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Abstract The reduced basis method (RBM) is a popular certified model reduction approach
for solving parametrized partial differential equations. One critical stage of the offline por-
tion of the algorithm is a greedy algorithm, requiring maximization of an error estimate over
parameter space. In practice this maximization is usually performed by replacing the param-
eter domain continuum with a discrete “training” set. When the dimension of parameter
space is large, it is necessary to significantly increase the size of this training set in order to
effectively search parameter space. Large training sets diminish the attractiveness of RBM
algorithms since this proportionally increases the cost of the offline phase. In this work we
propose novel strategies for offline RBM algorithms that mitigate the computational diffi-
culty of maximizing error estimates over a training set. The main idea is to identify a subset
of the training set, a “surrogate training set” (STS), on which to perform greedy algorithms.
The STS we construct is much smaller in size than the full training set, yet our examples
suggest that it is accurate enough to induce the solution manifold of interest at the current
offline RBM iteration. We propose two algorithms to construct the STS: our first algorithm,
the successive maximization method, is inspired by inverse transform sampling for non-
standard univariate probability distributions. The second constructs an STS by identifying
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pivots in the Cholesky decomposition of an approximate error correlation matrix.We demon-
strate the algorithm through numerical experiments, showing that it is capable of accelerating
offline RBM procedures without degrading accuracy, assuming that the solution manifold
has rapidly decaying Kolmogorov width.

Keywords Reduced basis method · Surrogate parameter domain ·Cholesky decomposition ·
Adaptivity · Greedy algorithm

1 Introduction

Increasing computer power and computing availability makes the simulation of large-scale or
high-dimensional numerical problems modeling complex phenomena more accessible, but
any reduction in computational effort is still required for sufficiently onerous many-query
computations and repeated output evaluations for different values of some inputs of inter-
est. Much recent research has concentrated on schemes to accelerate computational tools
for such many-query or parameterized problems; these schemes include Proper Orthogonal
Decomposition (POD) [3,38], balanced truncation method [13,24], Krylov Subspace meth-
ods [10,34] and the Reduced Basis Method (RBM) [4,33]. The basic idea behind each of
these model order reduction techniques is to iteratively project an associated large algebraic
system to a small system that can effectively capture most of the information carried by the
original model. In the context of parameterized partial differential equations (PDE), the fun-
damental reason that such model reduction approaches are accurate is that, for many PDE’s
of interest, the solution manifold induced by the parametric variation has rapidly decaying
Kolmogorov width [28].

Among the strategies listed above, one of the most appealing methods is the Reduced
Basis Method. RBM seeks to parametrize the random inputs and select the most represen-
tative points in the parameter space by means of a greedy algorithm that leverages an a
posteriori error estimate. RBM algorithm are split into offline and online stages. During the
offline stage, the parameter dependence is examined and the greedy algorithm is used to judi-
ciously select a small number of parameter values on which the full, expensive PDE solver
is solved. The solutions on this small parameter set are called snapshots. During the online
stage, an approximate solution for any new parameter value is efficiently computed via a
linear combination of the offline-computed snapshots. This linear combination can usually
be accomplished with orders of magnitude less effort than a full PDE solve. Thus, RBM
invests significant computational effort in an offline stage so that the online stage is efficient
[6,25,29,30,32].

TheReducedBasisMethodwas initially introduced for structure analysis [26] and recently
has been undergoing vast development in theory [11,12,23,27,33] and applied to many
engineering problems [5,7,9,22,31,32]. If the input parameters to the PDE are random, then
RBM is philosophically similar to stochastic collocation [1], but uses an adaptive sampling
criterion dictated by the PDE’s a posteriori error estimate. It has been shown that RBM can
help delay the curse of dimensionality when solving parameterized problems in uncertainty
quantificationwhenever the solutionmanifold can bewell approximated by a lowdimensional
space [21].

RBM is motivated by the observation that the set of all solutions to the parametrized
problem under variation of the parameter can be well approximated by linear combinations
of a low number of basis functions. Early RBM research concentrated on problems with a
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low-dimensional parameter due to the lack of effective tools to sample the a posteriori error
estimate over high-dimensional spaces [33]. An effective procedure for greedily selecting
parameter values for use in the RBMprocedure must simultaneously leverage the structure of
the error estimate along with efficient methods for searching over high-dimensional spaces.
Some recent effort in the RBM framework has been devoted to inexpensive computation of
the a posteriori error estimate along with effective sampling strategies [37].

The portion of the RBM algorithm most relevant in the context of this article is in the
offline stage: Find a parameter value that maximizes a given (computable) error estimate.
This maximization is usually accomplished in the computational setting by replacing the
parameter domain continuum by a large, discrete set called the training set. Even this naïve
procedure requires us to compute the value of the error estimate at every point in the training
set. Thus, the work required scales proportionally to the training set size.When the parameter
is high-dimensional, the size of the training set must be very large if one seeks to search over
all regions of parameter space. This onerous cost of the offline stage debilitates RBM in this
scenario. Thus, assuming the training set must be large, a more sophisticated scheme for
maximizing the error estimate must be employed.

This is not the first attempt to enhance the offline phase of RBM. Existing approaches
include multistage greedy algorithm [35], training set adaptivity and adaptive parame-
ter domain partitioning [16], random greedy sampling [18], greedy sampling acceleration
through nonlinear optimization [36]. Problems remain despite these developments. For exam-
ple, the randomization in part of the greedy procedure reduces the stability of the whole
algorithm. And the choice of the tuning parameter may make the improved methods exces-
sively empirical. Our approach in this paper differentiate itself in that it is deterministic, more
stable, more predictable with respect to the tuning parameters. Most importantly, it is the first
attempt to utilize the intermediate results that were discarded (i.e. the error estimates for
the whole training set) to achieve the enhancement. Indeed, we propose two novel strategies
for mitigating the cost of searching over a training set of large size. The essential idea in
both approaches is to perform some computational analysis on the a posteriori error estimate
in order to construct a surrogate training set, a subset of the original training set with a
much smaller size, that can effectively predict the general trend of the error estimate. The
construction of this surrogate training set must be periodically repeated during the iterative
phase of the offline RBM algorithm. Ideally, we want to decrease the computational burden
of the offline algorithm without lowering the fidelity of the RBM procedure. The following
qualitative characteristics are the guiding desiderata for construction of the surrogate training
set:

1. the information used for the surrogate training set construction should be inexpensive to
obtain

2. the parametric variation on the surrogate training set should be representative of that in
the original training set

3. the size of the surrogate training set should be significantly smaller than that of the
original training set

Our proposed offline-enhanced RBM strategies are as follows:

1. Successive Maximization Method for Reduced Basis Method (SMM-RBM)—We con-
struct an empirical cumulative distribution function of the a posteriori error estimate on
the training set, and deterministically subsample a surrogate training set according to this
distribution.
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Table 1 Notation used
throughout this article µ Parameter in D ⊆ Rp

u(µ) Function-valued solution of a parameterized PDE

N Degrees of freedom (DoF) in PDE “truth” solver

uN (µ) Truth solution (finite-dimensional)

N Number of reduced basis snapshots, N � N
Nmax Terminated number of reduced bases

µ j “Snapshot” parameter values, j = 1, . . . , N

XN
N Span of uN

(
µk
)
for k = 1, . . . , N

uNN (µ) Reduced basis solution, uNN ∈ XN
N

eN (µ) Reduced basis solution error, equals uN (µ) − uNN (µ)

�train Parameter training set, a finite subset of D
�N (µ) Error estimate (upper bound) for ‖eN (µ)‖
εtol Error estimate stopping tolerance in greedy sweep

2. Cholesky Decomposition Reduced Basis Method (CD-RBM)—An approximate corre-
lation matrix (Gramian) of errors over the training set is computed, and the pivots in a
pivoted Cholesky decomposition [17] identify the surrogate training set.

We note that both of our strategies are empirical in nature. In particular, it is relatively easy
to manufacture error estimate data so that our construction of a surrogate training set does
not accurately capture the parameter variation over the full training set. One of the main
observations we make in our numerical results section is that such an adversarial situation
does not occur for the parameterized PDEs that we investigate. Our procedure also features
some robustness: a poorly constructed surrogate training set does not adversely affect either
the efficiency or the accuracy of the RBM simulation.

The remainder of this paper is organized as follows. A parametrized PDE with random
input data is set up with appropriate assumptions on the PDE operator in Sect. 2. The general
framework and properties of the Reduced Basis Method are likewise introduced in Sect.
2. Section 3 is devoted to the development of our novel offline-enhanced RBM methods,
consisting of SMM-RBM and CD-RBM. A rough complexity analysis of these methods is
given in Sect. 3.3. Our numerical examples are shown in Sect. 4.

2 Background

In this section, we introduce the Reduced Basis Method (RBM) in its classical form; much
of this is standard in the RBM literature. The reader familiar with RBM methodology may
skip this section, using Table 1 as a reference for our notation.

2.1 Problem Setting

Let D ⊂ R
p be the range of variation of a p-dimensional parameter and � ⊂ R

d (for
d = 2 or 3) a bounded spatial domain. We consider the following parametrized problem:
Given µ ∈ D, the goal is to evaluate the output of interest

s(µ) = �(u(µ)), (2.1)
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where the function u(µ) ∈ X satisfies

a(u(µ), v,µ) = f (v;µ), v ∈ X, (2.2)

which is a parametric partial differential equation (pPDE) written in a weak form. Here
X = X (�) is a Hilbert space satisfying H1

0 (�) ⊂ X (�) ⊂ H1(�). We denote by (·, ·)X
the inner product associated with the space X , whose induced norm || · ||X = √

(·, ·)X is
equivalent to the usual H1(�) norm. We assume that a(·, ·;µ) : X × X → R is continuous
and coercive over X for all µ in D, that is,

γ (µ) := sup
w∈X

sup
v∈X

a(w, v;µ)

||w||X ||v||X < ∞, ∀µ ∈ D, (2.3a)

α(µ) := inf
w∈X

a(w,w;µ)

||w||2X
� α0 > 0,∀µ ∈ D. (2.3b)

f (·) and �(·) are linear continuous functionals over X , and for simplicity we assume that �

is independent of µ.
We assume that a(·, ·;µ) is “affine” with respect to functions of the parameter µ: there

exist µ-dependent coefficient functions 	
q
a : D → R for q = 1, . . . Qa , and corresponding

continuous µ-independent bilinear forms aq(·, ·) : X × X → R such that

a(w, v;µ) =
Qa∑
q=1

	
q
a(µ)aq(w, v). (2.4)

This assumption of affine parameter dependence is common in the reduced basis literature
[33], and remedies are available [2] when it is not satisfied.

Finally, we assume that there is a finite-dimensional discretization for the model prob-
lem (2.2): The solution space X is discretized by an N -dimensional subspace XN (i.e.,
dim(XN ) = N ) and (2.1) and (2.2) are discretized as

⎧⎪⎨
⎪⎩

For µ ∈ D, solve

sN = �(uN (µ)) where uN (µ) ∈ XN satisfies

a(uN , v;µ) = f (v;µ) ∀v ∈ XN .

(2.5)

The relevant quantities such as the coercivity constant (2.3b) are defined according to the
discretization,

αN (µ) = inf
w∈XN

a(w,w;µ)

||w||2X
, ∀µ ∈ D.

In the RBM literature, any discretization associated to N is called a “truth” discretization.
E.g., uN is called the “truth solution”.

2.2 RBM Framework

We assumeN is large enough so that solving (2.5) gives highly accurate approximations for
µ ∈ D. However, large N also means that solving (2.5) is expensive, and in many-query
contexts (e.g., optimization) a direct approach to solving (2.5) is computationally infeasible.
The situation is exacerbated when theµ �→ uN (µ) response is sought in a real-time fashion.
The reduced basis method is a reliable model reduction tool for these scenarios.

This section presents a brief overview of the standard RBM algorithm. Given a finite
training set of parameter samples �train ⊂ D as well as a prescribed maximum dimension
Nmax (usually � N ), we approximate the solution set
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{u(µ) | µ ∈ D} ⊂ XN

via an N -dimensional subspace of XN , with N ≤ Nmax. In RBM, this is accomplished via
the N -dimensional cardinal Lagrange space

XN
N := span{uN (µn), 1 ≤ n ≤ N }, N = 1, . . . , Nmax (2.6)

in a hierarchical manner by iteratively choosing samples SN = {µ1, . . . ,µN } from �train

until N is large enough so that a prescribed accuracy tolerance εtol is met. The uN (µn) for
1 ≤ n ≤ N are the so-called “snapshots”, and are obtained by solving (2.5) with µ = µn .

It is obvious that both SN and XN
N are nested; that is, S1 ⊂ S2 ⊂ · · · ⊂ SNmax and

XN
1 ⊂ XN

2 ⊂ · · · ⊂ XN
Nmax

⊂ XN . This condition is fundamental in ensuring efficiency

of the resulting RB approximation. Given µ ∈ D, we seek a surrogate RB solution uNN (µ)

in the reduced basis space XN
N for the truth approximation uN (µ) by solving the following

reduced system
⎧⎪⎨
⎪⎩

For µ ∈ D, evaluate

sNN = �(uNN (µ)) s.t. uNN (µ) ∈ XN
N ⊂ XN satisfies

a(uNN , v;µ) = f (v) ∀v ∈ XN
N .

