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Abstract Khokhlov–Zabolotskaya–Kuznetzov (KZK) equation is a model that describes
the propagation of the ultrasound beams in the thermoviscous fluid. It contains a nonlocal
diffraction term, an absorption term and a nonlinear term. Accurate numerical methods to
simulate the KZK equation are important to its broad applications in medical ultrasound
simulations. In this paper, we propose a local discontinuous Galerkin method to solve the
KZK equation. We prove the L2 stability of our scheme and conduct a series of numerical
experiments including the focused circular short tone burst excitation and the propagation
of unfocused sound beams, which show that our scheme leads to accurate solutions and
performs better than the benchmark solutions in the literature.
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1 Introduction

Khokhlov–Zabolotskaya–Kuznetzov (KZK) equation is one of the most widely used models
in medical ultrasound simulations. KZK equation can be regarded as a parabolic approxima-
tion of the more general Westervelt equation, and it describes the propagation of the sound
beams in the homogeneous and thermoviscous (heatconducting) fluids. The advantage of the
model is that it combines the effects of diffraction, absorption and nonlinearity. Even though
the KZK equation is especially suitable for the far field of the paraxial region for moderately
focused or unfocused transducers, its original and revised form has also been applied to more
general ultrasound simulations.

Due to the broad applications of the KZK equation, many numerical methods have been
developed. In 1984, Aanonsen et al. [1] developed numerical algorithms to solve the KZK
equation in the frequency domain. In particular, the authors applied the Fourier expansions
to the original equation, which leads to a coupled PDE system and they further solved
the resulting system using finite difference method. Bakhvalov et al. [3] proposed a mixed-
domain numerical method which solves the diffraction and absorption terms in the frequency
domain, and computes the nonlinear term using the Godunov method in the time domain.
Later, Lee and Hamilton [15] designed an operator-splitting finite difference method to solve
the KZK equation entirely in the time domain; for each update along the direction of the wave
propagation, they solved the diffraction term, absorption termandnonlinear term sequentially.
In order to handle the oscillatons caused by the diffraction term, the authors employed the
implicit backward finite difference method in the near field, and the Crank–Nicolson method
in the far field. The stretched coordinates method [4] was used to deal with the nonlinear
term of the equation. Many other algorithms including the work by Baker et al. [2], Yang
et al. [23] and Hajihasani et al. [12] were then developed based on Lee and Hamilton’s
framework to tackle more general situations. For example, Yang et al. and Hajihasani et al.
consider the diffraction term in Cartesian coordinates. Since the diffraction term is the main
challenging part in the numerical simulations, they provide different treatments in order to
solve the equation accurately. Generally speaking, most of the numerical schemes of the
KZK equation are based on either the spectral method or finite difference methods.

In this paper, we propose a local discontinuous Galerkin (LDG) method to solve the KZK
equation. Discontinuous Galerkin (DG) methods, which use piecewise defined functions
(typically polynomials) in each element, were initiated by Reed and Hill’s work [16] to solve
the steady state linear hyperbolic equations. DG methods have drawn a great amount of
attention since the pioneering works by Cockburn and Shu in a series of papers [5,7–9]. In
particular, the authors established a framework to solve nonlinear hyperbolic conservation
laws by introducing total variation bounded nonlinear limiters [17] to capture the strong
shocks. More details for the development of the DG methods can be referred to the review
papers [6,10]. The DGmethods were then developed to solve convection-diffusion equations
and partial differential equations with high order spatial derivatives. For instance, Yan et al.
used the LDG method to solve a general Korteweg–de Vries (KdV) type equation in [21],
and they further generalized the LDGmethod for equations with fourth and fifth order spatial
derivatives in [22]. Later, Xu and Shu applied the LDGmethod to solve many other equations
including theKadomtsev–Petviashvili and Zakharov–Kuznetsov equations [19], andwe refer
to their review paper [20] for the latest development of the LDG method.

