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Abstract We develop a semi-implicit algorithm for time-accurate simulation of compress-
ible shock-free flows, with special reference to wall-bounded flows. The method is based on
partial linearization of the convective fluxes in such a way to suppress, or at least mitigate the
acoustic time step limitation. Together with replacement of the total energy equation with
the entropy transport equation, this approach avoids the inversion of block-banded matri-
ces involved in classical methods, which is replaced by much less demanding inversion of
standard banded matrices. The method is extended to deal with implicit integration of vis-
cous terms and to multiple space dimensions through approximate factorization, and used
as a building block of a semi-implicit Runge–Kutta scheme which guarantees third-order
of accuracy in time (Nikitin in Int J Numer Methods Fluids 51:221–233, 2006). Numerical
experiments are carried out for isotropic turbulence, plane channel flow, and flow in a square
duct. All available data support higher computational efficiency than existing methods, and
saving of computer resources ranging from 85% under low-subsonic flow conditions (down
to M0 ∼ 0.1), to about 50% in supersonic flow.

Keywords Wall turbulence · Compressible flows · Implicit schemes

1 Introduction

Compressible wall-bounded flows play an important role in many aerospace applications of
industrial and academic interest. The direct numerical solution (DNS) of the compressible
Navier–Stokes equations for wall-bounded turbulent flows has recently become affordable
owing to the large increase in available computer power, and canonical incompressible flows
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have been simulated up to high Reynolds number [2]. However, it is known that the numerical
solution of the compressible Navier–Stokes equations is significantly more time consuming
than their incompressible counterpart, partly owing to the inherently higher number of float-
ing point operations (flops) per grid point, but mainly because of the much smaller time
step imposed by the acoustic stability restriction. In free-shear flows, conventional explicit
algorithms can still be used efficiently as long as the typical Mach number is of the order
of unity. However, wall-bounded flows inevitably include regions with near stagnant flow
and tiny grid spacing adjacent to solid surfaces, which makes the acoustic time step lim-
itation in the wall-normal direction dominant, even at high bulk Mach numbers. Besides
being dictated by stability considerations, time step limitations in turbulent flows also have
a physical interpretation, as in order to capture the relevant physics of transport phenomena
with given speed (say U ) on a mesh with given size (say Δ), time steps no larger than Δ/U
should be used. Hence, CFL numbers (defined as the ratio of the time advancement step to
the maximum allowed time step for explicit time integration) should always be of the order
of unity for genuine DNS. In compressible flows, information simultaneously propagate at
the hydrodynamic and at the acoustic speed. However, acoustic waves typically make a neg-
ligible contribution to the overall energetics of turbulent flows [3]. Hence, with the obvious
exception of cases where acoustic instabilities play an important role, such as in certain
combustion applications [4] or in direct simulation of aerodynamic noise [5], using a time
step which allows to resolve the hydrodynamic (vortical) mode while giving up accurate
representation of acoustic phenomena may be a legitimate choice, which actually subtends
much of the research carried out for low-speed solvers.

It is the goal of this paper to develop a numerical algorithm for direct numerical simulation
of compressible flow which is capable of seamless efficient operation throughout the Mach
number range, down to nearly incompressible conditions. The algorithm is at the same time
meant to remove or at least alleviate the acoustic time step limitation in the presence of solid
boundaries. To gain a clearer perception for the problem, we refer to a canonical compressible
boundary layer flow over a flat surface, or flow in a planar channel. Let Δx , Δz be the
mesh spacings in the streamwise and spanwise directions, respectively, and let Δy be the
minimum mesh spacing in the wall-normal direction, assuming unit CFL number, the time
step limitations associated with the discretization of the convective terms in the coordinate
directions are

Δt+x = Δx+

max(u+
0 + c+

0 , c+
w)

= Δx+M0
√
C f /2min

(
1,

1

1 + M0

√
Tw/T0

)
,

Δt+y = Δy+

c+
w

= Δy+M0
√
C f /2

Δt+z = Δz+

max(c+
0 , c+

w)
= Δz+M0

√
C f /2min

(
1,

√
Tw/T0

)
, (1)

where the ‘+’ superscript is used to denote quantities made nondimensional with respect
to local wall units, namely the friction velocity uτ = (τw/ρw)1/2, and the viscous length
scale δv = νw/uτ , the subscript 0 is used to denote flow properties at the centerline (for
channels) and at the free-stream (for boundary layers), and w to denote wall properties,
with C f = 2τw/(ρ0u20) the friction coefficient. ρ, u, T and ν denote the density, velocity,
temperature and kinematic viscosity, whereas M , c and τw are the Mach number, speed of
sound and wall stress, respectively. It should be noted that if acoustic waves are suppressed,
as is the case of strictly incompressible flow, the time step is controlled by the streamwise
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Fig. 1 Inviscid time step limitation in the coordinate directions as from Eq. (1) as a function of the reference
Mach number M0. In panel a we show Δtx (solid), Δty (dashed), Δtz (dot-dashed). In panel b we show
the ratios Δtx/Δty (solid), Δtz/Δty (dot-dashed). For reference, in panel a we report with a grey line the
‘incompressible’ time limitation given in Eq. (2). The symbols denote the time step limits for the present
semi-implicit algorithm as dictated by accuracy (circles) and stability (squares), as discussed in Sect. 3.2

direction, and
Δt+I = Δx+√

C f /2. (2)

The viscous time step limitation is mainly effective in the wall-normal direction, and in wall
units one has

Δt+yv = Δy+2
. (3)

For the sake of graphical representation of the above formulas, we assume: (i) the distance
of the first point from the wall is Δy+

w ≈ 0.7, which is the maximum value for which
accurate turbulence statistics are obtained [6]; (ii) the minimum mesh spacing in the wall-
normal direction is Δy = 2Δyw , which can be achieved by staggering the mesh in the
vertical direction, thus alleviating the stability restrictions [6]; (iii) the wall-parallel mesh
spacings are Δx+ = 8, Δz+ = 4, which is typical for DNS; iv) the wall is isothermal,
with Tw = T0. Figure 1 shows the inviscid time step restrictions according to Eq. (1) as a
function of the reference Mach number M0, scaled by

