3)
and (4) and source terms

Â =

⎛
⎜⎜⎝

0 1 0 0
g
2 h − û2 2û 0 g

2ρh
−ûv̂ v̂ û 0

−û̂1/ρ ̂1/ρ 0 û

⎞
⎟⎟⎠ ,�xSA =

⎛
⎜⎜⎝

0
−ρ̄c̃2�x B

0
0

⎞
⎟⎟⎠ ,

B̂ =

⎛
⎜⎜⎝

0 0 1 0
−v̂û v̂ û 0

g
2 h − v̂2 0 2v̂ g

2ρh

−v̂̂1/ρ 0̂1/ρ v̂

⎞
⎟⎟⎠ ,�xSB =

⎛
⎜⎜⎝

0
0

−ρ̄c̃2�y B
0

⎞
⎟⎟⎠ . (60)

The corresponding matrices of eigenvalues are �A = diag(û − c̃, û, û, û + c̃) and �B =
diag(v̂ − c̃, v̂, v̂, v̂ + c̃). The matrices of eigenvectors needed in the numerical scheme are

Rc,A =

⎛
⎜⎜⎜⎝

1 1 0 1
û − c̃ û 0 û + c̃

v̂ 0 c̃ v̂

̂1/ρ − h
ρh

0 ̂1/ρ,

⎞
⎟⎟⎟⎠ ,Rc,B =

⎛
⎜⎜⎜⎝

1 0 1 1
û c̃ 0 û

v̂ − c̃ 0 v̂ v̂ + c̃
̂1/ρ 0 − h

ρh
̂1/ρ

⎞
⎟⎟⎟⎠ . (61)

Finally, the amplitudes in the decomposition of both the flux gradient and source dis-
cretization in each direction are:

α
c,A
1 = (û+c̃)�x (ρh)−�x (ρhu)

2c̃ + gρh
4c̃2

(�x h −̂1/ρ�x (ρh)),

α
c,A
4 = (−û+c̃)�x (ρh)+�x (ρhu)

2c̃ + gρh
4c̃2

(�x h −̂1/ρ�x (ρh)),

α
c,B
1 = (v̂+c̃)�y(ρh)−�y(ρhv)

2c̃ + gρh
4c̃2

(�yh −̂1/ρ�y(ρh)),

α
c,B
4 = (−v̂+c̃)�y(ρh)+�y(ρhv)

2c̃ + gρh
4c̃2

(
�yh −̂1/ρ�y(ρh)

)
,

α
c,A
2 = − gρh

2c̃2

(
�x h −̂1/ρ�x (ρh)

)
,

α
c,A
3 = �x (ρhv)− gv̂

2c̃2
�x (ρh2)

c̃ ,

α
c,B
2 = �y(ρhu)− gû

2c̃2
�y(ρh2)

c̃ ,

α
c,B
3 = − gρh

2c̃2

(
�yh −̂1/ρ�y(ρh)

)

(62)

β
c,A
1 = ρ̄c̃

2
�x B, β

c,A
2 = β

c,A
3 = 0, βc,A

4 = − ρ̄c̃

2
�x B,
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β
c,B
1 = ρ̄c̃

2
�y B, β

c,B
2 = β

c,B
3 = 0, β

c,B
4 = − ρ̄c̃

2
�y B.

(63)

Here �x (·) and �y(·) refer to the horizontal (east-west) and vertical (north and south)
differences respectively. We note that when ρ is constant the second terms in α1, α2 vanish,
as well as α

c,A
2 , α

c,B
3 , recovering the regular scheme for the 2-D shallow water equations.

Primitive Formulation
Using the primitive variables,Wnc = (u, v, p, ρ)T , the 2-D non-conservative primitive

system reads
⎛
⎜⎜⎝
u
v

p
ρ

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎝

u 0 (ρh)−1 0
0 u 0 0

ρhc2 0 u 0
0 0 0 u

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u
v

p
ρ

⎞
⎟⎟⎠

x

+

⎛
⎜⎜⎝

v 0 0 0
0 v (ρh)−1 0
0 ρhc2 v 0
0 0 0 v

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u
v

p
ρ

⎞
⎟⎟⎠

y

=

⎛
⎜⎜⎝

−gBx

−gBy

0
0

⎞
⎟⎟⎠ . (64)

Any consistent discretization of the above system automatically preserves u, v and p
across contact discontinuities (in a flat topography). For consistency, we choose the same
averages here as in the conservative formulation û, ρh,̂1/ρ, c̃. The matrices of eigenvectors
are

Rnc,A =

⎛
⎜⎜⎝

c̃ 0 0 c̃
0 c̃ 0 0

−ρhc̃2 0 0 ρhc̃2

0 0 1 0,

⎞
⎟⎟⎠ ,Rnc,B =

⎛
⎜⎜⎝

0 c̃ 0 0
c̃ 0 0 c̃

−ρhc̃2 0 0 ρhc̃2

0 0 1 0

⎞
⎟⎟⎠ . (65)

Finally, the amplitudes in the decomposition of both the flux gradient and source dis-
cretization in each direction are:

α
nc,A
1 = ρhc̃�x u−�x p

2ρhc̃2
, β

nc,A
1 = − g�x B

2c̃ , α
nc,B
1 = ρhc̃�yv−�y p

2ρhc̃2
, β

nc,B
1 = − g�y B

2c̃

α
nc,A
2 = �xv

c̃ , β
nc,A
2 = 0, α

nc,B
2 = �yu

c̃ , β
nc,B
2 = 0

α
nc,A
3 = �xρ, β

nc,A
3 = 0, α

nc,B
3 = �yρ, β

nc,B
3 = 0

α
nc,A
4 = ρhc̃�x u+�x (ρh)

2ρhc̃2
, β

nc,A
4 = − g�x B

2c̃ , α
nc,B
4 = ρhc̃�yv+�y p

2ρhc̃2
, β

nc,B
4 = − g�y B

2c̃ .

(66)

Appendix A.1: Summary of the 2-D Numerical Scheme

The 2-D numerical scheme is summarized as follows. Each cel (i, j) is updated as

Wn+1
i, j = Wn

i, j − �t

�x

{
A+
i− 1

2 , j

(
Wn

i, j − Wn
i−1, j

)
− �x S+

A,i− 1
2 , j

+ A−
i+ 1

2 , j

(
Wn

i+1, j − Wn
i, j

)
− �x S−

A,i+ 1
2 , j

}

− �t

�y

{
B+
i, j− 1

2

(
Wn

i, j − Wn
i, j−1

)
− �y S+

B,i, j− 1
2

+ B−
i, j+ 1

2

(
Wn

i, j+1 − Wn
i, j

)
− �y S−

B,i, j+ 1
2

}
.

Here,

A+�xW−�x S+
A =

∑

λA
k >0

(αA
k λA

k − β A
k )rAk , A−�xW−�x S−

A =
∑

λA
k ≤0

(αA
k λA

k − β A
k )rAk ,

B+�yW−�y S+
B =

∑

λB
k >0

(αB
k λB

k − βB
k )rBk , B−�yW−�y S−

B =
∑

λB
k ≤0

(αB
k λB

k − βB
k )rBk .
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If the jump in density near cell (i, j) does not exceed a threshold, i.e., if maxi−1≤i ′≤i+1,
j − 1 ≤ i j ≤ j + 1(|ρi ′+1, j ′+1 − ρi ′, j ′ |) < ρo, then

W =

⎛
⎜⎜⎝

ρh
ρhu
ρhv

h

⎞
⎟⎟⎠ , rA1 =

⎛
⎜⎜⎝

1
û − c̃

v̂

̂1/ρ

⎞
⎟⎟⎠ rA2 =

⎛
⎜⎜⎜⎝

1
û
0

− h
ρh

⎞
⎟⎟⎟⎠ rA3 =

⎛
⎜⎜⎝
0
0
c̃
0

⎞
⎟⎟⎠ rA4 =

⎛
⎜⎜⎝

1
û + c̃

v̂

̂1/ρ

⎞
⎟⎟⎠ ,

λA
1 = û − c̃, λA

2 = û, λA
3 = û, λA

4 = û + c̃,

rB1 =

⎛
⎜⎜⎝

1
û

v̂ − c̃
̂1/ρ

⎞
⎟⎟⎠ , rB2 =

⎛
⎜⎜⎝
0
c̃
0
0

⎞
⎟⎟⎠ , rB3 =

⎛
⎜⎜⎜⎝

1
0
v̂

− h
ρh

⎞
⎟⎟⎟⎠ , rB4 =

⎛
⎜⎜⎝

1
û

v̂ + c̃
̂1/ρ

⎞
⎟⎟⎠ ,

λB
1 = v̂ − c̃, λB

2 = v̂, λB
3 = v̂, λB

4 = v̂ + c̃,

αA
1 = (û+c̃)�x (ρh)−�x (ρhu)

2c̃ + gρh
4c̃2

(�x h −̂1/ρ�x (ρh)),

αA
4 = (−û+c̃)�x (ρh)+�x (ρhu)

2c̃ + gρh
4c̃2

(�xh −̂1/ρ�x (ρh)),

αB
1 = (v̂+c̃)�y(ρh)−�y(ρhv)

2c̃ + gρh
4c̃2

(�yh −̂1/ρ�y(ρh)),

αB
4 = (−v̂+c̃)�y(ρh)+�y(ρhv)

2c̃ + gρh
4c̃2

(
�yh −̂1/ρ�y(ρh)

)
,

αA
2 = − gρh

2c̃2

(
�xh −̂1/ρ�x (ρh)

)
,

αA
3 = �x (ρhv)− gv̂

2c̃2
�x (ρh2)

c̃ ,

αB
2 = �y(ρhu)− gû

2c̃2
�y(ρh2)

c̃ ,

αB
3 = − gρh

2c̃2

(
�yh −̂1/ρ�y(ρh)

)

β A
1 = ρ̄c̃

2
�x B, β A

2 = β A
3 = 0, β A

4 = − ρ̄c̃

2
�x B,

βB
1 = ρ̄c̃

2
�y B, βB

2 = βB
3 = 0, βB

4 = − ρ̄c̃

2
�y B.