(2.7)

In comparison to theN -dimensional system (2.5), the reduced system (2.7) is N -dimensional;
when N � N , this results in a significant computational savings. The Galerkin procedure
in (2.7) selects the best solution in XN

N satisfying the pPDE. 1 Then, the RB solution uNN (µ)

for any parameter µ ∈ D can be expressed as

uNN (µ) =
N∑

m=1

uNNm(µ)uN
(
µm) (2.8)

Here {uNNm(µ)}Nm=1 are the unknown RB coefficients that can be obtained by solving (2.7).
Upon replacing the reduced basis solution in (2.7) by (2.8) and taking the XN

N basis functions
vn = uN (µn), 1 ≤ n ≤ N , as the test functions for Galerkin approximation, we obtain the
RB “stiffness” equations

N∑
m=1

a(vm, vn;µ)uNNm(µ) = f (vn;µ) 1 ≤ n ≤ N (2.9)

Once this system is solved for the coefficients uNm(µ), the RB output sNN (µ) can be subse-
quently evaluated as

sNN (µ) = �(uNN (µ)). (2.10)

It is not surprising that the accuracy of the RB solution uNN and of the corresponding
computed output of interest sNN both depend crucially on the construction of the reduced
basis approximation space. The procedure we use for efficiently selecting representative
parameters µ1, . . . ,µN and the corresponding snapshots defining the reduced basis space
plays an essential role in the reduced basis method.

1 In implementations, in order to ameliorate ill-conditioning issues that may arise in (2.7) we first apply
the Gram–Schmidt process with respect to the (·, ·)X inner product each time a new snapshot uN (µN )

is generated to obtain a (·, ·)X -orthonormal basis {ξNN }Nmax
N=1 . We omit explicitly denoting or showing this

orthogonalization procedure.
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2.3 Selecting Snapshots: Enhancing Offline RBM Computations

This paper’s main contribution is the development of novel procedures for selecting the

snapshot set
{
µN
}Nmax

N=1 . The main idea of our procedure is very similar to classical RBM
methods, the latter of which is the greedy scheme

µN+1 = argmax
µ∈�train

�N (µ), �N (µ) ≥ ∥∥uNN (µ) − uN (µ)
∥∥
XN . (2.11)

Here �N (·) is an efficiently-computable a posteriori error bound for the RBM procedure
[33], which is crucial for the reliability of the reduced basis space constructed according to
the weak greedy algorithm discussed in “Appendix A.1”. Toward that end, we reconsider the
numerical schemes for the truth approximation (2.5) and for the RB solution (2.7). Defining
the error eN (µ):=uN (µ)−uNN (µ) ∈ XN , linearity of a yields the following error equation:

a(eN (µ), v;µ) = rN (v;µ) ∀v ∈ XN , (2.12)

with the residual rN (v;µ) ∈ (XN )′ (the dual of XN ) is defined as f (v;µ) −
a(uNN (µ), v;µ). The Riesz representation theorem and the Cauchy–Schwarz inequality

implies that ‖eN (µ)‖X ≤ ‖rN (·;µ)‖
(XN )′

αN
LB (µ)

, where αN (µ) = inf
w∈XN

a(w,w,µ)

||w||2X
is the stability

(coercivity) constant for the elliptic bilinear form a. This implies that we can define the a
posteriori error estimator for the solution as

�N (µ) = ‖rN (·;µ)‖(XN )′

αN
LB(µ)

≥ ‖eN (µ)‖XN (2.13)

The efficiency of computing the a posteriori error estimation relies on that of the lower bound
of the coercivity constant αN

LB(µ) as well as the value ‖rN (·;µ)‖(XN )′ for ∀µ ∈ D. The
coercivity constant αN can be nontrivial to compute, but there are constructive algorithms
to address this [8,19,20]. The residual is typically computed by the RBM offline–online
decomposition, which is presented in “Appendix A.2”.

Once μN+1 is selected, standard RBM mechanics can be used to construct uNN+1 so that
the procedure above can be iterated to compute µN+2.

A classical RBM algorithm computes the maximum over �train above in a brute-force
manner; since�train is large and this maximizationmust be done for every N = 1, . . . , Nmax ,
this process of selecting snapshots is usually one of the more computationally expensive
portions of RBM algorithms.

This manuscript is chiefly concerned with ameliorating the cost of selecting snapshots;
we call this an “offline-enhanced” Reduced Basis Method.2 We present two algorithms that
are alternatives to the brute-force approach (2.11). Instead of maximizing �N over �train,
we instead maximize over a subset of �train that we call the “surrogate training set”. The
efficient computational determination of the surrogate training set, and subsequent empirical
studies investigating the accuracy and efficiency of offline-enhanced methods compared to
classical RBM, are the remaining topics of this manuscript.

This paper does not make novel contributions to any of the other important aspects of
RBM algorithms (offline/online decompositions, error estimate computations, etc.), but in
the interests of completeness we include in the ‘Appendix” a brief overview of the remaining
portions of RBM algorithms.

2 “Offline” is a standard descriptor for this general portion of the full RBM algorithm; see the “Appendix”.
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Table 2 Notation used for
offline-enhanced RBM Algorithm template notation

� Number of “outer” loops in the offline enhancement
procedure Algorithm 1

E� The largest error estimator at the beginning of outer
loop �

N� Number of offline-enhanced snapshots chosen at
iteration �

�sur Surrogate Training Set (STS), a subset of �train

M� STS parameter at outer loop iteration �

Kdamp A constant integer controlling the damping ratio
1

Kdamp×(�+1) ∈ (0, 1)

SMM notation

I MN M equispaced samples on the interval
(εtol,maxµ∈�train �N (µ)]

CD notation

G �train × �train Gramian error matrix, with entries

Gi, j =
(
eN
(
µi
)

, eN
(
µ j
))

XN
G̃ �train × �train approximate Gramain error matrix, with

entries G̃i, j =
(
ẽN
(
µi
)

, ẽN
(
µ j
))

XN

3 Offline-Enhanced RBM: Design and Analysis

The complexity of the offline stage, where the optimization (2.11) is performed, depends on
Ntrain. Although this dependence is only linear, a large Ntrain can easilymake the computation
onerous; such a situation arises when the parameter domainD has large dimension p. In this
case standard constructions for Ntrain yield grid-based training sets that grow exponentially
with p, even when the more parsimonious sparse grid constructions are involved [39]. Our
goal in this project is to ameliorate the cost of sweeping over a very large training set in
(2.11) without sacrificing the quality of the reduced basis solution. We call this approach an
Offline-enhanced Reduced Basis Method.