√
C f /2 (panel a), and as a fraction of

the wall-normal allowed time step (panel b). Inefficiency of explicit compressible solvers is
apparent in the low-Mach-number regime, where vanishingly small time steps are required.
Time steps comparable to those achievable in incompressible flow are only possible starting
at M0 ≈ 3. With the exception of hypersonic flow, the most restrictive time limitation
is that associated with the vertical direction, and an increase by at least a factor of two
can be gained by removing it (see panel b). It is also interesting to note that the acoustic
time limitation in the spanwise size is more restrictive than the streamwise limitation up to
M0 ≈ 1, whereas at supersonic Mach numbers the convective limitation in x is controlling.
Removing the wall-normal acoustic time limitation in supersonic flow is sufficient to achieve
a similar time step as in incompressible flow, whereas in subsonic flow it is also necessary
to remove the acoustic time restriction in the wall-parallel directions. We further note that
the normalized viscous time limitation Δt+yv/

√
C f /2, with Δt+yv given in Eq. (3) is always

much weaker than the convective ones, provided Δy+ ∼ 1, and considering that the range
of friction coefficients typically accessed by DNS is 2× 10−3 ≤ C f ≤ 6× 10−3. The above
estimates are deduced for typical DNS mesh spacings, but the case of wall-resolved RANS,
LES and DES is even more severe, as the aspect ratio of near-wall cells is substantially
higher, hence making suppression of the wall-normal time step restriction mandatory for
any practical calculation. This is even more important in the case of curvilinear coordinate
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systems with singular metrics. For instance, in the case of cylindrical coordinates the mesh
spacing (hence, the allowed time step for explicit stepping) becomes exceedingly small in
the azimuthal direction, even in the absence of walls.

The above-mentioned difficulties are well-known to the CFD community, and a variety
of techniques have been developed to cope with the numerical stiffness of the compressible
Navier–Stokes equations. The chief choice in this respect has traditionally been the use of
(semi-)implicit time integration schemes. A landmark contribution in this sense was given
by [7,8], who proposed a time-implicit algorithm for the solution of the Navier–Stokes
equations in conservative form based on linearization of the convective and viscous flux
vectors, coupled with approximate factorization [9] to handle multiple space dimensions.
However, the method is computationally expensive as it requires the inversion of 5 × 5
block-banded systems of equations, which is more expensive than, e.g. standard banded
systems. In this respect we note that, whereas the classical Thomas algorithm for tridiagonal
matrices requires a number of floating point operations (flops) of O(6N ) (where N is the
number of grid points in a given coordinate direction), its block-tridiagonal version requires
O(3N (M3 + M2)) flops, where M (=5 in the Beam–Warming algorithm) is the size of
each block [10]. The computational cost is about twice as much in the case of periodic
boundary conditions [11]. Pulliam and Chaussee [12] developed a variant of the Beam–
Warming algorithm which involves the inversion of standard tridiagonal systems rather than
block matrices, with large saving of computer time, but with loss of accuracy and stability in
the case of unsteady simulations [13]. Algorithms of the Beam–Warming family are at the
heart of highly successful aerospace CFD software [14,15]. For instance, [16] have recently
developed an implicit fourth-order Runge–Kutta scheme, using residual smoothing based
on a bilaplacian operator. The algorithm requires the inversion of one scalar pentadiagonal
system in each space direction per sub-steb, allowing for net speedup of 3-5 with respect
to the explicit case. Algorithms which avoid inversion of banded systems of equations have
also been designed [17], which may be useful for efficient parallel implementation. However,
those algorithms require point-wise iterative procedures whereby the right-hand-side of the
equations must be evaluated several times per time step, with unclear outcome in terms of
overall efficiency.

Alternative approaches to circumvent the stiffness of compressible Navier–Stokes equa-
tions rely on the use of pre-conditioning techniques, based on the attempt to change the
eigenvalues of the system of equations in order to remove the large disparity of wave speeds.
This is accomplished by pre-multiplying the time derivatives by a matrix that slows the speed
of the acoustic waves down toward the fluid speed [18,19]. Preconditioning is the choice of
election for steady-state application, however its extension to unsteady flow problem is not
straightforward, requiring the use of dual time stepping techniques, namely inner iterations
in terms of a pseudo-time [20–22]. However, the number of iterations per physical time step
can be very large, with subsequent loss of computational efficiency.

An important class of algorithms for low-Mach-number flows relies on the concept of
asymptotic consistency [23]. The main idea is that the discrete compressible Navier–Stokes
equations should automatically reduce to the their discrete incompressible counterpart as the
Mach number approaches zero. Examples of this approach include use of the compressible
isentropic Navier–Stokes equations which are then discretized with a semi-implicit scheme,
yielding a formulation similar to the classical projection method for incompressible flow [24,
25]. Asymptotic-preservingmethods are certainly interesting as they allow to entirely remove
the acoustic time step limitation, but they suffer from the same drawback of incompressible
solvers, as in the incompressible limit they require the solution of Poisson equation, which
is computational expensive in multiple space dimensions.
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Specialized algorithms for the Navier–Stokes equations have been also developed for
the low-Mach number regime, which allow to account for temperature-dependent density
variations, as is typically the case in combustion. All these variable-density algorithms are
based on the idea the only the terms which bring an acoustic contribution should be advanced
implicitly in time, in such a way that the acoustic time limitation is removed. Numerical
schemesof this kindwere pioneeredby [26],whoproposed to treat implicitly only the pressure
term in themomentum equation and the dilatation term in the internal energy equation, which
results in having to solve an elliptic equation for pressure, with large incurred overhead.
[27,28] extended the classical pressure-correction method [29] to variable-density flows
by solving a Helmholtz equation for the pressure correction, and the use of sub-iterations.
LES results were carried out in which a time step forty times larger than the explicit case
was achieved, with modest computational cost overhead. Moureau et al. [30] developed an
implicit scheme for the removal of the acoustic limitation which also relies on the solution
of a Helmholtz equation, however without reverting to sub-iterations, with an overhead CPU
time of about 25% with respect to standard incompressible solvers. Hence it appears that,
in one way or another, algorithms tailored for the near-incompressible regime involve either
iterative procedures and/or the inversion of elliptic systems of equations. The latter can only
be carried out efficiently in the case that periodic directions are present, which allows for the
use of direct solvers [31].

