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Abstract We introduce and analyze the first energy-conservative hybridizable discontinuous
Galerkin method for the semidiscretization in space of the acoustic wave equation. We prove
optimal convergence and superconvergence estimates for the semidiscrete method. We then
introduce a two-step fourth-order-in-time Stormer-Numerov discretization and prove energy
conservation and convergence estimates for the fully discrete method. In particular, we show
that by using polynomial approximations of degree two, convergence of order four is obtained.
Numerical experiments verifying that our theoretical orders of convergence are sharp are
presented. We also show experiments comparing the method with dissipative methods of the
same order.
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1 Introduction

We introduce energy-conservative hybridizable discontinuous Galerkin (HDG) methods for
the wave equation

ρü(t) = div(κ∇u)(t) + f (t) in �, ∀t ≥ 0, (1.1a)

u(t) = g(t) on �, ∀t ≥ 0, (1.1b)

u(0) = u0, in �, (1.1c)

u̇(0) = v0 in �. (1.1d)

We will use evolution equation notation for functions of space and time, where only time-
dependence is shown explicitly. Differential operators act on the space variables and time-
derivatives are shown in dot notation (i.e. u̇ denotes the first derivative). Here � is a bounded
open polygonal set in Rd with Lipschitz boundary ∂� denoted as �. We assume that ρ, κ ∈
L∞(�), κ ≥ κ0 > 0 and ρ ≥ ρ0 > 0 almost everywhere, and f : [0,∞) → L2(�),
g : [0,∞) → H1/2(�) are continuous functions of the time variable. With the help of flux
variable q(t) := −κ∇u(t), the system (1.1) can be rewritten in terms of u and q as follows:

q(t) + κ∇u(t) = 0, in �, ∀t ≥ 0, (1.2a)

ρü(t) + ∇ · q(t) = f (t) in �, ∀t ≥ 0, (1.2b)

u(t) = g(t) on �, ∀t ≥ 0, (1.2c)

u(0) = u0, in �, (1.2d)

u̇(0) = v0 in �. (1.2e)

The system of equations (1.2) have been subject of several numerical studies. Particularly,
among finite element methods approximating its solution we find the following: continuous
Galerkin methods [1,12], interior penalty methods [18], mixed methods [10,11,15,19], dis-
continuousGalerkinmethods [3,13,14,21] and hybridizable discontinuousGalerkinmethods
[9,16,17,22]. For a more complete description and comparison of some of these methods
see [22].

Let us describe our results. The first hybridizable discontinuous Galerkin (HDG) method
was introduced by Cockburn, Gopalakrishnan and Lazarov in 2009 [7] in the framework of
purely diffusion problems. The hybridization of finite element methods is a technique by
which the method can be statically condensed and hence efficiently implemented. Discontin-
uous Galerkin methods to which this technique can be applied are called the HDG methods.
Extensive numerical and theoretical results indicate that these newmethods can also be more
accurate and can be applied to a wide range of PDEs.

The first HDG method for wave propagation in acoustics and elastodynamics was intro-
duced and numerically tested in 2011 [22]. The wave equation is rewritten as a first-order
system in terms of the velocity v := u̇, the flux q and the original variable u. The HDG
method is then used to discretize in space and get an evolution equation for the approxima-
tions to the velocity and the flux; only the elementwise average of u is evolved in time. A
theoretical a priori error of the semidiscrete HDG method was then provided by Cockburn
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and Quenneville-Bélair in 2014 [9]. For unstructured meshes of shape-regular simplexes,
they showed that the approximations to the velocity converge with the optimal order of k+1
in the L2-norm uniformly in time whenever polynomials of degree k ≥ 0 are used. They also
showed that a local postprocessing of the original scalar unknown u converges with order
k + 2 for k ≥ 1. This HDG method, however, is dissipative.

In contrast, the staggered discontinuous Galerkin (SDG) method proposed by Chung
and Engquist in 2009 [5] is not. The advantage of conservative methods, like the SDG
method, is that they are known to provide better approximation for a long time. The SDG
method discretizes in space the above-mentioned first-order system and achieves, for the
approximations to the velocity and flux, the optimal order of k +1 in the L2-norm uniformly
in time whenever polynomials of degree k ≥ 0 are used. The relation between the SDG and
the HDG methods was uncovered by Chung, Cockburn and Fu in 2014 [4] in the framework
of steady-state diffusion problems. They showed that the SDG method can be obtained as
the limit of an HDGmethod when the stabilization function is set to zero or sent to infinity in
a suitable manner which results in a non-dissipative method in the present setting. By using
this fact, one can easily prove that the local postprocessing of the original scalar unknown u
used for the HDG method also converges with order k + 2 for k ≥ 1 for the SDG method.

Other conservative methods are those that use mixed methods to discretize in space the
equations of the first-order system; see, for example, the references in [9]. However, their
mass matrix is not easily invertible since the H(div)-conformity of the space of fluxed forces
precludes it from begin block-diagonal. This is the difficulty avoided by the SDG method
and by any DG method, although most DG methods for first-order hyperbolic systems are
actually dissipative. A conservative, local discontinuousGalerkin (LDG)method to discretize
in space (on Cartesian meshes) the second-order equations (1.2) was proposed by Chou, Shu
and Xing in 2014 [3]. When using polynomials of degree k, the approximation to u is proven
to converge with the optimal order of k + 1 in the L2-norm uniformly in time.

In this paper, we construct the first energy-conservative HDG methods for wave prop-
agation. Unlike the HDG methods considered in [9,22], to define the method, we use the
second-order system (1.2), just as done in [3] and achieve the conservation of a discrete energy
simply by using the standardHDG numerical traces. For the semidiscrete case, we show that,
just as for the HDG methods considered in [9], the approximations to the velocity and flux
converge with the optimal order of k + 1 in the L2−norm whenever piecewise-polynomial
approximations of degree k ≥ 0 are used. We also show that, an element-by-element post-
processing the approximation to u superconvergeswith order k+2 for k ≥ 1. As an example
of a fully discretized scheme, we consider the method obtained by applying the Stormer-
Numerov time-discretization to the above HDG semidiscrete scheme; see its application and
analysis to other finite element method in [20].We display the corresponding discrete energy,
show that it is conserved and prove that the optimal convergence of the velocity and flux and
the superconvergence of u can also be achieved. In particular, fourth order accuracy in the
approximation of u holds when polynomials of degree two are used.

The paper is organized as follows. In Sect. 2, we introduce the semidiscrete HDGmethod,
prove its energy-conserving property, and present and discuss the main results of its a priori
error analysis. In Sect. 3, we display detailed proofs. In Sect. 4, we study the full discretization
of themethod by using the Stormer-Numerovmethod. The proofs of the corresponding results
are provided in Sect. 5. We end in Sect. 6 with some concluding remarks.

123



600 J Sci Comput (2018) 75:597–624

2 The Semidiscrete Scheme

In this section, we introduce our HDG formulation of the equation (1.2), and state and briefly
discuss its convergence properties.

2.1 Notation

Throughout the paper, we will use round brackets for ‘volume’ integrals on an open set
D ⊂ R

d , (u, v)D := ∫
D u v and (q, r)D := ∫

D q · r, and angled brackets for integrals on
flat (d − 1)-manifolds or union thereof 〈u, v〉F := ∫

F u vdF. On the surface of any given
polygonal domain D, the unit normal vector field n∂D : ∂D → R

d will be taken pointing
outwards. We use the standard notation of the norm and seminorm on Sobolev spaces. We
also write ‖q‖2

κ−1 := (κ−1q, q)Th , ‖u‖2ρ := (ρu, u)∂Th and |u|2τ := 〈τ u, u〉∂Th .
To describe the HDG method, we discretize our domain by a conforming triangula-

tion Th formed of triangles (d = 2) or tetrahedra (d = 3). The set of edges (d = 2) or
faces (d = 3) of the elements of the triangulation is denoted Eh . We will collect integrals
over elements or their boundaries with the following notation: (u, v)Th := ∑

K∈Th
(u, v)K ,

(q, r)Th := ∑
K∈Th

(q, r)K and 〈u, v〉∂Th := ∑
K∈Th

〈u, v〉∂K . Also 〈u, v〉∂Th\� :=∑
K∈Th

〈u, v〉∂K\(∂K∩�) and 〈u, r · n〉∂Th :=∑K∈Th
〈u, r · n∂K 〉∂K .

The finite element spaces for the HDG semidiscretization are

V h :=
{

q : � → R
d : q|K ∈ P p(K ) ∀K ∈ Th

}
,

Wh := {
u : � → R : u|K ∈ Pp(K ) ∀K ∈ Th

}
,

Mh := {
û : ∪e∈Eh → R : û|e ∈ Pp(e) ∀e ∈ Eh

}
.

HerePp(K ) is the space of d-variate polynomials of degree less than or equal to p,P p(K ) :=
Pp(K )d and Pp(e) is the space of (d − 1)-variate polynomials of degree less than or equal
to p on e ∈ Eh . In this paper p is a fixed (but arbitrary) non-negative integer.

2.2 The HDG Method

We look for qh : [0,∞) → V h , uh : [0,∞) → Wh , and ûh : [0,∞) → Mh, satisfying
(
κ−1qh(t), r

)
Th

− (uh(t),∇ · r)Th + 〈̂uh(t), r · n〉∂Th = 0 ∀r ∈ V h, (2.1a)

(ρüh(t), w)Th − (qh(t),∇w)Th + 〈̂qh(t) · n, w〉∂Th = ( f (t), w)Th ∀w ∈ Wh, (2.1b)

q̂h(t) · n := qh(t) · n + τ(uh(t) − ûh(t)) on ∂Th, (2.1c)

〈̂qh(t) · n, μ〉∂Th\� = 0 ∀μ ∈ Mh, (2.1d)

〈̂uh(t), μ〉� = 〈g(t), μ〉� ∀μ ∈ Mh, (2.1e)

for all t ≥ 0, as well as the initial condition

uh(0) = uh,0, u̇h(0) = vh,0. (2.1f)

The initial data are suitably defined approximations in Wh of the initial data u0 and v0. The
stabilization function τ is independent of t and is defined to be piecewise constant and non-
negative on ∂K for all K . We assume that for each K ∈ Th , there exists at least one e ∈ E(K )

(the set of edges/faces of K ) where τ is strictly positive. Equation (2.1d) is then equivalent
to demanding that the normal component of the numerical flux q̂h(t) be single-valued on
internal edges/faces of the triangulation. With some algebra it is possible to show that (2.1)
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can be expressed as a second order linearly implicit system of linear ordinary differential
equations in the variable uh with initial data (2.1f). Therefore, the initial value problem (2.1)
has a unique solution qh , uh and ûh if f : [0,∞) → L2(�) and g : [0,∞) → L2(�) are
continuous.