The basic idea of our approach is to perform the standard RBM greedy algorithm on a
surrogate training set (STS) constructed as subsets of the original �train. The STS is con-
structed adaptively, and construction is periodically repeated after a small batch of snapshots
are selected. We let �Sur denote these constructed STS’s; they are small enough compared
to �train to offer considerable acceleration of the greedy sweep (2.11), yet large enough to
capture the general landscape of the solution manifold. We present in Algorithm 1 a general
template for our Offline-Enhanced Reduced Basis Method. This algorithm can be imple-
mented once we describe how �Sur are constructed; these descriptions are the topic of the
next sections. In Table 2 we summarize the notation in Algorithm 1.

The first contribution of our paper resides in the unique structure of this template. Each
global greedy sweep (i.e., over �train, and labeled “One-step greedy” in Algorithm 1) is fol-
lowed bymultiple targeted sweeps over the (smaller) STS�Sur (labeled “Multi-step greedy”).
These latter sweeps produce a computational savings ratio of 1−|�Sur|/|�train| because they
operate on �Sur instead of on �train.

Note thatwe still require occasional global greedy sweeps, even though they are expensive.
These global sweeps are necessary to retain reliability of the greedy algorithm.

123



J Sci Comput (2017) 73:853–875 861

Algorithm 1 The Offline-enhanced Reduced Basis Method template. Algorithms for con-
structing the STS �Sur are described in Sects. 3.1 and 3.2.
1: Input: �train, an accuracy tolerance εtol.
2: Randomly select the first sample µ1 ∈ �train, and set N = 1, ε = 2εtol, and � = 0.

3: Obtain truth solution uN (µ1), and set XN
1 = span

{
uN (µ1)

}
.

4: while (ε > εtol) do

5: Set � ← � + 1.

6:

O
ne
-s
te
p
gr
ee
dy

sc
an

on
�
tr
ai
n

7: for each µ ∈ �train do
8: Obtain RBM solution uNN (µ) ∈ XN

N and error estimate �N (µ)

9: end for

10: µN+1 = argmax
µ∈�train

�N (µ), ε = �N (µN+1), E� = ε.

11: Augment RB space XN
N+1 = XN

N ⊕ {uN (µN+1)}.
12: Set N ← N + 1, N� ← 0

13: Construct STS �Sur based on {(uNN−1(µ), �N−1(µ)) : µ ∈ �train}.

14:

M
ul
ti-
st
ep

gr
ee
dy

sc
an

on
�
Su

r

15: while (ε > εtol) and (ε > E�
1

Kdamp×(�+1) ) do

16: for each µ ∈ �Sur do
17: Obtain RBM solution uNN (µ) ∈ XN

N and error estimate �N (µ)

18: end for

19: µN+1 = argmax
µ∈�Sur

�N (µ), ε = �N (µN+1).

20: Augment RB space XN
N+1 = XN

N ⊕ {uN (µN+1)}
21: Set N ← N + 1, N� ← N� + 1
22: end while

23: end while

The other main contribution of our paper is the creation of two strategies for constructing
the surrogate training set �Sur, which is the topic of the next two subsections. Our two pro-
cedures are the Successive Maximization Method (SMM) and the Cholesky Decomposition
Method (CDM). Once they are described, we may use them in the algorithmic template that
fully describes Offline-enhanced RB methods. SMM and CDM are intrinsically different in
their construction, yet our numerical experiments show that they both work very well, accel-
erating the offline portion of the RBM algorithm significantly without sacrificing accuracy
for the examples we have tested.

The details of SMM are described in Sect. 3.1, and those of CDM in Sect. 3.2. Before
describing these details, we make three general remarks concerning the Algorithm template:

• Motiviation for constructing the STS In a standard sweep of (2.11) to identifyµ∗ from
�train that maximizes the error estimate�N (µ), we actually must compute�N (µ) for all
µ ∈ D. Standard RB algorithms discard this information upon identifying µ∗. However,
this is valuable, quantitative information about ‖eN (µ)‖ = ∥∥uN (µ) − uNN (µ)

∥∥ for any
µ ∈ D. Construction of �Sur attempts to utilize this information that was otherwise
discarded to identify not just µ∗, but a collection of parameters that can describe the
landscape of �(·). In other words, we gauge the accuracy of the reduced solution in
XN
N+1 for all μ, and trim from �train those parameters whose corresponding solutions

are deemed good enough. Roughly speaking, we set

�Sur:=
{
µ : uNN+1(µ) is predicted to be“inaccurate′′} . (3.1)
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Note that one can mathematically devise adversarial scenarios where such a procedure
can discard values in �train that later will be important. However, the outer loop of
the template is designed so that we reconsider any parameter values that may have been
discarded at one point. The goal is to construct�Sur in a balanced way: A strict definition
of “inaccurate” in (3.1) makes �Sur too large and no computational savings are realized;
a lax definition chooses too few values for�Sur and the RB surrogate will not be accurate.

• Stopping criteria for the STS On outer loop round �, we repeatedly sweep the current
STS �Sur after it is constructed until

max
µ∈�Sur

�N (µ) ≤ E�

1

((� + 1) × Kdamp)
,

where E� is the starting (global) maximum error estimate for this outer loop iteration.
The damping ratio 1

((�+1)×Kdamp)
, enforces that the maximum error estimate over the STS

decreases by a controllable factor Kdamp; in this paper we take Kdamp to be constant in �.
However, this damping ratio should be determined by the practitioner and the problem
at hand. Taking Kdamp as a constant works well in our test problems.

• Cost of constructing �Sur The cost of constructing �Sur is an overhead cost for each
outer loop of Algorithm 1. Therefore, we must formulate this construction so that the
overhead cost is worth the effort. For example, if the cost of evaluating �(·) at one value
isC , andwe select N� snapshots from�Sur at outer iteration �, thenwe attain cost savings
when

Cost of constructing �Sur

CN�

< |�train| − |�Sur|.

This yields qualitative information about the efficiency of the method: when the cost of
constructing �Sur is negligible, we may take a large �Sur, but when this cost is large, we
require a significant size reduction in order to amortize the initial investment.

3.1 Successive Maximization Method

Our first approach for constructing the surrogate training set is the Successive Maximization
Method (SMM). This procedure is motivated by the notion that the difference between the
norm of the errors |‖e(µ1)‖X − ‖e(µ2)‖X | is partially indicative of the difference between
the solutions. Computation of the true error norms is impractical, so like standard offline
RBM procedures we leverage the a posteriori error estimate �N (µ) defined in (2.13).