In this paper we develop a novel semi-implicit algorithm for the compressible Navier–
Stokes equations based on a modification of the basic Beam–Warming linearization, thus
avoiding any iterative procedure. The algorithm is presented in Sect. 2, which also includes
a discussion of the treatment of viscous terms, accurate time integration by the use of a
third-order semi-implicit Runge–Kutta scheme, and extension to multiple space dimensions.
Numerical examples are given in Sect. 3, which include DNS of turbulent flows from the low
subsonic to the supersonic regime. Final remarks and suggestions for future work are given
in Sect. 4.

2 Formulation of the Algorithm

The Navier–Stokes equations for a compressible perfect gas are considered in which the total
energy equation is replaced with the entropy equation

∂w
∂t

= −
3∑

i=1

∂fi
∂xi

+
3∑

i=1

∂fvi
∂xi

+ S = R, (4)

where R is the right hand side of Eq. 4, w is the vector of the conserved variables, fi and fvi
are the convective and viscous fluxes in the i th direction, with x, y, z the streamwise, wall
normal and spanwise directions and S the source terms in the entropy equation,

w =
⎡

⎣
ρ

ρu j

ρs

⎤

⎦ , fi =
⎡

⎣
ρui

ρuiu j + pδi j
ρui s

⎤

⎦ , fvi =
⎡

⎣
0

σi j
−qi/T

⎤

⎦ , S =

⎡

⎢⎢⎢⎢
⎣

0
0
0
0

σ	m
T

∂u	

∂xm
− q	

T 2
∂T
∂x	

⎤

⎥⎥⎥⎥
⎦

,

(5)
where ρ is the density, p is the pressure, T is the temperature and ui , i = 1, 2, 3 the velocity
components in the i th direction (also denoted as u, v, w in the following), s = cv ln (pρ−γ )
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is the entropy per unit mass, qi and σi j are the components of the viscous stress tensor and
heat flux,

σi j = μ

(
∂ui
∂x j

+ ∂u j

∂xi
− 2

3

∂uk
∂xk

δi j

)
, qi = −k

∂T

∂xi
, (6)

where μ is the dynamic viscosity, k = μcp/Pr the thermal conductivity and Pr = 0.72 the
molecular Prandtl number.

As shown in the following, the use of the entropy equation is instrumental to achieving
efficient implicit treatment of the acoustic terms, and also yield benefits in terms of increased
robustness as compared to algorithms solving for the energy equation [32,33]. On the other
hand, this setting prevents correct capturing of shock waves, as the entropy equation cannot
be used as conservation law [33,34], hence in the followingwe restrict ourselves to discussing
the case of smooth compressible flows.

2.1 Implicit Treatment of Acoustic Waves

In order to remove (or at least alleviate) the time acoustic time step limitation in the generic
coordinate direction (say, y), we proceed by splitting the convective flux vector into a purely
advective part, and a part which supports acoustic fluctuations, namely

fy = fcy + fay , fcy =

⎡

⎢⎢⎢⎢
⎣

0
ρuv

ρv2

ρvw

ρvs

⎤

⎥⎥⎥⎥
⎦

, fay =

⎡

⎢⎢⎢⎢
⎣

ρv

0
p
0
0

⎤

⎥⎥⎥⎥
⎦

. (7)

In a linearized setting, this splitting yields full decoupling of the acoustic, vortical and entropy
modes [35]. Of course, such decoupling does not directly extend to the nonlinear case, and
the ansatz 7 is mainly instrumental to try to suppress the acoustic time limitation, its validity
resting in success, to be judged a-posteriori. The main advantage for numerical purposes is
that the acoustic partial flux Jacobian has a simple structure,

Aa
y = ∂fay

∂w
=

⎡

⎢⎢⎢⎢⎢
⎣

0 0 1 0 0
0 0 0 0 0

p
ρ

(
γ − s

Cv

)
0 0 0 p

ρCv

0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

. (8)

Splitting of thefluxvectors into pressure andvelocity contributionswas previously considered
by [36,37], based on the attempt to reduce the block size in the implicit operator as compared
to theBeam–Warming algorithm. In essence, these decompositions amounted [14] to isolating
the pressure gradient in the momentum equation and the pressure flux in the total energy
equation. However, besides being consistent with wave decomposition in a linear setting, we
find the splitting (8) to be vastly more robust in practice.

We proceed to discretize Eq. (4) between two consecutive time levels n and n+1, by eval-
uating explicitly the advective partial flux, and evaluating the acoustic partial flux implicitly,
upon linearization about time level n, namely

fay
n+1 = fay

n + Aa
y
n (

wn+1 − wn) + O(Δt2), (9)
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thus obtaining

(
I + Δt

∂

∂y
Aa

y
n
)

Δwn = −Δt
∂fny
∂y

+ ΔtFn
xz = Δt Rn, (10)

where Δwn = wn+1 − wn , and where terms containing transverse flux derivatives and
viscous terms are lumped together into Fxz . It is important to note that, because of the special
structure of the acoustic flux Jacobian, the inversion of Eq. (10) is much simpler than for the
standard Beam–Warming algorithm, which relies on linearization of the full convective flux.
Component-wise, Eq. (10) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δwn
1 + Δt

∂

∂y
Δwn

3 = Δt Rn
1 (11a)

Δwn
2 = Δt Rn

2 (11b)

Δwn
3 + Δt

∂

∂y
(Aa

y
n
31
Δwn

1 ) + Δt
∂

∂y
(Aa

y
n
35
Δwn

5 ) = Δt Rn
3 (11c)

Δwn
4 = Δt Rn

4 (11d)

Δwn
5 = Δt Rn

5 . (11e)

Hence, the time increments of entropy and of the transverse velocity components can be
evaluated explicitly, thus effectively reducing the system of equations to be solved to

