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Abstract We show that two widely used Galerkin formulations for second-order elliptic
problems provide approximations which are actually superclose, that is, their difference
converges faster than the corresponding errors. In the framework of linear elasticity, the two
formulations correspond to using either the stiffness tensor or its inverse the compliance
tensor. We find sufficient conditions, for a wide class of methods (including mixed and
discontinuous Galerkin methods), which guarantee a supercloseness result. For example,
for the HDGk method using polynomial approximations of degree k > 0, we find that the
difference of approximate fluxes superconverges with order k + 2 and that the difference of
the scalar approximations superconverges with order k + 3. We provide numerical results
verifying our theoretical results.
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1 Introduction

We show that approximate solutions given by two Galerkin formulations for the model
second-order elliptic problem

−∇ · (a∇u) = f in�, (1a)

u = uD on ∂�D, (1b)

−a∇u · n = qN on ∂�N, (1c)

where a = a(x) is a bounded, symmetric and uniformly positive-definite d×d matrix-valued
function in �, with inverse c(x), f ∈ L2(�), uD ∈ H1/2(∂�D) and qN ∈ H1/2(∂�N ), can
be superclose, that is, the difference converges faster than the corresponding errors.

These Galerkin formulations differ only in the use of the tensor a or its inverse c in their
formulations. Indeed, the formulations are based on the following equivalent rewritings of
our model problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g + ∇u = 0 in �,

cq − g = 0 in �,

∇ · q = f in �,

u = uD on ∂�D,

q · n = qN on ∂�N,

(A1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g + ∇u = 0 in �,

q − ag = 0 in �,

∇ · q = f in �,

u = uD on ∂�D,

q · n = qN on ∂�N.

(A2)

Thus, they differ only in the way the second equation is discretized. We observe that, when
the tensors a and c are constant on the mesh, there is no difference between the corresponding
Galerkin approximations. In the general case, we find sufficient conditions on the definition
of the Galerkin methods which guarantee that their approximations are superclose.

The first formulation seems to be naturalwhenmixed-likemethods are defined. In contrast,
in most cases, the tensor a is the natural data of the model which might be difficult or
computationally expensive to actually invert. This is not only true for the simple model
problemwe are considering here but for more involved elliptic problems like the equations of
linear elasticity where a corresponds to the stiffness tensor and c to the so-called compliance
tensor. For the second-order elliptic problem under consideration, Galerkin formulations
using the first set of equations have been used to define mixed methods [4] and have also
been used for the original introduction of the hybridizable discontinuous Galerkin (HDG)
methods [11]; see also the HDGmethods for linear elasticity in [15]. On the other hand, there
are many methods whose formulation is based on the second set of equations. For instance,
in [1] the authors develop a so-called expandedmixed finite element method and give a finite
difference interpretation. TheHDGmethods based on this set of equations are fully discussed
in [7], where it is noted that they come directly from the the HDGmethods for linear elasticity
proposed in [21]. We also highlight that, as pointed out above, in the nonlinear case or when
the tensor a can not be easily inverted, the second formulation becomes more relevant, see
for example the HDGmethods for the p-Laplacian equations [14] and the HDGmethods for
the equations of nonlinear elasticity [20]. Let us end by pointing out that the so-called Hybrid
High-Order method, for diffusion [17,18] and for elasticity, [16], uses a primal formulation
which does use the tensor a. And yet, it can be re-interpreted as anHDGmethod using the first
formulation, see [8]. Roughly speaking, this happens because the space of fluxes depends on
the tensor a in a suitable manner.

In this paper, we want to address the question of how different are the numerical approx-
imations based on the forms (A1) and (A2). To do that, we first prove estimates for the
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difference of the approximations to the negative gradient variable g and the flux variable q
by a classical energy argument. Then we prove an estimate for the difference of the approx-
imations to the the scalar variable u by using a standard duality argument and by using a
non-standard approximation result. In particular, for the HDG method using polynomial
approximations of degree k > 0 for all the variables, we obtain that the difference of the
approximations of the negative gradient and the flux variable converge with an order of k+2,
and the scalar variable with an order of k +3, where k is the polynomial degree associated to
the local finite element space. This is, in general, 1 and 2 degrees extra than the convergence
of each numerical approximation. A practical consequence of these results is that using one
or the other formulation is essentially immaterial.

The remainder of the paper is structured as follows. In Sect. 2, we introduce, the general
properties satisfied by the finite element approximations based on the Eqs. (A1) and (A2). We
then state and discuss our supercloseness result, Theorem1; we prove it in Sect. 3. In Sect. 4,
we present numerical experiments validating our theoretical findings. We end in Sect. 5 with
some concluding remarks.

2 The Finite Element Approximations and Their Supercloseness
Properties

In this section, we state and discuss our main results. We begin by introducing the Galerkin
methods we consider. We then state our main results, that is, the supercloseness properties
between their approximations.

2.1 The Numerical Schemes

Notation In order to define the discrete primal-dual formulations we first introduce some
notation. Let Th = {K } be a conforming partition of � into elements K , and let Fh = {F ∈
∂K : K ∈ Th} be the set of all the faces (d= 3) or edges (d= 2) F of the partition.We assume
that Th satisfies standard finite element assumptions, see [5] and [6]. The numerical methods
that we will introduce next seek for a finite element approximation to the vector fields g and
q, and the scalar field u. These numerical approximations will be defined on the following
discontinuous piecewise polynomial spaces:

V h = {v ∈ [L2(�)]d : v|K ∈ V (K ),∀K ∈ Th},
Wh = {w ∈ L2(�) : w|K ∈ W (K ),∀K ∈ Th},

where V (K ) and W (K ) are local spaces, each one contained in a polynomial space.
In addition, we are using the following standard notation:

(σ , v)Th =
∑

K∈Th

∫

K
σ (x) · v(x)dx, (ζ, w)Th =

∑

K∈Th

∫

K
ζ(x)w(x)dx,

〈ζ,w〉∂Th =
∑

K∈Th

∫

∂K
ζ(s)w(s)ds.

