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Abstract In this paper, we consider the numerical approximations for the commonly used
binary fluid-surfactant phase fieldmodel that consists two nonlinearly coupled Cahn–Hilliard
equations. The main challenge in solving the system numerically is how to develop easy-
to-implement time stepping schemes while preserving the unconditional energy stability.
We solve this issue by developing two linear and decoupled, first order and a second order
time-stepping schemes using the so-called “invariant energy quadratization” approach for
the double well potentials and a subtle explicit-implicit technique for the nonlinear coupling
potential. Moreover, the resulting linear system is well-posed and the linear operator is
symmetric positive definite. We rigorously prove the first order scheme is unconditionally
energy stable. Various numerical simulations are presented to demonstrate the stability and
the accuracy thereafter.

Keywords Phase-field · Fluid-surfactant · Cahn–Hilliard · Unconditional energy stability ·
Ginzburg–Landau · Invariant energy quadratization

1 Introduction

Surfactants are usually organic compounds that can alter or reduce the surface tension of the
solution, and allows for the mixing of dissimilar (immiscible) liquids. A typical well-known
example of dissimilar liquids is the mixture of oil and water, where the water molecule is
polar, and it does not hang out with nonpolar molecules like oil. Hence, in order to make
the mixing more favorable, a molecular intermediate, commonly referred as surfactants, is

X. Yang’s research is partially supported by the U.S. National Science Foundation under Grant Nos.
DMS-1200487 and DMS-1418898.

B Xiaofeng Yang
xfyang@math.sc.edu

1 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

2 Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology,
Beijing 100124, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0508-6&domain=pdf


1534 J Sci Comput (2018) 74:1533–1553

needed. The surfactant molecules are amphiphilic, they are capable of binding to both water
and oil molecules (hydrophilic heads into the water, hydrophobic tails into the oil), allowing
these molecules to mix via reducing the surface tension between water and oil. This is the
essential reason that people can clean the hands or clothes using soaps or detergents. Except
the daily uses in cleaning, surfactants have been widely used in industrial fields for various
purposes, e.g., oil recovery [52] and food processing [37], etc.

There is a large quantity of studies on the modeling and numerical simulations to investi-
gate the binary fluid-surfactant system. In the pioneering work of Laradji et al. [26,27], the
diffuse interface approach, or called the phase field method, was firstly used to study the
phase transition behaviors of the monolayer microemulsion system, formed by surfactant
molecules. Following Laradji’s work, a number of phase field type of fluid-surfactant models
have been developed during the last two decades, see also [12,14,25,53–55]. In this paper,
we consider the numerical approximations for solving the model that was developed by
Komura et al. in [25] since it appears to be the minimal model with the least number of non-
linear coupling entropy terms in the free energy. The main difference between the surfactant
models for fluid-surfactant system and the most classical Cahn–Hilliard phase field model
for two phase system, that was proposed by Cahn and Hilliard in [4] and well-studied in
[5,6,9,13,21,23,28,29,33,35,51,61,65,66] and the references therein, is that an extra phase
variable (surfactant) has to be used. Hence two physical phase field variables are incorporated
in the model, where one is used to represent the local densities of the fluids, and the other
is used for the local concentration of the surfactant. Except the regular potentials, e.g., the
hydrophilic (gradient entropy) and hydrophobic part (nonlinear double well potential) for
each phase field variable, some nonlinear coupling entropy terms are participated in the total
free energy. By minimizing the total energy via the variational approach, one can obtain the
governing system that consists two nonlinearly coupled Cahn–Hilliard type equations.

From the numerical point of view, although the phase field variable is continuous and
smooth, the induced models are still very stiff where the stiffness is induced by an order
parameter that represents the thickness of the interface. It can be seen clearly from a fact
that some severe stability conditions on the time step will occur if the nonlinear term is
discretized in some normal ways like fully implicit or explicit type approaches. Such a
constraint on the time step can cause very high computational cost in practice [11,45]. Hence,
it is desirable to establish efficient numerical schemes that can verify the so-called energy
stable property at the discrete level irrespectively of the coarseness of the discretization. Such
kinds of algorithms are usually called unconditionally energy stable or thermodynamically
consistent. The scheme with this property is specially preferred since it is not only critical
for the numerical scheme to capture the correct long time dynamics of the system, but also
provides sufficient flexibility for dealing with the stiffness issue. Although a variety of the
phase field models of the fluid-surfactant system [25–27,54] had been built for over twenty
years, we must notice that there are very few successful attempts in designing unconditional
energy stable schemes where the main difficulty lies in the discretization for the nonlinear
terms, in particular the nonlinear coupling term associatedwithmultiple phase field variables.
In [22], a second order in time, nonlinear schemewas developed based on theCrank–Nicolson
method. However, the scheme could be computationally expensive due to its highly nonlinear
and coupling nature. Moreover, since the nonlinear terms are mostly treated implicitly, the
energy stability of the scheme does not hold at all, and the solvability is unknown yet.

Therefore, the main purpose of this paper is to construct some time discretization schemes
that are expected to be easy-to-implement (linear system) and unconditionally energy stable
(with a discrete energy dissipation law). We achieve this goal by adopting the “Invariant
Energy Quadratization” (IEQ) approach (cf. [7,18,58,62–64,67,68,73,74]) for the nonlinear
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doublewell potentials, and a subtle explicit-implicit treatment for the nonlinear coupling term.
As a result, in each time step, the scheme leads to two decoupled linear systems. Moreover,
we show that each corresponding linear operator is symmetric positive definite, so that one
can solve it using the well-developed fast matrix solvers efficiently (CG or other Krylov
subspace methods). To the best of the author’s knowledge, the numerical scheme proposed
in this paper is the first linear, decoupled schemes for the nonlinearly coupled multivariable
phase-field model.