We end the definition the HDG method by describing the element-by-element post-
processing technique to compute the approximation u∗

h(t) at any time t ≥ 0. For any K ∈ Th
we define a new approximate displacement u∗

h |K ∈ Pp+1(K ) determined by
(∇u∗

h(t),∇w
)
K = (qh(t),∇w)K , ∀ w ∈ Pp+1(K ),

(
u∗
h(t), 1

)
K = (uh(t), 1)K . (2.2)

2.3 Energy Conservation

We begin by showing that the HDG method has the following two energy conservation
properties.

Proposition 2.1 (Energy identities) If (qh(t), uh(t), ûh(t)) is a solution of (2.1) and

Eh(t) := 1
2‖qh(t)‖2κ−1 + 1

2‖u̇h(t)‖2ρ + 1
2 |uh(t) − ûh(t)|2τ

Fh(t) := 1
2‖q̇h(t)‖2κ−1 + 1

2‖üh(t)‖2ρ + 1
2 |u̇h(t) − ˙̂uh(t)|2τ ,

then

Ėh(t) = ( f (t), u̇h(t))Th − 〈ġ(t), qh(t) · n + τ(uh(t) − ûh(t)〉�,

Ḟh(t) = ( ḟ (t), üh(t))Th − 〈g̈(t), q̇h(t) · n + τ(u̇h(t) − ˙̂uh(t)〉�.

Note that, when f ≡ 0 and g is independent of time, the energies Eh(t) and Fh(t) are
conserved.

Proof Differentiate (2.1a) with respect to time, and test the first equation with qh(t), test the
second equation with u̇h(t), test (2.1d) with −˙̂uh(t), and finally differentiate (2.1e) and test
it with −q̂h(t) · n. Adding the results, we obtain the first energy identity.

To obtain the second, we first differentiate the whole set of equations in (2.1) with respect
to time and then proceed as in the proof of the first identity. This completes the proof. ��
2.4 Error Estimates

To obtain our a priori error estimates, we first obtain estimates of the projections of the

errors ε
q
h(t) := �q(t) − qh(t), ε

q̇
h(t) := �q̇(t) − q̇h(t), εuh (t) := 	u(t) − uh(t), ε u̇

h (t) :=
	u̇(t)−u̇h(t), ε ü

h (t) := 	ü(t)−üh(t), ε̂ u
h (t) := Pu(t)−ûh(t) and ε̂ u̇

h (t) := Pu̇(t)− ˙̂uh(t).
We let P be the standard L2-projection ontoMh and (�,	) be the HDG projection we define
next; see [8]. In addition, we denote by Pp−1 : Th → R the standard L2-projection onto
piecewise polynomials of degree at most p − 1. From these estimates, we easily deduce the
results of the corresponding, actual errors.
TheHDG projectionGiven any function pair (q, u), we recall that the projection (�q,	u) ∈
V h × Wh is defined as the unique solution of the equations

(�q, r)K = (q, r)K ∀r ∈ P p−1(K ), (2.3a)

(	u, w)K = (u, w)K ∀w ∈ Pp−1(K ), (2.3b)

〈�q · n + τ 	u, μ〉∂K = 〈q · n + τ u, μ〉∂K ∀μ ∈ Rp(∂K ), (2.3c)
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where Rp(∂K ) is the restriction of Mh to ∂K . Note that we follow the notation of [8], where
the fact that both �q and 	u depend simultaneously on q and u is not made explicit for the
sake of simplicity. Let us recall the approximate result proven in the Appendix of [8].

Theorem 2.2 [8, Theorem 2.1] Suppose p ≥ 0, τ |∂K is nonnegative and τmax
K :=

max τ |∂K > 0. Then the system (2.3) is uniquely solvable for (�q,	u). Furthermore,
there is constant C independent of K and τ such that

‖	q − q‖K ≤ Ch
lq+1
K | q|Hlq+1(K ) + Chlu+1

K τ ∗
K |u|Hlu+1(K ),

‖	u − u‖K ≤ Chlu+1
K |u|Hlu+1(K ) + C

h
lq+1
K

τmax
K

|∇ · q|Hlq (K ),

for lu, lq in [0, p]. Here τ ∗
K := max τ |∂K\F∗ , where F∗ is a face of K at which τ |∂K is

maximum.

It is not difficult to see that the projection converges with the optimal order p+1 provided
the function (q, u) is smooth enough.
Estimates of the projection of the errors We now provide uniform-in-time estimates of the
projection of the errors. We use the following notation

|||(r, w,μ)||| := [‖r‖2
κ−1 + ‖w‖2ρ + |μ|2τ

]1/2
.

Theorem 2.3 For any T > 0 and p ≥ 0, we have that

|||(εqh , εu̇h , εuh − ε̂ u
h )(T )||| ≤ |||(εqh , εu̇h , εuh − ε̂ u

h )(0)||| +
∫ T

0

(‖�q̇ − q̇‖κ−1 + ‖	ü − ü‖ρ

)
,

|||(εq̇h , εüh , εu̇h − ε̂ u̇
h )(T )||| ≤ |||(εq̇h , εüh , εu̇h − ε̂ u̇

h )(0)||| +
∫ T

0

(‖�q̈ − q̈‖κ−1 + ‖	...
u − ...

u ‖ρ

)
.

Moreover, for p ≥ 1 and if the following regularity hypothesis holds

η ∈ H1
0 (�), ∇ · (κ∇η) ∈ L2(�) �⇒ η ∈ H2(�), (2.4)

then

‖ρPp−1ε
u
h (T )‖� ≤ C

(
‖Pp−1ε

u
h (0)‖� + ‖Pp−1ε

u̇
h (0)‖�

)

+ Ch

(

‖q(0) − qh(0)‖� + sup
t∈(0,T )

‖q̇(t) − q̇h(t)‖�

)

+ Ch

(

sup
t∈(0,T )

‖ü(t) − üh(t)‖�

)

.

Note that these estimates hold independently of the way we define the initial data
(uh(0), u̇h(0)). Next, we pick a particular choice which will give rise to optimal estimates
and to superconvergence of the projection of the error in the approximation of the scalar
variable u. If ∇κ ∈ L∞(�)d , the regularity hypothesis (2.4) implies the existence of C > 0
such that

‖η‖H2(�) ≤ C ‖∇ · (κ∇η)‖�, ∀η ∈ H1
0 (�) s.t. ∇ · (κ∇η) ∈ L2(�). (2.5)

Note also that if κ is a constant and � is a convex polyhedron, the hypotheses (2.4)–(2.5)
hold.
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The initial condition The initial data (uh(0), u̇h(0)) is defined as follows. The function uh(0)
is obtained by using the HDG method for the elliptic problem

q(0) + κ∇u(0) = 0, ∇ · q(0) = −∇ · (κ∇u0), in �, u(0) = g(0) on �,

that is, we take (qh(0), uh(0), ûh(0)) ∈ V h × Wh × Mh as the solution of
(
κ−1qh(0), r

)
Th

− (uh(0),∇ · r)Th + 〈̂uh(0), r · n〉∂Th = 0, (2.6a)

− (qh(0),∇w)Th + 〈̂qh(0) · n, w〉∂Th = (−∇ · (κ∇u0), w)Th
, (2.6b)

q̂h(0) · n := qh(0) · n + τ(uh(0) − ûh(0)) on ∂Th, (2.6c)

〈̂qh(0) · n, μ〉∂Th\� = 0, (2.6d)

〈̂uh(0), μ〉� = 〈g(0), μ〉�, (2.6e)

for all (r, w,μ) ∈ V h × Wh × Mh .
The function u̇h(0) is obtained by using the auxiliary HDG projection (�q,	u) of

(−κ∇v0, v0):

(sh(0), u̇h(0)) := (�(−κ∇v0),	v0) . (2.6f)

Estimates of the errors It is now very easy to obtain the error estimates we were seeking by
using the definition of the initial data and then applying the approximation properties of the
projection (	q,	u) in the estimates of the projection the errors contained in Theorem 2.3.

Corollary 2.4 Suppose that (uh(0), u̇h(0)) is defined by (2.6). If ü(t) ∈ H p+1(�) for all t ,
then

‖u(T ) − uh(T )‖ρ ≤ C hp+1,

‖q(T ) − qh(T )‖κ−1 + ‖u̇(T ) − u̇h(T )‖ρ ≤ C hp+1,

‖q̇(T ) − q̇h(T )‖κ−1 + ‖ü(T ) − üh(T )‖ρ ≤ Chp+1.

Moreover, for p ≥ 1 and if the regularity hypotheses (2.4)–(2.5) hold, then

‖u(T ) − u∗
h(T )‖� ≤ Chp+2.

The constant C depends on the time T , τ and the exact solution, but is independent of the
mesh parameter h.

These results show that the convergence and supeconvergence properties of the dissipative
HDGmethods proposed in [9,22] do hold for the conservative HDGmethods proposed here.

3 Proofs: The Semidiscrete HDG Method

In this section, we provide very brief proofs of Theorem 2.3 and Corollary 2.4. The analysis
of this conservative HDG method runs parallel to that carried out in [9] for dissipative HDG
methods. For this reason, we do not prove most lemmas and only provide brief sketches of
proofs of the results which are significantly different. We proceed in several steps.