The Formulations Next, we define the different formulations satisfied by the finite element
approximations we are considering. Note that although the methods are assumed to satisfy
the equations of each formulation, they are not necessarily defined by them.
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The first formulation is based on the Eq. (A1): The approximation (g1h, q
1
h, u

1
h) ∈ V h ×

V h × Wh satisfies

(g1h, v)Th − (u1h,∇ · v)Th + 〈̂u1h, v · n〉∂Th = 0, ∀v ∈ V h, (2a)

(cq1h − g1h, v)Th = 0, ∀v ∈ V h, (2b)

−(q1h,∇w)Th + 〈̂q1h · n, w〉∂Th = ( f, w)Th , ∀w ∈ Wh . (2c)

The second formulation is based on the equations (A2): The approximation (g2h, q
2
h, u

2
h) ∈

V h × V h × Wh satisfies

(g2h, v)Th − (u2h,∇ · v)Th + 〈̂u2h, v · n〉∂Th = 0, ∀v ∈ V h, (3a)

(q2h − ag2h, v)Th = 0, ∀v ∈ V h, (3b)

−(q2h,∇w)Th + 〈̂q2h · n, w〉∂Th = ( f, w)Th , ∀w ∈ Wh . (3c)

Note that to complete the definition of the numerical methods, additional information
about the local spaces and the numerical traces û i

h and q̂ i
h · n is required, for i = 1, 2. To

obtain our results, only very general conditions need to be imposed which we gather in the
assumptions we display next. We first introduce an auxiliary dual problem and its Galerkin
approximation by form (A1) needed for the estimates by the scalar approximations.

The Auxiliary Dual Problem To prove the estimates for the scalar variable of Theorem1,
we use a duality argument. So, we need to introduce the following dual problem

cψ + ∇ϕ = 0 in�, (4a)

∇ · ψ = θ in�, (4b)

ϕ = 0 on ∂�D, (4c)

ψ · n = 0 on ∂�N . (4d)

and the approximation (ψh, ϕh) ∈ V h × Wh of (4) satisfying Eq. (2), that is,

(cψh, v)Th − (ϕh,∇ · v)Th + 〈ϕ̂h, v · n〉∂Th = 0 ∀v ∈ V h, (5a)

−(ψh,∇w)Th + 〈ψ̂h · n, w〉∂Th = (θ, w)Th ∀w ∈ Wh . (5b)

Assumption We make the following assumptions on

(A) the local space V (K ), K ∈ Th :

(i) ā|K (g1h − g2h)|K ∈ V (K ), where ā|K is the average of tensor a on K .

(ii) c̄|K (q1h − q2h)|K ∈ V (K ), where c̄|K is the average of tensor c on K .

(iii) ā|K v|K , c̄|K v|K ∈ V (K ) for all v ∈ V (K ).

(B) the numerical traces

(i) Single-valuedness: ûh and q̂h · n are single valued on Fh .
(ii) Non-negativity: 〈̂uh − uh, (qh − q̂h) · n〉∂Th ≥ 0.
(iii) Cancellation: 〈uh − ûh, (ψ̂h − ψh) · n〉∂Th + 〈ϕh − ϕ̂h, (qh − q̂h) · n〉∂Th = 0.

(C) the approximation properties the flux:

(i) V (K ) ⊃ [P0(K )]d ,
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Table 1 Local spaces of some mixed and DG methods

Method V (K ) W (K ) M(F)

RTk
simplexes

[Pk (K )]d ⊕ xPk (K ) Pk (K ) Pk (F)

RTk
squares

Pk+1,k (K ) × Pk,k+1(K ) Pk,k (K ) Pk (F)

HDGk
polyhedra

[Pk (K )]d Pk (K ) Pk (F)

DGk
polyhedra

[Pk (K )]d Pk (K ) −

BDMk
simplexes

[Pk (K )]d Pk−1(K ) Pk (F)

BDMk
squares

[Pk (K )]2 ⊕ span{∇⊥xyk+1,∇⊥xk+1y} Pk−1(K ) Pk(F)

(ii) ‖q − q1h‖L2(Th)
≤ Cahα‖u‖H2(Th)

for someα ∈ (0, 1].
(D) the elliptic regularity of the dual problem:

‖ϕ‖H2(�) + ‖ψ‖H1(�;c) ≤ C‖θ‖L2(�),

where the norm ‖ · ‖H1(�;c) is the H1-norm weighted with c1/2. See Sect. 2.2. This
inequality is satisfied, for example, if the domain � is convex and either ∂�D or ∂�N

vanishes.

Example The main examples of methods satisfying the above weak formulations are the
hybridized version of the Raviart–Thomas (RT) [19] and Brezzi–Douglas–Marini (BDM) [3]
mixed methods, the Discontinuous Galerkin (DG) methods and the so-called hybridizable
Discontinuous Galerkin (HDG) [9] methods. In Table1, we display the choices of the local
spaces V (K ), W (K ). For the hybridized version of the mixed methods and for the HDG
methods, ûh is an additional unknown. This is why we also describe the space M(F) to
which the restriction of ûh to the face F belongs. Next, we briefly discuss the satisfaction of
the assumptions (A), (B) and (C) by these methods.

2.1.1 The Local Vector Spaces: Assumption (A)

For the DG and HDGk methods, we see that assumption (Aiii), and hence assumptions (Ai)
and (Aii), are satisfied. Assumption (Aiii) is satisfied by the BDMk method for simplexes,
but not for squares (or cubes). The RTk method does not satisfy condition (Aiii) neither; it
does not satisfy condition (Aii) though. See Table 2.

2.1.2 The Numerical Traces: Assumption (B)

For the DG methods, the numerical traces ûh and q̂h are explicitly defined in terms of the
original unknowns of the problem, uh and qh . To describe them, let us recall the standard
DG notation for the averages and jumps on the interior faces

{{u}} := 1

2
(u+ + u−), {{q}} := 1

2
(q+ + q−),

�u� := u+n+ + u−n−, �q� := q+ · n+ + q− · n−.
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The numerical traces are then defined on each F ∈ Fh\∂� by:

q̂ih := {{qih}} + C11�u
i
h� − C12�qih�, ûih := {{uih}} + C12 · �uih� + C22�qih�,

for i = 1, 2, where the auxiliary parameters C11, C12 and C22 might depend on x . On the
boundary faces we imposed the boundary conditions of the problems by

q̂ih · n :=
{
qih · n + C11(uih − uD) on ∂�D,

qN on ∂�N ,

and

ûih :=
{
uD on ∂�D,

uih + C22(qih · n − qN ) on ∂�N ,

for i = 1, 2. In this way, the DG methods always satisfy assumptions (Bi) and (Biii). They
satisfy (Bii) when C11 and C22 are nonnegative.