The rest of the paper is organized as follows. In Sect. 2, we present the whole model and
give the PDE energy law. In Sect. 3, we develop a linear, totally decoupled, first order time
stepping scheme andprove thewell-posedness and unconditional stability.We further develop
a linear, totally decoupled second order time stepping schemes based on the Adam-Bashforth
method. Various numerical experiments are carried out in Sect. 4 to validate the accuracy and
stability of the proposed scheme. Finally, some concluding remarks are presented in Sect. 5.

2 Models

We now give a brief introduction for binary fluid-surfactant phase field model. To fix the

notations, without ambiguity, we denote by ( f (x), g(x)) = (
∫
�

f (x)g(x)dx)
1
2 the L2 inner

product between functions f (x) and g(x), by ‖ f ‖ = ( f, f ) the L2 norm of function f (x),
where � is the computed domain.

In the ternary fluid flow system for the mixture of water, oil and surfactant, monolayers
of surfactant molecules form microemulsions as a random phase. Such a microemulsion
system usually exhibits various interesting microstructures depending on the temperature or
the composition. In [25], the dynamics of microphase separation in microemulsion systems
was modeled by a phase field model with two order parameters, where, the free energy of
the system is given as follows,

E(φ, ρ) =
∫

�

(
1

2
|∇φ|2 + α

2
(�φ)2 + 1

4ε2
(φ2 − 1)2

︸ ︷︷ ︸
part A

+ β

2
|∇ρ|2 + 1

4η2
ρ2(ρ − ρs)

2

︸ ︷︷ ︸
part B

− θρ|∇φ|2
︸ ︷︷ ︸
part C

)

dx (2.1)

where α, β, ε, η, ρs , θ are all positive parameters.
Now we give some brief descriptions about the free energy. More detailed descriptions

about the modeling can be found in [25].
In part A, the phase field variable φ is introduced to label the local densities of the two

fluids, e.g., water and oil, where the fourth order polynomial is the double well Ginzburg–
Landau potential. Thus there are two minimum values for this polynomial which means the
two bulk state for φ, i.e.,

φ(x, t) =
{
1 fluid I,

−1 fluid II.
(2.2)

The interface of the fluid mixture is described by the zero level set �t = {x : φ(x, t) = 0}.
Part I is the well-known “mixing” energy for phase field model, where the linear part ((�φ)2

and |∇φ|2) contributes to the hydrophilic type (tendency of mixing) of interactions between
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the materials and the double well potential represents the hydrophobic type (tendency of
separation) of interactions. As the consequence of the competition between the two types
of interactions, the equilibrium configuration will include a diffusive interface. About the
theoretical or numerical study about the Cahn–Hilliard or Allen–Cahn system derived from
this part of energy, we refer to [1,6,17,20,29–31,38,41,43–48,50,59,60,71,72,75,76].

In part B, the second phase field variable ρ(x, t) is introduced to represent the local
concentration of surfactants where another fourth double well polynomial potential is used
as well. There are two minimum values that enable two bulk states for ρ, i.e., ρ = 0 and
ρ = ρs . The state of ρ = 0 corresponds to the case in which the system is locally occupied
either by oil of water without surfactants. The state of ρ = ρs corresponds to the case in
which the local volume is occupied only by surfactants. The quantity ρs can be considered
to represent the density of condensed hydrocarbon chains of surfactants when they self-
assemble. In the numerical experiments, we simply set ρs = 1.

Part C represents the coupling between the surfactants and fluid interface, i.e., the state
ρ = ρs tends to occupy the narrow region around the oil-water interfaces. It is also essential
in microemulsions that the interfacial tension vanishes when the interface is saturated with
surfactants.

The time evolution equation is assumed to be the Cahn–Hilliard type, i.e., the gradient
flow in H−1, the system reads as follows,

φt = Mφ�μφ, (2.3)

μφ = δE

δφ
= −�φ + α�2φ + 1

ε2
φ(φ2 − 1) + 2θ∇ · (ρ∇φ), (2.4)

ρt = Mρ�μρ, (2.5)

μρ = δE

δρ
= −β�ρ + 1

η2
ρ(ρ − ρs)

(
ρ − ρs

2

)
− θ |∇φ|2. (2.6)

For the domain �, the boundary conditions can be

(i) all variables are periodic; or (ii) ∂nφ|∂� = ∂nρ|∂�

= ∇μφ · n|∂� = ∇μρ · n|∂� = 0, (2.7)

where n is the outward normal on the domain boundary ∂�. The system (2.3)–(2.5) conserves
the local mass density, i.e., d

dt

∫
�

φdx = d
dt

∫
�

ρdx = 0.
It is straight forward to obtain the PDE energy law for the Cahn–Hilliard system (2.3)–

(2.6). By taking the L2 inner product of (2.3) with μφ , of (2.4) with φt of (2.5) with μρ , of
(2.6) with ρt , performing integration by parts, and combining all equalities, we can derive

d

dt
E(φ, ρ) = −Mφ‖∇μφ‖2 − Mρ‖∇μρ‖2 ≤ 0. (2.8)

Remark 2.1 Alternatively, one can also assume the Allen–Cahn dynamics for the phase
variables, namely

φt = −Mφμφ,

ρt = −Mρμρ,
(2.9)

with periodic boundary conditions or no-flux boundary condition as ∂nφ|∂� = ∂nρ|∂� = 0.
Note that the volume conservation property does not hold for Allen–Cahn type dynamics. To
overcome it, one can equip (2.9)with a scalar Lagrangemultiplier to enforce this conservation
property (cf. [43,59]), or modify the free energy functional (2.1) by adding a penalty term
for mass conservation, similar as the method used in [9,34]. Both ways will not introduce
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any mathematical or numerical difficulties and all analysis for Cahn–Hilliard system can be
carried out for Allen–Cahn system without further difficulties, thus we shall not study the
Allen–Cahn system in this paper.

