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Abstract A cut cell based sharp-interface Runge–Kutta discontinuous Galerkin method,
with quadtree-like adaptive mesh refinement, is developed for simulating compressible two-
medium flows with clear interfaces. In this approach, the free interface is represented by
curved cut faces and evolvedby solving the level-set equationwith highorder upstreamcentral
scheme. Thus every mixed cell is divided into two cut cells by a cut face. The Runge–Kutta
discontinuous Galerkin method is applied to calculate each single-medium flow governed
by the Euler equations. A two-medium exact Riemann solver is applied on the cut faces and
the Lax–Friedrichs flux is applied on the regular faces. Refining and coarsening of meshes
occur according to criteria on distance from the material interface and on magnitudes of
pressure/density gradient, and the solutions and fluxes between upper-level and lower-level
meshes are synchronized by L2 projections to keep conservation and high order accuracy.
This proposedmethod inherits the advantages of the discontinuousGalerkinmethod (compact
and high order) and cut cell method (sharp interface and curved cut face), thus it is fully
conservative, consistent, and is very accurate on both interface and flow field calculations.
Numerical tests with a variety of parameters illustrate the accuracy and robustness of the
proposed method.
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1 Introduction

How to treat the free interface and how to solve the flow fields are the two key points of
simulating a two-medium flow with a clear free interface. Because of its linear discontinuity
characteristic, severe nonphysical oscillations may arise in the vicinity of the free interface,
especially in the presence of strong shock and large density ratio, even when a well estab-
lished numericalmethod for single-mediumflow is applied directly to themulti-mediumflow.
Therefore, the free interface needs to be treated accurately and stably to avoid/reduce non-
physical oscillations. To treat the free interface, there are basically two types of approaches
being developed: diffuse-interface methods (like Volume of Fluid (VOF) method [22], Phase
Field method [13], et al.) and sharp-interface methods (like Level Set (LS) + Ghost Fluid
Method (GFM) [15,28,29,35], Front Tracking (FT) method [17,19], Cut Cell (CC) method
[2,7,26,33,41], et al.). Also, some methods have been developed by combining the concepts
of diffuse-interface method and sharp-interface method, like the VOF + interface reconstruc-
tion method [38] and the coupled LS and VOF method [40].

Different from diffuse-interface methods, sharp-interface methods provide more accurate
description of the free interfaces, although the methods like FT and CC need more work
on geometry calculation and need special consideration for topological changes. In the CC
method in [7], the LS approach is included to help evolve the interface and calculate geo-
metrical parameters, the structured adaptive mesh refinement (AMR) technology [3,4] is
endowed with a corridor of irregular cut cells around the interface. The fluxes at the interface
are calculated from two-medium exact Riemann solver, and include the effects of shear force
and heat transfer, which are decided by a set of interface jump conditions across the interface.

On the other hand, the flow field solver needs to fit the interface method to give best result.
Many numerical methods for single-medium flows have been extended to multi-medium
flows, such as finite difference method [18,42], finite volume method [7,30], discontinuous
Galerkin (DG) method [14,34,35,45], et al.

The DG method, originally introduced in 1973 by Reed and Hill [37] for the time inde-
pendent linear hyperbolic equation, is in the class of high order finite element methods. It has
been developed for solving nonlinear hyperbolic conservation laws [8–11]. Since the basis
functions can be discontinuous, the DG method is very flexible to achieve any order of accu-
racy and handle complicated geometry and boundary conditions. It is also a very compact
numerical scheme due to the extremely local data structure. These advantages make the DG
method having potential to work well with the CC method. A DG + CC method has been
developed to deal with elliptic interface problems and conjugate heat transfer problems [39].

In this paper, a sharp interface Runge–Kutta DG method is developed with AMR and CC
method for two-medium flows, governed by the Euler equations. We follow Chang et al. [7]
to treat the free interface using the CC method. The free interface is represented by curved
cut faces and evolved by solving the LS equation with high order upstream central schemes
[32]. Every mixed cell is divided into two cut cells by a cut face. The two-medium exact
Riemann solver [7] is applied on the cut faces with the input states obtained from the solution
representation in the two single-medium cut cells adjacent to a cut face. TheRunge–KuttaDG
method built on structured adaptive meshes with cut cells around the interface is applied to
calculate each single-medium flow. Comparing with the FVM (finite volume method) based
method, current method avoids to use a big stencil, including cut cells, to reconstruct high
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order polynomials near the free interface, which may produce numerical oscillations around
the free interface. Also, the AMR synchronization method and positivity-preserving limiters
applied in current work keep the accuracy order while maintaining conservation, and make
current method more robust.

The remainder of the paper is organized as follows. In Sect. 2, we present themathematical
formulation of the governing equations, containing the Euler equations and the LS equation.
Section 3 is devoted to the detail of the numerical methods. In Sect. 4, numerical experiments
are presented to illustrate the accuracy and robustness of the proposed method. Finally,
concluding remarks are given in Sect. 5.