⎧
⎪⎪⎨

⎪⎪⎩

Δwn
1 + Δt

∂

∂y
Δwn

3 = Δt Rn
1 (12a)

Δwn
3 + Δt

∂

∂y
(Aa

y
n
31
Δwn

1 ) = Δt Rn
3 − Δt

∂

∂y
(Aa

y
n
35

Δwn
5 ) = Δt R̂n

3 , (12b)

which, upon discretization of the space derivative operators, yields a 2 × 2 block-banded
system of equations, whose solution returns the time increments of ρ and ρv. Equation (12)
can be further rearranged by formally solving for Δwn

1 in (12a), to obtain

(

1 − Δt2Aa
y
n
31

∂2

∂y2
− Δt2

∂Aa
y
n
31

∂y

∂

∂y

)

Δwn
3 = Δt R̂n

3 − Δt2
∂

∂y

(
Aa
y
n
31
Rn
1

)
, (13)

whose solution requires the inversion of a single ordinary banded system of equations, with
bandwidth depending on the accuracy in the approximation of the first and second space
derivative operators. Back substitution into (12a) then returns the time increment of density.
Although apparently cumbersome, we find the latter formulation to be more computationally
efficient than the solution of the 2× 2 block system given by Eq. (12), while the accuracy is
nearly identical. Hence, Eq. (13) is used in all the forthcoming numerical applications.

2.2 Implicit Treatment of Viscous Terms

If needed, viscous terms can also be handled implicitly, using approximate factorization. For
that purpose, we split the viscous flux derivatives in Eq. (4) into a Laplacian term and a
difference thereof

∂fvy
∂y

= μ
∂2v
∂y2

+ ϕv
y, (14)
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where v is the vector of primitive variables, v = [ρ, u, v, w, T ], andμ is the viscosity matrix,

μ =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
0 μ 0 0 0
0 0 μ 0 0
0 0 0 μ 0
0 0 0 0 μCp

PrT

⎤

⎥⎥⎥⎥
⎦

. (15)

Freezing for simplicity the viscosity matrix at time step n, the following linearization is
considered,

(
μ

∂2v
∂y2

)n+1

≈
(

μ
∂2v
∂y2

)n

+ μn ∂2PΔwn

∂y2
, (16)

where P is the Jacobian of the conservative-to-primitive variables transformation

P = ∂v
∂w

=

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0 0 0
− u

ρ
1
ρ

0 0 0

− v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0
−T s
ρcv

0 0 0 T
ρcv

⎤

⎥⎥⎥⎥⎥
⎦

. (17)

Following similar steps as done to arrive at Eq. (10), the previous linearization yields
(
I + Δt

∂

∂y
Aa

y
n − Δt μn ∂2

∂y2
Pn

)
Δwn = Δt Rn, (18)

which can be approximately factorized as follows
(
I + Δt

∂

∂y
Aa

y
n
) (

I − Δt μn ∂2

∂y2
Pn

)
Δwn = Δt Rn . (19)

Inversion of Eq. (19) can be then carried out into two sequential sub-steps,
(
I + Δt

∂

∂y
Aa

y
n
)

Δ̃wn = ΔtRn, (20)

(
I − Δt μn ∂2

∂y2
Pn

)
Δwn = Δ̃wn

, (21)

whereby the provisional time increment Δ̃wn
is first evaluated through the inversion proce-

dure for the convective fluxes described in Sect. 2.1. The actual time increment Δwn is then
evaluated by inverting the viscous implicit operator at the left-hand-side of Eq. (21) which,
in light of the special structure of the Jacobian matrix given in Eq. (17), can be carried out
sequentially, as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δwn
1 = ˜Δw1

n
(22a)

(
1 − μn

22Δt
∂2

∂y2
Pn
22

)
Δwn

2 = ˜Δw2
n + μn

22Δt
∂2

∂y2
(
Pn
21Δwn

1

)
(22b)

(
1 − μn

33Δt
∂2

∂y2
Pn
33

)
Δwn

3 = ˜Δw3
n + μn

33Δt
∂2

∂y2
(
Pn
31Δwn

1

)
(22c)

(
1 − μn

44Δt
∂2

∂y2
Pn
44

)
Δwn

4 = ˜Δw4
n + μn

44Δt
∂2

∂y2
(
Pn
41Δwn

1

)
(22d)

(
1 − μn

55Δt
∂2

∂y2
Pn
55

)
Δwn

5 = ˜Δw5
n + μn

55Δt
∂2

∂y2
(
Pn
51Δwn

1

)
(22e)
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The inversion of four standard narrow-banded systems of equations is thus required for the
purpose. We point out that the present procedure is again different than the original Beam–
Warming procedure, which relies on linearization of the full viscous flux vectors, hence
requiring the inversion of block-banded systems. However, we have found that numerical
robustness is very weakly affected by the approximations herein made.

2.3 Multiple Space Dimensions

As done for the case of a single space dimension, the acoustic and viscous time limitations can
be removed in more than one direction through direction-wise factorization of the implicit
operators. For instance, assuming that all space directions are handled in semi-implicit fash-
ion, Eq. (19) is replaced by

LnΔwn = Rn, (23)

where

Ln =
(
I + Δt

∂

∂x
Aa
x
n
)(

I + Δt
∂

∂y
Aa

y
n
) (

I + Δt
∂

∂z
Aa
z
n
)

·
(
I − Δtμn ∂2

∂x2
Pn

)(
I − Δtμn ∂2

∂y2
Pn

) (
I − Δtμn ∂2

∂z2
Pn

)
. (24)

Hence, repeated application of the procedures developed in the previous two sections is
sufficient. Practical application of Eq. (24) requires some caution, as the order in which
the various inversions are carried out is not immaterial. We have found that, in order to
remove possible spurious anisotropies, it is a good practice to shuffle the order of the implicit
left-hand-side operators.