Remark 2.2 The total free energy (2.1) is the rescale of the free energy proposed in [25].
We notice that the gradient term |∇ρ|2 is actually neglected in [25]. The absence of this
term is “physically” reasonable since the energy cost due to the direct attachment between
hydrocarbon chains and oil molecules or between hydrophilic head and water molecules is
small. But in this paper, we add this term back “mathematically” because this term may
help the total energy E(φ, ρ) to be bounded from below. However, it is not a trivial work to
prove the total free energy to be bounded from below even with this gradient potential, where
the main difficulty is how to bound the nonlinear coupling potential (part C). A possible
way is to follow Caffarelli and Muler’s work for the classical Cahn–Hilliard equation [3],
namely, to prove the concentration variable ρ is L∞ bounded. Then the part C can be bounded
by other terms. The related PDE analysis is out of the scope of this paper, hence we only
present the evolution of the free energy through the numerical experiments in Sect. 4. Indeed,
the coupling term between φ and ρ in part C can cause serious hurdles to obtain the error
estimates for the schemes even though its energy stability can be formally derived. We will
consider this issue in the future work.

Remark 2.3 Whenconcerning the hydrodynamics effects, by assumingbothfluids are incom-
pressible, the system reads as follows, see also [39],

φt + ∇ · (uφ) = Mφ�μφ, (2.10)

ρt + ∇ · (uρ) = Mρ�μρ, (2.11)

ut + (u · ∇)u + ∇ p − ν�u + φ∇μφ + ρ∇μρ = 0, (2.12)

∇ · u = 0, (2.13)

where u is the fluid velocity, p is the pressure, ν is the viscosity, the twononlinear terms related
to φ and ρ in themomentum equation are the induced stresses due to the total free energy. The
numerical method for the hydrodynamics coupled phase field models in various situations,
e.g., multiphase complex fluids, liquid crystals, had been well-studied in literatures, see also
[24,29,32,36,40,44,46,47,70,75].

3 Numerical Schemes

We now construct time stepping schemes to solve the model system (2.3)–(2.6). The aim is to
construct schemes that are not only easy-to-implement, but also unconditionally energy sta-
ble. Here the term “easy-to-implement” is referred to “linear” and “decoupled” in comparison
with its counter parts: “nonlinear” and “coupled”.

We notice that there are two numerical challenges, including how to decouple the compu-
tations of φ and ρ; and how to discretize the two double well polynomial terms for φ and ρ.
For the nonlinear coupled potential of φ and ρ, we have to develop a subtle explicit-implicit
technique to obtain a decoupling and linear scheme. For the double well polynomial potential
terms,we recall that there are two commonly used techniques to discretize this termwhile pre-
serving the energy stability. The first well-known technique is the so-called convex splitting
approach [10,18,19,42,75,76], where the convex part of the potential is treated implicitly and
the concave part is treated explicitly. The convex splitting approach is energy stable, however,
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it produces a nonlinear scheme at most cases. Thus its implementation is complicated and the
computational cost is high, that excludes this method in this paper. The second technique is
the linear stabilization approach (cf. [6,31,34,43–45,47–50,56,57,59,60,69,71,72]), where
the nonlinear term is simply treated explicitly and some linear stabilizing terms are added to
maintain the stability. This approach is linear so it is very efficient and easy to implement.
But its stability requests a special property (generalized maximum principle) satisfied by the
classical solution of the PDE and the numerical solution, that is usually very hard to prove.

We now describe our special treatments to discretize the nonlinear terms to preserve the
energy stability. For the polynomial terms, we adopt the IEQ approach, which has been
successfully applied to solve a variety of gradient flow type models (cf. [58,63,64,74]). Its
idea, that is very simple but quite different from those traditional methods like implicit,
explicit, nonlinear splitting, or other various tricky Taylor expansions to discretize the non-
linear potentials, is to make the free energy quadratic. More precisely, we introduce two
auxiliary functions as

U = φ2 − 1, (3.1)

V = ρ(ρ − ρs). (3.2)

In turn, the total energy can be rewritten as

E(φ, ρ, U, V )

=
∫

�

(
1

2
|∇φ|2 + α

2
(�φ)2 + 1

4ε2
U 2 + β

2
|∇ρ|2 + 1

4η2
V 2 − θρ|∇φ|2

)

dx. (3.3)

Now, we have a new, but equivalent PDE system as follows,

φt = Mφ�μφ, (3.4)

μφ = −�φ + α�2φ + 1

ε2
HU + 2θ∇ · (ρ∇φ), (3.5)

ρt = Mρ�μρ, (3.6)

μρ = −β�ρ + 1

η2
GV − θ |∇φ|2, (3.7)

Ut = 2Hφt , (3.8)

Vt = 2Gρt , (3.9)

where H(φ) = φ, G(ρ) = ρ − ρs
2 .