2 Governing Equations

2.1 Euler Equations in 2D

We first consider inviscid and compressible two-medium flows in two-dimensional space
governed by the Euler equations in the conservation form:

∂U
∂t

+ ∇ · F(U) = 0, (1)

where

U =

⎛
⎜⎜⎝

ρ

ρu
ρv

ρE

⎞
⎟⎟⎠ ; F(U) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

ρEu + pu

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
ρEv + pv

⎞
⎟⎟⎠ = F1 + F2.

Here ρ denotes the density, u and v are the velocity components in x and y directions,
respectively, p is the pressure and E = e + 1

2 (u
2 + v2) denotes the total specific energy, e

is the specific internal energy.
Equation of state is needed for the closure of system (1). Here, the stiffened gas equation

of state is applied:

p = γ − 1

γ
CpρT − p∞, e = Cp

γ
T + p∞

ρ
. (2)

where T is the temperature, γ is the heat capacity ratio, Cp is the specific heat at constant
pressure and p∞ is a constant for each fluid.

2.2 Governing Equations for Axisymmetric Problems in 3D

Axisymmetric problems with respect to x-axis in 3D can be governed by

∂Ũ
∂t

+ ∇̃ · F̃(U) = S̃, (3)
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where

Ũ =

⎛
⎜⎜⎝

ρ

ρu
ρvr
ρE

⎞
⎟⎟⎠ ; F̃ =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuvr
ρEu + pu

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ρvr
ρvr u

ρv2r + p
ρEvr + pvr

⎞
⎟⎟⎠ = F̃1 + F̃2;

S̃ = −1

r

⎛
⎜⎜⎝

ρvr
ρvr u
ρv2r

ρEvr + pvr

⎞
⎟⎟⎠ .

Equation (3) comes from the 3D Euler equations in cylindrical coordinates (x, r, θ) by con-
sidering the axisymmetry. We still use Eq. (2) as the equation of state for Eq. (3).

2.3 Level-Set Equation

This work follows Chang, Deng and Theofanous [7] to track the free interface of a two-
medium flow, with the help of the LS equation:

∂ϕ

∂t
+ uϕ · ∇ϕ = 0. (4)

where ϕ denotes a signed distance function, uϕ denotes the nearest interfacial velocity.

3 Numerical Schemes

3.1 Meshes

3.1.1 Structured AMR

In order to resolve the interfacial region effectively and save the calculation time, our numeri-
cal methods are based on the structured AMR technology [3,4]. The structured adaptivemesh
is a multi-level, dynamic hierarchy of nested, structured-grid patches and is constructed in a
quadtree-like fashion. Refinement of mesh occurs according to criteria on the distance from
a material interface (and/or on magnitudes of pressure/density gradient) as in Fig. 1. Any cell
that meets these criteria is split into four equal cells, until the specified levels in the hierarchy
are exhausted. The process is reversed when a group of cells falls away from meeting such
criteria. Deactivated cells are handled in a manner that does not waste memory space.

3.1.2 Cut Cell

In the cut cell method, the free interface of two-medium flows divides every mixed cell into
two small subcells, which may be triangle, quadrangle or pentagon with one curved edge.
These subcells are called cut cells (Fig. 2). The intersection points of the regular faces and
the free interface are called cut points (Fig. 2). Thus, the free interface is represented by
piecewise cut faces (Fig. 2). Some resulted cut cells can be very small so that the time step
needs to be small due to the limit of the CFL condition. To avoid too small time step, these cut
cells (with areas less than a given portion of smallest regular cell) are merged into immediate
neighbor cells (the ones with the maximum cell-cell common interface) on the same side of
the free interface. More details are referred to [7,33].
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Fig. 1 The AMR structure embeds cut-cells. Left density contours; right the adaptive meshes

Cut points

Small cut cells

Cut cell

Cut faces

Regular cell

Fig. 2 Illustration of cut cells. Left original cut cells, cut points and cut faces; right merging the small cut
cells into their immediate neighbor cells

3.2 Interface Treatment

As is well known, a free interface needs to be treated accurately and stably to avoid/reduce
error propagation.