Suppose we have already selected N snapshots; when selecting parameter value N + 1
via (2.11), we must compile the values �N (�train) = {�N (µ) | µ ∈ �train}. We use this
collection to identify the surrogate training set. From our argument that the values ‖e(µ)‖
give us some indication about the actual solution, we equidistantly sample values from
�N (�train) to construct the surrogate training set.

With εtol the stopping tolerance for the RB sweep, let �max
N = max

µ∈�train
�N (µ). We define

I M�

N as an equi-spaced set between εtol and �max
N :

I M�

N =
{
νN ,m := εtol + (�max

N − εtol)
m

M�

: m = 0, . . . , M� − 1

}
. (3.2)
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Roughly speaking, we attempt to construct�Sur as�Sur = �−1
N

(
I M�

N

)⋂
�train. Rigorously,

we use

�Sur = {µN ,m : µN ,m = argminµ∈�train

{
�N (µ) − νN ,m such that �N (µ) ≥ νN ,m

}}
.

Note that we have |�Sur|≤M� by this construction. M� can be chosen as any monotonically
increasing function with respect to � such as 10(� + 1). But in order to avoid excessively
large �sur , we set M� = CM (� + 1) in this paper, where CM is a constant.

3.2 Cholesky Decomposition Method

The intuition of our second approach is that the angle between the error vectors is somewhat
symptomatic of the difference between the solutions. Thus, we consider the (scaled) Gramian
matrix G comprised of pairwise inner products of error vectors eN (µ). I.e.,

Gi, j = (e(µi ), e(µ j ))X

‖e(µi )‖X‖e(µ j )‖X
, µi ,µ j ∈ �train.

The matrix G is positive semi-definite, and thus admits a (pivoted) Cholesky decomposition.
We suppress notation indicating that G depends on the current number of snapshots N .

Our approach here is to apply the pivoted Cholesky decomposition [17] of the matrix G
with maximum times of pivoting M�, where M� = CM (� + 1) and CM is a constant. This
decomposition of G orders the elements of �train according to the pivots. We identify the
surrogate training set�Sur as the first M pivots (parameter values) selected by this procedure.

We don’t literally evaluate the error vectors eN (µ) or their Gramian G. Indeed, obtaining
the error vectors e(µ) is as expensive as solving for the truth approximation, we have to
approximate these vectors. A linear algebraic way to write the Galerkin system (2.5) is

A(µ)uN (µ) = f (µ), A ∈ RN×N

where A, uN , and f are discretization vectors associated to a(·, ·;µ), uN , and f (·;µ),
respectively. With this notation, we have

e(µ) = uN (µ) − uNN (µ) = A
−1
N (µ)r(uNN (µ);µ),

where the residual vector r(·;µ) is defined as r(v;µ) = f − AN (µ)v. We propose to
approximate the unknown A−1

N (µ) by

ÃN −1(µ) :=
Q∑

m=1

uNQm(µ)AN −1(µm), (3.3)

where {µm}Qm=1 are the key parameters,
{
uNQm(µ)

}Q
m=1

are the RB coefficients for uNQ (µ)

defined in (2.8) and {AN −1(µm)}Qm=1 are already computed when we solve uN (µm) . Since
(AN −1(µ) − ÃN −1(µ)) f = uN (µ) − uNN (µ), we argue that this approximation is reason-
able.

The approximation of e(µ) can be expressed as ẽ(µ) =
(∑Q

m=1 u
N
Qm(µ)A−1

N (µm)

)

r(uNN (µ);µ) which admits an affine decomposition, and the Gramian matrix G is approxi-
mated by

G̃i j = (̃e(µi ), ẽ(µ j ))/(||̃e(µi )||X × ||̃e(µ j )||X ), (3.4)

where 1 ≤ i, j ≤ Ntrain.
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Note that we can take Q to be smaller than the number of reduced basis N . For our exper-
iments, we take Q = √

N . This practice generates savings when forming the approximate
inverse (3.3) since the matrices A are of size N . Note also that, in (3.3), for practical imple-
mentations we don’t need to form any inverse matrices AN −1(µm). In fact, these inverse
matrices are multiplied with components of the residual r(v;µ) = f −AN (µ)v. Therefore,
we only need to solve a number of linear systems to form the Gramian (3.4). Moreover, these
linear solves are independent of the parameter hence can be performed offline. As a result,
the Gramian (3.4) is obtained in an offline-online decomposed, thus highly efficient, fashion.
We address the related complexity count in the next section and the “Appendix”.

3.3 Complexity Analysis

In “Appendix A.2” we see that the computational complexity for the offline portion of the
classical algorithm has order

Reduced solve preparation

N 2N 2Qa +
Greedy sweeping

NtrainWα + Ntrain(Q2
aN

3 + N4) + NWs +
Estimator preparation

Q2
a N

3Wm .

This cost is dominated by the boldface term in the middle, especially when �train is large.
We denote this cost Corig,

Corig := Ntrain(Q
2
a N

3 + N 4).

This is the portion of the offline cost that our Offline-Enhanced RBM is aiming to reduce.
Suppose we have computed n snapshots. Then the cost for assembling and solving the RB

system for one given parameter value µ is of order n2Qa + n3, while the cost for calculating
the error certificate is of order n2Q2

a . Therefore the total cost for one instance, denoted by
c(n), is of order n2Q2

a + n3. This means that the complexity for the classical RBM to sweep
over Ntrain := |�train| parameter values is

Ntrain

N∑
n=1

c(n) = O (Ntrain(Q
2
a N

3 + N 4)
)
.

To better analyze the cost of our Offline-enhanced approaches, we denote the cumulative
number of chosen parameter values after the j-th outer loop iteration by

t j = 1 +
j∑

k=1

Nk

We note that t0 = 1 because in standard RB algorithms the first parameter value is randomly
chosen before starting the greedy algorithm. If the RB procedure given by Algorithm 1
terminates after � outer loop iterations with a total of N snapshots, then we have t� = N .
The cost of the Offline-enhanced approaches corresponding to the dominating cost of the
classical approach Corig is
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Total cost
Coe =

One-step greedy scans on�train

Ntrain

�∑
j=0

c(t j ) +

Multi-step greedy scans on �Sur

�∑
j=1

Mj

⎛
⎝

t j−1∑
n=t j−1+1

c(n)

⎞
⎠

� Ntrain�c(N ) + Mmax

N∑
n=1

c(n), with Mmax := max
j=1,...,�

Mj

� Ntrain�(Q
2
a N

2 + N 3) + Mmax(Q
2
a N

3 + N 4).

We conclude that the dominating parameter sweeping costs between the classical and offline-
enhanced approaches satisfy

Coe < Corig
(

�

N
+ Mmax

Ntrain

)
. (3.5)

We make some remarks concerning this cost analysis:

• Potential savings—Since Mmax
Ntrain

is negligible especially for the cases of our concern when

the parameter dimension is high, (3.5) demonstrates that the savings is roughly �
N .