2.4 Time Integration

Time accuracy and stability enhancement is typically obtained by Runge–Kutta schemes as
wrapper to one-step implicit procedures outlined in the previous paragraphs. Low-storage
algorithms are a popular choice, and here we consider for exampleWray’s three-stage, third-
order scheme [38], adapted to semi-implicit integration of the convective terms,

L(	)Δw(	) = α	ΔtR(	−1) + β	ΔtR(	), 	 = 0, 1, 2, (25)

whereΔw(	) = w(	+1) −w(	),w(0) = wn ,wn+1 = w(3), the left-hand-side implicit operator
is a generalization of Eq. (24), namely

L(	) =
(
I + γ	Δt

∂

∂x
Aa
x
(	)

) (
I + γ	Δt

∂

∂y
Aa

y
(	)

) (
I + γ	Δt

∂

∂z
Aa
z
(	)

)

·
(
I − γ	Δtμ(	) ∂2

∂x2
P(	)

) (
I − γ	Δtμ(	) ∂2

∂y2
P(	)

) (
I − γ	Δtμ(	) ∂2

∂z2
P(	)

)
,

and the integration coefficient are α	 = (0, 17/60,−5/12), β	 = (8/15, 5/12, 3/4), γ	 =
α	 +β	. We have found this time stepping scheme to work well in practice, however because
of the partial flux linearization, the method is only formally first-order accurate in time.
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Higher order of accuracy in time can be achieved using a third-order accurate semi-implicit
Runge–Kutta scheme [1], which can be conveniently cast as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LnΔw(1) = 2

3
ΔtRn (26a)

L(1)Δw(2) = −
(
w(1) − wn

)
+ 1

3
ΔtRn + 1

3
ΔtR(1) (26b)

Δw(3) = 1

2

(
w(2) − wn

)
− 3

2
αΔw(2) (26c)

L(3)Δw(4) = −
(
w(3) − wn

)
+ 1

4
ΔtRn + 3

4
ΔtR(1) (26d)

L(4)Δw(5) = −
(
w(4) − wn

)
+ 1

4
ΔtRn + 3

4
ΔtR(2), (26e)

where γ	 = γ is the same for all sub-steps, and α are free parameters (hereafter, we assume
α = 1, γ = 0.6). With respect to Wray’s algorithm, Eq. (26) is not in low-storage form
(although it can be implemented using three arrays only), and it involves an additional inver-
sion, to achieve third-order regardless of the linear operatorL(	) in Eq. (26), but no additional
evaluation of the explicit operator. Extensive accuracy tests of the method are reported in the
original reference.

2.5 Stability Analysis

The stability of the semi-implicit algorithm herein developed is here analyzed within the
simplified setting of the linearized inviscid acoustic equations in the presence of a mean flow
u0, which can be cast as

∂v
∂t

+ A
∂v
∂x

= 0, v =
[
ρ′
u′

]
, A =

[
u0 ρ0

c20/ρ0 u0

]
, (27)

where the subscript 0 refers to the unperturbed state, and primes to fluctuations thereof. A
semi-implicit discretization of (27) can be obtained by considering the linearized counterpart
of the partial flux Jacobian (8), namely

Aa =
[

u0 ρ0
c20/ρ0 0

]
. (28)

Backward Euler discretization of Eq. (27) then yields
(
I − ΔtAa ∂

∂x

)
Δvn = −ΔtA

∂vn

∂x
. (29)

Transforming Eq. (29) to Fourier space with the token v(x, t) = v̂(t)eikx yields the amplifi-
cation matrix of the scheme

G = I −
(
I − iΔt k̃Aa

)−1
iΔt k̃A, (30)

where vn+1 = Gvn , and k̃ is the modified wavenumber corresponding to the discretization of
the space first derivative operator [39]. Von Neumann’s stability condition requires that both
eigenvalues of G are no larger than unity in modulus. Assuming for instance second-order
central differencing (i.e. k̃h = sin(kh)), it turns out that the scheme (29) is unconditionally
stable for M0 = u0/c0 � 1. A similar analysis can be carried out (details are omitted) for
the Runge–Kutta time stepping scheme of Eq. (26). In the case of explicit time integration
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Fig. 2 Smallest eigenvalue of amplification matrix at CFL = 1 (a), CFL = 2 (b), CFL = 5 (c), for explicit
Runge–Kutta time integration (dotted lines), semi-implicit time integration (with α = 1, γ = 0.6, solid lines),
and fully implicit Beam–Warming scheme (dashed lines), at Mach number M0 = 0.3. Curves are only shown
for stable schemes

(i.e. γ = 0) the scheme is stable for CFL �
√
3, where CFL = (u0 + c0)Δt/h. In the case

of semi-implicit time integration (with γ = 0.6, α = 1) unconditional stability is achieved
for M0 � 0.525.

To provide an idea of the accuracy of the algorithm, in Fig. 2 we show the smallest
eigenvalues of the amplification matrix at various Courant numbers for explicit and semi-
implicit Runge–Kutta time integration. For reference, the amplification factor of the baseline
Beam–Warming algorithm is also shown. At CFL numbers lower than the stability limit for
explicit discretization [panel (a)], the semi-implicit and the fully explicit algorithms have
similar performance, whereas the Beam–Warming algorithm has somewhat higher diffusion.
At higher Courant numbers the explicit scheme goes unstable, and semi-implicit and fully
implicit scheme have similar performance, with slightly less diffusive behavior of Beam–
Warming at higher CFL. Notably, all schemes have unit amplification factor at the Niquist
limit (kh = π), hence they are not dissipative in the sense of Kreiss. This is the reason why
schemes of the Beam–Warming family are typically used with explicit addition of artificial
diffusion terms [7,13].

2.6 Spatial Discretization

All the convective derivatives at the right-hand-side operator defined in Eq. (4) are discretized
using conservative, energy-preserving formulas [40], based on application of standard central
difference approximations to the fully expanded form of the convective derivatives [41]. In
the explicit case this discretization allows to exactly preserve the total kinetic energy from
convection, and conserve the entropy variance in the inviscid limit, hence providing strong
nonlinear stability to the algorithm without introducing any numerical diffusion [33,42].
We have found that this feature is very important to prevent nonlinear divergence caused by
accumulation of aliasing errors, especially in light of the fact that the semi-implicit algorithms
herein dealt with have zero numerical diffusion at the highest resolved wavenumbers. Hence,
no explicit addition of artificial diffusion is needed for the semi-implicit algorithm herein
developed. Viscous terms are also expanded to Laplacian form and discretized by means of
central formulas [43].