Step 1: The equations of the projection of the errors We begin by displaying the equation
satisfied by the projection of errors.
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Lemma 3.1 (Error equations). We have
(
κ−1ε

q
h(t), r

)
Th

− (εuh (t),∇ · r
)
Th

+ 〈ε̂ u
h (t), r · n

〉
∂Th

= (κ−1(�q(t) − q(t)), r
)
Th

,

(3.1a)
(
ρεüh (t), w

)

Th
− (εqh(t),∇w

)
Th

+ 〈ε̂ q
h (t) · n, w

〉
∂Th

= (ρ(	üh(t) − ü(t)), w)Th
,

(3.1b)

ε̂
q
h (t) · n := ε

q
h(t) · n + τ

(
εuh (t) − ε̂ u̇

h (t)
)

on ∂Th, (3.1c)
〈
ε̂
q
h (t) · n, μ

〉
∂Th\� = 0, (3.1d)

〈
ε̂ u
h (t), μ

〉
�

= 0, (3.1e)

for all (r, w,μ) ∈ V h × Wh × Mh and t ≥ 0.

Step 2: Estimate of εu̇h and εüh by an energy argument The same energy argument used in
Proposition 2.1 yields the following two identities.

Lemma 3.2 For the quantities

Eh(t) := 1
2‖εqh(t)‖2κ−1 + 1

2‖εu̇h (t)‖2ρ + 1
2 |εuh (t) − ε̂ u̇

h (t)|2τ ,
Fh(t) := 1

2‖εq̇h(t)‖2κ−1 + 1
2‖εüh (t)‖2ρ + 1

2 |εu̇h (t) − ε̂ u̇
h (t)|2τ ,

we have

Ėh(t) =
(

κ−1 (�q̇(t) − q̇(t), εqh(t)
)
Th

+
(
ρ(	ü(t) − ü(t)), εu̇h (t)

)

Th
,

Ḟh(t) =
(

κ−1
(
�q̈(t) − q̈(t), εq̇h(t)

)

Th
+
(
ρ(	

...
u (t) − ...

u (t)), εüh (t)
)

Th
.

As an immediate consequence of this result, we obtain our first estimates.

Corollary 3.3 For any time T > 0, we have

√
2Eh(T ) ≤

√
2Eh(0) +

∫ T

0
‖�q̇ − q̇‖κ−1 +

∫ T

0
‖	ü − ü‖ρ,

√
2Fh(T ) ≤

√
2Fh(0) +

∫ T

0
‖�q̈ − q̈‖κ−1 +

∫ T

0
‖	...

u − ...
u ‖ρ.

The first two estimates of Theorem 2.3 are thus proved.

Step 3: Estimate of Pp−1ε
u
h by duality In this step, we show that the projection of the

error into a space of lower polynomial degree can superconvergence. We adapt the
duality argument used in [9] to our setting. Let us start by introducing a terminal-
time problem for any given function θ in L2(�),

ρ�̈(t) = ∇ · (κ∇�)(t) in �, ∀t ∈ [0, T ], (3.2a)

�(t) = 0 on �, ∀t ∈ [0, T ], (3.2b)

�(T ) = 0 on �, (3.2c)

�̇(T ) = θ on �, (3.2d)

as well as the accumulated field �(t) := ∫ T
t �(s)ds. Let us now recall the regu-

larity inequalities proven in [9, Proposition 3.1].
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Proposition 3.4 There is a constant C ′ only depending on ρ and κ such that

sup
t∈(0,T )

‖�(t)‖H1(�) + sup
t∈(0,T )

‖�̇(t)‖� ≤ C ′‖θ‖�.

Moreover, if (2.4)–(2.5) hold, then

sup
t∈(0,T )

‖�(t)‖H2(�) ≤ C‖θ‖�.

Since 1/ρ ∈ L∞(�), we have

C ‖Pp−1ε
u
h (T )‖� ≤ ‖ρPp−1ε

u
h (T )‖� = sup

θ∈C∞
0 (�)

(
Pp−1ε

u
h (T ), ρθ

)
�

‖θ‖�

,

and we see that, to estimate ‖Pp−1ε
u
h (T )‖�, we only need to obtain a suitable expression

for the inner product (Pp−1ε
u
h (T ), ρθ)Th . Such an expression is contained in the following

lemma.

Lemma 3.5 Suppose that p ≥ 1. Then, for any θ ∈ C∞
0 (�), we have

(Pp−1ε
u
h (T ), ρθ)Th = (ρPp−1ε

u
h , �̇)Th (0) − (ρPp−1ε

u̇
h , �)Th (0)

+
(

q(0) − qh(0), κ
−1	BDM

p (κ∇�(0)) − ∇ Ih�(0)
)

Th

+
∫ T

0

(
q̇ − q̇h, κ

−1	BDM
p (κ∇�) − ∇ Ih�)

)

Th

+
∫ T

0

(
ü − üh, ρ Ih� − Pp−1ρ�

)
Th

,

where Ih is any h-uniformly bounded interpolant from L2(�) into Wh ∩ H1
0 (�) and 	BDM

p
is the BDM interpolation operator [2].

As a direct consequence of this result, we can obtain the last estimate of Theorem 2.3.
Indeed, by the previous lemma, we have

|(Pp−1ε
u
h (T ), ρθ)Th | ≤H1‖Pp−1ε

u
h (0)‖� + H2‖Pp−1ε

u̇
h (0)‖� + H3‖q(0) − qh(0)‖�

+ H4 sup
t∈(0,T )

‖q̇(t) − q̇h(t)‖� + H5 sup
t∈(0,T )

‖ü(t) − üh(t)‖�,

where H1 = ‖ρ�̇(0)‖�, H2 = ‖ρ�(0)‖�, H3 = ‖κ−1	BDM
p (κ∇�)(0)−∇ Ih�(0)‖�, and

H4 =
∫ T

0
‖κ−1	BDM

p (κ∇�) − ∇ Ih�‖�, H5 =
∫ T

0
‖ρ Ih� − Pp−1ρ�‖�.

Since |H3| ≤ C h ‖�(0)‖H2(�), |H4| ≤ C h
∫ T
0 ‖�‖H2(�), and |H5| ≤ Ch

∫ T
0 ‖∇�‖�, by

standard approximation estimates, the result now follows by using the regularity estimates of
Proposition 3.4. This proves the third estimate of the Theorem 2.3 and completes the sketch
of its proof.

Step 4: Error estimates at the starting time Here, we provide estimates of the errors in the
approximation of the initial data.
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Lemma 3.6 Suppose that we take uh(0) as the solution of the elliptic problem (2.6). Then
we have

‖εqh(0)‖2κ−1 + 2|εuh (0) − ε̂ u
h (0)|2τ ≤ ‖q(0) − �q(0)‖2

κ−1 ,

‖εüh (0)‖ρ ≤ ‖	ü(0) − ü(0)‖ρ.

Moreover, if the elliptic regularity hypotheses (2.4)–(2.5) hold, we have

‖εuh (0)‖� ≤ Chmin{p,1}‖q(0) − �q(0)‖�.

Proof The first and third estimates follow immediately from the results on HDG methods
for steady-state diffusion problems in [7]. It remains to estimate εüh (0). Taking w := εüh (0)
in the second error equation (3.1b) and recalling that (ε

q
h(0),∇w)Th = 〈̂ε q

h (0) · n, w〉∂Th ,

by the second of the equations defining uh(0), (2.6), we get
(
ρεüh (0), ε

ü
h (0)

)

Th
=
(
ρ(	üh(0) − ü(0)), εüh (0)

)

Th
,

which completes the proof. ��
Let us now estimate the error in the initial data of the velocity.

Lemma 3.7 If u̇h(0) is computed using (2.6f), then εu̇h (0) = 0 and

‖εq̇h(0)‖2κ−1 + 2|εu̇h (0) − ε̂u̇h (0)|2τ ≤ ‖q̇(0) − �q̇(0)‖2
κ−1 .

Proof Since u̇h(0) = 	v0 we have εu̇h (0) = 	u̇(0) − u̇h(0) = 0. Differentiating the first

error equation (3.1a) with respect to time and taking r := ε
q̇
h(0), we obtain

(
κ−1ε

q̇
h(0), ε

q̇
h(0)

)

Th
−
(
εu̇h (0),∇ · ε

q̇
h(0)

)

Th

+
〈
ε̂ u̇
h (0), εq̇h(0) · n

〉

∂Th
=
(
κ−1(q̇(0) − �q̇(0)), εq̇h(0)

)

Th
.

Differentiating equations (3.1d) and (3.1e) with respect to time and using εu̇h (0) = 0, we can
simplify the above identity to

(
κ−1ε

q̇
h(0), ε

q̇
h(0)

)

Th
+ 〈̂ε u̇

h (0), εq̇h(0)

−̂ε
q̇
h (0) · n〉∂Th\� = (κ−1(q̇(0) − �q̇(0)), εqh(0)

)
Th

.

Inserting the definition of ε̂
q̇
h (0) and using the fact that εu̇h (0) = 0, the result follows after

simple manipulations. This concludes the proof. ��
Step 5: Conclusion Applying the estimates obtained in the previous step, and using the

approximation properties of the auxiliary HDG projection Theorem 2.2, we obtain
the first three estimates of Corollary 2.4. The error estimate of u−u∗

h can be proven
in essentially the same way as in [9]. This concludes the proof of Corollary 2.4.