For the particular case

C11 = τ+τ−/(τ++τ−), C22 = 1/(τ+ + τ−), C12 = 1

2
�τ �/(τ+ + τ−),

we have

ûh = τ+uh+ + τ−uh−

τ+ + τ− + 1

τ+ + τ− �qh�,

q̂h = τ−qh+ + τ+qh−

τ+ + τ− + τ+τ−

τ++τ− �uh�,

on all interior faces, and it turns out that we can write

q̂h · n± = q±
h · n± + τ±(u±

h − ûh).

We thus obtain an HDG method, see [7,11]. For general HDG methods and the hybridized
version of the mixed methods, the scalar numerical trace is a single-valued, new unknown on
Fh\∂�D ; on ûh = uD on ∂�D though. The numerical trace of the flux is defined as a linear
combination of the other unknowns with a stabilization function τ ; for the mixed methods,
τ = 0. Specifically, we have

q̂ih = qih + τ(uih − ûih)n on Fh,

for i = 1, 2. To ensure the satisfaction of assumption (Bi), the methods impose the condition

〈̂qh · n,m〉∂Th = 〈qN ,m〉∂Th , ∀m ∈ Mh . (6)

where Mh := {m : m|F ∈ M(F),∀F ∈ Fh}. Finally, when the stabilization function τ(·) is
just a multiplication operator, that is, τ(μ) := τ ·μ, the assumption (Biii) is satisfied and the
assumption (Bii) are satisfied if τ ≥ 0. See Table2.

2.1.3 The Approximation of the Flux: Assumption (C)

In Table3, we display several cases in which assumptions (C) are satisfied.
We only consider the cases for which condition (Aii) is also satisfied.
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Table 2 Assumptions (A) and
(B)

Method
elements

(Ai) (Aii) (Aiii) (Bi) (Bii) (Biii)

RTk
simplexes

× � × � � �

RTk
squares,cubes

× × × � � �

HDGk
polyhedra

� � � � �
τ≥0

�

DGk
polyhedra

� � � � �
C11,C22≥0

�

BDMk
simplexes

� � � � � �

BDMk
squares,cubes

× × × � � �
A � means that the assumption is
satisfied by the numerical
method. A × means that it is not

Table 3 Assumptions (C) for vector spaces satisfying (Aii)

Method
elements

α Condition References

RTk
simplexes

1 k ≥ 0 [4]

HDGk
simplices

1 τ |∂K = 0 on all faces of K but one [10]

HDGk
simplices

1 τ±1 of order one, k ≥ 0 [12]

HDGk
simplices

1 (hτ)±1 of order one, k ≥ 1 [12]

HDGk
polyhedra

1 (hτ)±1 of order one, k ≥ 1 [5]

HDGk
polyhedra

1
2 τ is of order one [5]

DGk
simplices

1 C±1
11 ,C±1

22 and C12 of order one [13]

DGk
polyhedra

1 (hC11)
±1, (C22/h)±1, C12 of order one, k ≥ 1 [5]

DGk
polyhedra

1
2 C±1

11 ,C±1
22 , C12 of order one [5]

BDMk
simplexes

1 k ≥ 1 [4]

2.2 Supercloseness of the Approximations

To state our results, we use the following notation.
We define the Sobolev space X (Th) = ∏

K∈Th
X (K ), for any Sobolev space X , and its

norm
‖μ‖2X (Th)

:=
∑

K∈Th

‖μ‖2X (K ), ∀μ ∈ X (Th).

Finally, for v ∈ [L2(Th)]d we define the norm weighted with a tensor c by

‖v‖2L2(Th ;c) := (cv, v)Th .

We let u be the solution of problem (1) and set g := −∇u and q := ag. We also let
(g1h, q

1
h, u

1
h) and (g2h, q

2
h, u

2
h) be numerical approximations satisfying (2) and (3), respec-
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tively. for some estimates, we are going to use the following elliptic regularity inequality:
Now we are ready to state the supercloseness properties of the approximations satisfying (2)
and (3). Its proof is provided in the next section.

Theorem 1 Suppose that the assumption (B) on the numerical traces hold. Then

‖g1h − g2h‖L2(Th ;a) ≤ ‖c 1
2 (a − ā)c

1
2 ‖L∞(Th)(‖q − q1h‖L2(Th ;c)

+ ‖g − g1h‖L2(Th ;a)) i f (Ai) holds,

‖q1h − q2h‖L2(Th ;c) ≤‖a 1
2 (c − c̄)a

1
2 ‖L∞(Th)(‖q − q2h‖L2(Th ;c)

+ ‖g − g2h‖L2(Th ;a)) i f (Aii) holds,

Suppose now that assumptions (B) and (C) on the approximation of the flux of the first
method hold. Then, if the elliptic regularity inequality of assumption (D) holds,

‖u1h − u2h‖L2(Th)
≤ C1h

α(‖q − q2h‖L2(Th ;c) + ‖g − g2h‖L2(Th ;a)).

Moreover, if assumption (Aiii) holds and if [P1(K )]d ⊆ V (K ),

‖u1h − u2h‖L2(Th)
≤ C2h

1+α(‖q − q2h‖L2(Th ;c) + ‖g − g2h‖L2(Th ;a)).

The constants C1 and C2 are independent of h and the solution. The constant C1 depends on
‖c‖W 1,∞(Th)

whereas the constant C2 depends on ‖c‖W 2,∞(Th)
.

Theorem 2 Assume that, for some positive constant κ , we have

max
{‖c1/2(a − ā)c1/2‖L∞(K ), ‖a1/2(c − c̄)a1/2‖L∞(K )

} ≤ κ < 1 ∀K ∈ Th,

and set

ϒh := min
i=1,2

{‖q − qih‖L2(Th ;c) + ‖g − gih‖L2(Th ;a)}.