Previous studies [44–46] have shown that second-order spatial accuracy is sufficient
for DNS of turbulence, provided energy-consistent discretizations are used. Hence, in
the present work we focus on second-order space discretizations, which only require the
inversion of standard tridiagonal matrices. Extension of the algorithm to higher-order
spatial accuracy is straightforward, and it can be achieved by either reverting to compact-
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Table 1 Computational cost for
implicit schemes compared to
fully explicit discretization

Scheme CPU/CPUEXPL

EXPL 1

ATI 1.14

ATI-CYC 1.16

AVTI 1.32

AVTI-CYC 1.37

BW 1.67

BW-CYC 2.21

BWV 1.87

BWV-CYC 2.33

Figures refer to implicit treatment
of a single space direction

difference approximations [13], or by widening the discretization stencil. In the latter case,
higher-order accuracy in space can be achieved at the price of inverting wider banded matri-
ces.

2.7 Computational Efficiency

Achieving higher computational efficiency is obviously themainmotivation for using implicit
algorithms, which are inherently more computationally intensive than explicit ones. Com-
putational cost figures for the present semi-implicit algorithm and for the Beam–Warming
scheme are listed in Table 1, as a fraction of the cost for the baseline explicit algorithm. Cost
estimates are given for implicit treatment of convective terms only, and for simultaneous
treatment of convective and viscous terms, referring to a single space direction. Also for
ease of later reference, we use the following notation to distinguish the various schemes.
The semi-implicit scheme herein developed is referred to as either acoustic terms-implicit
(ATI, as in Eq. (10)), or ATVI in the case that both convective and viscous terms are handled
implicitly (Eq. 18). As a basis of comparison, cost figures for the Beam–Warming (BW)
scheme, also with implicit treatment of the viscous terms (BWV) are reported. Cost figures
are provided for both the case of periodic (CYC) and non-periodic boundary conditions. It
should be noted that the cost estimates refer to actual parallel computations, and also include
the computational overhead for data transposition across processors in non-contiguous space
directions. Of course, precise figures may change depending on the specific implementa-
tion of the algorithm and/or machine architecture, but we trust that the numbers listed in
the table provide a reasonably robust estimate. It appears that the computational overhead
of the ATI algorithm is rather limited, hence implicit treatment of a given space direction
is computationally advantageous provided the attainable time step is at least 20% higher
than for fully explicit. Substantial improvement of computational efficiency over standard
Beam–Warming discretization is also apparent, for comparable expected accuracy (recalling
Fig. 2).

3 Numerical Results

The performance of the semi-implicit algorithm herein developed is tested through appli-
cation to a series of canonical compressible turbulent flows, in order of increasing physical
complexity.
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Fig. 3 Numerical simulations of homogeneous isotropic turbulence at Mt = 0.3, k0 = 4, Reλ = 30, with
ATI-XYZ scheme. Time history of turbulence kinetic energy (a), and pressure variance (b), and spectra of
velocity (c) and pressure fluctuations (d) at t/τ = 5. Solid lines denoted reference results obtainedwith explicit
time discretization at CFL = 1. Symbols denote results obtained with ATI scheme at CFL = 1 (squares),
CFL = 2 (circles), CFL = 3 (triangles), CFL = 4 (down-triangles), CFL = 5 (diamonds)

3.1 Isotropic Turbulence

Numerical simulations of homogeneous isotropic turbulence have been frequently carried out
to evaluate the properties of numerical schemes for turbulent flows [47]. DNS are here carried
out in a triply periodic (2π)3 box, discretized with 643 collocation points. At the initial time
pressure and density are taken to be uniform, and solenoidal velocity perturbations are added
according to the procedure introduced by [48], with prescribed three-dimensional energy
spectrum

E(k) = 16

√
2

π

u20
k0

(
k4

k0

)4

e−2(k/k0)2 , (31)

where k0 = 4 is the most energetic mode. The initial turbulent Mach number is given
by Mt0 = √

3u0/c0 = 0.3, and the Reynolds number based on the Taylor microscale is
Reλ = 2ρ0u0/(μ0k0) = 30. Time is made nondimensional with respect to the eddy turnover
time τ = 2

√
3/(k0Mt0c0).
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Fig. 4 Numerical simulations of homogeneous isotropic turbulence at Mt = 0.3, k0 = 4, Reλ = 30, with
BW-XYZ scheme. Time history of turbulence kinetic energy (a), and pressure variance (b), and spectra of
velocity (c) and pressure fluctuations (d) at t/τ = 5. Solid lines denoted reference results obtainedwith explicit
time discretization at CFL = 1. Symbols denote results obtained with BW scheme at CFL = 1 (squares),
CFL = 2 (circles), CFL = 3 (triangles), CFL = 4 (down-triangles)

The results obtained with ATI and BW discretization in all space directions are shown
in Figs. 3 and 4, respectively, at various Courant numbers. Stable results are obtained for
CFL � 5.1 for ATI, and CFL � 4.8 for BW. Loss of stability at larger time steps is
due to flux linearization and/or factorization errors, which prevent unconditional stability in
practical computations [13]. The time behavior of turbulence kinetic energy [panel (a)] is
well predicted at all Courant numbers up to the stability limit, whereas pressure fluctuations
[panel (b)] are overdamped starting at CFL ≈ 3, in both ATI and BW. The different behavior
is caused by the fact that pressure receives contributions of both hydrodynamic and acoustic
nature. As seen in the previous Section, acoustic waves undergo significant damping at high
Courant number. This is even clearer in the velocity and pressure spectra, shown in panels (c)
and (d), respectively. Although velocity spectra are perfectly captured at all Courant numbers,
pressure spectra undergo numerical damping, especially at intermediatewavenumbers, which
is easily understood based on the amplification factors shown in Fig. 2. Given the similar
performance of the two implicitmethods for this test case, ATI is certainly preferable owing to
its lower computational cost, which allows to achieve an effective speed-up over the explicit
case (see Table 1) of about a factor of three, whereas BW yields almost the same efficiency.