4 The Stormer-Numerov Time-Marching Scheme

In this section, we shall construct and analyze a two-step, fourth-order accurate scheme for
the time discretization obtained by discretizing the semidiscrete HDG scheme by using the
Stormer-Numerov method. The method was introduced by C. Stormer in [23].
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4.1 The Fully Discrete HDG Method

Let k be the fixed time step, tn := n k, n = 0, 1 . . . , N , with tN = T . Here T > 0 is a fixed
but arbitrary final time. The design of our fully discrete scheme relies on the relation

1
k2

(y(tn+1) − 2y(tn) + y(tn−1)) = 1
12 (ÿ(tn+1) + 10 ÿ(tn) + ÿ(tn−1)) + O(k4),

which holds for every sufficiently smooth function y = y(t). This motivates the introduction
of the central second difference operator and the average

D2
k y

n = 1
k2
(
yn+1 − 2yn + yn−1) , Ak y

n := 1
12

(
yn+1 + 10yn + yn−1) ,

applied to general sequences {yn}. The data functions are sampled to provide the sequences
f n := f (tn) and gn := g(tn).
Thus, for each n ≥ 1, we look for (qn+1

h , un+1
h , û n+1

h ) ∈ V h × Wh × Mh satisfying
(
κ−1qn+1

h , r
)

Th
−
(
un+1
h ,∇ · r

)

Th
+
〈
û n+1
h , r · n

〉

∂Th
= 0, (4.1a)

(
ρD2

ku
n
h, w

)
Th

− (Akqn
h,∇w

)
Th

+ 〈Ak q̂ n
h · n, w

〉
∂Th

= (Ak f
n, w

)
Th

, (4.1b)

q̂ n+1
h · n := q n+1

h · n + τ
(
un+1
h − û n+1

h

)
on ∂Th, (4.1c)

〈
q̂ n+1
h · n, μ

〉

∂Th\�
= 0, (4.1d)

〈
û n+1
h , μ

〉

�
= 〈gn+1, μ

〉
�

, (4.1e)

for all (r, w,μ) ∈ V h ×Wh × Mh . This time-marching scheme is well defined under a very
simple condition on the stabilization function τ as we see in the following result.

Proposition 4.1 If τ > 0 on ∂Th, then the solution of the equations (4.1) exists and is unique.

To define the starting functions, namely, (qn
h, u

n
h, û

n
h ) ∈ V h ×Wh × Mh for n = 0, 1, we

proceed as follows. Given (unh, g
n), we compute (qn

h, û
n
h ) ∈ V h × Mh as the solution of

(
κ−1qn

h, r
)
Th

− (unh,∇ · r
)
Th

+ 〈û n
h , r · n

〉
∂Th

= 0, (4.2a)

q̂ n
h · n := q n

h · n + τ
(
unh − û n

h

)
on ∂Th, (4.2b)

〈
q̂ n
h · n, μ

〉
∂Th\� = 0, (4.2c)

〈
û n
h , μ

〉
�

= 〈gn, μ〉
�

, (4.2d)

for all (r, μ) ∈ V h×Mh (see Proposition 4.2 below). The definition of u0h ∈ Wh and u1h ∈ Wh

will be given later.
Computation of the approximate solution at tn+1, (qn+1

h , un+1
h , û n+1

h ) in terms of the
approximate solutions at tn and tn−1 by using (4.1) is equivalent to solving a steady-state
reaction-diffusion equation with the HDG method. This can be done using an equivalent
hybridized formulation, where û n+1

h is computed by solving a system on the skeleton (only
on the Mh degrees of freedom) and then (qn+1

h , un+1
h ) are computed solving local problems.

This is the gist of the hybridization techniques described in great detail in [7].
The computation of the starting value (qn

h, û
n
h ) in terms of unh uses amethod, see equations

(4.2), which has not been considered elsewhere.We can see, however, that it is strongly related
to the above-mentioned HDG method. In fact, the only difference is that its local problems
are considerably simpler since they only involve the inversion of a mass matrix. The main
properties of this method are captured in the following result.
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Proposition 4.2 The linear map S : L2(�) × Wh × L2(�) → V h × Mh that associates
(s, vh, z) ∈ L2(�) × Wh × L2(�) to the solution (ph, v̂h) ∈ V h × Mh of

(κ−1ph, r)Th − (vh,∇ · r)∂Th + 〈̂vh, r · n〉∂Th = (κ−1s, r)Th ∀r ∈ V h,

p̂h · n := ph · n + τ(vh − v̂h) on ∂Th,
〈̂ph · n, μ〉∂Th\� = 0, ∀μ ∈ Mh,

〈̂vh, μ〉� = 〈z, μ〉� ∀μ ∈ Mh,

is well defined. Moreover, if z = 0,
(‖ph‖2κ−1 + |vh − v̂h |2τ

)1/2 ≤ √
2Ch ‖vh‖ρ + ‖s‖κ−1 , (4.4)

where Ch := maxK∈Th {C1,K ,C2,K }, and

C1,K := ‖ρ−1‖1/2L∞(K ) ‖κ‖1/2L∞(K ) sup
r∈P p(K )\{0}

‖∇ · r‖K
‖r‖K ,

C2,K := ‖τ‖1/2L∞(∂K )‖ρ−1‖1/2L∞(K ) sup
w∈Pp(K )\{0}

|w|∂K
‖w‖K .

Note that, by construction of the method and of the initial conditions
(
qn
h, û

n
h

) = S (0, unh, g
n) ∀n ≥ 0. (4.5)

As we are going to see next, the constant Ch is strongly related to the CFL condition of the
method which guarantees that the quantities conserved by the scheme are actually nonnega-
tive.

4.2 Energy Conservation

From now on, we use the notation

δk y
n := (yn − yn−1) /k, δk y

n := (yn+1 − yn−1) /(2k) = 1
2

(
δk y

n+1 + δk y
n)

for the backwards and central discrete differentiation operators. We will also consider two
functions that will serve to measure the evolution of discrete energy in our fully discrete
scheme. They relate two elements of a sequence taking values in Vh × Wh × Mh and are
given by

E�

(
(p, u, û), (p+, u+, û+)

) := 1
2‖(u+ − u)/k‖2ρ
+ 1

4‖p+‖2
κ−1 + 1

4‖p‖2
κ−1 − 5

24‖p+ − p‖2
κ−1

+ 1
4 |u+ − û+|2τ + 1

4 |u − û|2τ
− 5

24 |(u+ − û+) − (u − û)|2τ , (4.6)

E
(
(p, u, û), (p+, u+, û+)

) := 1
2c0‖(u+ − u)/k‖2ρ
+ 1

4‖p+‖2
κ−1 + 1

4‖p‖2
κ−1 + 1

4 |u+

−û+|2τ + 1
4 |u − û|2τ . (4.7)

Note that the time-step k appears in the discrete kinetic energy term in (4.6) and (4.7) and that
a constant c0 ∈ [0, 1) scales the discrete kinetic energy term in (4.7). We have the following
discrete version of the energy conservation properties of the semidiscrete case.
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Proposition 4.3 (Energy identities) Given the solution (qn
h, u

n
h, û

n
h) of (4.1) we define the

sequences

En+1/2
h,k := E�

((
qn
h, u

n
h, û

n
h

)
,
(

qn+1
h , un+1

h , û n+1
h

))
, n ≥ 0,

Fm
h,k := E�

(
δk
(
qm
h , umh , ûmh

)
, δk

(
qm+1
h , um+1

h , ûm+1
h

))
, m ≥ 1.

Then, for n ≥ 1 and m ≥ 2,

(
En+1/2
h,k − En−1/2

h,k

)
/k = (Ak f

n, δku
n
h

)
Th

− 〈δkgn,Ak (̂qn
h · n)

〉
�
,

(
Fm
h,k − Fm−1

h,k

)
/k = (Akδk f

m, δku
m
h

)
Th

− 〈δkδkgm,Ak
(
δk q̂m

h · n) 〉
�
.

Again, note that, when f ≡ 0 and g is independent of time, the quantities En+1/2
h,k and

Fm
h,k are independent of n and m. Moreover, when g is independent of time, En+1/2

h,k Fm
h,k are

actually nonnegative quantities provided the time step is not too big.

Proposition 4.4 Suppose that g is independent of time, let c0 ∈ [0, 1) and assume the CFL

condition k Ch ≤
√

6
5 (1 − c0) is satisfied. Then, for n ≥ 0 and m ≥ 1, the quantities En+1/2

h,k

and Fm
h,k are nonnegative and

En+1/2
h,k ≥ E

((
qn
h, u

n
h, û

n
h

)
,
(

qn+1
h , un+1

h , û n+1
h

))
,

Fm
h,k ≥ E

(
δk
(
qm
h , umh , ûmh

)
, δk

(
qm+1
h , um+1

h , ûm+1
h

))
.

Note that the quantity k Ch is dimensionless, as it is typical of CFL conditions. Indeed,
we know that the sound speed of the medium is

√
κ/ρ. As a consequence, the constant C1,h

(and C2,h) has as dimension the inverse of the time, which proves our contention.

4.3 Error Estimates

To obtain our a priori error estimates, we mimic the procedure done for the semidiscrete case.
Estimates of the projection of the errors We start by obtaining estimates of the projection of
the errors ε

q,n
h,k := �qn − qn

h , ε
u,n
h,k := 	un − unh and ε̂

u,n
h,k := Pun − ûnh, where qn = q(tn),

un := u(tn), and ûn := u(tn)|∂Th . The approximation error anh := �qn − qn as well as the
sequence,

�n
h := D2

k	un − Ak ü
n = D2

k(	un − un) + D2
ku

n − Ak ü
n,

which collects HDG projection error and the consistency error for the Stormer-Numerov
scheme, will also be relevant in our estimates.

Theorem 4.5 Let

E
n+1/2
h,k := E

((
ε
q,n
h,k , ε

u,n
h,k , ε̂

u,n
h,k

)
,
(
ε
q,n+1
h,k , ε

u,n+1
h,k , ε̂

u,n+1
h,k

))

F
m
h,k := E

(
δk

(
ε
q,m
h,k , ε

u,m
h,k , ε̂

u,m
h,k

)
, δk

(
ε
q,m+1
h,k , ε

u,m+1
h,k , ε̂

u,m+1
h,k

))
.
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If k satisfies the CFL condition k Ch ≤
√

3
5 (1 − c0), then,

√
E
n+1/2
h,k ≤

√
1
c0
E
1/2
h,k + 3 k

n∑

�=0

‖δka�+1
h ‖κ−1 + 1√

2 c0
k

n∑

�=1

‖��
h‖ρ, n ≥ 1,

√
F
m
h,k ≤

√
1
c0
F
1
h,k + 3k

m∑

�=0

‖δ2ka�+1
h ‖κ−1 + 1√

2 c0
k

m∑

�=1

‖δk��
h‖ρ, m ≥ 2.