In this paper, the LS equation (4) is solved on the structured AMR meshes with the high
order upstream central scheme [32] to discretize the gradient term and a fourth-order Runge–
Kutta method is applied to advance the time step. Both ϕ and uϕ are defined at the grid
points. The grid-point velocity uϕ is set equal to the velocity value at the nearest interfacial
point. The velocity on the interface is calculated by the two-medium exact Riemann solver,
with initial values given by the DG solution. Then the interface is implicitly defined by the
zero-value of the LS function ϕ. Three steps are employed to reconstruct the interface. Step
1, the cut points are determined along the applicable grid lines (the signs of ϕ are opposite
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at the endpoints of the grid lines) with fourth-order accuracy least square method. Step 2, a
second-order polynomial is reconstructed as an approximation to the local LS function. The
zero-level line of the reconstructed local LS function from step 2 may not pass the cut points
from step 1 exactly, thus in step 3 the approximation polynomial is finally shifted to make its
zero-level line passing through the cut points, which is the cut face connecting the cut points.
The so-defined cut face is used to form the cut cells and calculate the curvature, which is
given by

κ = ∇ ·
( ∇ϕ

|∇ϕ|
)

= ϕxxϕ
2
y − 2ϕxϕyϕxy + ϕyyϕ

2
x

(ϕ2
x + ϕ2

y)
3/2 .

More details are referred to [7].
As pointed by [1,7,48], the signed distance character of LS values at the grid points

near the interface keeps well when the closest interface velocity is used to evolve the LS
equation (4), so that the requirement of re-initialization of LS values is reduced—normally
re-initialization is needed after every few thousand steps. But it is still needed after some time
steps, especially when big curvature appears near the interface. In our method, a geometrical
method is applied by calculating the distance of a grid point to the interface at the nearest.
This ensures that the re-initialization does not change the interface location and also that the
LS value has correct gradient near the interface.

3.3 DG Methods

For the sake of convenience, we only present the numerical methods for Eq. (1) as the one
for Eq. (3) is similar.

Suppose that T is a family of partitions of the computational domain Ω . For any cell
K ∈ T , which may be a rectangle from the structured AMR, or a cut cell from the CC
method, define hK := diameter(K ) and h := maxK∈T (hK ). LetmK be the number of edges
of cell K , for each edge eiK (i = 1, 2, . . . ,mK ) of K , the outward unit normal vector is
denoted by ni

K .
In a high order DG method, the approximation to the conservative variable U is denoted

by Uh , which belongs to the finite dimensional space,

Vh = Vk
h ≡ {v ∈ [L2(Ω)]4 : v|K ∈ [Pk(K )]4 ,∀K ∈ T },

where Pk(K ) is the space of polynomials of degree no more than k on cell K .
The choice of basis for the finite dimensional space Vh does not affect the proposed algo-

rithm. However, a suitable basis may simplify the implementation and the calculation due to
the complex elements near the interface. For a rectangular element from the structured AMR
technology, the orthogonal basis functions as usual [12] is applied. For a cut cell related to the
free interface, we seek a set of basis functions which are also orthogonal. For this purpose, we
apply the Gram-Schmidt orthogonalization to the reference basis {1, x, y, xy, x2, y2, . . .},
this gives the orthogonal basis functions on a cut cell.

Let x denote the point (x, y) in the computational domain, then the semi-discretized DG
methods for the system (1) is given by: looking for the approximate solution Uh(x, t) ∈ Vh ,
for all test function V(x) ∈ Vh , such that
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C1 C2

C3

C4
C5

C6 C7

C9
C8

Interface
at t n

Interface
at t n+1

Fig. 3 Illustration of the cut cells from time tn to tn+1. Left original cut cells and interface at time tn and
tn+1; middle merged cut cells at time tn ; right merged cut cells at time tn+1

Table 1 The partner cell Kn of
Kn+1 in Eq. (6) Kn C1 C2 C3 C4 + C5

Kn+1 C6 C7 C8 C9

∂

∂t

∫
K

Uh(x, t) · V(x)dΩ =
∫

K
F(Uh(x, t)) · ∇V(x)dΩ

−
mK∑
i=1

∫
eiK

F̂(Uh(x, t))|eiK · ni
KV(x)dΓ , (5)

where F̂(Uh(x, t)) is the numerical flux, which will be discussed in the next section.
For the sake of convenience, time discretization is given by using the Euler forward scheme

in this section. In practice, to achieve better accuracy in time, the four-stage Runge–Kutta
method is applied in the numerical tests in this paper. On a cut cell or a regular cell at time
tn which changes to a cut cell at time tn+1, the fully discretized scheme is given by

∫
Kn+1

Un+1
h · V(x)dΩ =

∫
Kn

Un
h · V(x)dΩ + 
tn

∫
Kn

F(Un
h) · ∇V(x)dΩ

−
tn

mK∑
i=1

∫
eiKn

F̂(Un
h)|eiKn · ni

Kn
V(x)dΓ (6)

Here, 
tn denotes the time step from time tn to tn+1. As shown in Fig. 3 (left), the interface
at tn is denoted by the blue solid line, and the one at tn+1 by the red dashed line. In Fig. 3
(middle), the cut cells at tn are denoted by C1, C2, C3 and C4. C5 is a regular cell. Due to
the movement of the interface, C4 becomes smaller and is merged into C5, so the cut cells at
tn+1 become C6, C7, C8 and C9 as shown in Fig. 3 (right). Then the elements Kn and Kn+1

in Eq. (6) can be listed in Table 1.
On a regular cell which does not change from time tn to tn+1, Kn and Kn+1 denote the

same regular cell, and the fully discretized scheme is still given by (6).