The boundary conditions for the new system are still (2.7) since the Eqs. (3.8) and (3.9)
for the new variable U and V are simply ODEs with time. The initial conditions read as

φ|(t=0) = φ0, ρ|(t=0) = ρ0, U |(t=0) = φ2
0 − 1, V |(t=0) = ρ0(ρ0 − ρs). (3.10)

To derive the energy dissipative law for this system, we take the L2 inner product of (3.4)
with μφ , of (3.5) with −φt , of (3.6) with μρ , of (3.7) with −ρt , of (3.8) with 1

2ε2
U , of (3.9)

with 1
2η2

V and combining all terms together, we obtain the new energy dissipation law as
follows,

d

dt
E(φ, ρ, U, V ) = −Mφ‖∇μφ‖2 − Mρ‖∇μρ‖2 ≤ 0. (3.11)

Remark 3.1 Weconsider the two quartic, doublewell polynomial potential forφ and ρ as two
quadratic functionals by applying appropriate substitutions if needed. Therefore, after simple
substitutions using new variables U, V , the energy is transformed to an equivalent quadratic
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form. We emphasize that the new transformed system (3.4)–(3.9) is exactly equivalent to
the original system (2.3)–(2.6) since (3.1)–(3.2) can be easily obtained by integrating (3.8)–
(3.9) with respect to the time. Therefore, the energy law (3.11) for the transformed system
is exactly the same as the energy law (2.8) for the original system for the time-continuous
case. We will develop time-marching schemes for the new transformed system (3.4)–(3.9)
that in turn follows the new energy dissipation law (3.11) instead of the energy law (2.8) for
the original system.

3.1 First Order Scheme

We now present a first order time marching scheme to solve the system (3.4)–(3.9).

Scheme 1 Assuming thatφn, ρn, U n, V n are alreadyknown,wecomputeφn+1, ρn+1, U n+1,

V n+1 from the following first order temporal semi-discrete system:
Step 1:We update ρn+1 and V n+1 as follows,

ρn+1 − ρn

δt
= Mρ�μn+1

ρ , (3.12)

μn+1
ρ = −β�ρn+1 + 1

η2
Gn V n+1 − θ |∇φn |2, (3.13)

V n+1 − V n = 2Gn(ρn+1 − ρn). (3.14)

Step 2:We update φn+1 and U n+1 as follows,

φn+1 − φn

δt
= Mφ�μn+1

φ , (3.15)

μn+1
φ = −�φn+1 + α�2φn+1 + 1

ε2
HnU n+1 + 2θ∇ ·

(

ρn+1∇ φn+1 + φn

2

)

,

(3.16)

U n+1 − U n = 2Hn(φn+1 − φn). (3.17)

The boundary conditions can be

(i) all variables are periodic; or (ii) ∂nφ
n+1|∂�

= ∂nρ
n+1|∂� = ∇μn+1

φ · n|∂� = ∇μn+1
ρ · n|∂� = 0.

Remark 3.2 When computing ρn+1 in step 1, we only need φn . When computing φn+1 in
step 2, ρn+1 is already obtained from step 1. Thus the computations of φ and ρ are totally
decoupled. Furthermore, when computing ρn+1 and φn+1, one does not need calculateU n+1

and V n+1. Note the coefficient H and G of the new variables U and V are both treated
explicitly, thus we can rewrite the Eqs. (3.14) and (3.17) as follows:

{
V n+1 = 2Gnρn+1 + Dn,

U n+1 = 2Hnφn+1 + Sn,
(3.18)

where Dn = V n − 2Gnρn and Sn = U n − 2Hnφn . Thus (3.12), (3.13) can be rewritten as
the following linear system

1

δt
ρn+1 = Mρ�μn+1

ρ + 1

δt
ρn, (3.19)

μn+1
ρ = P(ρn+1) + gn

1 , (3.20)
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where P(ρ) = −β�ρ + 2
η2

(Gn)2ρ, gn
1 = 1

η2
Gn Dn − θ |∇φn |2. Similarly, (3.15), (3.16) can

be rewritten as the following linear system

1

δt
φn+1 = Mφ�μn+1

φ + 1

δt
φn, (3.21)

μn+1
φ = Q(φn+1) + gn

2 , (3.22)

where Q(φ) = −�φ + α�2φ + 2
ε2

(Hn)2φ + θ∇ · (ρn+1∇φ) and gn
2 = 1

ε2
Hn Sn + θ∇ ·

(ρn+1∇φn). Therefore, we can solve ρn+1 and ψn+1 directly from (3.19), (3.20) and (3.21),
(3.22). Once we obtain φn+1, ρn+1, then V n+1, U n+1 are automatically given in (3.18).
Namely, the new variables V an U will not involve any extra computational costs.

We first show the well-posedness of the linear system (3.12)–(3.14) [or (3.19), (3.20)] as
follows.

Theorem 3.1 The linear system (3.19), (3.20) admits a unique solution in H1(�), and the
linear operator is symmetric positive definite.