Moreover, for p ≥ 1 and if the regularity hypotheses (2.4)–(2.5) hold, then

‖ρPp−1ε
u,N
h ‖� ≤ C

(
‖Pp−1ε

u,1
h ‖� + ‖Pp−1δkε

u,1
h ‖� + h‖q0 − q0

h‖� + h‖εq,0
h,k‖�

)

+ Ch

(

max
n=1,...,N

‖δk
(
qn − qn

h

) ‖� + max
n=2,...,N−1

‖D2
k

(
un − unh

) ‖�

)

+ C max
n=2,...,N−1

‖D2
ku

n − Ak ü
n‖�.

Note that these estimates hold independently of the way we define the initial data (u0h, u
1
h).

However, in order to guarantee optimal estimates and superconvergence of the projection
of the error in the approximation of the scalar variable u(T ), we pick the starting functions
(u0h, u

1
h) as follows.

The starting functions u1h and u0h The starting values of our scheme are obtained by using a
discrete version of what was done for the semidiscrete case. The idea is as follows. First, we
compute Aku1h by solving an elliptic problem by the HDG method and then D2

ku
1
h by using

the second equation defining our Stormer-Numerov HDG method. This would provide u1h
since

u1h := Aku
1
h − k2

12D
2
ku

1
h .

Then we compute u0h in such a way that δku1h = 	δku1.
Thus, we take

u1h := uh,A − k2
12uh,D2 , (4.8a)

u0h := 	Tu(0) + u1h − 	Tu(k), (4.8b)

where
Tu(t) := u(0) + t u̇(0) + 1

2 t
2ü(0) + 1

6 t
3...u (0) + 1

24 t
4....u (0) (4.8c)

and where the functions uh,A and uh,D2 are the elements of Wh defined as follows. The
function (qh,A, uh,A, ûh,A) is the approximation provided by the HDGmethod for the elliptic
problem

qA + κ∇uA = 0, ∇ · qA = −∇ · (κAk∇Tu1), in �, uA = Akg
1, on �,

that is, it is the solution of

(κ−1qh,A, r)Th − (uh,A,∇ · r)Th + 〈̂uh,A, r · n〉∂Th = 0, (4.9a)

−(qh,A,∇w)Th + 〈̂qh,A · n, w〉∂Th = (−∇ · (κAk∇Tu1), w
)
Th

, (4.9b)

q̂h,A := qh,A + τ(uh,A − ûh,A)n on ∂Th, (4.9c)

〈̂qh,A · n, μ〉∂Th\� = 0, (4.9d)

〈̂uh,A, μ〉� = 〈Akg
1, μ〉�, (4.9e)
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for all (r, w,μ) ∈ V h ×Wh × Mh . Note that Ak∇Tu1 = ∇AkTu1 involves the computation
of Tu1 := Tu(k) and Tu2 := Tu(2k). The function uD2,h is the solution of

(ρ uD2,h, w)Th − (qh,A,∇w)Th + 〈̂qh,A · n, w〉∂Th = (Ak f
1, w)Th ∀ w ∈ Wh . (4.10)

Estimates of the errors

Theorem 4.6 Assume that k satisfies the CFL condition k Ch ≤
√

3
5 (1 − c0). Then, for

p ≥ 1, we have

max
0≤n≤N

‖un − unh‖ρ ≤ C(h p+1 + k4),

max
0≤n≤N

‖qn − qn
h‖κ−1 + max

1≤n≤N
‖δkun − δku

n
h‖ρ ≤ C(h p+1 + k4),

max
1≤m≤N

‖δkqm − δkqm
h ‖κ−1 + max

2≤m≤N−1
‖D2

ku
m − D2

ku
m
h ‖ρ ≤ C(h p+1 + k3).

Moreover, if (2.4)–(2.5) hold, then

‖u(T ) − u∗
h(T )‖� ≤ C(h p+2 + k4).

The constant C depends on the time T , the stabilization parameter τ , the CFL condition and
on derivatives of the exact solution, but it is independent of the mesh parameters h and k.

This result states, in particular, that, if we use piecewise quadratic approximations, we can
easily achieve fourth-order accuracy for smooth enough solutions. Moreover, we can obtain
higher-order accuracy using polynomials of degree p > 2 and time step k of order h(p+2)/4.

5 Proofs: The Stormer-Numerov HDG Method

5.1 Properties of the Mapping S

Let us prove Proposition 4.2 on the mapping S. Since the system defining S is square,
it is well defined if the inequality holds. It remains to prove the inequality (4.4). Taking
(r, μ) := (ph,−ûh), remembering that z = 0, and adding the equations, we obtain, after
simple manipulations, that

N 2
h := (κ−1ph, ph)Th + 〈τ(vh − v̂h), vh − v̂h〉∂Th

= (vh,∇ · ph)Th + 〈τ vh, vh − v̂h〉∂Th + (κ−1s, ph)Th

=
∑

K∈Th

(
(vh,∇ · ph)K + 〈τ vh, vh − v̂h〉∂K

)+ (κ−1s, ph)Th .

Therefore,

N 2
h ≤

∑

K∈Th

(‖vh‖K ‖∇ · ph‖K + |vh |τ,∂K |vh − v̂h |τ,∂K
)+ ‖s‖κ−1 ‖ph‖κ−1

≤
∑

K∈Th

(
C1,K ‖vh‖ρ,K ‖ph‖κ−1 + C2,K ‖vh‖ρ,K |vh − v̂h |τ,∂K

)+ ‖s‖κ−1 ‖ph‖κ−1

≤ Ch

∑

K∈Th

‖vh‖ρ,K
(‖ph‖κ−1 + |vh − v̂h |τ,∂K

)+ ‖s‖κ−1 ‖ph‖κ−1

≤ (√2Ch ‖vh‖ρ + ‖s‖κ−1
)
Nh,
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and the result follows. This completes the proof of Proposition 4.2.

5.2 The Identities for the Discrete Energies

Proof of the energy identities of Proposition 4.3 We mimic the proof of the energy identities
of the continuous case. Thus, we begin by noting that, the equations defining the method,
(4.1), give, for n ≥ 1, that

(
κ−1δkqn

h, r
)
Th

− (δkunh,∇ · r
)
Th

+ 〈(δk û n
h , r · n

〉
∂Th

= 0,
(
ρD2

ku
n
h, w

)
Th

− (Akqn
h,∇w

)
Th

+ 〈Ak q̂n
h · n, w

〉
∂Th

= (Ak f
n, w)Th ,

〈
Ak q̂n

h · n, μ
〉
∂Th\� = 0,

〈
δk û

n
h, μ

〉
�

− 〈δkgn, μ
〉
�

= 0,

for all (r, w,μ) ∈ V h ×Wh × Mh . Taking r := Akqn
h in the first equation, w := δku

n
h in the

second, μ := −δk û
n
h in the third, μ := −Ak q̂n

h · n, in the fourth and adding them, we get,
after simple algebraic manipulations, that

DEn
h,k = (Ak f

n, δku
n
h

)
Th

− 〈δkgn,Ak (̂qn
h · n)

〉
�
,

where

DEn
h,k := (

ρD2
ku

n
h, δku

n
h

)
Th

+ (κ−1δkqn
h,Akqn

h

)
Th

+ 〈δk
(
unh − ûnh

)
,Ak

(
q̂n
h − qn

h

) · n
〉
∂Th

.

It remains to show that DEn
h,k = (En+1/2

h,k − En−1/2
h,k )/k. However, this easily follows by

using the identity (a − 2b + c)(a − c) = (a − b)2 − (b − c)2 on the first term, and then
inserting in the third term the definition of the numerical trace q̂n

h and applying the identity

(a + 10b + c)(a − c) = [6a2 + 6b2 − 5(a − b)2
]− [6b2 + 6c2 − 5(b − c)2

]
,

to the second and third terms.
After applying the finite difference operator δk to the equations (4.1), the second identity

is proven in a similar manner. This completes the proof of Proposition 4.3.
The discrete energiesWe can now prove Proposition 4.4. We begin by using Proposition 4.2.
Recalling (4.5), and assuming that g is independent of time, we have (qn+1

h −qn
h, û

n+1
h , ûnh) =

S(0, un+1
h − unh, g

n+1 − gn)) = S(0, un+1
h − unh, 0), and thus

∥
∥
∥qn+1

h − qn
h

∥
∥
∥
2

κ−1
+
∣
∣
∣
(
un+1
h − û n+1

h

)
− (unh − û n

h

)∣∣
∣
2

τ
≤ 2C2

h

∥
∥
∥un+1

h − unh

∥
∥
∥
2

ρ
.

We then obtain

En+1/2
h,k ≥ 1

2

(
1 − 5

6C
2
h k

2
) ∥∥
∥
(
un+1
h − unh

)
/k
∥
∥
∥
2

ρ

+ 1
4‖qn+1

h ‖2
κ−1 + 1

4‖qn
h‖2κ−1 + 1

4 |un+1
h − û n+1

h |2τ + 1
4 |unh − û n

h |2τ .

The first estimate follows after noting that, by the CFL condition of Proposition 4.4, we have
that 1

2 (1 − 5
6C

2
h k

2) ≥ 1
2 c0. The second is obtained in the same fashion. This completes the

proof of Proposition 4.4.
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5.3 Existence and Uniqueness of the Stormer-Numerov Scheme

Next we show that by using the first energy identity of the Proposition 4.3, we can guarantee
the existence and uniqueness of the solution of the time-marching scheme given by (4.1).
Indeed, since the system of equations (4.1) is square, to prove the existence and uniqueness of
the solution (qn+1

h , un+1
h , û n+1

h ), for n > 1, we only have to show that if we set the data equal
to zero, the only solution is the trivial one. So, we set (qm

h , umh , û m
h ) to zero form = n, n−1,

which implies that En−1/2
h,k = 0.We also set gn+1 and Ak f n to zero,which implies, by the first

energy identity of Proposition 4.3, that En+1/2
h = En−1/2

h . As a consequence, En+1/2
h,k = 0

and, by definition, we have

0 = E�

(
(0, 0, 0),

(
qn+1
h , un+1

h , û n+1
h

))
,= 1

2‖un+1
h /k‖2ρ + 1

24 ‖qn+1
h ‖2

κ−1

+ 1
24 |un+1

h − û n+1
h |2τ ,

and we see that (qn+1
h , un+1

h , û n+1
h ) = (0, 0, 0) since τ > 0. This completes the proof.