• Surrogate Training Set construction for SMM-RBM—The additional cost for the
Offline-enhanced approaches is the construction of the surrogate training set. For SMM-
RBM, this cost is essentially negligible. This SMM surrogate training set construction
cost is mainly dependent on the cost of evaluating the error certificate �N , but this cost
has already been included in the analysis above. In practice, the surrogate training set
construction amounts to a quick sorting of these certificates which results in a cost of
O(Ntrain log(Ntrain)). While this cost does depend on Ntrain, it is much smaller than any
of the terms in, e.g., Corig.

• Surrogate Training Set for CD-RBM—CD-RBM entails a sequence of (pivoted)
Cholesky Decomposition steps applied to the approximate error Gramian matrix G̃,
(3.4). For the decomposition algorithm, it suffices to just supply the approximate errors
ẽ(µ) without constructing the full matrix G̃. Therefore, the cost is primarily devoted to
computing these approximate errors for all µ. Evaluating these error functions can be
accomplished in an offline-online way detailed in “Appendix A.3”. We summarize here
the total cost for the STS construction.

Offline Preparation

N 2QNRBQa +
Approximate error calculation

NtrainNQNRBQa� +

� runs of Pivoted CD algorithm

Ntrain

�∑
j=1

(
n j
cd

)2

where n j
cd is the number of steps of the pivoted Cholesky decomposition for the j-th

iteration. We see that this algorithm can be more costly than SMM-RBM because of the
factor NQNRBQa . However, we observe that it is still much faster than the classical
version since this factor is notably smaller than Q2

a N
3
RB + N 4

RB. This is confirmed by our
numerical examples presented in the next section.

4 Offline-Enhanced RBM: Numerical Results

In this section, we present numerical examples to illustrate the accuracy and efficiency
enhancement of the proposed approaches compared to the conventional reducedbasismethod.
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4.1 Test Problems

We test the two algorithms, SMM-RBM and CD-RBM, on two standard diffusion-type prob-
lems. They vary substantially in terms of parameter dimension and the truth solver. Our results
show that our offline-enhanced procedures work well in both of these cases, and suggest that
the offline-enhanced strategies may be beneficial for a wider class of parameter spaces and
truth solvers.

Diffusion problem with two-dimensional parameter domain

(1 + μ1x)uxx + (1 + μ2y)uyy = e4xy on �. (4.1)

Here � = [−1, 1]× [−1, 1] and we impose homogeneous Dirichlet boundary conditions on
∂�. The truth approximation is a spectral Chebyshev collocation method based onNx = 35
degrees of freedom in each direction, with N 2

x = N . The parameter domain D for (μ1, μ2)

is taken to be [−0.99, 0.99]2. For the �train we discretize D using a tensorial 160 × 160
Cartesian grid with 160 equi-spaced points in each dimension.

Thermal Block problem with nine-dimensional parameter domain
⎧
⎪⎨
⎪⎩

−∇.(a(x,µ)∇u(x,µ)) = f on �,

u(x,µ) = gD on �D,
∂u
∂n = gN on �N .

(4.2)

Here � = [0, 1] × [0, 1] which is partitioned into 9 blocks
⋃9

i=1Bi = �, �D is the top
boundary, and �N = ∂�\�D . The parametersμi , 1 ≤ i ≤ 9 denote the heat conductivities:

�D

μ7(B7) μ8(B8) μ9(B9)

μ4(B4) μ5(B5) μ6(B6)

μ1(B1) μ2(B2) μ3(B3)

�base

The diffusion coefficient a(x,µ) = μi if x ∈ Bi . The parameter vector is thus given by
µ = (μ1, μ2, . . . , μ9) in D = [0.1, 10]9. We take as the right hand side f = 0, gD = 0,
gN = 1 on the bottom boundary�base and gN = 0 otherwise. The output of interest is defined
as the integral of the solution over �base

s(µ) =
∫

�base

u(x,µ)dx (4.3)

The truth approximation is obtained by FEMwithN = 361. A sufficient number of Ntrain =
20, 000 samples are taken from randomly sampling within the parameter domain D. The
classical RB solver for this problem is provided by, and our Offline-enhanced approach is
compared against, the RBmatlab package [14,15].3

4.2 Results

We investigate the performance of the two offline-enhanced RB algorithms on the two test
problems. The tuning parameters for Algorithm 1 for both examples are shown in Table 3.

For the first test case with a two-dimensional parameter domain that is easy to visualize,
we display the location of the selected parameter values in Fig. 1. On the left is that for the

3 Available for download at http://www.ians.uni-stuttgart.de/MoRePaS/software/index.html.
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Table 3 Offline-enhanced RBM
parameters for the numerical
results

Parameter SMM-RBM CD-RBM

M� 2 × (� + 1) 20 × (� + 1)

Kdamp 1 10

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

μ1

μ
2

Classical RBM parameter selection

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

μ1

μ
2

SMM-RBM parameter selection

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

μ1

μ
2

CDM-RBM parameter selection

Fig. 1 Selected parameter values by a classical offline RBM algorithm (left), by the SMM-RBM algorithm
(center), and by the CDM-RBM algorithm (right). Points with larger radius are chosen earlier in the sequence,
and for the SMM and CDM plots points earlier in the sequence have greater transparency. For the SMM and
CDM plots, all chosen parameters within a batch (an outer loop in Algorithm 1) have the same radius

classical RBM. The larger the marker, the earlier the parameter is picked. At the middle and
on the right are the parameter sets selected by SMM-RBM and CD-RBM respectively. For
these two, the more transparent the marker, the earlier it is picked. A group of parameter
values chosen at the same step have the same radius. This figure shows that the enhanced
algorithm does “preserve” the usual property when it comes to the distribution of the key
parameter values determined by RBM. That is, they tend to distribute along the boundary of
the parameter domain.We observe similar phenomenon for the 9-dimensional point selection
for the second test case, but omit the visualization for brevity and simplicity.

The accuracy and efficiency of the new algorithms are shown in Fig. 2. We see clearly
that the a posteriori error estimate is converging exponentially for both SMM-RBM and CD-
RBM, in the same fashion as the classical version of RBM. This shows that our accelerated
algorithm does not appear to suffer accuracy degradation for these examples. In addition, we
see a factor of 3-to-6 times runtime speedup.