Then, the estimates of Theorem1 become

‖g1h − g2h‖L2(Th ;a) ≤ ‖c 1
2 (a − ā)c

1
2 ‖L∞(Th )ϒh i f (B) and (Ai) hold,

‖q1h − q2h‖L2(Th ;c) ≤ ‖a 1
2 (c − c̄)a

1
2 ‖L∞(Th )ϒh i f (B) and (Aii) hold,

‖u1h − u2h‖L2(Th )
≤ C1h

αϒh i f (B), (C) and (D) hold,

‖u1h − u2h‖L2(Th )
≤ C2h

1+αϒh i f (B), (C), (D) hold and [P1(K )]d ⊆V (K ).

We summarize the application of this result to the numerical methods described in our exam-
ples in Table4. There, we assume that the extra assumption of Theorem2 holds.

A few remarks are in order. First, note that, when using simplexes, it is known that the first
formulation of the HDGk method with τ of order one, converges with order k + 1 in all the
approximations; see [12]. Theorem1 states the the second formulation and the first one are
superclose in the sense that the order of convergence of the difference of their approximations
converge with order k + 2, for the vector-valued approximations, and with order k + 3, for
the scalar approximation when c ∈ W 2,∞(Th).

Note also that, regardless of the actual shape of the elements, when the values of the
stabilization function τ±1, respectively, (hτ)±1, are of order one, respectively, the order of
convergence of the difference of their approximations converge with an additional half an
order, respectively, a full order, for the vector-valued approximations, and with three half
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Table 4 Orders of convergence in h

Method
elements

1
ϒh

‖eg‖L2(Th ;a) 1
ϒh

‖eq‖L2(Th ;c) 1
ϒh

‖eu‖L2(Th )
1

ϒh
‖eu‖L2(Th )

RTk
simplexes

0 1 1 1

HDGk
polyhedra

1 1 α 1 + α

BDMk
simplexes

1 1 1 2

DGk
polyhedra

1 1 α 1 + α

The value of α is provided in the previous table. Here eg := g1h − g2h , eq := q1h − q2h and eu := u1h − u2h .

For the first three columns, we assume that c ∈ W 1,∞(Th). For the last, that c ∈ W 2,∞(Th). For the last two
columns, we assume that the elliptic regularity inequality holds

orders, respectively two full orders, for the scalar approximation whenever c ∈ W 2,∞(Th).
This also applies to the DGk methods.

Concerning the mixed methods, similar results are obtained for the BDMk method.
Interestingly enough, although the convergence of the method is of order k for the scalar
approximations, their difference is of order k + 3. On the other hand, since the assumption
(Ai) is not satisfied for the RTk method, we see that the approximate fluxes, but not the
approximate gradients, are superclose. Moreover, the scalar approximations are superclose
with an extra power in h, but not two, like to the DGmethods or three for the BDMk method.

The numerical results presented in Sect. 4 confirm that all the results in the above table
are sharp.

To end this section, we note that, besides the supercloseness result, Theorem1 implies
that the approximation properties of one scheme can be deduced for those of the other.
In particular, if either approximate solution converges, then the other approximate solution
converges too, and converges with the same rate.

3 Proofs

Here, we provide detailed proofs of our main result, Theorem1.

3.1 The Error Equations

We begin by obtaining the error equations. Let (g1h, q
1
h, u

1
h) and (g2h, q

2
h, u

2
h) be functions

satisfying (2) and (3), respectively. Then, if we set

eg := g1h − g2h, eq := q1h − q2h, eu := u1h − u2h, eq̂ := q̂1h − q̂2h, eû := û1h − û2h,

we have, subtracting Eq. (3) from Eq. (2), that

(eg, v)Th − (eu,∇ · v)Th + 〈eû, v · n〉∂Th = 0 ∀v ∈ V h, (7a)

(cq1h − g1h, v)Th = (q2h − ag2h, v)Th = 0 ∀v ∈ V h, (7b)

−(eq ,∇w)Th + 〈eq̂ · n, w〉∂Th = 0 ∀w ∈ Wh . (7c)
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3.2 Proof of Estimates of the Difference for the Vector Unknowns

Here, we prove the estimates for the difference of the approximations to the gradient and
to the flux of Theorem1. To do that, we proceed by using a variation on the classic energy
argument.

Step 1: The energy argument Taking v := eq ∈ V h in the first error Eq. (7a),w := eu ∈ Wh

in the third error Eq. (7c), and adding the resulting equations, we get

(eg, eq)Th − (eu,∇ · eq)Th + 〈eû, eq · n〉∂Th − (eq ,∇eu)Th + 〈eq̂ · n, eu〉∂Th = 0.

After integrating by parts, and after adding and subtracting the term 〈eû, eq̂ · n〉∂Th , we get

(eg, eq)Th + 〈eû − eu, (eq − eq̂) · n〉∂Th = 0.

where we have used the fact that 〈eû, eq̂ · n〉∂Th = 0 since the numerical traces are single-
valued by (Bi), eû = 0 on ∂�D and eq̂ · n = 0 on ∂�N . Then, by the positivity property
(Bii), we obtain

(eg, eq)Th ≤ 0.

Step 2: The estimate of the difference in the gradient By the second of the equations in
(7b),

(eg, eq)Th = (eg, q1h − q2h)Th = (eg, q1h − ag2h)Th = ‖eg‖2L2(Th ;a) + (q1h − ag1h, eg)Th ,

and, by the last inequality of Step 1,

‖eg‖2L2(Th ;a) ≤ − (q1h − ag1h, eg)Th

= − (cq1h − g1h, aeg)Th

= − (cq1h − g1h, (a − ā)eg)Th ,

since (cq1h − g1h, āeg)Th = 0. This holds because, by assumption (Ai), āeg ∈ V h , and so we
can use the first of the equations in (7b) with v := āeg . Thus,

‖eg‖2L2(Th ;a) ≤ −(cq1h − cq, (a − ā) eg)Th − (g − g1h, (a − ā) eg)Th

≤ (‖q − q1h‖L2(Th ;c) + ‖g − g1h‖L2(Th ;a)
) ‖c 1

2 (a − ā)c
1
2 ‖L∞(Th)‖eg‖L2(Th ;a),

and we get our estimate

‖eg‖L2(Th ;a) ≤ (‖q − q1h‖L2(Th ;c) + ‖g − g1h‖L2(Th ;a)
) ‖c 1

2 (a − ā)c
1
2 ‖L∞(Th).