Proof From (3.19), by taking the L2 inner product with 1, we have
∫

�

ρn+1dx =
∫

�

ρndx = · · · =
∫

�

ρ0dx. (3.23)

Let Vρ = 1
|�|

∫
�

ρ0dx, Vμ = 1
|�|

∫
�

μn+1
ρ dx, and we define

ρ̂n+1 = ρn+1 − Vρ, μ̂n+1
ρ = μn+1

ρ − Vμ. (3.24)

Thus, from (3.19), (3.20), (ρ̂n+1, μ̂n+1
ρ ) are the solutions for the following equations with

unknowns (ρ, μ),

1

Mρδt
ρ − �μ = f, (3.25)

μ + Vμ − P(ρ) = g, (3.26)

where f = 1
Mρδt ρ̂

n , g = gn
1 + 2

η2
GnGn Vρ . Moreover, f, ρ and μ are all mean 0, i.e.,

∫
�

f dx = ∫
�

ρdx = ∫
�

μdx = 0.
Define the inverse Laplace operator u (with

∫
�

udx = 0) �→ v := �−1u by
⎧
⎨

⎩

�v = u,

∫

�

vdx = 0,

with the boundary conditions either (i) v is periodic, or (ii) ∂nv|∂� = 0.
(3.27)

Applying −�−1 to (3.25) and using (3.26), we obtain

− 1

Mρδt
�−1ρ + P(ρ) − Vμ = −�−1 f − g, (3.28)

then we can express the above linear system (3.28) as Aρ = b.

(i) For any ρ1 and ρ2 in H1(�) satisfy the boundary conditions (2.7) and
∫
�

ρ1dx =∫
�

ρ2dx = 0, using integration by parts, we derive

(A(ρ1), ρ2) = − 1

Mρδt

(
�−1ρ1, ρ2

) + (P(ρ1), ρ2)

≤ C1
(‖∇�−1ρ1‖‖∇�−1ρ2‖+‖∇ρ1‖‖∇ρ2‖+‖ρ1‖‖ρ2‖

)

≤ C2‖ρ1‖H1‖ρ2‖H1 . (3.29)
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Therefore, the bilinear form (A(ρ1), ρ2) is bounded for any ρ1, ρ2 ∈ H1(�) with mean
0.

(ii) For any ρ ∈ H1(�) with mean 0, it is easy to derive that,

(A(ρ), ρ) = 1

Mρδt
‖∇�−1ρ‖2 + β‖∇ρ‖2 + 2

η2
‖Gnρ‖2 ≥ C3‖ρ‖2H1 , (3.30)

from Poincare inequality. Thus the bilinear form (A(ρ1), ρ2) is coercive.
Then from the Lax–Milgram theorem, we conclude the linear system (3.28) admits a
unique solution in H1(�).
For any ρ1, ρ2 with

∫
�

ρ1dx = 0 and
∫
�

ρ2dx = 0, we can easily derive

(Aρ1, ρ2) = (ρ1,Aρ2) . (3.31)

Thus A is self-adjoint. Meanwhile, from (3.30), we derive (Aρ, ρ) ≥ 0 for any ρ ∈
H1(�) and mean 0, where “=” is valid if only if ρ = 0. This concludes the linear
operator A is positive definite. 
�

Likewise, the linear system (3.15)–(3.17) [or (3.21), (3.22)] is well-posed, symmetric
positive definite, and admits a unique solution in H2(�). The proof is very similar to
Theorem 3.1, thus we omit the details here.

We show the unconditional energy stability of the scheme (3.12)–(3.17) as follows.

Theorem 3.2 The scheme (3.12)–(3.17) is unconditionally energy stable and satisfies the
following discrete energy dissipation law,

1

δt

(
E

n+1 − E
n) ≤ −Mφ‖∇μn+1

φ ‖2 − Mρ‖∇μn+1
ρ ‖2, (3.32)

where

E
n =

∫

�

(
1

2
|∇φn |2 + α

2
(�φn)2

+ 1

4ε2
(U n)2 + β

2
|∇ρn |2 + 1

4η2
(V n)2 − θρn |∇φn |2

)

dx. (3.33)

Proof By taking the L2 inner product of (3.12) with δtμn+1
ρ , we obtain

(
ρn+1 − ρn, μn+1

ρ

) = −Mρδt‖∇μn+1
ρ ‖2. (3.34)

By taking the L2 inner product of (3.13) with −(ρn+1 − ρn), and applying the following
identities

2(a − b, a) = |a|2 − |b|2 + |a − b|2, (3.35)

we obtain

− (
μn+1

ρ , ρn+1 − ρn) = − β

2

(‖∇ρn+1‖2 − ‖∇ρn‖2 + ‖∇(ρn+1 − ρn)‖2)

− 1

η2

(
Gn V n+1, ρn+1 − ρn) + θ

(|∇φn |2, ρn+1 − ρn)
.

(3.36)

By taking the L2 inner product of (3.14) with 1
2η2

V n+1, we obtain

1

4η2
(‖V n+1‖2 − ‖V n‖2 + ‖V n+1 − V n‖2) = 1

η2

(
Gn (

ρn+1 − ρn)
, V n+1) . (3.37)
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By taking the L2 inner product of (3.15) with δtμn+1
φ , we obtain

(
φn+1 − φn, μn+1

φ

)
= −Mφδt‖∇μn+1

φ ‖2. (3.38)

By taking the L2 inner product of (3.16) with −(φn+1 − φn), we obtain

−
(
μn+1

φ , φn+1 − φn
)

= − 1

2

(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇ (
φn+1 − φn) ‖2)

− α

2

(‖�φn+1‖2 − ‖�φn‖2 + ‖� (
φn+1 − φn) ‖2)

− 1

ε2

(
HnU n+1, φn+1 − φn) + θ

(
ρn+1, |∇φn+1|2 − |∇φn |2) .