The reason we design a LDG method to solve the KZK equation is that the DG methods
have many advantages. The DG methods can be easily formulated to be of arbitrary order of
accuracy, and they are also suitable for adaptive simulations in both the p- and h-refinement,

123



J Sci Comput (2017) 73:593–616 595

complicated geometry and parallel computing. Based on the aforementioned benefits, we
propose a LDG method to solve the KZK equation in the time domain so that it is easy to
deal with the non-local diffraction term and the diffusion term. To the best of our knowledge,
this paper provides the first algorithm to the KZK equation that belongs to the finite element
schemes.

One feature of the KZK equation is that the solutions are much more oscillatory in the
near field compared to the solutions in the far field. Such property leads to different choices
in terms of discretization within distinct regimes of the domain. That is, we use two different
step sizes along the direction of the beam propagation (in the σ domain of Eq. (2.8)) for all
the examples except for the accuracy test in Sect. 3.1.1. Another special treatment is that we
multiply the KZK equation by the cylindrical radial variable (ρ) before we derive the weak
formulation of the LDG scheme. That gives the provable L2 stability of our LDG scheme for
the KZK equation in the cylindrical coordinates. For our numerical simulations, we mainly
compare the performance of our numerical results with Lee’s results [14] for some benchmark
examples. In general, the examples fall into the two categories, i.e., the cases for the focused
and unfocused sources. We observe that our numerical results match well with Lee’s results
for the unfocused case, and have better accuracy for the focused case.

The outline of our paper is as follows. In Sect. 2, we introduce two dimensionless forms
of the KZK equation, propose LDG scheme for the KZK equation and present the stability
analysis of the scheme. In Sect. 3, we perform some accuracy tests of our scheme on the
KZK equation with only the diffraction term or with an extra source term. We also test our
scheme for some classical numerical examples including the focused circular short tone burst
excitation and the propagation of unfocused sound beams. By comparing our results to the
benchmark solutions, we can show that under the same degrees of freedom, our scheme has
better performance. We conclude this paper in Sect. 4.

2 Local Discontinuous Galerkin Discretization

2.1 Model Problem

The original form of the KZK equation for the axisymmetric sound pressure p in cylindrical
coordinates is given by

∂2 p

∂z∂t ′
= c0

2

(
∂2 p

∂r2
+ 1

r

∂p

∂r

)
+ D

2c30

∂3 p

∂t ′3
+ β

2ρ0c30

∂2 p2

∂t ′2
, (2.1)

Here (r, z) represents the cylindrical coordinateswith z denoting the axis of the beamwhich is
the direction of propagation and r being the radial distance from the z axis. Another variable
t ′ is the retarded time which could be negative. Other constant parameters c0, D, β and ρ0
represent the sound speed, diffusivity of the sound in the thermoviscous fluid, nonlinearity
parameter and the density of the fluid, respectively.

In this paper, we consider two dimensionless forms of the original KZK equation (2.1). In
order to model the focused source, one can use the variable transformations p = p/p0, σ =
z/d, ρ = r/a, τ = ω0t ′ with p0 being the amplitude of the sound pressure for the source,
d being the focal length of the source, a being the radius of the source and ω0 being the
frequency of the source, to obtain the following non-dimensional KZK equation

pσ = 1

4G

∫ τ

−∞
(ρpρ)ρ

ρ
dτ ′ + Apττ + N

2
(p2)τ , (2.2)
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where G, A and N are constants which satisfy G > 0 and A, N ≥ 0. If we instead apply
the following transformations p = (1 + σ)p/p0, σ = z/z0, ρ = r/a/(1 + σ), τ = ω0t ′ −
(r/a)2/(1 + σ) to (2.1), where z0 is the so-called Rayleigh distance, we can obtain the case
for unfocused sources:

pσ = 1

4(1 + σ)2

∫ τ

−∞
(ρpρ)ρ

ρ
dτ ′ + Apττ + N

1 + σ
(p2)τ . (2.3)

The major difference of the two dimensionless forms is essentially how the relative range
coordinate σ is defined. More details about these transformations can be referred to [14]. For
both Eqs. (2.2) and (2.3), the terms on the right-hand side denote diffraction, absorption and
nonlinearity, respectively.