Step 3: The estimate of the difference in the flux By the first of the Eq. (7b) with v := eq ,

(eg, eq)Th =(g1h − g2h, eq)Th = (cq1h − g2h, eq)Th

= ‖eq‖2L2(Th ;c) + (cq2h − g2h, eq)Th ,

and by the last inequality of Step 1, we get

‖eq‖2L2(Th ;c) ≤ − (cq2h − g2h, eq)Th

= − (q2h − ag2h, ceq)Th

= − (q2h − ag2h, (c − c̄)eq)Th ,
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since (q2h − ag2h, c̄eq)Th = 0. Indeed, by assumption (Aii), c̄eq ∈ V h , and we can take
v := c̄eq in the second of the equations in (7b). Thus,

‖eq‖2L2(Th ;c) ≤ − (q2h − q, (c − c̄)eq)Th − (a(g − g2h), (c − c̄)eq)Th

≤ (‖q − q2h‖L2(Th ;c) + ‖g − g2h‖L2(Th ;a)
) ‖a 1

2 (c − c̄)a
1
2 ‖L∞(Th) ‖eq‖L2(Th ;c),

and we obtain our first estimate

‖eq‖L2(Th ;c) ≤ (‖q − q2h‖L2(Th ;c) + ‖g − g2h‖L2(Th ;a)
) ‖a 1

2 (c − c̄)a
1
2 ‖L∞(Th).

This completes the proof of the estimates of the difference in the vector unknowns.

3.3 Proof of the Estimates of the Difference for the Scalar Variable

Step 1: An identity for the difference Taking w := eu ∈ Wh in the second equation of the
approximation to the dual solution, (5b), we get

(eu, θ)Th = −(∇eu,ψh)Th + 〈ψ̂h · n, eu〉∂Th

= (eu,∇ · ψh)Th + 〈(ψ̂h − ψh) · n, eu〉∂Th

= (eg,ψh)Th + 〈eû,ψh · n〉∂Th + 〈(ψ̂h − ψh) · n, eu〉∂Th

by the error Eq. (7a) with v := ψh ∈ V h . Since 〈ψ̂h · n, eû〉∂Th = 0 because of the single-
valuedness of the numerical traces, assumption (Bi) and the fact that eû = 0 on ∂�D and
ψ̂h · n = 0 on ∂�N , we obtain

(eu, θ)Th = (eg,ψh)Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

= (cq1h − g2h,ψh)Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th ,

by the first of the Eq. (7b) with v := ψh ∈ V h . Finally,

(eu, θ)Th = (ceq ,ψh)Th + (cq2h − g2h,ψh)Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

= (cq2h − g2h,ψh)Th ,

because the term �h := (ceq ,ψh)Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th is equal to zero.
Let us prove this claim. We have

�h = (eq , cψh)Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

= (∇ · eq , ϕh)Th − 〈ϕ̂h, eq · n〉∂Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

by the Eq. (5a) with v := eq . Integrating by parts, we get

�h = −(eq ,∇ϕh)Th + 〈ϕh − ϕ̂h, eq · n〉∂Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

= −〈eq̂ · n, ϕh〉∂Th + 〈ϕh − ϕ̂h, eq · n〉∂Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th ,

by Eq. (7c) with w := ϕh . Finally,

�h = −〈eq̂ · n, ϕh − ϕ̂h〉∂Th + 〈ϕh − ϕ̂h, eq · n〉∂Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th

= 〈(eq − eq̂) · n, ϕh − ϕ̂h〉∂Th + 〈eu − eû, (ψ̂h − ψh) · n〉∂Th .

= 0,

by the cancellation property of the traces, assumption (Biii).
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Fig. 1 Initial unstructured
triangulation

Step 2: The first estimate To obtain our first estimate, we first note that

(eu, θ)Th = (q2h − ag2h, cψh)Th

= (q2h − ag2h, c(ψh − ψ))Th + (q2h − ag2h, cψ)Th

= (q2h − ag2h, c(ψh − ψ))Th + (q2h − ag2h, (I − PV h )(cψ))Th ,

by the second of the equations in (7b) with v := PV h (cψ), where PV h is the L2-projection
into V h . Then we easily get that

(eu, θ)Th ≤ ‖q2h − ag2h‖L2(Th ;c)(‖ψh − ψ‖L2(Th ;c) + ‖(I − PV h )(cψ)‖L2(Th ;c))
≤ ‖q2h − ag2h‖L2(Th ;c)Chα‖ψ‖H1(Th ;c),

by assumption (Cii) and the approximation properties of PV h in combinationwith assumption
(Ci). The result now follows from the estimates of the errors in the vector unknowns and the
elliptic regularity inequality.

Step 3: An auxiliary non-standard, approximation result The improved estimate of the
error in the scalar unkown is more delicate to prove. To prove it, we are going to use the
following simple but non-standard auxiliary result.

Lemma 3.1 Assume that P1(K ) ⊆ V (K ). Then, the following estimate holds

‖(I − PV h ) ((c − c̄)ψ) ‖L2(K ;a) ≤ Ch2‖a‖1/2L∞(K )‖c‖W 2,∞(K )‖ψ‖H1(K ).

Proof Since P1(K ) ⊆ V (K ), we have that (I − PV h )P1(K ) = {0}, and so
‖(I − PV h ) ((c − c̄)ψ) ‖L2(K ;a) ≤ ‖a‖1/2L∞(K ) inf

v∈P1(K )
‖(c − c̄)ψ − v‖L2(K ).

To estimate the right-hand side, we need a variation of Taylor’s expansion which would
not use second-order derivatives of ψ (otherwise we would not be able to use the elliptic
regularity inequality), but only those of c. In the one-dimensional case, such variation is the
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Table 5 Errors and estimated orders of convergence using RTk on an unstructured triangulation

k l ‖u1h − u2h‖L2(Th ) e.o.c. ‖q1h − q2h‖L2(Th ;c) e.o.c. ‖g1h − g2h‖L2(Th ;a) e.o.c.