The influence of the tuning parameters M� and Kdamp are shown in Tables 4 and 5. We
test two cases: εtol = 0.05 and εtol = 0.01. For each case, we choose 6 different tuning
parameters and check the performance of our algorithm by measuing the relative time and
Nmax. The relative time for each scenario is defined as the corresponding running time
scaled by the running time of the case with Kdamp = 1/2 and M� = 4(� + 1). We observe
that the performance of our approaches, especially the SMM-RBM, is rather monotonically
improving as expected, and the size of the resultingRBspace is rather stable.As a comparison,
we implemented the random greedy sampling strategy proposed in [18]. The results are not
included in this paper, but they appear to show non-negligible variations between the runs
for the same tuning parameter. This variation is zero for our case since our algorithm is
deterministic. More importantly, as we change the tuning parameter, the algorithm appears
to be less stable and less monotonic comparing with ours.
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Fig. 2 Convergence and speedup of offline-enhanced RBM algorithms as a function of the total number of
snapshots n. Error estimate convergence (top), computational runtime (middle), and speedup factor (bottom).
Left-hand plots correspond to the test problem 1, and right-hand plots for test problem 2

Finally, to reveal the effectivity of the construction of the surrogate training set, we plot
in Fig. 3 the Surrogate Acceptance Ratio

SAR(�) := N�

M�

as a function of the outer loop iteration index �. This ratio quantifies how much of the
surrogate training set is added to the snapshot parameter set at each outer loop iteration.
Large ratios suggest that our construction of the surrogate training set effectively emulates
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Table 4 Tuning parameter testing for SMM-RBM

Kdamp M� εtol = 0.05 εtol = 0.01

Relative time Nmax Relative time Nmax

1/2 4(� + 1) 1.0000 42 1.0000 62

1/5 10(� + 1) 0.8795 43 0.9885 62

1/10 20(� + 1) 0.8571 43 0.9043 60

1/20 40(� + 1) 0.8651 43 0.9490 63

1/30 60(� + 1) 0.8422 42 0.9026 62

1/40 80(� + 1) 0.7550 41 0.8400 61

Table 5 Tuning parameter testing for CD-RBM

Kdamp M� εtol = 0.05 εtol = 0.01

Relative time Nmax Relative time Nmax

1/10 20(� + 1) 1.0000 44 1.0000 63

1/20 40(� + 1) 0.9654 43 0.8769 61

1/30 60(� + 1) 0.9621 43 0.8816 60

1/40 80(� + 1) 0.9379 42 0.9016 62

1/50 100(� + 1) 0.9357 42 0.9018 62

1/60 120(� + 1) 0.9372 42 0.9082 63

the entire training set. In Fig. 3 we see that a significant portion (on average approximately
40% for the first case and 30% for the second case) of the surrogate training set is chosen
by the greedy algorithm before continuing into another outer loop. We recall that the second
case has a 9-dimensional parameter domain, and so our offline-enhanced RBM procedure
can effectively choose surrogate training set even when the parameter dimension is large. The
relatively large values of the SAR result in the computational speedup observed in Fig. 2.

5 Concluding Remarks

We proposed offline-enhanced reduced basis methods for building reduced-order models;
RBM algorithms invest significant resources in an offline stage by studying a finite training
set and judiciously choosing snapshots from this training set. Our novel approach substitutes
the original training set with an adaptively constructed the surrogate training set that is much
smaller in size, and thus reduces the computational time spent in the offline portion of the
RBM algorithm. (Our algorithm leaves the online portion of RBM algorithms unchanged).

We provide two approaches to identify and construct the surrogate training set using
two different perspectives: the SMM-RBM strategy constructs a surrogate training set by
uniformly sampling parameters on the range of the a posteriori error estimate; the CD-
RBM strategy uses the angle between two approximate error vectors at different locations in
parameter space to identify the surrogate training set. Like RBM in general, our approaches
are particularly useful in computing many-query reliable solutions parametrized PDE having
a large number of random inputs. We have demonstrated the computational efficiency of our
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Fig. 3 The surrogate acceptance ratio (SAR) for the offline-enhanced RBM methods, SMM (top) and CDM
(bottom). Test problem 1 is shown on the left, and test problem 2 on the right

proposed methods compared against the standard reduced basis method for two steady-state
diffusion problems. The application of the offline-enhanced reduced basis method to more
general problems with high dimensional parameter domains is ongoing research.

A Classical RBM Specifics: Greedy Algorithms, Efficiency, and
Operational Count

This “Appendix” contains the mathematical and algorithmic portions of RBM algorithms
that are not directly the subject of this manuscript. These specifics are well-known in the
RBM literature and community, and we include this “Appendix” mainly for completeness
of this manuscript. Section A.1 discusses the mathematical justification for why the greedy
procedure (2.11) is a good selection of parameter snapshots. Section A.2 gives an overview
of the RBM procedure, and quantifies the computational complexity of the RBM algorithm.
Careful scrutiny of this operational count illustrates why RBM algorithms can simulate
parameterized problemswithN -independent complexity in the online phase of the algorithm.

Finally, Sect.A.3 discusses an efficientmethodology to compute entries of the approximate
Gramian G̃ used by (3.4) in theCDMalgorithm. This procedure is a relatively straightforward
application of the offline–online decomposition already employed by RBM algorithms.
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A.1 Greedy and Weak Greedy Algorithms

The best N -dimensional RB space XN
N in X among all possible N -dimensional subspaces

of the solution manifold u (·;D) is in theory the one with the smallest Kolmogorov N -width
dN [28]:

dN [u (·;D)] := inf
XN⊂XN u(·;�)
dim XN=N

sup
μ∈D

inf
v∈XN

‖u(·, μ) − v‖X (A.1)

The identification of an exact-infimizer for the outer “inf” is usually infeasible, but a promi-
nent approach is to employ a greedy strategy which locates this N -dimensional space
hierarchically. A first sample set S1 = {µ1} is identified by randomly selecting µ1 from
�train; its associated reduced basis space XN

1 = span{uN (µ1)} is likewise computed. Sub-
sequently parameter values are greedily chosen as sub-optimal solutions to an L2(�train; X)

optimization problem [33]: for N = 2, . . . , Nmax, we find

µN = argmax
µ∈�train

||uN (µ) − uNN−1(µ)||XN (A.2)

where uNN−1(µ) is the RB solution (2.8) in the current (N −1)-dimensional subspace. Direct
calculation of uN (µ) to solve this optimization problem over all µ is impractical. There-
fore, an even weaker greedy algorithm is usually employed where we replace the error
‖uN (µ)−uNN−1(µ)‖X by an inexpensive and computable a posteriori bound�N−1 (see the
next section). After identifying µN , the parameter snapshot set and the reduced basis space
are augmented, SN = SN−1 ∪ {µN } and XN

N = XN
N−1 ⊕ {u(µN )}, respectively.

