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Abstract Anumericalmethod for estimatingmultiple parameter values of nonlinear systems
arising from biology is presented. The uncertain parameters aremodeled as randomvariables.
Then the solutions are expressed as convergent series of orthogonal polynomial expansions in
terms of the input random parameters. Homotopy continuation method is employed to solve
the resulting polynomial system, and more importantly, to compute the multiple optimal
parameter values. Several numerical examples, from a single equation to problems with
relatively complicated forms of governing equations, are used to demonstrate the robustness
and effectiveness of this numerical method.

Keywords Biological systems · Parameter estimation · Homotopy continuation method

1 Introduction

The biological systems are often described by nonlinear ordinary differential equations
(ODEs) or partial differential equations (PDEs) with uncertain and unknown parameters
[5,9,10,15,18,29–31,35]. The estimations of these unknown parameters are required for
accurate descriptions of the biological processes. Biologically speaking, how to treat the
uncertainty involved in these unknown parameters reflects measurement error, non-stringent
experimental design, the flexibility of the processes themselves, etc. Mathematically speak-
ing, the parameter estimation also involves some advanced computational and statistical
methods in optimization problems. Different methodologies have been developed to estimate
parameters such as the Bayesian framework [3,19,20], the combination of the polynomial
chaos theory and the Extended Kalman Filter theory [2], and the inverse problem theory [28].

The polynomial chaos approach has been shown to be an efficient method for quantifying
the effects of such uncertainties on nonlinear systems of differential equations [22,32–34].
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Fig. 1 Solutions for system (1) with KX = KY = 1
2 , X (0) = 1 and Y (0) = 0: Left X and Y coexist with

dX = dY = 1;Middle Y dominates with dX = 2 and dY = 1; Right: X dominates with dX = 1 and dY = 2;

Thus it is a valuable approach by applying polynomial chaos approach to problems with
expensive computation such as parameter estimation [24]. However, the polynomial chaos
approach assumes that the solution is a smooth function of the parameter set [8,34], and is
hard to generalize to the non-smooth case of the parameter space such as, i.e., bifurcation,
multiple solutions in piecewise-smooth parameter space [4,6,36]. Indeed, multiple solutions
and bifurcations are highly related to the parameter estimation. Thus it is very important to
know the relationship between solution structures and non-smooth parameter space.

Here is a simple example of multiple solutions of parameter values for a given dataset.
Let’s consider a model with two cells interaction. There are two cell type: X and Y. They
promote each other and degrade by themselves. The following ODE system is used to model
the growth of X and Y:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= Y

Y + KY︸ ︷︷ ︸
production

−dX X︸ ︷︷ ︸
degradation

dY

dt
= X

X + KX︸ ︷︷ ︸
production

−dY Y︸ ︷︷ ︸
degradation

, (1)

where KX , KY , dX and dY are capacities and degradation rates for X and Y respectively.
On the one hand, the solutions have different behaviors by choosing different parameter
values (see Fig. 1): X and Y could co-exist; either X or Y could dominate by choosing
different parameter values. On the other hand, a same solution behavior may have different
parameter values. For example, we consider the following “biological data”: X and Y coexist
eventually i.e., X f = Y f (X f and Y f are the equilibriums), as well as the decreasing rates
of X and Y are 1

6 and 1
7 respectively when X and Y are half of the equilibriums, i.e., when

X = Y = X f
2 = Y f

2 , dX
dt = − 1

6 and dY
dt = − 1

7 . After normalization, i.e., X f = Y f = 1, we
have the following nonlinear system with the parameters as the variables

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
1+KY

− dX = 0
1

1+KX
− dY = 0

1
1+2KX

− dY
2 = − 1

6
1

1+2KY
− dX

2 = − 1
7

, (2)
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Fig. 2 Solutions for system (1) with the parameter value pairs shown in (3)

which implies that we have four solutions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

KX = 1 KX = 1
2 KX = 1 KX = 1

2

KY = 1 +
√
2
2 KY = 1 −

√
2
2 KY = 1 −

√
2
2 KY = 1 +

√
2
2

dX = 2
4+√

2
dX = 2

4−√
2

dX = 2
4−√

2
dX = 2

4+√
2

dY = 1
2 dY = 2

3 dY = 1
2 dY = 2

3

. (3)