(3.39)

By taking the L2 inner product of (3.17) with 1
2ε2

U n+1, we obtain

1

4ε2
(‖U n+1‖2 − ‖U n‖2 + ‖U n+1 − U n‖2) = 1

ε2

(
Hn(φn+1 − φn), U n+1) . (3.40)

Combining (3.34)–(3.40) and using the following identity
(|∇φn‖2, ρn+1 − ρn) + (

ρn+1, |∇φn+1|2 − |∇φn |2)

= (
ρn+1, |∇φn+1|2) − (

ρn, |∇φn |2) , (3.41)

we can obtain

β

2

(‖∇ρn+1‖2 − ‖∇ρn‖2 + ‖∇ (
ρn+1 − ρn) ‖2)

+ 1

2

(‖∇φn+1‖2 − ‖∇φn+1‖2 + ‖∇ (
φn+1 − φn) ‖2)

+ α

2

(‖�φn+1‖2 − ‖�φn‖2 + ‖� (
φn+1 − φn) ‖2)

+ 1

4ε2
(‖U n+1‖2 − ‖U n‖2 + ‖U n+1 − U n‖2)

+ 1

4η2
(‖V n+1‖2 − ‖V n‖2 + ‖V n+1 − V n‖2)

− θ
((

ρn+1, |∇φn+1|2) − (
ρn, |∇φn |2))

= −Mφδt‖∇μn+1
φ ‖2 − Mρδt‖∇μn+1

ρ ‖2.

(3.42)

Finally, we obtain the desired result (3.32) after dropping some positive terms. 
�
Remark 3.3 We note that the idea of the IEQ approach is very simple but quite different
from the traditional time marching schemes. More precisely, it does not require the convex-
ity required by the convex splitting approach (cf. [10]) or the boundedness for the second
order derivative required by the stabilization approach (cf. [6,45,56]). Through a simple sub-
stitution of new variables, the complicated nonlinear potentials are transformed into quadratic
forms. We summarize the great advantages of this quadratic transformations as follows: (i)
this quadratization method works well for various complex nonlinear terms as long as the
corresponding nonlinear potentials are bounded from below; (ii) the complicated nonlinear
potential is transferred to a quadratic polynomial formwhich ismuch easier to handle; (iii) the
derivative of the quadratic polynomial is linear, which provides the fundamental support for
linearization method; (iv) the quadratic formulation in terms of new variables can automati-
cally maintain this property of positivity (or bounded from below) of the nonlinear potentials.
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When the nonlinear potential is the fourth order polynomial, e.g., the doublewell potential,
the IEQ method is exactly the same as the so-called Lagrange Multiplier method developed
in [16].We remark that the idea of LagrangeMultiplier method only works well for the fourth
order polynomial potential (φ4). This is because the nonlinear term φ3 (the derivative of φ4)
can be naturally decomposed into a multiplication of two factors: λ(φ)φ that is the Lagrange
multiplier term, and the λ(φ) = φ2 is then defined as the new auxiliary variableU . However,
this method might not succeed for other type potentials. For instance, we notice the Flory–
Huggins potential iswidely used in two-phasemodel or fluid-surfactantmodel, see also [4,53,
58]. The induced nonlinear term is logarithmic type as ln( φ

1−φ
). If one forcefully rewrites this

term as λ(φ)φ, then λ(φ) = ln( φ
1−φ

)

φ
that is the definition of the new variable U . Obviously,

such a form is unworkable for algorithms design. About the application of the IEQ approach
to handle other type of nonlinear potentials, we refer to the authors’ other work in [58,63,64].

Remark 3.4 The IEQ approach provides more efficiency than the nonlinear approach. Let
us consider the double well potential case, i.e., E(φ) = ∫

�
(φ2 − 1)2dx, then IEQ scheme

will generate the linear scheme as (φn)2φn+1. The implicit or convex splitting approach will
produces the scheme as (φn+1)3. Therefore, if the Newton iterative method is applied for this
term, at each iteration the nonlinear convex splitting approach would yield the same linear
operator as IEQ approach. Hence the cost of solving the IEQ scheme is the same as the cost
of performing one iteration of Newton method for the implicit/convex splitting approach,
provided that the same linear solvers are applied (for instance multi-grid with Gauss-Seidel
relaxation). It is clear that the IEQ scheme would be much more efficient than the nonlinear
schemes.

Remark 3.5 The proposed scheme follows the new energy dissipation law (3.11) formally
instead of the energy law for the originated system (2.8). In the time-continuous case, the
two energy laws are the same. In the time-discrete case, the energy En+1 [defined in (3.33)]
can be rewritten as a first order approximation to the Lyapunov functionals in E(φn+1, ρn+1)

(defined in (2.8)), that can be observed from the following facts heuristically. From (3.17),
we have

U n+1 −
((

φn+1)2 − 1
)

= U n −
((

φn)2 − 1
)

+ Rn+1, (3.43)

where Rn+1 = O((φn+1−φn)2). Since Rk = O(δt2) for 0 ≤ k ≤ n+1 andU 0 = (φ0)2−1,
by mathematical induction we can easily get

U n+1 = (
φn+1)2 − 1 + O(δt). (3.44)

3.2 Second Order Schemes

For the IEQ approach, it is quite standard to develop second order version based on either
BDF2 or Crank–Nicolson, the details are referred to the author’s recent work in [58,63,64].
However, for the surfactant model studied in this paper, the nonlinear coupling term between
ρ and φ presents a huge barrier to obtain the energy stabilities, i.e., it is questionable about
if the nonlinear potential is bounded from below (see Remark 2.2). Even though the second
order scheme is unconditionally energy stable for all numerical tests that we have performed
in next section, it is still an open question about its stability proof or how to construct any
second order linear schemes with unconditional energy stability. In this paper, following the
strategy that we develop the first order scheme by combining the IEQ approach and explicit-
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implicit technique, we still list the second order BDF2 version as follows, for consistency.