5.4 The Error Estimates

Step 1: The equations of the projection of the errors The projection of errors satisfy the
following equations.

Lemma 5.1 (Error equations) If we denote ε
,q,n
h,k · n := ε

q,n
h,k · n + τ(ε

u,n
h,k − ε̂

u,n
h,k ), then, for

all n ≥ 0,

(
κ−1ε

q,n
h,k , r

)

Th
−
(
ε
u,n
h,k ,∇ · r

)

Th
+
〈
ε̂
u,n
h,k , r · n

〉

∂Th
= (κ−1anh , r

)
Th

, (5.1a)
〈
ε̂
q,n
h,k · n, μ

〉

∂Th\�
= 0, (5.1b)

〈
ε̂
u,n
h,k , μ

〉

�
= 0, (5.1c)

for all (r, μ) ∈ V h × Mh. If n ≥ 1, then

(
ρD2

kε
u,n
h,k , w

)

Th
−
(
Akε

q,n
h,k ,∇w

)

Th
+
〈
Ak ε̂

q,n
h,k , w

〉

∂Th
= (ρ �n

h, w
)
Th

, (5.1d)

for all w ∈ Wh.

Step 2: Estimate of δkε
u,n
h,k and D2

kε
u,n
h,k The same energy argument used to obtain Propo-

sition 4.1 yields the following discrete energy identities for the projection of the
errors.

Lemma 5.2 If

En+1/2
h,k :=E�

((
ε
q,n
h,k , ε

u,n
h,k , ε̂

u,n
h,k

)
,
(
ε
q,n+1
h,k , ε

u,n+1
h,k , ε̂

u,n+1
h,k

))
, n ≥ 0,

Fm
h,k :=E�

(
δk

(
ε
q,m
h,k , ε

u,m
h,k , ε̂

u,m
h,k

)
, δk

(
ε
q,m+1
h,k , ε

u,m+1
h,k , ε̂

u,m+1
h,k

))
, n ≥ 1,
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then
(
En+1/2
h,k − En−1/2

h,k

)
/k =

(
κ−1δkanh ,Akε

q,n
h,k

)

Th

+
(
ρ�n

h, δkε
u,n
h,k

)

Th
, n ≥ 1,

(
Fm
h,k − Fm−1

h,k

)
/k =

(
κ−1δkδkamh ,Akδkε

q,m
h,k

)

Th

+
(
ρδk�

m
h , δkδkε

u,m
h,k

)

Th
, m ≥ 2.

In order to prove first two estimates in Theorem 4.5, we are going to use the following
discrete integral inequality.

Lemma 5.3 If {αn−1/2}, {ζ n−1/2} and {ηn} are sequences of nonnegative numbers satisfying
(
αn+1/2)2 ≤ (ζ n+1/2)2 + (α1/2)2 + k

n∑

�=1

η�
(
α�+1/2 + α�−1/2

)
∀n ≥ 1,

then

αn+1/2 ≤ α1/2 + 2
n∑

�=0

ζ �+1/2 + k
n∑

�=1

η�.

Proof Set χn+1/2 equal to the right-hand side of the first inequality when n ≥ 1 and equal
to (α1/2)

2 (we are setting ζ 1/2 := 0) when n = 0. Then, for n ≥ 1, we have

χn+1/2 − χn−1/2 = (ζ n+1/2)2 − (ζ n−1/2)2 + ηn
(
αn+1/2 + αn−1/2) k

≤max
{
0,
(
ζ �+1/2 − ζ �−1/2

)
/k
} (

ζ n+1/2 + ζ n−1/2) k

+ ηn
(
αn+1/2 + αn−1/2) k

≤(max
{
0,
(
ζ �+1/2 − ζ �−1/2

)
/k
}

+ ηn
)
k

(√
χn+1/2

+
√

χn−1/2

)

,

since, by definition, max{α�+1/2, ζ �+1/2} ≤ √χ�+1/2. This implies that
√

χn+1/2 −
√

χn−1/2 ≤ (max
{
0, (ζ �+1/2 − ζ �−1/2)/k

}
+ ηn

)
k

≤ ζ �+1/2 + ζ �−1/2 + ηn k.

This last estimate is quite crude, but is enough for our purposes. Finally, the result follows
by summing on n and noting that

√
χ1/2 = α1/2. This completes the proof. ��

We are now ready to prove Theorem 4.5.

Proof Let us prove the first inequality. From Lemma 5.2, we get that

En+1/2
h,k = E1/2

h,k +
n∑

�=1

(
κ−1δka�

h,Akε
q,�
�,k

)

Th
+

n∑

�=1

(
ρ��

h, δkε
u,�
h,k

)

Th
.
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We claim that under the CFL condition of Theorem 4.5, it follows that

E
n+1/2
h,k − 5

12

∥
∥
∥an+1

h − anh

∥
∥
∥
2

κ−1
≤ En+1/2

h,k ≤ 1
c0
E
n+1/2
h,k .

Then, since, by definition, we have

max
{
‖Akε

q,n
h,k‖κ−1 ,

√
2 c0‖δkεu,n

h,k ‖ρ

}
≤
√
E
n+1/2
h,k +

√
E
n−1/2
h,k ,

we easily obtain that

E
n+1/2
h,k ≤ 5

12 ‖an+1
h − anh‖2κ−1 + 1

c0
E
1/2
h,k

+
n∑

�=1

(‖δka�
h‖κ−1 + 1√

2 c0
‖��

h‖ρ

)
(√

E
�+1/2
h,k +

√
E

�−1/2
h,k

)

k.

Now, a direct application of Lemma 5.3 with α�+1/2 :=
√
E

�+1/2
h,k when � ≥ 1 and α1/2 :=

√
E
1/2
h,k /c0, ζ

�+1/2 :=
√

5
12 ‖a�+1

h − a�
h‖κ−1 and η� := ‖δka�

h‖κ−1 + 1
c0

‖��
h‖ρ gives

√
E
n+1/2
h,k ≤

√
1
c0
E
1/2
h,k +

√
5
3 k

n∑

�=0

‖δka�+1
h ‖κ−1 + k

n∑

�=1

(‖δka�
h‖κ−1 + 1√

2 c0
‖��

h‖ρ

)
,

and the result follows.
It remains to prove the claim. To do that, we use Proposition 4.2. First, note that by Lemma

5.1, (εq,n+1
h,k −ε

q,n
h,k , ε̂

u,n+1
h,k − ε̂

u,n
h,k ) = S(an+1

h − anh , ε
u,n+1
h,k − ε

u,n
h,k , 0), for n ≥ 0. Therefore

∥
∥
∥ε

q,n+1
h,k − ε

q,n
h,k

∥
∥
∥
2

κ−1
+
∣
∣
∣
(
ε
u,n+1
h,k − ε̂

u,n+1
h,k

)
−
(
ε
u,n
h,k − ε̂

u,n
h,k

)∣∣
∣
2

τ
≤ 4C2

h

∥
∥
∥εu,n+1

h,k

−ε
u,n
h,k

∥
∥
∥
2

ρ
+ 2

∥
∥
∥an+1

h − anh

∥
∥
∥
2

κ−1
,

and the claim follows after applying the CFL condition of Theorem 4.5.
The second inequality can be proven in exactly the samemanner. This completes the proof

of the first two estimates in Theorem 4.5. ��
Step 3: Estimate of Pp−1ε

u,N
h,k by duality As in the semidiscrete case, we only need to

obtain a suitable expression for the term (Pp−1ε
u,N
h,k , ρθ)Th . Such an expression is

contained in the following lemma.
To state it, we use the following notation. For any function μ : [0, T ] → R, we
define Ikμ as the continuous piecewise-linear interpolation of the values Ikμ(tn)
given by

Ikμ(tn) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
k

∫ k
0

1
k (t − k)μ(t)dt, n = 0

1
k

∫ tn
tn−1

1
k (t − tn−1)μ(t)dt + 1

k

∫ tn+1
tn

1
k (tn+1 − t)μ(t)dt 0 < n < N

2
k

∫ T
T−k

1
k (t − (T − k))μ(t)dt, n = N .

Also, given an set of real numbers {ηn}Nn=0, we denote by η : [0, T ] → R the
piecewise-linear function such that η(tn) := ηn , n = 0, . . . , N . Note that, for
t ∈ (tn−1, tn), we have that η̇(t) = (ηn − ηn−1)/k.
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Lemma 5.4 Suppose that p ≥ 1. Then, for any θ ∈ C∞
0 (�), we have

(
Pp−1ε

u,N
h,k , ρθ

)

Th
=
(
ρPp−1ε

u,0
h,k , �̇(0)

)

Th
−
(
ρPp−1δkε

u,1
h,k , �(0)

)

Th

+
(

q0 − q0
h, κ

−1	BDM
p (κ∇�(0)) − ∇ Ih�(0)

)

Th

+
∫ T

0

(
ėh, κ−1	BDM

p (κ∇�) − ∇ Ih�
)
)Th

+ k
N−1∑

n=1

(
D2
k(u

n − unh), ρ Ih(Ik�)n − Pp−1(ρ�n)
)
Th

+ k
2

(
ε
q,0
h,k ,∇ Ih(Ik�)0

)

Th
− k

N−1∑

n=1

(
D2
ku

n − Ak ü
n, Ih(Ik�)n

)
Th

− k3
12

N−1∑

n=1

(
D2
kε

q,n
h,k ,∇ Ih(Ik�)n

)

Th
,

where Ih is any h-uniformly bounded interpolant from L2(�) into Wh ∩ H1
0 (�) and eh is

the linear interpolant of the values enh := qn − qn
h.

Proof By the definition of the solution � of the dual problem (3.2), we can write
(
Pp−1ε

u,N
h,k , ρθ

)

Th
= (

ρPp−1ε
u
h,k, �̇

)
Th

(T ) =
(
ρPp−1ε

u,0
h,k , �̇(0)

)

Th

+
∫ T

0

d

dt

(
ρPp−1ε

u
h,k, �̇

)
Th

=
(
ρPp−1ε

u,0
h,k , �̇(0)

)

Th
+ T1 + T2,

where T1 := ∫ T0 (ρPp−1ε̇
u
h,k, �̇)Th and T2 := ∫ T0 (ρPp−1ε

u
h,k, �̈)Th .