3.4 Calculation of the Numerical Fluxes

In the present method, the numerical fluxes on the regular faces are defined by

F̂(Un
h )|eiK · ni

K = F(Un,int (K )
h |eiK , Un,ext (K )

h |eiK , ni
K ) , (7)
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where Un,int (K )
h |eiK and Un,ext (K )

h |eiK are the approximations to the values on the edge eiK
obtained from the interior and the exterior of K at time tn . This work uses the local Lax–
Friedrichs flux

F(a1, a2, n) = 1

2
[F(a1) · n + F(a2) · n − α(a2 − a1)]

α = max ((u + c, v + c) · n) , (8)

where the maximum is taken over the cells where a1 and a2 are defined, and c denotes the
sound speed.

The numerical fluxes on the cut faces can be defined by [7],
(

F̂(Un
h )|eiK · ni

K

)
j
=

(
0, p�

j nx , p
�
j ny, p

�
j un

)�
, (9)

Here, the subscript j = 1, 2 denotes the fluid, ni
K = (nx , ny), nx and ny are the components

of ni
K in x and y directions, respectively. un is the normal velocity component of the interface

velocity uϕ , p�
j is the pressure on the cut faces satisfying the jump condition p�

2 − p�
1 = σκ

due to the surface tension coefficient σ . The two-medium exact Riemann solver is applied to
calculate uϕ and p�

j . Due to the Lagrangian movement of cut faces, there are not convective
terms in the fluxes. We refer to [7] for more details.

3.5 Synchronization of the Solutions and Fluxes

There are solutions and fluxes on different levels of mesh and edge, so synchronization is
needed on the solutions and fluxes at each time step, and it should be conservative.

Given Uh,up as the solution on the upper level of mesh, we transfer the solution to the
lower level by L2 projection, namely, the solution on the lower level of mesh Uh,low satisfies

〈Uh,low|K , V〉L2(K ) = 〈Uh,up|K , V〉L2(K ) =
1∑

m,n=0

〈Uh,up|Kmn , V〉L2(Kmn) , (10)

where Kmn (m, n = 0, 1) are the four subcells of K on the upper level. And vice versa.
For the fluxes, we also use the L2 projection to transfer the fluxes from the edges of the

upper level of mesh to those of the lower level of mesh, namely,

〈F̂|eiK · ni
K , V〉L2(eiK ) =

1∑
m=0

〈F̂|ei,mK · ni,m
K , V〉L2(ei,mK )

, (11)

where ei,mK (m = 0, 1) are the two uniform sub-faces of eiK on the upper level, and ni,m
K is

the outward unit normal vector of ei,mK .

3.6 Integral on Cut Cell, Limiters

The accuracy of the integrals in Eq. (6), especially on cut cells, could affect the result of
the algorithm. Hence, we must pay more attention to the integrals on cut cells. As shown in
Fig. 4 (left), the curved line EFG is a cut face, which divides the cell ABCD into two cut
cells AEFG and BCDGFE . In order to calculate the integral on BCDGFE , it is divided
into five triangular subcells by connecting the cell center O with the five vertexes, then each
subcell is transformed into a reference element E = {ξ = (ξ1, ξ2)|0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤
1, 0 ≤ ξ1 + ξ2 ≤ 1} by using parameterizations, finally the Gaussian quadrature rule is
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F
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InterfaceCut face

K2

DG
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E
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O

K1

K

K3

C2

C1

Fig. 4 Illustration of cut cells with curved cut faces. Left for integral; right for limiter

applied on the reference element. For the integral on the cut cells AEFG, we also transform
it into the reference element E and then apply the Gaussian quadrature rule.

When applied to problems containing discontinuous solution, the RKDG methods may
produce oscillations. Nonlinear limiters are often applied to control these oscillations. Many
limiters have been developed in the literature. In this paper, we use the corrected total variation
bounded (TVB) minmod slope limiter [12] for the solution polynomials on regular elements.
While for the solution polynomials on cut cells, the following limiter is applied.