0 1 6.7e−02 – 3.3e−02 – 3.3e−01 –

2 7.2e−01 −3.43 1.8e−02 0.90 7.9e−01 −1.25

3 1.6e−01 2.21 4.5e−03 1.96 3.9e−01 1.00

4 3.8e−02 2.04 9.9e−04 2.20 1.9e−01 1.06

5 9.6e−03 1.98 2.4e−04 2.03 9.5e−02 0.99

1 1 1.8e−03 – 6.4e−03 – 6.4e−02 –

2 6.0e−04 1.56 1.3e−03 2.35 2.6e−02 1.31

3 8.1e−05 2.89 1.6e−04 2.94 6.7e−03 1.94

4 9.4e−06 3.10 2.0e−05 3.04 1.6e−03 2.03

5 1.2e−06 2.98 2.5e−06 2.99 4.1e−04 1.99

2 1 1.5e−03 – 2.0e−03 – 1.7e−02 –

2 4.0e−03 −1.42 3.1e−04 2.72 7.6e−03 1.20

3 2.3e−04 4.12 2.1e−05 3.88 1.0e−03 2.92

4 1.5e−05 3.97 1.3e−06 3.96 1.3e−04 3.00

5 9.3e−07 3.98 8.3e−08 4.00 1.6e−05 2.99

3 1 8.5e−05 – 3.0e−04 – 2.2e−03 –

2 1.2e−05 2.86 1.8e−05 4.05 3.0e−04 2.87

3 3.9e−07 4.92 6.0e−07 4.92 2.0e−05 3.92

4 1.1e−08 5.15 1.8e−08 5.08 1.2e−06 4.02

5 3.5e−10 4.98 5.6e−10 4.98 7.8e−08 3.99

4 1 3.5e−05 – 5.1e−05 – 5.6e−04 –

2 2.1e−05 0.72 1.9e−06 4.75 3.8e−05 3.89

3 3.2e−07 6.05 3.2e−08 5.88 1.2e−06 4.93

4 5.1e−09 5.96 5.2e−10 5.95 4.0e−08 4.97

following identity:

f (s)g(s) = ( f (0) + s f ′(0))g(0) +
∫ s

0
[ f (z)g′(z) + (s − z)( f ′′(z)g(z) + f ′(z)g′(z))]dz.

Using this identity (with f := (c − c̄)i j and g := ψ j , i, j = 1, ..., d) and bounding each of
the resulting terms using approximations in P1(K ), we easily get the following estimate for
star-shaped, uniformly regular elements:

inf
v∈P1(K )

‖(c − c̄)ψ − v‖L2(K ) ≤C h2‖c‖W 2,∞‖ψ‖H1(K ).

This completes the proof. ��

Step 4: The improved estimate We are now ready to prove the last estimate. Since assump-
tion (Aiii) holds, we have that c̄ψh ∈ V h , and we can take v := c̄ψh in the second of the
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Table 6 Errors and estimated orders of convergence using BDMk on an unstructured triangulation

k l ‖u1h − u2h‖L2(Th ) e.o.c. ‖q1h − q2h‖L2(Th ;c) e.o.c. ‖g1h − g2h‖L2(Th ;a) e.o.c.

1 1 3.7e−04 – 5.8e−03 – 7.4e−03 –

2 2.3e−05 3.98 7.5e−04 2.95 8.8e−04 3.07

3 1.5e−06 3.97 9.7e−05 2.95 1.1e−04 3.01

4 9.5e−08 3.99 1.2e−05 2.98 1.4e−05 3.00

5 5.9e−09 4.00 1.5e−06 2.99 1.7e−06 3.00

2 1 2.9e−05 – 1.1e−03 – 1.4e−03 –

2 1.3e−06 4.49 1.1e−04 3.35 1.2e−04 3.57

3 4.1e−08 4.98 7.1e−06 3.90 7.7e−06 3.93

4 1.3e−09 5.00 4.5e−07 3.98 4.9e−07 3.98

5 3.9e−11 5.00 2.8e−08 4.00 3.1e−08 3.99

3 1 8.8e−06 – 4.1e−04 – 5.2e−04 –

2 1.3e−07 6.12 1.3e−05 5.01 1.5e−05 5.06

3 1.9e−09 6.05 4.0e−07 4.99 4.8e−07 5.00

4 2.9e−11 6.02 1.3e−08 5.00 1.5e−08 5.00

5 4.5e−13 6.01 3.9e−10 5.00 4.7e−10 5.00

4 1 6.0e−07 – 3.4e−05 – 4.8e−05 –

2 7.4e−09 6.32 9.4e−07 5.19 1.1e−06 5.40

3 6.2e−11 6.90 1.6e−08 5.91 1.9e−08 5.92

4 4.9e−13 6.98 2.5e−10 5.98 3.0e−10 5.98

Eq. (7b) to get that

(eu, θ)Th = (q2h − ag2h, cψh)Th

= (q2h − ag2h, (c − c̄)ψh)Th

= (q2h − ag2h, (c − c̄)ψ)Th + (q2h − ag2h, (c − c̄)(ψh − ψ))Th ,

= (q2h − ag2h, (I − PV h ) ((c − c̄)ψ))Th + (q2h − ag2h, (c − c̄)(ψh − ψ))Th ,

by the second of the Eq. (7b) with v := PV h ((c − c̄)ψ). Then,

(eu, θ)Th ≤ ‖q2h − ag2h‖L2(Th ;c)(‖(I − PV h ) ((c − c̄)ψ) ‖L2(Th ;a)
+ ‖q2h − ag2h‖L2(Th ;c)‖a

1
2 (c − c̄)a

1
2 ‖L∞(Th)‖ψ − ψh‖L2(Th ;c)

≤ ‖q2h − ag2h‖L2(Th ;c)Ch2‖a‖1/2L∞(Th)
‖c‖W 2,∞(Th)

‖ψ‖H1(Th)

+ ‖q2h − ag2h‖L2(Th ;c)‖a
1
2 (c − c̄)a

1
2 ‖L∞(Th)Chα‖ψ‖H1(Th)

,

by Lemma3.1 and by assumption (Cii). The improved estimate now follows by using the
elliptic regularity inequality.