123



322 J Sci Comput (2018) 75:308–331

3.2 Turbulent Flow in Plane Channel

Channel flow is the simplest prototype ofwall-bounded flows, and it has been studied bymany
authors in the incompressible [2,45,49], as well as in the compressible regime [6,50,51].
The controlling parameters are the bulk Mach number Mb = ub/cw = 1.5 (where ub is the
average velocity across the channel thickness, and cw the sound speed at thewall temperature),
and the bulk Reynolds number Reb = 2ρbubh/μw = 6000 (where ρb is the bulk density,
μw the dynamic viscosity at the wall, and h the channel half height). All DNS are initialized
with a parabolic velocity profile with superposed small perturbations, whereas density and
pressure are uniform. Periodic boundary conditions are applied in the streamwise (x) and
spanwise (z) coordinate directions, and no-slip, isothermal boundary conditions are applied at
the walls. A spatially uniform forcing is applied to the streamwise momentum equation, and
dynamically adjusted in time to maintain constant mass flow rate [6]. Favre density-weighted
decomposition is applied to separate mean values from fluctuations, namely φ = φ̃ + φ′′,
with φ̃ = ρφ/ρ).

The main flow parameters are listed in Table 2. Three flow cases have been considered,
one at Mb = 0.1 (denoted as CH01), and two at Mb = 1.5 (denoted as CH15a-b), the latter
two only differing in the distance of the first grid point from the wall. Reference DNS have
been carried out with fully explicit time discretization, at CFL ≈ 1, which are used as a basis
of comparison for the ATI and BW algorithms. In order to understand the effectiveness of
the (semi-)implicit algorithms, in Table 2 we report the time step restrictions associated with
the three coordinate directions, as estimated from Eqs. (1) and (3), as well as the actual time
step used in the DNS, all in wall units. As expected, in all flow cases the time step limitation
in the wall-normal direction is the most restrictive. Although larger time steps are allowed on
grounds of sole numerical stability, all DNS have been carried out at the maximum time step
for which accurate results are obtained, which corresponds to CFL ≈ 1 for the fully explicit
simulations. For ease of reference, the maximum time steps associated with accuracy and
stability restrictions are also reported in Fig. 1a with circle and square symbols, respectively.

As a first test, we consider flow at low subsonic Mach number (CH01), for which the
explicit time advancement step is very small, hence we apply implicit treatment is all coor-
dinate directions (XYZ). We find that, although the wall-normal time step restrictions can
be removed, the allowed time step for accurate calculations cannot be substantially larger
than the streamwise convective restriction (see Fig. 1a). This is probably due to inherent
mesh anisotropy in DNS of wall-bounded flows. In fact, mesh spacing is over-resolved in the
wall-normal direction, hence the relevant values of the reduced wavenumber kh are small,
which allows to operate at high values of CFL with little error, recalling (see Fig. 2) that the
dissipation error grows with both kh and CFL. On the other hand, the typical wall-parallel
mesh spacings used in DNS are barely sufficient to resolve the smallest scales of turbulence,
hence the typical reduced wavenumbers are higher, and time accuracy is a factor in that
case. We find that both ATI and BW are capable of boosting the time step by about a factor
of ten, with efficiency gain of 85% for ATI, and results almost indistinguishable from the
fully explicit case (see below). Still, the time step is far from that allowed by incompressible
solvers (again, see Fig. 1a). This issue will be further recalled in the concluding discussion.

To show effectiveness in removing the wall-normal acoustic time limitation in supersonic
flow calculations, in flow case CH15a the first grid point is placed sufficiently far from the
wall that the viscous limitation is ineffective. Hence, the implicit algorithms are applied only
in the wall-normal direction (Y), and viscous terms are handled explicitly. The ATI and BW
algorithms are both found to effectively suppress the wall-normal acoustic time step limita-
tion, and achieve the same maximum time step for accurate flow resolution, corresponding to
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Fig. 5 Flow statistics for DNS of flow caseCH01 (see Table 2):mean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH01-EXPL (squares), CH01-ATI-XYZ (circles), CH01-BW-XYZ
(triangles). Tτ = qw/(ρwcpuτ ) is the friction temperature

about CFL = 2.4. Hence, accounting for the cost figures given in Table 1, we find a speed-up
of about a factor of two for the ATI algorithm, and 30% gain with BW.

To prove effectiveness of the implicit treatment of the viscous terms proposed in Sect. 2.2,
in flow case CH15b the first grid point is placed closer to the wall, in such a way that the
viscous time limitation also becomes relevant, after the acoustic one. Both wall-normal time
step restrictions are suppressed through use of the AVTI and BWV algorithms, hence the
achieved time step is similar to flow case CH15a. Both algorithms here achieve CFL ≈ 10,
at a cost which is a small fraction of the fully explicit algorithm.

For the sake of comparison, in Figs. 5, 6 and 7we show themain statistics for the flow cases
listed in Table 2. As anticipated, excellent agreement is observed between implicit algorithms
and the reference explicit solution, including pressure and temperature fluctuations, which
is especially satisfactory.

3.3 Turbulent Flow in Square Duct

As a further step in complexity we consider the flow inside a straight duct with square
cross-section. This flow has been the subject of several DNS studies in the incompressible
regime [52–54], all limited to low Reynolds number. One of the main difficulties that arise
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Fig. 6 Flow statistics for DNS of flow case CH15a (see Table 2): mean velocity (a), Reynolds stresses (b),
r.m.s. pressure (c) and r.m.s. temperature (d), for CH15a-EXPL (squares), CH15a-ATI-Y (circles), CH15a-
BW-Y (triangles)