As shown in Fig. 4 (right), consider the cut cell K , which has three neighbor cells
K1, K2 and K3 to the right side of the interface. Points C,C1,C2 and C3 are the cell
centers of K , K1, K2 and K3, respectively. Suppose that the solution polynomial on K is
u = u0,K + u1,Kφ1(x) + u2,Kφ2(x). Due to the orthogonality of the basis functions, u0,K
is the cell average of the solution u. Similarly, assume that the cell averages of the solutions
on K1, K2, K3 are u0,K1 , u0,K2 and u0,K3 , respectively. Using the cell centers and the cell
averages of the solutions on K1 and K2, we solve the following linear system with respect
to u1 and u2: {

u1φ1(C1) + u2φ2(C1) = u0,K1 − u0,K ,

u1φ1(C2) + u2φ2(C2) = u0,K2 − u0,K .
(12)

Denoting the solution of Eq. (12) by u1,12 and u2,12, then they are good approximations to
the linear terms u1,K and u2,K , respectively. Analogously, we could get u1,23 and u2,23 (u1,31
and u2,31) by using the corresponding information from K2 and K3 (K3 and K1). Then we
respectively modify u1,K and u2,K by

ũ1,K = m̄(u1,K , u1,12, u1,23, u1,31), (13)

ũ2,K = m̄(u2,K , u2,12, u2,23, u2,31), (14)

where m̄ is the modified minmod function [9].
When applied to problems containing lowdensity or temperature, theRKDGmethodsmay

produce nonphysical negative density or temperature. Therefore the positivity-preserving
limiters defined on rectangles [47] and triangles [46] are applied when considering such
problems.
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3.7 Solution Procedure

The whole procedure of current method in advancing from time tn to tn+1 can be summarized
as follows:

1. Refine or coarsen AMR mesh if needed, synchronize solutions.
2. Reconstruct variable values on faces, apply TVB limiter and positivity-preserving limiter

if needed.
3. Calculate the fluxes on all the faces at time tn . Synchronize fluxes. Get the interface

velocity and the pressure on all cut faces.
4. Solve the LS equation to get the LS values at time tn+1. From the LS values, get cut

points, cut faces and cut cells at time tn+1. Re-initialize the LS function if needed.
5. Advance solutions on regular cells and cut cells from Un

h to Un+1
h .

4 Numerical Results

In this section, numerical experiments are presented to demonstrate the performance of the
proposed method for various two-medium flows. In the first part, the accuracy and conver-
gence of the proposed method are investigated by using three 1D shock-tube problems. In the
second part, the order of accuracy is firstly presented for the advection of a smooth solution
on a 2D grid, and then shock–bubble interaction problems and oscillation of a liquid cylinder
in 2D space are tested to show the ability of treating complex free interfaces by the proposed
method. The shock-rigid body interaction problems in two dimensional space and in three
dimensional space (axisymmetric) are also tested, as the first step of applying RKDG with
CC method to study the fluid-structure problems in the future work.

The total accumulation errors (TAE) on cut cells of density are also tested to evaluate the
error near the interface. The total accumulation error is defined by

T AE = 1

|Ω|T
∑
K ,i

εK ,i |K |
ti , (15)

where

εK ,i =
{

ρh,K ,i − ρK ,i , if K is a cut cell at time level i
0, otherwise

(16)

where |Ω| and |K |denote the area of the computational domainΩ and the cell K , respectively,

ti is the i-th time step and T = ∑

i 
ti , ρh,K ,i and ρK ,i represent the numerical and exact
solutions of density on cell K , respectively.

All simulations were performed with both P1 and P2 approximations. To save space, we
only show P2 results here.

4.1 One-Dimensional Examples

4.1.1 Air–Helium Shock-Tube Problem

In this example, an air–helium shock-tube problem is considered. The interface is initially
located at x0 = 0m. The left is air and the right is helium. The initial conditions are given
by [23,24]
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Fig. 5 The numerical and exact solutions for the air–helium shock-tube problem. Dots numerical solutions;
solid line exact solutions

(ρ, u, p, T ) =
{

(2.282 g/l, 246.6m/s, 2.56 bar, 390.4K ), if x ≤ x0,

(0.167 g/l, 0m/s, 1.01 bar, 293.15K), if x > x0.
(17)

The state parameters are γ = 1.4 and Cp = 1004.85J/(kgK) for air, γ = 1.63 and Cp =
5353.65J/(kgK) for helium, p∞ = 0 for both gases.

The computational domain is taken as [−5.0m, 5.0m] with mesh size 0.01m. This
problem is calculated up to t = 2.29ms. The TVB minmod slope limiter [12] and the
positivity-preserving limiter [47] are used in the numerical implementation. The numerical
results from the proposed method are illustrated in Fig. 5. The exact solutions are also plot-
ted in the same figure for comparison. It shows that the numerical solutions match well with
the exact solutions, the material interface is tracked sharply, and the shock front is captured
correctly by the proposed method.

4.1.2 Air–SF6 Shock-Tube Problem

An air–SF6 shock-tube problem is tested in this section. The problem produces a two-shock
propagation. The interface is initially located at x0 = 0m. The left is air and the right is SF6.
The initial conditions are given by
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Fig. 6 The numerical and exact solutions for the air–SF6 shock-tube problem.Dots numerical solutions; solid
line exact solutions

(ρ, u, p, T ) =
{

(1.59 g/l, 104.89m/s, 1.51 bar, 330.67K), if x ≤ x0,

(5.99 g/l, 0m/s, 1.0 bar, 293.15K), if x > x0.
(18)

The state parameters are γ = 1.4 and Cp = 1004.85 J/(kg · K) for air, γ = 1.093 and
Cp = 669.48 J/(kg · K) for SF6, p∞ = 0 for both gases.