The evolutions of X (t) and Y (t) with these four parameter values are shown in Fig. 2.
This simple example illustrates that computation of multiple parameter values is essential

for parameter estimation with given datasets. In order to handle the multiple solutions of
parameter values, we employ the techniques from Numerical Algebraic Geometry (NAG)
[25], whose main topic is to solve the systems of polynomial equations. The key method
in NAG is the homotopy continuation method: it can be shown that for a given system of
polynomial equations to be solved, a homotopy between the system and a start system (which
is easier to solve and shares many features with the former system) can be constructed (see
[1, p. 24] and [26, p. 16] for detailed descriptions). Then tracking each solution path from the
start system towards the original system along the homotopy finally obtains all the solutions
of the original system. The homotopy continuation method has been applied to compute the
solutions of nonlinear systems arising from discretized nonlinear PDEs [13,14], physical
phenomenology [16,17], biology [11,12], and etc.

In this paper, we will use the polynomial chaos expansion (PCE) method to take into
account variations of model parameters and generate a cluster of sampling points which
converge to different optimal values of parameters. For each group of sampling points, we
apply the homotopy continuation method to compute all the solutions of polynomial systems
generated by the PCE method. Several numerical examples are used to demonstrate the
feasibility and efficiency of this newmethod. The outline of this paper is as follows: In Sect. 2,
we introduce the problem and numerical methods; In Sect. 3, we provide the convergence
error estimation; In Sect. 4, we use several examples to test our numerical methods.
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2 A Numerical Method for Estimating Parameter with Multiple Optima

In general, the discretized nonlinear system of differential equations for each time step can
be written as

F(u,p) = 0,

where u is a vector representing numerical solutions, and p is a also vector containing all the
parameters. The dimension ofu depends on the number of grid points of discretization and the
dimension of p depends on the number of parameters in biological models. The observations
of u could be from clinical or biological data. Considering N pairs of observations (for
example, different time measurement), v1, . . . , vN , typically, the points vi will not exactly
equal to ui due to measurement and numerical errors. Therefore, we need to find the value
of the parameter vector p that makes the function u provide the best fit to the data points,
namely,

min
p

G(p)
.=

∑

i

‖ui − vi‖. (4)

2.1 Polynomial Chaos Expansion

The unknown parameters, p, are viewed as random variables which are independently iden-
tically distritbuted (IID). Therefore u is a function of the random variables p, i.e., u = u(p).
Following the generalized polynomial chaos (gPC) method, the numerical solution u(p) is
expanded in terms of polynomial basis functions

u(p) ≈
S∑

|α|=0

uαφα(p),

where uα is a vector. By denoting the dimensionality of p as np, α = [α1, . . . , αnp ] is an
np-dimensional multi-index, and |α| is the sum of the vector elements, i.e., |α| := α1 +
· · · + αnp . Each element αi of α can take on a non-negative integer value between 0 and S.
The expansion of p is according to the known parameter prior distribution, and hence pi is
known for all 1 ≤ i ≤ np. For small size systems, parameter estimation can be easily done
by using the optimization and the generalized polynomial chaos framework. But for systems
involving large-scale computation, it is very expensive to choose enough sampling points
to get a good approximation of u(p). Moreover, it is very unclear of relationship between
parameter space and solution structure for the large-scale systems. In another word, it may
have multiple optimal parameter values to fit the given real data. In this case, we need to
design an automatical way to compute the useful sampling points and design a new numerical
method to compute the multiple optimal parameter values.

Suppose that we already have n sample points, i.e., p1, . . . ,pn , u(p) can be expanded
on the parameter space by using polynomial chaos expansion u(p) = ∑n

j=1 uα j φα j (p).
Polynomial chaos theory then solves for the coefficients uα of the polynomial chaos state
expansion using the collocation approach: For each sampling point p j , the numerical solution
can be solved by solving F(u,p j ) = 0 and obtain u = u(p j ). The uα can be solved by the
following linear system

⎛

⎜
⎝

φα1(p1) · · · φαn (p1)
...