Scheme 2 (BDF2) Assuming that φn−1, ρn−1, U n−1, V n−1 and φn , ρn , U n , V n are known,
we solve φn+1, ρn+1, U n+1, V n+1 from the following second order scheme:

Step 1:We update ρn+1 and V n+1 as follows,

3ρn+1 − 4ρn + ρn−1

2δt
= Mρ�μn+1

ρ , (3.45)

μn+1
ρ = −β�ρn+1 + 1

η2
G�V n+1 − θ |∇φ�|2, (3.46)

3V n+1 − 4V n + V n−1 = 2G�(3ρn+1 − 4ρn + ρn−1). (3.47)

Step 2:We update φn+1 and U n+1 as follows,

3φn+1 − 4φn + φn−1

2δt
= Mφ�μn+1

φ , (3.48)

μn+1
φ = −�φn+1 + α�2φn+1 + 1

ε2
H �U n+1 + 2θ∇ · (ρn+1∇φn+1), (3.49)

3U n+1 − 4U n + U n−1 = 2H �(3φn+1 − 4φn + φn−1), (3.50)

where

φ� = 2φn − φn−1, H � = H(φ�), G� = G(2ρn − ρn−1),

Remark 3.6 The algorithm design for the hydrodynamics coupled model (2.10)–(2.13)
presents further numerical challenges, e.g., how to decouple the computations of the velocity
from the phase variables. This can be overcome by combining the proposed scheme in this
paper for the two Cahn–Hilliard equations and the projection method [15] for the Navier-
Stokes equations. Furthermore, one can use a decoupling technique that was developed in
[36,47,48,50,71] to decouple the computations or φ and ρ from the velocity field. Since this
paper is focused on the development of efficient linear schemes for solving the nonlinearly
coupled Cahn–Hilliard equations with multiple variables, the details of numerical schemes
for the hydrodynamics coupled model that are in the similar vein as [29,44,46,47,75], are
left to the interested readers.

4 Numerical Simulations

We now present numerical experiments in two dimensions to validate the theoretical results
derived in the previous section and demonstrate the efficiency, energy stability and accuracy
of the proposed numerical schemes. The phase separation [25,54] of dissimilar fluids are
often carried out in the periodic domain, which is also adopted here. The computed domain
is [0, 2π]2, if not explicitly specified, the default values of order parameters are given below:

Mρ = 2.5e−4, Mφ = 2.5e−4, α = 2.5e−4,

β = 1, ε = 0.05, η = 0.08, θ = 0.3, ρs = 1.
(4.1)

We use the Fourier-spectral method to discretize the space, and 1292 Fourier modes are
used so that the errors from the spatial discretization is negligible compared with the time
discretization errors.
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Table 1 The summation of L2

numerical errors for φ and ρ at
t = 0.1 that are computed by
schemes LS1, LS2 using various
temporal resolutions with the
initial conditions of (4.2), for
mesh refinement test in time

δt LS1 Order LS2 Order

1e−2 4.21e–4 – 8.15e–5 –

5e−3 2.16e–4 0.96 2.18e–5 1.90

2.5e−3 1.09e–4 0.99 5.63e–6 1.95

1.25e−3 5.52e–5 0.98 1.42e–6 1.99

6.25e−4 2.77e–5 0.99 3.55e–7 2.00

3.125e−4 1.38e–5 1.00 8.48e–8 2.07

1.5625e−4 6.95e–6 0.99 2.10e–8 2.01The order parameters are of (4.1)

Fig. 1 Time evolution of the free energy functional for various time step sizes using the scheme LS1, LS2
and the second order fully implicit scheme. The small inset figure shows the small differences in the energy
evolution for the considered time steps. The energy curves show the decays for all time step sizes, that confirms
that our algorithm is unconditionally stable

Remark 4.1 The order parameter ε is chosen as the 0.8%(= ε
2π ) of the domain size, that is

a reasonable choice for the computations of phase field models, see also [6,29–31,41,43–
45,47,48,50,59,60,71,72,75,76]. In addition, note in quite a number of literatures, the choice
of mobility parameter therein (denoted by Mold ) is often chosen as 1, but our choice of the
mobility parameter is M = ε2 = 2.5e−4 (Mρ and Mφ) that seems to bemuch smaller. This is

because the free energy in those literatures (denoted by Eold ) is Eold = ∫
�
( ε2

2 |∇φ|2 + (φ2 −
1)2)dx that is the rescale of the free energy given in this paper, namely, their Cahn–Hilliard

equation reads as φt
ε2Mold

+ �(�φ + φ(φ2−1)
ε2

) = 0, but our model reads as φt
M + �(�φ +

φ(φ2−1)
ε2

) = 0. Therefore, the mobility parameter M in this paper corresponds to ε2Mold

instead of Mold itself.
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Fig. 2 Spinodal decomposition for φ0 = 0 using parameters (4.1). Snapshots of phase variables φ and ρ are
taken at t = 1, 10, 20, 50, 100, 200, 400, 1000, 1500, 2000. For each subfigure, the left is the profile of φ, and
the right is the profile of ρ

4.1 Accuracy Test

We first test convergence rates of the two numerical schemes, the first order scheme (3.12)–
(3.17) (denoted by LS1) and the second order BDF2 scheme (3.45)–(3.50) (denoted by LS2).
The following initial conditions