Let us work on T1. Note first that the definition of the HDG projection (2.3), and the error
equations (5.1b) and (5.1d) imply that for n ≥ 1,

(
ρD2

k

(
un − unh

)
, w
)
Th

= (
ρ
(
D2
ku

n − Ak ü
n) , w

)
Th

+ (Ak
(
qn − qn

h

)
,∇w

)
Th

∀w ∈ Wh ∩ H1
0 (�).

Therefore, by Lemma A.1, using the fact that (	un −un, Pp−1v)Th = 0 for all v, and noting
that �N = �(T ) = 0, we have

T1 = −
(
Pp−1δkε

u,0
h,k , ρ�0

)

Th
− k

N−1∑

n=1

(
D2
k(u

n − unh), Pp−1ρ�n)
Th

= −
(
Pp−1δkε

u,0
h,k , ρ�0

)

Th
+ k

N−1∑

n=1

(
D2
k

(
un − unh

)
, ρ IhIk�

n − Pp−1(ρ�n)
)
Th

− k
N−1∑

n=1

(
ρD2

k

(
un − unh

)
, IhIk�

n)
Th

= −(Pp−1δkε
u,0
h,k , ρ�0) + k

N−1∑

n=1

(
D2
k

(
un − unh

)
, ρ IhIk�

n − Pp−1(ρ�n)
)
Th
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− k
N−1∑

n=1

(
Ak
(
qn − qn

h

)
,∇ Ih(Ik�)n

)
Th

− k
N−1∑

n=1

(
D2
ku

n − Ak ü
n, Ih(Ik�)n

)
Th

= −
(
Pp−1δkε

u,0
h,k , ρ�0

)

Th
+ k

N−1∑

n=1

(
D2
k

(
un − unh

)
, ρ IhIk�

n − Pp−1(ρ�n)
)
Th

− k
N−1∑

n=1

(
D2
ku

n − Ak ü
n, Ih(Ik�)n

)
Th

− k3
12

N−1∑

n=1

(
D2
k

(
qn − qn

h

)
,∇ Ih(Ik�)n

)
Th

− k
N−1∑

n=1

(
qn − qn

h,∇ Ih(Ik�)n
)
Th

,

since Ak = I + k2
12D

2
k .

Now, let us work on T2. First of all, using the error equations (5.1a) and (5.1d), it follows
that (

ε
u,n
h,k ,∇ · 	BDM

p r
)

Th
=
(
κ−1enh,	

BDM
p r

)

Th
(5.2)

for all r. By the dual problem (3.2), the definition of � (note that �(T ) = 0) and the well
known commutativity property of the BDM projection 	BDM

p , we get that

T2 =
∫ T

0

(
εuh,k, Pp−1(∇ · (κ�))

)
Th

= (ε
u,0
h,k , Pp−1∇ · (κ∇�(0))Th +

∫ T

0

(
ε̇ u
h,k, Pp−1∇ · (κ∇�)

)
Th

= (ε
u,0
h,k ,∇ · 	BDM

p (κ∇�(0))Th +
∫ T

0

(
ε̇ u
h,k,∇ · 	BDM

p (κ∇�)
)

Th

= (q0 − q0
h, κ

−1	BDM
p (κ∇�(0))Th +

∫ T

0

(
κ−1ėh,∇ · 	BDM

p (κ∇�)
)

Th
,

by (5.2). Therefore, applying integration by parts in the time variable,

T2 = (q0 − q0
h, κ

−1	BDM
p (κ∇�(0))Th +

∫ T

0

(
ėh, κ−1	BDM

p (κ∇�) − ∇ Ih�
)

Th

+
∫ T

0
(ėh,∇ Ih�)Th

=
(

q0 − q0
h, κ

−1	BDM
p (κ∇�(0)) − ∇ Ih�(0)

)

Th

+
∫ T

0

(
ėh, κ−1	BDM

k (κ∇�) − ∇ Ih�
)

Th
+
∫ T

0
(e,∇ Ih�)Th .

Finally, using Lemma A.1 to rewrite the last term, we get that

T2=
(

q0 − q0
h, κ

−1	BDM
p (κ∇�)−∇ Ih�(0)

)

Th
+
∫ T

0
(ėh, κ−1	BDM

p (κ∇�)−∇ Ih�)Th

+ k
2

(
ε
q,0
h,k ,∇ Ih(Ik�)0

)

Th
+ k

N−1∑

n=1

(
qn − qn

h,∇ Ih(Ik�)n
)
Th

.

This completes the proof. ��
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As a direct consequence of this result, we can obtain the last estimate of Theorem 2.3.
Indeed, by the previous lemma, we have

∣
∣
∣(Pp−1ε

u,N
h,k , ρθ)Th

∣
∣
∣ ≤H1‖Pp−1ε

u,0
h,k‖� + H2‖Pp−1δkε

u,1
h,k‖� + H3‖q0 − q0

h‖�

+ H4 max
n=1,...,N

‖δk
(
qn − qn

h

) ‖�

+ H5 max
n=1,...,N−1

‖D2
k

(
un − unh

) ‖�

+ k
2H6‖εq,0

h,k‖� + H7 max
n=1,...,N−1

‖D2
ku

n − Ak ü
n‖�

+ k2
12H8 max

n=1,...,N−1
‖D2

kε
q,n
h,k‖�,

where Hi , i = 1, . . . , 5, are defined exactly as in the semidiscrete case (see the paragraph
after Lemma 3.5), and

H6 = ‖∇ Ih(Ik�)0‖�, H7 = T max
n=1,...,N−1

‖Ih(Ik�)n‖�, H8

= T max
n=1,...,N−1

‖∇ Ih(Ik�)n‖�.

The result now follows by using the regularity estimates of Proposition 3.4. This completes
the last estimates of Theorem 4.5.
Step 4: Error estimates for the starting functions

Lemma 5.5 For p ≥ 1, we have

‖εu,0
h,k‖� ≤ Ch(h p+1 + k4), ‖δkεu,1

h,k‖� ≤ Ck5

and

E
1/2
h,k ≤ C(h p+1 + k4)2, F

1
h,k ≤ C(h p+1 + k4)2.

Proof The standard results on HDGmethods for steady-state diffusion problems in [7] yield

‖�qA − qh,A‖2
κ−1 + 2|(	uA − uh,A) − (PuA − ûh,A)|2τ ≤ ‖qA − �qA‖2

κ−1 ,

‖	uA − uh,A‖� ≤ Chmin{p,1}‖qA − �qA‖�.

By (4.9) and (4.10), we have (ρ uD2,h, w)Th = (Ak f 1+∇·(κAk∇Tu1), w)Th , which implies
that

(
ρ (uD2,h − 	D2

ku
1), w

)
Th

= (Ak f
1 + ∇ · (κAk∇u1) − ρ 	D2

ku
1

+∇ · (κAk∇Tu1) − ∇ · (κAk∇u1), w
)
Th

= (ρ (Ak ü
1 − D2

ku
1)+ ρ (D2

ku
1 − 	D2

ku
1)

+∇ · (κAk∇Tu1) − ∇ · (κAk∇u1), w
)
Th

,

and ‖uD2,h − 	D2
ku

1‖ρ ≤ C(h p+1 + k4). Comparing system (4.8) with (4.9) and (4.10), it
is not difficult to see (uD2,h, qh,A, uh,A, ûh,A) = (D2

ku
1
h,Akqh,Akuh,Ak ûh), and recalling

the definition of (qA, uA), we have ‖Akq1 − qA‖� ≤ Ck5 and ‖Aku1 − uA‖� ≤ Ck5. We
then obtain

‖Akε
u,1
h,k‖� ≤ Chmin{p,1}(h p+1 + k5), ‖D2

kε
u,1
h,k‖ρ ≤ C(h p+1 + k4).

123



J Sci Comput (2018) 75:597–624 619

Table 1 Experimental CFL
condition for the
Stormer-Numerov HDG schemes
with stabilization parameter
τ = 1

p = 1 p = 2 p = 3

d = 1 0.5 0.3 0.15

d = 2 0.35 0.2 0.1

By the definition of u0h , we then have ‖δkεu,1
h,k‖� = ‖(	u1 −	Tu1)/k‖� ≤ Ck4, and then

‖εu,1
h,k‖� = ‖Akε

u,1
h,k − k2

12 δkε
u,1
h,k‖� ≤ Chmin{p,1}(h p+1 + k5)

≤ Ch(h p+1 + k5),

‖εu,0
h,k‖� = ‖εu,1

h,k − kδkε
u,1
h,k‖� ≤ Chmin{p,1}(h p+1 + k5)

≤ Ch(h p+1 + k5),

‖δkεu,2
h,k‖� = ‖δkεu,1

h,k + kD2
kε

u,1
h,k‖ ≤ Chmin{p,1}(h p+1 + k5)

≤ Ch(h p+1 + k5),

for p ≥ 1.Nowwe use Proposition 4.2, noticing that (εq,1
h,k , ε̂

u,n
h,k ) = S(a1h, ε

u,1
h,k , 0) for n ≥ 0,

to get that

‖εq,1
h,k‖2κ−1 + |εu,1

h,k − ε̂
u,1
h,k |2τ ≤ 4C2

h ‖εu,1
h,k‖2ρ + 2 ‖a1h‖2κ−1 ≤ C(h p+1 + k5)2.

Similarly, we have

‖εq,0
h,k‖2κ−1 + |εu,0

h,k − ε̂
u,0
h,k |2τ ≤ 4C2

h ‖εu,0
h,k‖2ρ + 2 ‖a0h‖2κ−1 ≤ C(h p+1 + k5)2,

‖δkεq,1
h,k‖2κ−1 + |δkεu,1

h,k − δk ε̂
u,1
h,k |2τ ≤ 4C2

h ‖δkεu,1
h,k‖2ρ + 2 ‖δka1h‖2κ−1 ≤ C(h p+1 + k3)2,

‖δkεq,2
h,k‖2κ−1 + |δkεu,2

h,k − δk ε̂
u,2
h,k |2τ ≤ 4C2

h ‖δkεu,2
h,k‖2ρ + 2 ‖δka2h‖2κ−1 ≤ C(h p+1 + k5)2.