...
...

φα1(pn) · · · φαn (pn)

⎞

⎟
⎠

⎛

⎜
⎝

uα1
...

uαn

⎞

⎟
⎠ =

⎛

⎜
⎝

u(p1)
...

u(pn)

⎞

⎟
⎠ (5)
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Then the optimization problem (4) can be rewritten as

min
p

G(p)
.=

( n∑

j=1

uα j φα j (p) − v
)T ( n∑

j=1

uα j φα j (p) − v
)
, (6)

which is equivalent to

fs :=
( n∑

j=1

uα j φα j (p) − v
)T n∑

j=1

uα j ∂psφα j (p) = 0. (7)

Here ∂ps is the partial derivativewith respect to ps (1 ≤ s ≤ np). Sinceφα j (p) is a polynomial
basis on parameter space, the nonlinear equation fs , 1 ≤ s ≤ np forms a polynomial system.

2.2 Homotopy Continuation Method

In order to solve the polynomial system, we employed the homotopy continuation method
to solve the polynomial system:

H(p, t) = (1 − t)

⎛

⎜
⎝

f1
...

fnp

⎞

⎟
⎠ + γ t

⎛

⎜
⎝

pd1 − 1
...

pdnp − 1

⎞

⎟
⎠ , (8)

where γ is a random complex number and d is highest degree of φα j (p) for 1 ≤ j ≤ n.
Moreover, t ∈ [0, 1] is a homotopy parameter: When t = 1, we have known solutions to
H(p, 1) = 0. Specifically, the solutions of pds − 1 = 0 are ps = e2π is/d , s = 0, . . . , d − 1,
which forms the solutions of H(p, 1) = 0. The known solutions are called start points, and
the system H(p, 1) = 0 is called the start system. Such a start system with the degree d
equal to the degree of fs for all s is called a total degree start system. Choosing a total
degree start system and a random complex number γ guarantees finding all the solutions.
The use of the random γ , which is called the γ -trick, was introduced in [1, p. 26,32] and
[26, p. 18]. Therefore, γ is randomly chosen once for solving the polynomial systems (8).A
good discussion of a more general version of this trick is given in [1,26].

The parameter estimation algorithm for the nonlinear system F(u,p) = 0 consists of the
following steps:

1. Initialize sampling points on the parameter space p0, p1, . . ., pn ;
2. Solve the nonlinear system F(u,p) = 0 and get u(pi ) for 1 ≤ i ≤ n;
3. Compute uα j by solving the linear system (5);
4. Compute the next sampling point pn+1 by using homotopy method to solve (8);
5. Cluster sampling points, update n = n + 1 and go to Step 1.

Remark • The initialization of this algorithm could be a very rough estimate of parameter
space [23], i.e. normally we give an upper bound and a lower bound for each parameter
value.

• Themajor computational efforts will likely be on solving the polynomial system by using
homotopy methods. In this case, we will get cluster of sampling points near the different
optimal parameter values. The stopping criteria for this algorithm is ‖pn+1−pn‖ < Tol.

• Although the numerical method used for solving the nonlinear system F(u,p) = 0
does not affect parameter estimation, it will definitely affect the efficiency of the whole
process. In another word, an efficient nonlinear solver for F(u,p) = 0 would speed up
the parameter estimation process.
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• The rationale of using gPC representation is that the chosen basis φ(p) is optimal (in
L2) with respect to the probability density distribution of p. Accordingly, the choice of
φ(p) depends on the probability density function of p. In numerical simulations, we use
the Legendre polynomial to construct the gPC representation since that we assume p be
uniform within bounded domain.

3 Proof of Convergence

Theorem 1 (Existence) There exists a sequence of pn which is convergent to the exact
solution of (6).

Proof According to definition of G(p), it is clear that

G(p0) ≥ G(p1) ≥ G(p2) ≥ · · · ≥ G(pn) ≥ ...