The computational domain is taken as [−5.0m, 5.0m]withmesh size 0.01m.We compute
this problem up to t = 8.0ms. The TVB minmod slope limiter [12] is used in the numerical
implementation. The numerical results from the proposed method are illustrated in Fig. 6,
which are in agreement with the exact solutions. It also shows that the material interface and
the shock fronts are captured correctly by the proposed method.

4.1.3 Water–Air Shock-Tube Problem

In this section, an water–air shock-tube problem is tested. The interface is initially located at
x0 = 0m. The left is water and the right is air. The initial conditions are given by

(ρ, u, p, T ) =
{

(1499.77 g/l, 181.52m/s, 106 Pa, 195.34K), if x ≤ x0,

(1.224 g/l, 0m/s, 105 Pa, 279.99K), if x > x0.
(19)

The state parameters are γ = 1.4, p∞ = 0 and Cp = 1004.85 J/(kg · K) for air, γ =
2.788103, Cp = 4190 J/(kg · K) and p∞ = 7.862511 × 108 for water.
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Fig. 7 The numerical and exact solutions for the air–water shock-tube problem. Dots numerical solutions;
solid line exact solutions

The computational domain is taken as [−5.0m, 5.0m]withmesh size 0.01m.We compute
this problem up to t = 2.0ms. The TVB minmod slope limiter [12] and the positivity-
preserving limiter [47] are used in the numerical implementation. Figure 7 shows the
numerical results from the proposed method and the exact solutions. It also can be seed
from the figure that the material interface is tracked sharply, and the shock front is captured
correctly by the proposed method.

4.2 Two-Dimensional Examples

4.2.1 Accuracy Test

In order to test the order of accuracy of the proposed method for two dimensional problems,
we consider a problem in domain [−1m, 1m] × [−1m, 1m] with a smooth solution. The
initial condition is

(ρ, u, v, p) =
{

(1 + 0.1 sin(π(x + y)) g/l, 1m/s, 1m/s, 1 bar), if r ≤ 0.4,

(1 + 0.1 sin(π(x + y)) g/l, 1m/s, 1m/s, 1 bar), if r > 0.4,
(20)
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Table 2 The total accumulation
error of the density for accuracy
test

Mesh 20 × 20 40 × 40 80 × 80 160 × 160

TAE 2.4E−04 6.1E−05 1.8E−05 5.0E−06

Ratio – 3.93 3.34 3.6

Table 3 The L2 error of the
density for accuracy test

Mesh 20 × 20 40 × 40 80 × 80 160 × 160

L2 error 2.9E−05 3.9E−06 5.9E−07 8.1E−08

Ratio – 7.44 6.61 7.28

where r = √
x2 + y2. r = 0.4 is an artificial interface. In the computation, γ = 1.6, p∞ =

0 Pa, the periodic boundary condition is used, this problem is computed up to t = 0.01s.
This problem has exact solution

(ρ, u, v, p) = (1 + 0.1 sin(π(x + y − 2t))g/l, 1m/s, 1m/s, 1 bar). (21)

We show the total accumulation error of density in Table 2. It shows that the average order
of accuracy of calculations on cut cells is 1.86, very close to 2.

Removing the free interface, the calculation is in one smooth phase, then the L2 error of
density is shown in Table 3. The average order of accuracy is 2.83, very close to 3, showing
the effective 3rd order accuracy of this P2 DG calculation.

4.2.2 Air Shock–Helium Bubble Interaction

In this example, we consider a weak shock (shock Mach number Ms=1.22) impacting on a
heliumbubble in air. The geometry for this problem is shown in Fig. 8. Due to the symmetry of
the problem, we choose the upper half of the flow field (ABCD in Fig. 8) as the computational
domain. The center of the helium bubble is initially located at (0mm,0mm). Initial conditions
are same as those in [44], given by

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(1.686 g/l,−113.524m/s, 0m/s, 159060 Pa), x > 30 mm,

(1.225 g/l, 0m/s, 0m/s, 101325 Pa), x < 30 mm, r > 25 mm,

(0.2228 g/l, 0m/s, 0m/s, 101325 Pa), r ≤ 25 mm.

with r = √
x2 + y2. The state parameters are γ = 1.4 and Cp = 1004.85 J/(kg · K) for

air, and γ = 1.648 and Cp = 5193.2 J/(kg · K) for helium, p∞ = 0 for both gases. The
boundary conditions are inviscid on the upper boundary (CD) and symmetric on the lower
boundary (AB), outflow on the left boundary (AD) and inflow on the right boundary (BC).