We obtain the estimates by combining all the results above. This complete the proof. ��

Step 5: Conclusion Applying the estimates obtained in the previous steps, and using the
approximation properties of the auxiliary HDG projection Theorem 2.2, we obtain
the second and third estimate of Theorem 4.6. To obtain the first estimate we use
the fact that

‖un − unh‖ρ ≤
n∑

m=1

k‖δkum − δku
m
h ‖ρ + ‖u0 − u0h‖ρ.

The error estimate of u − u∗
h can be proven in essentially the same way as in [9].

This concludes the proof of Theorem 4.6.

6 Numerical Examples

In this section, we present two numerical examples illustrating the convergence and conser-
vative properties of our scheme. We numerically found CFL conditions for the schemes in
d = 1 and d = 2 dimension. These are presented in Table 1.
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Table 2 History of convergence of the numerical approximations of the wave equation with exact solution
u(t, x, y) = (1/(

√
2π)) sin(πx) sin(πy) cos(

√
2π t) by the scheme Stormer-Numerov HDG scheme

p l uh qh u∗
h

Error e.o.c. Error e.o.c. Error e.o.c.

1 1 7.1e−2 – 1.8e−1 – 3.2e−2 –

2 2.1e−2 1.78 3.7e−2 2.29 8.2e−3 1.96

3 3.8e−3 2.47 6.4e−3 2.52 8.0e−4 3.36

4 7.8e−4 2.27 1.4e−3 2.15 9.1e−5 3.14

5 1.9e−4 2.07 3.6e−4 2.01 1.1e−5 3.11

2 1 1.7e−2 – 3.7e−2 – 3.5e−3 –

2 1.8e−3 3.24 3.2e−3 3.51 1.2e−4 4.84

3 1.5e−4 3.62 3.2e−4 3.35 5.1e−6 4.57

4 2.0e−5 2.87 4.1e−5 2.96 2.9e−7 4.12

5 2.4e−6 3.08 5.0e−6 3.02 1.8e−8 4.03

3 1 2.7e−3 – 4.8e−3 – 2.4e−4 –

2 1.3e−4 4.40 2.4e−4 4.31 5.5e−6 5.43

3 6.6e−6 4.29 1.4e−5 4.13 1.6e−7 5.05

4 4.0e−7 4.04 8.7e−7 4.00 5.1e−9 5.00

5 2.5e−8 4.01 5.4e−8 4.00 1.6e−10 5.00

Computations were performed up to a final time T f = 1.0, τ = 1, time steps k = .35h, k = 0.2h and

k = 0.1h, for p = 1, p = 2 and p = 3, respectively, and mesh parameters h = 2−l , for l = 1, 2, 3, 4, 5

6.1 Convergence and Superconvergence Test

We consider the following exact solution of the two dimensional acoustic wave equation

u(t, x, y) = 1√
2π

sin(πx) sin(πy) cos(
√
2π t), x, y ∈ (0, 1)2, t ∈ (0, T f

]
,

with parameters ρ = 1 and κ = 1 andDirichlet boundary conditions.We report in Table 2 the
L2-errors and estimated orders of convergence (e.o.c.) of the approximations by the schemes
Stormer-Numerov HDG(p), with polynomial degree p = 1, 2, 3. We observe optimal con-
vergence of order p+1 for the errors of the approximations uh and qh , and a superconvergent
order of p + 2 for the post-processed approximation u∗

h . Note that for the case p = 3 we
observe a superconvergent order of p + 2 = 5, instead of the fourth-order of the time-
stepping scheme. We argue that this is due to the small time step k = 0.1h and short final
time T f = 1.0. We provide another example where the post-processed approximation con-
verges with an order 4, the same order of the time marching scheme, for polynomials of
degree p = 3. See Table 3. We also report for this example the history of convergence when
the time step k is of order h5/4. As we anticipated before, we observe the superconvergence
for this time step.
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Table 3 History of convergence of the numerical approximations of the wave equation with exact solution
u(t, x) = sin(2π(x − t)) by the scheme Stormer-Numerov HDG scheme

p k l uh qh u∗
h

Error e.o.c. Error e.o.c. Error e.o.c.

3 .15h 1 4.6e−2 – 3.1e−1 – 4.4e−2 –

2 1.1e−3 5.44 1.2e−2 4.73 3.8e−4 6.85

3 6.6e−5 4.00 6.8e−4 4.08 1.3e−5 4.91

4 4.1e−6 4.00 4.3e−5 4.00 6.0e−7 4.40

5 2.6e−7 4.00 2.7e−6 3.99 3.5e−8 4.13

3 .15h5/4 1 4.5e−2 – 2.9e−1 – 4.3e−02 –

2 1.1e−3 5.41 1.1e−2 4.73 3.2e−04 7.07

3 6.6e−5 4.00 6.8e−4 4.02 8.9e−06 5.17

4 4.1e−6 4.00 4.3e−5 3.99 2.7e−07 5.02

5 2.6e−7 4.00 2.7e−6 3.99 8.6e−09 4.99

Computations were performed up to a final time T f = 5.0, time steps k = 0.15h and k = .15h5/4, for p = 3,

and parameters h = 2−l , for l = 1, 2, 3, 4, 5, and τ = 1

6.2 Conservation Properties Test

We consider the following travelling wave solution of the one dimensional acoustic wave
equation with periodic boundary conditions

u(t, x) = sin(12π(x − t)), x ∈ (0, 1), t ∈ (0, T f
]
,

with parameters ρ = 1 and κ = 1. We compare the approximate solution of the fully discrete
scheme HDG-Stormer-Numerov scheme presented in this paper with an alternative scheme
consisting in the second-order semi-discrete HDG formulation in space and a diagonally
implicit Runge–Kutta–Nyström (DIRKN) method in time. This method is implemented in a
similar fashion to the DIRK-HDGmethods in [22]. We utilize a fourth-order DIRKNmethod
matching the order of the Stormer-Numerov scheme. The coefficients of the DIRKN scheme
are detailed in [24] (see Eq. (4.8)).We remark that we also obtain optimal convergence results

Fig. 1 Left exact solution (black line) and approximate solution ûh (blue circle) by the DIRKN-HDG scheme.
Right exact solution (black line) and approximate solution ûh (blue circle) by the Stormer-Numerov HDG
scheme. We computed with p = 1, h = 2−7, k = .5h, τ = 20, and up to T f = 200 (Color figure online)
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Fig. 2 Left exact solution (black line) and approximate solution uh (blue dashed line) by the DIRKN-HDG
scheme. Right exact solution (black line) and approximate solution uh (blue dashed line) by the Stormer-
Numerov HDG scheme. We computed with p = 1, h = 2−7, k = .5h, τ = 20, and up to T f = 200 (Color
figure online)

Fig. 3 Left exact solution (black line) and approximate solution ûh (blue circle) by the DIRKN-HDG scheme.
Right exact solution (black line) and approximate solution ûh (blue circle) by the Stormer-Numerov HDG
scheme. We computed with p = 2, h = 2−6, k = .3h, τ = 20, and up to T f = 200 (Color figure online)

Fig. 4 Left exact solution (black line) and approximate solution uh (blue dashed line) by the DIRKN-HDG
scheme. Right exact solution (black line) and approximate solution uh (blue dashed line) by the Stormer-
Numerov HDG scheme. We computed with p = 2, h = 2−6, k = .3h, τ = 20, and up to T f = 200 (Color
figure online)
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for the DIRKN-HDG scheme. We compare the approximate solutions by the two schemes
for a long term computation T f = 200. We observe that, thanks to the conservative prop-
erties of the Stormer-Numerov scheme, its approximate solution almost does not dissipate.
On the other hand, dissipation is observed for the approximate solution by the DIRKN-HDG
scheme. Computation are performed for polynomial degree p = 1, 2. Plots of the approxi-
mate solutions are provided in Figs. 1 and 2 for p = 1 and Figs. 3 and 4 for p = 2. Finally,
we observe in the case p = 1 a phase-lag behaviour in both approximate solutions.

7 Concluding Remarks

We can obtain the very same results if we use the SDG method [5], or any of the HDG or
mixedmethods (for diffusion problems) obtained by the theory ofM-decompositions recently
introduced in [6].

A An Identity Used in the Duality Argument

Lemma A.1 Suppose η is the continuous piecewise-linear Lagrange interpolation of the
values {ηn}Nn=0 and μ : [0, T ] → R is a function. Then we have

∫ T

0
η(t)μ(t)dt = k

2η(0)Ikμ(0) + k
N−1∑

n=1

η(tn)Ikμ(tn) + k
2η(0)Ikμ(0),

∫ T

0
η̇(t)μ̇(t)dt = δkη

Nμ(T ) − k
N−1∑

n=1

D2
kη

nμ(tn) − δkη
1μ(0).

There result also holds for functions taking values in an inner product space, when the
pointwise product is substituted by the inner product.

Proof We have

∫ T

0
η(t)μ(t)dt =

N∑

n=1

(
ηn
∫ tn

tn−1

1
k (t − tn−1)μ(t)dt + ηn−1

∫ tn

tn−1

1
k (tn − t)μ(t)dt

)

= ηN
∫ T

T−k

1
k (t − (T − k))μ(t)dt +

N−1∑

n=1

ηn
∫ tn

tn−1

1
k (t − tn−1)μ(t)dt

+
N∑

n=2

ηn−1
∫ tn

tn−1

1
k (tn − t)μ(t)dt + η0

∫ k

0

1
k (k − t)μ(t)dt.

After using the definition of Ik , we get the first identity.
To obtain the second identity, note that we have

∫ T

0
η̇(t)μ̇(t)dt =

N∑

n=1

∫ tn

tn−1

η̇(t)μ̇(t)dt =
N∑

n=1

δkη
n(μ(tn) − μ(tn−1)),

and the result follows after simple rearrangements. ��
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