It remains to show the last statement of Theorem1.
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Table 7 Errors and estimated orders of convergence using DGk , with C11 = 1, C12 = [1, 1]t , C22 = 1 on
an unstructured triangulation

k l ‖u1h − u2h‖L2(Th ) e.o.c. ‖q1h − q2h‖L2(Th ;c) e.o.c. ‖g1h − g2h‖L2(Th ;a) e.o.c.

0 1 1.9e−03 – 8.4e−03 – 3.6e−02 –

2 6.3e−04 1.57 4.2e−03 1.02 1.1e−02 1.66

3 5.0e−04 0.34 3.1e−03 0.41 7.9e−03 0.51

4 2.0e−04 1.34 1.1e−03 1.54 2.6e−03 1.60

5 5.8e−05 1.77 3.0e−04 1.84 7.1e−04 1.87

1 1 2.8e−03 – 3.4e−02 – 9.0e−02 –

2 8.9e−04 1.64 1.1e−02 1.67 2.0e−02 2.15

3 1.0e−04 3.14 2.1e−03 2.37 3.2e−03 2.68

4 6.2e−06 4.02 2.8e−04 2.86 3.9e−04 3.02

5 3.8e−07 4.01 3.7e−05 2.94 4.8e−05 3.02

2 1 4.5e−03 – 4.3e−02 – 7.7e−02 –

2 2.7e−04 4.06 8.0e−03 2.44 9.6e−03 3.00

3 8.6e−06 4.96 4.0e−04 4.33 5.3e−04 4.19

4 3.0e−07 4.83 2.5e−05 3.98 3.5e−05 3.91

5 9.8e−09 4.94 1.6e−06 4.00 2.2e−06 3.97

3 1 1.9e−03 – 4.4e−02 – 5.1e−02 –

2 2.0e−05 6.56 4.5e−04 6.62 9.0e−04 5.84

3 7.7e−07 4.67 5.2e−05 3.10 6.9e−05 3.69

4 1.2e−08 5.99 1.7e−06 4.93 2.2e−06 4.99

5 1.9e−10 6.00 5.4e−08 4.97 6.8e−08 5.01

4 1 4.3e−04 – 6.1e−03 – 1.2e−02 –

2 8.7e−06 5.63 4.1e−04 3.88 5.3e−04 4.55

3 5.8e−08 7.23 5.0e−06 6.38 6.5e−06 6.37

4 4.8e−10 6.90 7.9e−08 5.99 1.0e−07 5.96

3.4 Proof of Theorem 2

Using the triangle inequality in the estimate of the error in the flux, we get

‖eq‖L2(Th ;c) ≤ (‖q − q1h‖L2(Th ;c) + ‖eq‖L2(Th ;c)
+‖g − g1h‖L2(Th ;a) + ‖eg‖L2(Th ;a)

) ‖a 1
2 (c − c̄)a

1
2 ‖L∞(Th).

But by Step 2 of the estimates of the vector unknowns, we can obtain that

‖eg‖L2(Th ;c) ≤ ‖q2h − ag2h‖L2(Th ;c),

without having to use Asssumption (Ai). As a consequence, we readily get that

‖eq‖L2(Th ;c) ≤ C
(‖q − q1h‖L2(Th ;c) + ‖g − g1h‖L2(Th ;a)

) ‖a 1
2 (c − c̄)a

1
2 ‖L∞(Th),

whereC := 2/(1−‖a 1
2 (c− c̄)a

1
2 ‖L∞(Th) ≤ 2/(1−κ) by our assumption. We can then write

that
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Table 8 Errors and estimated orders of convergence using HDGk , with stabilization parameter τ = 1, using
unstructured triangular meshes (top) and uniform Cartesian meshes (bottom)

k l ‖u1h − u2h‖L2(Th ) e.o.c. ‖q1h − q2h‖L2(Th ;c) e.o.c. ‖g1h − g2h‖L2(Th ;a) e.o.c.