If the jump in the density exceed the chosen threshold ( maxi−1≤i ′≤i+1, j−1≤i j≤ j+1(|ρi ′+1,
j ′ + 1 − ρi ′, j ′ |) ≥ ρo ), then

W =

⎛
⎜⎜⎝
u
v

p
ρ

⎞
⎟⎟⎠ , r A1 =

⎛
⎜⎜⎝

c̃
0

−ρhc̃2

0

⎞
⎟⎟⎠ r A2 =

⎛
⎜⎜⎝
0
c̃
0
0

⎞
⎟⎟⎠ r A3 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ r A4 =

⎛
⎜⎜⎝

c̃
0

ρhc̃2

0

⎞
⎟⎟⎠ ,

λA
1 = û − c̃, λA

2 = û, λA
3 = û, λA

4 = û + c̃,
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rB1 =

⎛
⎜⎜⎝

0
c̃

−ρhc̃2

0

⎞
⎟⎟⎠ , rB2 =

⎛
⎜⎜⎝
c̃
0
0
0

⎞
⎟⎟⎠ , rB3 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , rB4 =

⎛
⎜⎜⎝

0
c̃

ρhc̃2

0

⎞
⎟⎟⎠ ,

λB
1 = v̂ − c̃, λB

2 = v̂, λB
3 = v̂, λB

4 = v̂ + c̃,

and

αA
1 = ρhc̃�x u−�x p

2ρhc̃2
, β A

1 = − g�x B
2c̃ , αB

1 = ρhc̃�yv−�y p

2ρhc̃2
, βB

1 = − g�y B
2c̃

αA
2 = �xv

c̃ , β A
2 = 0, αB

2 = �yu
c̃ , βB

2 = 0

αA
3 = �xρ, β A

3 = 0, αB
3 = �yρ, βB

3 = 0

αA
4 = ρhc̃�x u+�x (ρh)

2ρhc̃2
, β A

4 = − g�x B
2c̃ , αB

4 = ρhc̃�yv+�y p

2ρhc̃2
, βB

4 = − g�y B
2c̃ .

(67)

Here the threshold and averages are given by Eqs. (28), (40), (46). In addition, the second
order extension and entropy fix is conducted as in [24].

Appendix B: Derivation of the Model

We start with the 3D Euler equations

∂t

⎛
⎜⎜⎝

ρ

ρu
ρv

ρw

⎞
⎟⎟⎠ + ∂x

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

ρuw

⎞
⎟⎟⎠ + ∂y

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
ρvw

⎞
⎟⎟⎠ + ∂z

⎛
⎜⎜⎝

ρw

ρuw

ρvw

ρw2 + p

⎞
⎟⎟⎠ = 0, (68)

and integrate in the vertical direction from the bottom topography B(x, y) to the surface
B(x, y) + h(x, y, t), where h is the depth of water, using the relation

∫ B+h

B
∂r f dz = ∂r

∫ B+h

B
f dz − f∣∣

B+h

∂r (B + h) + f∣∣
B

∂r B,

where r is any of the spatial variables x or y, and f is any of the conserved variables ρ, ρu, ρv

or ρw. For any conserved variable f , we also define the vertically averaged quantity

f̄ (x, y) = 1

h

∫ B+h

B
f (x, y, z)dz.

In addition, we assume a hydrostatic balance so that the pressure is given as p(x, y, z, t) =
g

∫ B+h
z ρ(x, y, z′)dz′. If the density is approximately uniform in the vertical direction, the

pressure is approximated as
p ≈ gρ̄(x, y)(h + B − z). (69)
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The vertically integrated pressure is then approximated as gρh2/2, and denoted by p. Verti-
cally integrating the first three components of Eq. (68) we get

∂t (hρ̄) + ∂x (hρu) + ∂y(hρv) − ρ∣∣
B+h

S∣∣
B+h

+ ρ∣∣
B

S∣∣
B

= 0,

∂t (hρu) + ∂x (hρu2 + h p̄) + ∂y(hρuv) − (ρu)∣∣
B+h

S∣∣
B+h

+ (ρu)∣∣
B

S∣∣
B

= −gp∣∣
B

∂x B,

∂t (hρv) + ∂x (hρuv) + ∂y(hρv2 + h p̄) − (ρv)∣∣
B+h

S∣∣
B+h

+ (ρv)∣∣
B

S∣∣
B

= −gp∣∣
B

∂y B.

(70)
where

SB+h = ∂t (B + h) + u∣∣
B+h

∂x (B + h) + v∣∣
B+h

∂y(B + h) − w∣∣
B+h

,

SB = ∂t B + u∣∣
B

∂x B + v∣∣
B

∂y B − w∣∣
B

.

The bottom and surface are assumed to be streamlines so that S∣∣
B+h

= S∣∣
B

= 0 vanish.

Assuming that the flow is shallow, we replace ρu ≈ ρ̄ū, ρu2 ≈ ρ̄ū2 and so on, and drop the
bars.

The system can be closed by assuming that the density ρ is advected by the flow ∂tρ +
u∂xρ + v∂yρ = 0, and combining it with the first equation we get system (1).
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