when dealing with square duct flows is the long averaging time necessary to attain con-
vergence of even the basic mean flow statistics, caused by the extremely long typical time
scales of secondary corner eddies. In fact, [54] reported that an averaging time of about
8000h/ub was needed to have symmetric statistics in the four quadrants of the cross section.
Hence, it is clear that efficient numerical methods are needed to study turbulent compressible
flow in ducts. Numerical simulations have been here carried out (see Table 3 for the main
flow parameters) at the same Reynolds number as [54], and sufficiently low Mach number
(Mb = 0.2) that direct comparison with incompressible data is possible. The duct length
Lx = 8h (where 2h is the length of each side of the duct), and the time window for collecting
the flow statistics is the same used by [54]. As in plane channel flow, a spatially uniform
forcing is applied to the momentum equation to maintain a time constant mass flow rate. Note
that, unlike in channel flow, the mesh is also non-uniformly spaced in the z direction, hence a
range of mesh spacings is reported in Table 3. A reference fully explicit numerical simulation
has been carried out and used as a basis of reference for the ATI algorithm, here applied to
all coordinate directions. As seen in Table 3, the corresponding CFL number is about unity.
As in the case of plane channel, DNS were carried out at increasing values of CFL, until
deviations from the reference data were found, to determine the maximum allowed time step
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Fig. 7 Flow statistics for DNS of flow case CH15b (see Table 2): mean velocity (a), Reynolds stresses
(b), r.m.s. pressure (c) and r.m.s. temperature (d), for CH15b-EXPL (squares), CH15b-AVTI-Y (circles),
CH15b-BWV-Y (triangles)

for accuracy. It appears that accurate results of the semi-implicit algorithm are recovered up
to CFL ≈ 10. Again, implicit treatment of the x direction is not capable of fully suppressing
the corresponding time step limitation, owing to the emergence of accuracy issues. Similar
to channel flow, use of the ATI algorithm allows for about 85% cost reduction. Figure 8 con-
firms that excellent matching of the flow statistics is found among DU02-ATI, DU02-EXPL
and the data of [54], except for some differences in the wall-normal Reynolds stress and the
pressure r.m.s., which may be due to the greater importance of acoustic waves in the presence
of a fully confined flow geometry.

4 Conclusions

A novel semi-implicit algorithm for time-accurate solution of the compressible Navier–
Stokes equations has been developed, which is capable to operate efficiently all the way
from low subsonic to supersonic flow conditions. The main features of the algorithm are
as follows: (i) use of the entropy transport equation instead of total energy conservation;
(ii) Beam–Warming-like linearization of the partial convective flux associated with acoustic
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Fig. 8 DNS of flow in square duct (see Table 3): mean velocity (a), Reynolds stresses (b), r.m.s. pressure (c)
and r.m.s. temperature (d), for DU02-EXPL (squares), DU02-ATI-XYZ (circles). Triangle symbols denote
reference incompressible DNS data [54]

propagation; (iii) energy-consistent discretization of the convective derivatives in the explicit
part of the time-advancement operator; (iv) semi-implicit treatment of viscous fluxes based on
isolation of Laplacian terms; (v) approximate factorization for implicit treatment of multiple
space directions; (vi) third-order accurate Runge–Kutta time integration, according to the
algorithm proposed by [1]. The main advantage of the algorithm is that, unlike the classical
Beam–Warming scheme, it avoids the computationally expensive inversion of 5 × 5 block-
banded matrices, but rather of standard banded matrices (tridiagonal matrices in the case of
second-order accurate space discretization). Specifically, a single banded matrix inversion
is needed for implicit treatment of the convective terms, whereas five matrix inversions
are needed if viscous terms are also handled implicitly. The cost overhead with respect to
standard explicit algorithms (see Table 1) is quite modest, ranging from 20 to 30%, for each
space direction to be handled implicitly. Modification of existing compressible flow solvers
to incorporate the present method is straightforward, as the explicit part of the algorithm is
unchanged.

The method nominally allows unconditional stability for low-Mach-number flows. How-
ever, flux linearization and approximate factorization reduce the stability margins, and CFL
number of the order of 5–10 are achieved in practical computations, which is probably less
than achievable with iterative methods. However, compared with compressible flow algo-
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rithms based on pre-conditioning, the present method avoids the use of inner time iterations,
whose computational cost is difficult to estimate a-priori. The other shortcoming of the
method is the use of the entropy equation, which is instrumental to achieve (approximate)
separation of hydrodynamic from acoustic effects, but which precludes correct capture of
shock waves, as the equation is not in conservation form. Efforts are in progress to achieve
shock-capturing capabilities through local replacement of the entropy equation with the total
energy conservation equation. Although the algorithm herein developed has in principle
much wider range of applications, the main focus of this paper was on DNS of compressible
wall-bounded flows, which is notoriously plagued by severe time step restrictions inher-
ited from the wall-normal acoustic and viscous stability conditions. We have found that
the wall-normal acoustic time limitation can be effectively removed through semi-implicit
treatment. The same conclusion also applies to the viscous time step restriction, although
the most efficient way to remove it is placing the first grid point sufficiently away from the
wall y+ ≈ 0.5 − 0.7, and using suitable staggering [6], with no effect on accuracy. The
wall-parallel stability restrictions can also be suppressed through semi-implicit treatment.
However, accuracy considerations lead to the practical rule (see Fig. 1) that the time step
cannot be much larger than the one stemming from the streamwise time limitation. Hence,
we suggest that in low-subsonic flow both the wall-normal and the spanwise convective terms
are handled implicitly, whereas the streamwise terms can be evaluated explicitly. The result-
ing saving of computer time can then be of the order of 85% with respect to a fully explicit
solver. In high subsonic or supersonic flow, implicit treatment of the wall-normal convec-
tive derivatives is sufficient, with typical savings of to order of 50%, in line with theoretical
estimates.

We foresee that the present technique can be fruitfully extended to numerical simulation
of wall-bounded turbulent flows with time-accurate models, such as LES or DES [55]. In that
case, given the higher aspect ratio of near-wall cells, higher gains are expected. Advantages
with respect to classical algorithms based on Beam–Warming linearization are also expected
for steady RANS applications. Indeed, although the present algorithm is in principle only
capable of suppressing the acoustic time step limitation, it is found to be at least as stable as
Beam–Warming in practical computations.

Acknowledgements We acknowledge that most of the results reported in this paper have been achieved using
the PRACE Research Infrastructure resource FERMI based at CINECA, Casalecchio di Reno, Italy.
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