Numerical and experimental investigations of this problem have been carried out in [21,
25,35,36,44]. In this problem, the incident shock refracts at the bubble surface, and is partly
transmitted inside the helium bubble and partly reflected from the bubble surface and back
into the air. Due to the higher sound speed in the helium bubble than that in the surrounding
air, the refracted shock inside the bubble is well ahead of the incident shock. When the
refracted shock inside the bubble interacts with the rear interface of the bubble and transmits
into the air, the incident shock just passes over the top of the bubble.

We use four layer meshes with 200 × 10 mesh cells on the base mesh, so that in the
top mesh there is 160 mesh cells in the full vertical 89mm domain, same as that in [44].
The TVB minmod slope limiter [12] and the limiter on cut cells are used in the numerical
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Fig. 8 The geometry for a weak shock impacting on a helium bubble in air

implementation. The numerical density contours at t = 102, 245, 427, 647µs are shown in
Fig. 9, comparing with the experimental results in [21] and the numerical results from [36]
and [44]. The time t = 0µs here is defined at the moment when the shock hits the right
interface of the helium bubble. Current method and the front tracking method in [44] are
both sharp interface methods, give clearer interfaces than the diffuse interface method used
in [36]. Our simulated bubble shapes look more consistent with the experimental ones than
those in [44], especially at the 647µs.

4.2.3 Water Shock–Air Bubble Interaction

This case concerns a strong water shock impacting on an air bubble in water. The geome-
try and the initial conditions for this problem are shown in Fig. 10. All the parameters are
made non-dimensional for this example. The computational domain is taken as [−3, 3] ×
[−3, 3] The boundary conditions are inflow on the left boundary and outflow on other
boundaries.

This problem has been investigated in [20,27,31,35,45]. In order to capture the complex
physics occurring in this problem, we use four layer meshes with 60 × 60 cells on the base
mesh. The three types of limiters presented in Sect. 3.6 are used in the numerical imple-
mentation. The numerical density, pressure and velocity (u) contours t = 0.05, 0.18, 0.31
and 0.47 are plotted in Fig. 11. It can be observed from these plots that the incident shock
refracts at the bubble surface at early time (t = 0.05), a reflected rarefaction wave is formed
in the water. As the incident shock proceeds, the incident shock passes over the top of the
bubble (t = 0.18). With the interaction between the incident shock and the gas bubble, the
bubble interface continues to deform, more and more of the reflected rarefaction fan spread
(t = 0.31), and the incident shock passes over the whole bubble. Finally, the rarefaction wave
overtakes the incident shock (t = 0.47). During the whole process, the bubble is compressed
to be smaller and smaller, we show the time history of the bubble shape in Fig. 12. In this
problem, there is a transmitted shock inside the gas bubble, which can be observed from the
density and velocity contour plots shown in Fig. 11. It can be seen from Fig. 11 that there is
no oscillation at the interface compared to the results reported in [45].

In addition, we investigate the computational cost of the key algorithms (AMR, LS+CC,
DG and Limiters). The result is listed in Table 4, in which “LS+CC” means the LS solver
and the Cut Cell method, and “Limiters” means the three limiters presented in Sect. 3.6. It
can be seen from this table that the DG solver for Euler equations takes half of the whole
computing time, while the AMR only takes a little time (0.88%).
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Fig. 9 Comparison between the numerical density contours (right column) with the experimental shadow-
graphs [21] (left column), [36] (second column) , [44] (third column) at t = 102, 245, 427, 647µs, from top
to bottom, for a Ms=1.22 shock impacting on a helium bubble in air

4.2.4 Detached Shock on a Rigid Stationary Cylinder or Sphere

In supersonic flow the reflection from a rigid stationary body stabilizes into a stationary
solution. A bow shock whose distance (denoted by δ) from the rigid body decreases as the
flow Mach number increases.

By regarding the solid body as a special phase, the interface can again be described by
curved cut faces. Applying inviscid boundary condition on the cut faces, and ignore the
calculation inside the solid body, this proposed method can be applied to deal with the fluid-
rigid body interaction problems.

In the computations, we consider a cylindrical rigid body and a spherical rigid body located
at the origin. The diameter of the rigid body is taken as D = 1m. For the cylindrical rigid
body, the computational domain is taken as [−8m, 8m] × [−6m, 6m]. We use three layer
meshes with 80 × 60 mesh cells on the base mesh. The boundary conditions are inflow on
the left boundary and outflow on other boundaries. We solve Eq. (1) for this case. For the
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Water:

ρ = 1176.3333
u = 1.1692
v = 0.0
p = 9120

Water:

ρ = 1000
u = 0.0
v = 0.0
p = 1

Air:

ρ = 1
u = 0.0
v = 0.0
p = 1

Fig. 10 The geometry for a strong shock impacting on an air bubble in water

spherical rigid body, the computational domain is taken as [−8m, 8m] × [0m, 6m]. We
use three layer meshes with 80 × 30 mesh cells on the base mesh. The boundary conditions
are inflow on the left boundary, symmetric on the lower boundary and outflow on other
boundaries. We solve Eq. (3) for this case. The three types of limiters presented in Sect. 3.6
are used in the numerical implementation.