Triangles

0 1 2.3e−03 – 8.2e−03 – 2.7e−02 –

2 5.1e−04 2.15 2.3e−03 1.82 6.2e−03 2.11

3 1.3e−04 1.98 6.1e−04 1.93 1.6e−03 1.99

4 3.3e−05 1.98 1.6e−04 1.97 3.9e−04 1.99

5 8.2e−06 1.99 3.9e−05 1.99 9.9e−05 1.99

1 1 3.1e−04 – 4.9e−03 – 6.5e−03 –

2 2.3e−05 3.79 7.3e−04 2.76 8.5e−04 2.94

3 1.5e−06 3.92 9.6e−05 2.91 1.1e−04 2.98

4 9.5e−08 3.98 1.2e−05 2.97 1.4e−05 3.00

5 6.0e−09 3.99 1.5e−06 2.99 1.7e−06 3.00

2 1 3.0e−05 – 1.2e−03 – 1.5e−03 –

2 1.4e−06 4.49 1.1e−04 3.43 1.2e−04 3.64

3 4.3e−08 4.99 7.1e−06 3.91 7.7e−06 3.95

4 1.3e−09 5.01 4.5e−07 3.98 4.9e−07 3.98

5 4.1e−11 5.00 2.8e−08 4.00 3.1e−08 3.99

3 1 8.9e−06 – 4.0e−04 – 5.0e−04 –

2 1.3e−07 6.09 1.3e−05 4.99 1.5e−05 5.04

3 2.0e−09 6.03 4.0e−07 4.98 4.8e−07 4.99

4 3.1e−11 6.02 1.3e−08 4.99 1.5e−08 4.99

5 4.8e−13 6.01 3.9e−10 5.00 4.7e−10 5.00

4 1 6.2e−07 – 3.5e−05 – 5.0e−05 –

2 7.8e−09 6.32 9.4e−07 5.23 1.1e−06 5.46

3 6.5e−11 6.90 1.6e−08 5.91 1.9e−08 5.92

4 5.2e−13 6.98 2.5e−10 5.98 3.0e−10 5.98

Squares

0 1 1.5e−03 – 6.1e−03 – 1.5e−02 –

2 1.1e−03 0.46 4.5e−03 0.43 1.9e−02 -0.29

3 2.2e−04 2.36 7.2e−03 −0.67 4.0e−03 2.22

4 3.2e−05 2.79 2.1e−03 1.78 7.6e−04 2.40

5 4.6e−06 2.79 5.5e−04 1.93 1.4e−04 2.46

6 6.6e−07 2.80 1.4e−04 1.97 2.4e−05 2.54

7 9.2e−08 2.83 3.5e−05 1.98 3.9e−06 2.62

1 1 4.8e−03 – 3.2e−02 – 6.2e−02 –

2 3.3e−04 3.87 3.0e−03 3.41 8.9e−03 2.81

3 2.7e−05 3.61 6.7e−04 2.17 1.3e−03 2.81

4 2.2e−06 3.63 1.4e−04 2.21 1.6e−04 2.97

5 1.7e−07 3.71 2.2e−05 2.73 2.0e−05 3.02

6 1.2e−08 3.84 2.9e−06 2.89 2.4e−06 3.02

123



392 J Sci Comput (2018) 75:376–394

Table 8 continued

k l ‖u1h − u2h‖L2(Th ) e.o.c. ‖q1h − q2h‖L2(Th ;c) e.o.c. ‖g1h − g2h‖L2(Th ;a) e.o.c.

7 7.3e−10 4.00 3.8e−07 2.95 3.0e−07 3.01

2 1 1.3e−04 – 1.8e−03 – 3.5e−03 –

2 9.0e−05 0.48 2.2e−03 -0.30 3.9e−03 -0.15

3 2.4e−06 5.23 1.4e−04 3.97 2.9e−04 3.75

4 8.5e−08 4.80 1.0e−05 3.79 1.8e−05 3.99

5 2.7e−09 5.01 6.7e−07 3.90 1.1e−06 4.01

6 8.0e−11 5.05 4.3e−08 3.96 7.1e−08 4.01

3 1 1.1e−03 – 3.3e−02 – 1.8e−02 –

2 1.6e−05 6.08 5.3e−04 5.99 1.0e−03 4.13

3 2.8e−07 5.84 1.8e−05 4.84 3.4e−05 4.92

4 4.3e−09 6.05 5.8e−07 5.00 1.1e−06 4.97

5 6.6e−11 6.01 1.8e−08 4.99 3.4e−08 4.99

4 1 2.4e−05 – 5.2e−04 – 1.0e−03 –

2 2.3e−06 3.33 1.0e−04 2.32 1.8e−04 2.51

3 2.3e−08 6.65 1.6e−06 6.00 3.1e−06 5.87

4 1.9e−10 6.91 2.7e−08 5.92 4.9e−08 5.98

5 1.5e−12 6.99 4.3e−10 5.96 7.6e−10 6.00

‖eq‖L2(Th ;c) ≤ 2

1 − κ
‖a 1

2 (c − c̄)a
1
2 ‖L∞(Th) min

i=1,2
{‖q − qih‖L2(Th ;c) + ‖g − gih‖L2(Th ;a)}.

The other estimates follow in a similar manner.
This completes the Proof of Theorem2.

4 Numerical Experiments

We present numerical experiments devised to corroborate our theoretical results on super-
closeness. To do that, we take � := (0, 1)2, ∂�D = ∂�, and set f and uD such that the
exact solution of our model problem with

a(x) =
(
x1 + x2 + 1 −x2

−x2 2x1 + x2 + 1

)

,

is u = sin(2πx1) sin(2πx2). We consider an initial unstructured triangulation (see Fig. 1)
and we estimate the orders of convergence as we refine uniformly, indexing the meshes with
a mesh parameter hl , for l = 1, 2, 3, 4, 5. We do this piecewise polynomial approximations
of degree k = 12, 3, 4; we also take k = 0 for the RTk , DGk and HDGkmethods).

The results for the RTk , BDMk , DGk (with parameters C11 = 1.0, C22 = 1.0 and
C12 = [1.0, 1.0]t ) and HDGk method (with τ = 1.0) are displayed on the Tables5, 6, 7 and
8, respectively. In all cases, we observe the supercloseness orders predicted by Theorem1
and displayed in Table4. It is interesting to see that for the RTk method, the difference of the
approximations of the flux shows one order of convergencemore than the for difference of the
approximations of the gradient, which reflects the fact that for the RTk method assumption
(Bii) is satisfied but assumption (Bi) is not satisfied. This difference in the convergence
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properties of the approximate fluxes and gradients does not appear in the BDMk method as
this method satisfies both assumptions.

For uniform meshes of squares of size h, we estimate the orders of convergence as we
refine the mesh by taking h = 2−l , for l = 1, 2, 3, 4, 5. The results for the HDGk method,
with τ = 1.0, are displayed in the bottom of Table8. Again, we do observe the same orders
of supercloseness as the ones predicted by Theorem1 and displayed in Table4.

5 Extensions and Concluding Remarks

We have proved the supercloseness property of two Galerkin formulations for second-order
elliptic problems. Our analysis holds for a wide class of mixed finite element methods, as for
instance the Raviart–Thomas [19] and Brezzi–Douglas–Marini [3] elements, discontinuous
Galerkin methods, and hybridizable discontinuous Galerkin methods [11].

Although we have not treated the interior penalty (IP) method [2], it is easy to get even
stronger results by using slight modifications to our approach. Indeed, even though our theory
does not apply directly, since the definition of the numerical traces does not necessarily satisfy
assumptions B (ii) and B (iii), it is not difficult to show, for the first two formulations of the IP
method, that difference of the approximations converge with order k + 3, k + 3 and k + 2 for
the scalar, the gradient and the flux approximations, respectively. Even more, it is a simple
exercise to see that, if the tensor a is piecewise linear then the IP schemes give the same
approximation for the scalar and gradient variables.

We believe that it is reasonable to expect that similar results hold for the corresponding
formulations and numerical methods for linear elasticity.

Acknowledgements We wish to the thank one of the referees for constructive criticism leading to a better
presentation of thematerial, including the discussion about the IPmethodswhichweoriginally did not consider.
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