Then there exists a subsequence of G(pn) which is strictly decreasing. Moreover p ∈ P
which is a bounded closed set. Then there exists a limit of the sequence pn . �	

However (6) may have multiple optima, namely, one subsequence could converge to
one optimum while another subsequence may converge to another optimum. Therefore, we
consider one converging sequence and denote p∗ is one of multiple optima. Let us assume
that an accurate and stable numerical scheme is employed for discretized nonlinear system
of differential equations with fixed parameter pn and the error of its numerical solution u(pn)
is

εn = ‖u(pn) − u(p∗)‖. (9)

Theorem 2 (Error superposition). Let ε� be the error induced by solving the discretized
nonlinear system of differential equations, and εQ be the aliasing error of approximating
the polynomial chaos expansion via given polynomial basis as defined in (5), then εn ≤
C(ε� + εQ + ‖pn − p∗‖), where C depends on ‖uα‖ and ‖∇pφα‖.
Proof

‖u(pn) − u(p∗)‖ = ‖u(pn) − ũ(pn) − (u(p∗) − ũ(p∗)) + ũ(pn) − ũ(p∗)‖
≤ ‖u(pn) − ũ(pn)‖ + ‖u(p∗) − ũ(p∗)‖ + ‖ũ(pn) − ũ(p∗)‖
≤ 2ε� + ‖ũ(pn) − ũ(p∗)‖

≤ 2ε� + 2εQ +
∥
∥
∥

n∑

|α|=0

uα(φα(pn) − φα(p∗))
∥
∥
∥

≤ 2ε� + 2εQ + max
α

‖uα‖‖∇pφα‖‖pn − p∗‖. (10)

�	
In numerical computation, we can check ‖pn − p∗‖ → 0 which implies that ‖u(pn) −

u(p∗)‖ → 0.

4 Numerical Results

In this section, we will present some numerical examples in order to demonstrate the perfor-
mance and efficiency of the proposed method.
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Example 4.1 The first example is a parametric ordinary differential equation defined as
{
uxx = pu on [0, 1]
u(0) = 1 and u(1) = e

√
p+e−√

p

2

. (11)

It is clear that the exact solution of (11) is u(x) = e
√
px+e−√

px

2 , where p is a parameter. The
finite difference method is employed to discretize this ODE (11) as follows

F(U, p) :=
{
Ui+1 +Ui−1 − 2Ui = ph2Ui for i = 1, 2, . . . , N − 1

U0 = 1 and UN = e
√
p+e−√

p

2

= 0. (12)

We choose the data points Vi by solving F(V, p) = 0 for p = 1. Then this example is
considered as one dimensional parameter with a single value the exact value p∗ = 1. The
region of the estimated parameter p is given by [0.1, 2]. We choose the initial sampling point
as p0 = 2. After 3 iterations, the numerical results of pn are p1 = 0.7034, p2 = 1.0417 and
p3 = 0.9999. Therefore we obtained our numerical estimated value of the parameter p while
the objective function value G(p3) = 1.121 × 10−4. The computing time for this example
is 2 s.

Example 4.2 We change the equation in 4.1 as follows
{
uxx = p2u on [0, 1]
u(0) = 1 and u(1) = e1+e−1

2

. (13)

The system corresponding to numerical solution Ui , F(U, p) = 0 , is also changed accord-
ingly. We still choose the data points Vi by solving F(V, p) = 0 for p = 1. However, there
should be two exact solutions for p∗: 1 and −1. After 8 iterations, we found two solutions
p = 0.9999 and p = −0.9999. The sequence of pi for each iteration is shown in Fig. 3. The
number of pi is changing as i changes, but eventually converges to two points 1 and −1. The
computing time for this example is 3 s.

Example 4.3 Next we consider an example with two parameters by changing 4.1 to
{
uxx = p21u on [0, 1]
u(0) = 1 and u(1) = p2(e1 + e−1)

. (14)

The system corresponding to numerical solution Ui , F(U, p) = 0 , is also changed accord-
ingly.We still choose the data points Vi by solving F(V,p) = 0 for p = (1, 1/2)T . However,
there should be two exact solutions for p∗: (1, 1/2)T and (−1, 1/2)T . After 8 iterations, we
found these two solutions. The errors of pi for each iteration are shown in Table 1:We define

Err1 = min
j

‖p j
i − (1, 1/2)T ‖ and Err2 = min

j
‖p j

i − (−1, 1/2)T ‖,

where p j
i is the j-th solution for i-th iteration. The computing time for this example is 10 s.