Different incident flowswithMachnumber between1.3 and2.8 are tested. Figure 13 shows
a pressure contours of a stationary solution formed by an incident flow with Mach number
2.2 (left) and the relationship between the detached distance δ/D and the Mach number of
the incident flow (right). Current simulation results match well with the experimental data
and the previous numerical results in [7].

4.2.5 Surface Tension Driven Oscillations of an Inviscid Liquid Drop

In this work, the surface tension is applied in the similar way as in [7], in which the effect
of surface tension is considered as a supplemental pressure and calculated together with
regular pressure by the two-medium exact Riemann solver on the cut faces. In this way, it
is treated sharply and does not have the time step limit when using the continuum surface
force (CSF) model [5]. Here the oscillations of an inviscid liquid drop due to the surface
tension is considered, to show the effect of this surface tension calculation in current method.
The initial surface shape of the liquid drop is given by r = r0 + ε cos(nθ), the theoretical
frequency of the oscillation is [16]

ωn =
√

(n3 − n)σ

(ρd + ρe)r30
, (22)
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Fig. 11 Density, pressure and velocity (u) contours at t = 0.05, 0.18, 0.31 and 0.47 for a strong shock
impacting on an air bubble in water. Left column density; middle column pressure; right column velocity (u)

where ε is the disturbance, n is the mode of the drop, σ is the surface tension coefficient,
ρd and ρe are the densities of the drop and external fluid, respectively. Then the period of
oscillation is tc = 2π/ωn . This problem has been studied in [7,16,43].

In the test simulations, n = 2, ε = 0.1, ρd = 100 g/l and ρe = 1 g/l are fixed, σ and r0
are varied to vary the periods of oscillations. The three types of limiters presented in Sect. 3.6
are used in the numerical implementation. The comparison between the simulation results
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Fig. 12 Evolution of the bubble
shape for a strong shock
impacting on an air bubble in
water
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Table 4 The computing times of the key algorithms (unit: seconds)

Algorithms AMR LS+CC DG Limiters

Computing times 1.75E+02 3.40E+03 1.02E+04 6.18E+03

Ratio 0.88% 17.04% 51.12% 30.96%
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Fig. 13 Detached shock on a cylinder or sphere. Left example pressure contours of a stationary solution
formed by a shock-cylinder interaction; right detached distance δ/D versus Mach number of the incident flow

and the theoretical results is shown in Table 5. It shows that the proposed adaptive RKDG
method with cut cell, together with the surface tension calculation, is very accurate, even to
very low speed problems with very strong surface tensions. Two typical evolution curves of
the total kinetic energy are shown in Fig. 14.
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Table 5 Summary of the computational runs for the oscillations of an inviscid liquid drop due to surface
tension

Cases Surface tension Radius elements Theoretical Computed period
coefficient (N/m) r0 (m) /diameter period (s) By DG (error)

1 100 2 100 7.291 7.333 (0.58%)

1a 100 2 200 7.291 7.316 (0.34%)

2 1000 2 100 2.306 2.323 (0.74%)

2a 1000 2 200 2.306 2.321 (0.65%)

3 10,000 2 100 0.729 0.741 (1.64%)

3a 10,000 2 200 0.729 0.741 (1.64%)

4 1000 1 100 0.815 0.829 (1.72%)

4a 1000 1 200 0.815 0.828 (1.59%)
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Fig. 14 Evolution of the total kinetic energy of freely oscillating drops under the influence of surface tension
(Cases 4 and 4a)

5 Conclusions

In this paper, a conservative, consistent, sharp-interface adaptive Runge–Kutta discontinuous
Galerkin method with cut cell method is developed for the simulation of the compressible
inviscid two-medium flows. Two-dimensional and axisymmetric calculations are realized.
Curved cut face is applied to get higher accuracy in the calculation around the interface.
High order, conservative synchronization method on the AMR is realized in the DG frame-
work. Positivity-preserving limiter is applied to avoid possible nonphysical negative density
and temperature in the numerical calculations. Surface tension is considered in a sharp inter-
face way, so that it can deal with very strong surface tension without the limit on time step.
Numerical results for gas–gas, gas–liquid and gas–solid (stationary rigid body) flows demon-
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strate that the combination of the adaptive Runge–Kutta discontinuous Galerkin method and
the cut cellmethodworkswell. In the futurework,we shall extend themethod to compressible
viscous two-medium flows and fluid-structure interactions. The compactness of DG method
helps to reduce the problems from big stencil in high order finite volume calculation, and
will also be helpful in the future parallelization. Combining RKDG and cut cell method also
makes it possible to develop higher order methods for compressible multi-phase flows.
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