A.2 Offline–Online Decomposition

The last component of RBM that we plan to review in this section is the Offline–Online
decomposition procedure [33]. The complexity of the offline stage depends on N which is
performed only once in preparation for the subsequent online computation,whose complexity
is independent ofN . It is in theN -independent online stage where RBM achieves certifiable
orders-of-magnitude speedup compared with other many-query approaches. The topic of this
paper addresses acceleration of the offline portion of the RBM algorithm. In order to put this
contribution of this paper in context, in this sectionwe perform a detailed complexity analysis
of the decomposition.

We let Ntrain = |�train| denote the cardinality (size) of �train; N ≤ Nmax is the dimension
of the reduced basis approximation computed in the offline stage. Computation of the the
lower bound αN

LB(µ) is accomplished via the Successive Constraint Method [20].
During the online stage and for any new µ, the online cost of evaluating αN

LB(µ) is
negligible, but we use Wα to denote the average cost for evaluating these values over �train

(this includes the offline cost).Ws is the operational complexity of solving problem (2.5) once
by the chosen numerical method. For most discretizations, N 2 � Ws ≤ N 3. Finally, Wm is
thework to evaluate the XN -inner product ( f, g)XN which usually satisfiesN � Wm � N 2.
Using these notations we can present a rough operation count for the three components of
the algorithm.

A.2.1 Online Solve and its Preparation

The system (2.9) is usually of small size: a set of N linear algebraic equations for N unknowns,
with N � N . However, the formation of the stiffness matrix involves uN (µn) for 1 ≤ n ≤
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N ; direct computation with these quantities requiresN -dependent complexity. It is the affine
parameter assumption (2.4) that allows us to circumvent complexity in the online stage. By
(2.4), the stiffness matrix for (2.9) can be expressed as

N∑
m=1

Qa∑
q=1

	q(µ)aq
(
uN
(
µm) , uN (µn)) uNNm(µ) = f

(
uN
(
µn)) , n = 1, . . . , N (A.3)

During the offline stage, we can precompute the Qa matrices aq
(
uN (µm) , uN (µn)

) ∈
RN×N for q = 1, . . . , Qa with a cost of order N 2N 2Qa . During the online phase, we need
only assemble the reduced stiffness matrix according to (A.3), and solve the reduced N × N
system. The total online operation count is thus of order QaN 3 + N 4.

A.2.2 Error Estimator Calculations

With a cost of order QaNN in the offline stage, we can calculate functions C and Lq
m ,

1 ≤ m ≤ N , 1 ≤ q ≤ Qa both defined by
{

(C, v) = f (v)XN ∀v ∈ XN

(Lq
m, v)XN = −aq(uN (µm) , v) ∀v ∈ XN .

(A.4)

Here, we assume that the X -inner product can be “inverted” with cost of order N , i.e. that
the mass matrix is block diagonal. The availability of C and Lq

m facilitates an Offline–Online
decomposition of the term ‖rN (·;µ)‖(XN )′ in the error estimate (2.13) due to that its square
can be written as

(C, C)XN + 2
Qa∑
q=1

N∑
m=1

	q(µ)uNNm(µ)(C,Lq
m)X

+
Qa∑
q=1

N∑
m=1

	q(µ)uNNm

⎧
⎨
⎩

Qa∑
q ′=1

N∑
m′=1

	q ′
(µ)uNNm′(Lq

m,Lq ′
m′)XN

⎫
⎬
⎭ . (A.5)

Therefore, in the offline stage we should calculate and store (C, C)XN , (C,Lq
m)XN ,

(Lq
m,Lq ′

m′)XN , 1 ≤ m,m′ ≤ NRB, 1 ≤ q, q ′ ≤ Qa . This cost is of the order Q2
a N

3Wm .
During the online stage, given any parameter µ, we only need to evaluate 	q(µ), 1 ≤ q ≤
Q, uNNm(µ), 1 ≤ m ≤ N , and compute the sum (A.5). Thus, the online operation count for
each µ is O(Q2

a N
3).

A.2.3 Greedy Sweeping

In the offline phase of the algorithm, we repeatedly sweep �train for maximization of the
error estimator �n(µ), 1 ≤ n ≤ N . The offline cost includes:

• computing the lower bound αN
LB(µ). The operation count is O(NtrainWα),

• sweeping the training set by calculating the reduced basis solution and the a pos-
teriori error estimate at each location. The operation count of the former one is
O(Ntrain(QaN 3

RB + N 4
RB)). The operation count of the latter one is O(NtrainQ2

aN
3
RB).

• solving system (2.5) N times. The total operation count is O(NWs).
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A.2.4 Summary

The total offline portion of the algorithm has complexity of the order

Reduced solve preparation

N 2N2Qa +
Greedy sweeping

NtrainWα + Ntrain(Q
2
a N

3 + N4) + NWs +
Estimator preparation

Q2
a N

3Wm .

The total online cost including the error certification is of order Q2
a N

3.

A.3 Offline–Online Decomposition for the Approximate CDM-RBM Gramian ˜G

The entries of the matrix G̃ defined in (3.4) can be efficiently computed assuming that
we can compute the approximate errors {̃e(µ) : µ ∈ �train} in an offline–online fashion.
To accomplish this, note that AN (µ)(v) = ∑Qa

k=1 θak (µ)Ak(v) by (2.4), where Ak(.) is a
nonparametric matrix operator, so that

ẽ(µ) =
⎛
⎝

Q∑
m=1

uNNm(µ)A−1
N (µm)

⎞
⎠
(
fN − AN (µ)

(
N∑

m=1

uNNm(µ)uN
(
µm)

))

=
Q∑

m=1

uNNm(µ)

(
A

−1
N (µm) fN

)
−

Q∑
m=1

N∑
m′=1

uNNm(µ)uNNm′ (µ)

(
A

−1
N (µm)AN (µ)

(
uN

(
µm′)))

=
Q∑

m=1

uNNm(µ)

(
A

−1
N (µm) fN

)
−

Q∑
m=1

N∑
m′=1

Qa∑
k=1

θak (µ)uNNm(µ)uNNm′ (µ)

(
A

−1
N (µm)Ak(u

N
(
µm′)

)

)
,

Therefore, we can split this computation into offline and online components as follows:

• Offline Calculate A
−1
N (µm) f N and A

−1
N (µm)Ak

(
uN
(
µm′))

for 1 ≤ m′ ≤ N , 1 ≤
m ≤ Q , 1 ≤ k ≤ Qa, Q ≤ N , with complexity O(N 2QNQa).

• OnlineEvaluate the coefficients uNNm(µ) and θak (µ)uNNm(µ)uNNm′(µ) and form ẽ(µ). The
online computation has complexity O(NQNQa).
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