Example 4.4 We consider a model for a genetic toggle switch in Escherichia coli, which was
constructed in [7]. It is composed of two repressors and two constitutive promoters, where
each promoter is inhibited by the repressor that is transcribed by the opposing promoter.
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Fig. 3 The parameter sequence pi versus i-th iteration: the number of solutions is changing as i goes from
1 to 8. Eventually the parameter sequence converges to two points 1 and −1

Table 1 The errors for each
iteration

Iteration Err1 Err2

1 0.71081 1.2619

2 0.73239 1.2619

3 0.42954 1.2619

4 0.30881 1.2619

5 0.11124 0.33258

6 0.0038304 0.33258

7 0.0013875 0.013271

8 1.1e−7 2.64e−5

Details of experimental measurement can be found in [7]. The following dimensionless
model derived from a biochemical rate equation formulation of gene expression

du

dt
= α1

1 + v2β1
− u, (15)

dv

dt
= α2

1 + u3β2
− v. (16)

This is an ODE system, with four parameters p = (α1, α2, β1, β2)
T . The values of these

parameters are estimated in [7]. Here we set the solution of p = (156.25, 2.5, 15.6, 1)T .
We used Legendre polynomials as the gPC basis. The parameter space is four-dimensional
(N = 4). The initial guess we chosen is p0 = (100, 1, 10, 1)T . After three iterations, the
numerical solution we found is p3 = (156.25, 2.5, 15.599, 0.999)T . The computing time for
this example is around 2min.

Example 4.5 We consider the following simplified model of a small glioma growing in the
brain which elicits a response from the host immune system [27]. This model consists of four
variables denoted by T , σbrain , I and σserum which represent the concentration of glioma
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Fig. 4 Clinical data for glioma cells, glucose level and immune cells versus time

Table 2 The estimated
parameter values for the system
(17–20)

Parameter Values

αT 0.65304 0.2743 0.5085

αS 31.2803 28.1577 10.1253

dT T 0.9570 0.3021 0.7125

cells, the concentration of glucose in the brain, the concentration of immune system cells
and the concentration of serum glucose levels respectively. The model is described by the
following system of differential equations

dT

dt
= αT σbrainT (1 − T/KT ) − dT T − dT I T I, (17)

dσbrain

dt
= ασ (σserum + T + I ) − dTσ Tσbrain − (dσ + αs)σbrain, (18)

d I

dt
= αsσbrain + dT I T I − dI I − dTT T I, (19)

σserum + σbrain = max{σmin, σ0 sin(6π t)}. (20)

We choose the following initial conditions:

T (0) = 0.18, σbrain(0) = 4.43 × 10−3, I (0) = 10−3.

In [27], the sensitivity analysis of parameter values has been studied and shown that αT , αs

and dTT are the most sensitive parameters with respect to the growth of glioma. Then we fix
the other parameters as follows:

KT = 2, dT = 10−4, dT I = 0.072, ασ = 20, dTσ = 1,

dσ = 0.01, dI = 0.01, σmin = 8 × 10−4, σ0 = 1.6 × 10−3.

In order to accurately estimate these sensitive parameter values, we employ the clinical data
from a public database, SAGEmap [21]. The data for period of 100 days is shown in Fig. 4.
With respect to this clinical data, we choose the initial guess as αT = 0.5, αs = 10 and
dTT = 0.7. After 12 iterations, we found three group of parameter values which are shown
in Table 2. The computing time for this example is around 5min.
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5 Conclusion

In this paper we introduced a numerical method which is based on polynomial chaos and
homotopy continuation methods for estimating the parameter values of nonlinear systems
of differential equations. The resulting numerical method is able to compute the multiple
optimal parameter values with respect to a given dataset, and generates a cluster of sampling
points which converge to different estimated parameter values. Several numerical examples
are presented to test the presented numerical method and show that it works from single
equations to systems with complex form.
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