{
φ0(x, y) = 0.3 cos(3x) + 0.5 cos(y),

ρ0(x, y) = 0.2 sin(2x) + 0.25 sin(y)
(4.2)

are used.
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Fig. 3 Spinodal decomposition for φ0 = 0.2 using parameters (4.1). Snapshots of phase variables φ and ρ

are taken at t = 1, 10, 20, 50, 100, 200, 400, 1000, 1500, 2000. For each subfigure, the left is the profile of φ,
and the right is the profile of ρ

We perform the refinement test of the time step size, and choose the approximate solution
obtained by using the scheme LS2 with the time step size δt = 7.8125e−5 as the benchmark
solution (approximately the exact solution) for computing errors.We present the summations
of the L2 errors of two phase variables between the numerical solution and the exact solution
at t = 0.1with different time step sizes in Table 1.We observe that the schemes, LS1 andLS2,
are first order and second order accurate respectively. Moreover, the second order scheme
LS2 gives better accuracy than the first order scheme LS1 does when using the same time
step. For instance, if the accuracy is required to be around 2e−5, then for LS2, we can take
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Fig. 4 Spinodal decomposition for φ0 = −0.5 using parameters (4.1). Snapshots of phase variables φ and ρ

are taken at t = 1, 10, 20, 50, 100, 200, 400, 1000, 1500, 2000. For each subfigure, the left is the profile of φ,
and the right is the profile of ρ

the time step 5e−3, but for LS1, we have to take the time step 6.25e−4, therefore, the second
order scheme LS2 can use the time step that is around 8 (= 1e−2

5e−4 ) times larger than the first
order scheme LS1.

4.2 Spinodal Decomposition

In this example, we study the phase separation dynamics that is called “spinodal decompo-
sition”. The process of the phase separation can be studied by considering a homogeneous
binary mixture, which is quenched into the unstable part of its miscibility gap. In this case,
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the spinodal decomposition takes place, which manifests in the spontaneous growth of the
concentration fluctuations that leads the system from the homogeneous to the two-phase
state. Shortly after the phase separation starts, the domains of the binary components are
formed and the interface between the two phases can be specified [2,8,77].

The initial conditions are taken as the randomly perturbed concentration fields as follows,

φ0(x, y) = φ0 + 0.001rand(x, y),

ρ0(x, y) = 0.2 + 0.001rand(x, y),
(4.3)

where the rand(x, y) is the random number in [−1, 1] and has zero mean. We will vary φ0
in next simulations.

We first choose φ0 = 0 and compare the evolution of the free energy functional between
the two proposed schemes and the second order fully implicit scheme with various time steps
until t = 5 in Fig. 1. We take the computed solution of the fully implicit scheme by using a
very tiny time step of δt = 1e−7 as the exact solution and compare with the results obtained
from the schemes LS1 and LS2. For the first order scheme LS1, we choose four time steps
with δt = 1e−2, 1e−3, 5e−4 and 1e−4. We observe that all energy curves show the decays
for all time step sizes, that confirm that our algorithms are unconditionally stable for any
time step. Furthermore, when the time step size δt is 0.01, the energy curve using the scheme
LS1 is considerable (but not very far) away from the exact solution. For other smaller time
steps, the obtained energy curves match well with the exact solution. This means the time
step size has to be smaller than 0.01 at least in order to get reasonably good accuracy if using
the scheme LS1 in practice. For the scheme LS2, we choose the time step δt = 1e−2, the
obtained energy curve is already well matched with the exact solution. Moreover, we notice
that its extent of agreement with the exact solution is even better than that of the scheme LS1
when using δt = 5e−4. In other words, under the same magnitude of accuracy requests, the
second order scheme LS2 can use the time step that is around 20 (= 1e−2

5e−4 ) times larger than

Fig. 5 Time evolution of the free energy functional for spinodal decomposition with A φ0 = 0, B φ0 = 0.2,
C φ0 = −0.5 with order parameters (4.1)
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the first order scheme LS1 at least. Therefore, we use the scheme LS2 and choose the time
step δt = 1e−3 to perform the following spinodal decomposition simulations.

In Figs. 2, 3, and 4,wepresent the time evolution of the phase separation dynamics forφ0 =
0, 0.2,−0.5, respectively. Snapshots are taken at t = 1, 10, 20, 50, 100, 200, 400, 1000, 1500
and 2000 for all cases. Initially, the two fluids are well mixed, and they sooner start to decom-
pose due to surface tensions. A relatively high value of the concentration variable ρ is always
driven to be located at the fluid interface. For φ0 = 0 in Fig. 2, the volume fractions of two
fluids are the same, thus we observe the fluid interfaces are partially entangled and isolated.
For other values of φ0 = 0.2,−0.5, we observe that the fluids are accumulated to small
drops finally. Overall, the numerical solutions in these simulations present similar features
to those obtained in [22,25–27,54]. We plot the evolution of energy curves in Fig. 5 for all
three cases, where the energy monotonically decays with respect to the time.

5 Concluding Remarks

Although the phase field approach had been widely used to model the binary fluid-surfactant
system for over twenty years, the development of energy stable schemes still remained very
scarce due to its complex nature of nonlinearities. In this paper, we develop two linear,
decoupled, computationally efficient schemes to solve themodel, where the first order version
is unconditionally energy stable. While we have considered only time discretizations here,
the results can carry over to any consistent finite-dimensional Galerkin approximations (finite
elements or spectral) since the proofs are all based on variational formulations with all test
functions in the same space as the trial function. We also presented ample numerical results
to validate the accuracy of the proposed schemes.
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