The source condition for a weakly focused, axisymmetric beam can usually be defined by

p = p0 f (t + r2/2c0d)g(r), at z = 0, (2.4)

where the function f is the temporal excitation and g(r) is the amplitude distribution. In the
dimensionless coordinates, this source condition becomes:

p = f (τ + Gρ2)g(ρ), at σ = 0. (2.5)

We define the temporal and spacial domain as 0 = ρmin ≤ ρ ≤ ρmax and τmin ≤ τ ≤
τmax , and impose the following boundary conditions:

p(τmin, ρ, σ ) = 0, p(τmax , ρ, σ ) = 0,

p(τ, ρmax , σ ) = 0, pρ(τ, ρmin, σ ) = 0. (2.6)

The spatial domain must be large enough to minimize the error introduced by the inevitable
reflection due to the artificial boundary conditions. The time domain must also be large
enough to encompass both the axial wave and the delayed edge wave. Lee has a detailed
discussion on how to select ρmax , τmin and τmax in his previous work [14]. Here, we present
his result for the focused sources:

ρmax = 4, τmin = −(G + ω0T0 + 10π), τmax = ω0T0 + 20π, (2.7)

where T0 is the duration of the source excitation.Wewill specify the domain in each numerical
example accordingly.

The equation for the focused case (2.2) will be used in the following subsections to derive
our LDGmethod. Due to the setup of our problems, although τ is the actual temporal variable,
we follow the approach in [14], and regard σ as the “artificial” temporal direction, ρ and τ

as spatial variables when we solve the equations numerically.

2.2 Notations

We consider a two-dimensional rectangular domain 	 and without loss of generality, we
denote it by [τmin, τmax ] × [ρmin, ρmax ]. We discretize the computational domain 	 into
rectangular cells Ki, j = Ii × J j , where Ii = [τi− 1

2
, τi+ 1

2
], for i = 1, . . . , Nτ and J j =

[ρ j− 1
2
, ρ j+ 1

2
], for j = 1, . . . , Nρ . The coordinate for the center of the cell Ki, j is denoted by

(τi , ρ j ) :=
(
(τi− 1

2
+ τi+ 1

2
)/2, (ρ j− 1

2
+ ρ j+ 1

2
)/2

)
, and the mesh sizes in τ - and ρ-direction

are denoted by 
τi = τi+ 1
2

− τi− 1
2
and 
ρ j = ρ j+ 1

2
− ρ j− 1

2
, respectively. We define the

piecewise polynomial space as V k
h = {v : v|Ki, j ∈ Qk(Ii× J j ),∀Ki, j }, where Qk is the space

of tensor products of one-dimensional polynomials of degree up to k. Note that functions in
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V k
h can be discontinuous across element boundaries. For any function ph ∈ V k

h , ph(τ
+
i+1/2, ρ)

and ph(τ
−
i+1/2, ρ) denote the limit values of ph at τi+ 1

2
from the right cell Ii+1× J j and from

the left cell Ii× J j , respectively. Similar definitions hold for ph(τ, ρ
+
j+1/2) and ph(τ, ρ

−
j+1/2).

2.3 LDG Method for the KZK Equation

In this subsection, we define the semi-discrete LDGmethod for the KZK equation (2.2). That
is, we only discretize the domain of ρ and τ , and regard σ as the continuous time. The KZK
equation is written into a first order system by substituting the first order derivatives pρ , pτ

and definite integral
∫ τ

τmin
pρdτ with the auxiliary variables s, q , r , respectively:

pσ = 1

4Gρ
(ρr)ρ + Aqτ + N

2
(p2)τ , (2.8)

s = pρ, (2.9)

r = ∂−1
τ s, (2.10)

q = pτ , (2.11)

where

∂−1
τ s =

∫ τ

τmin

s dτ. (2.12)

Our scheme for (2.8)–(2.11) can be formulated as follows: we look for ph , sh , qh , rh ∈ V k
h ,

such that

d

dσ

∫
Ki j

phφρdρdτ = 1

4G

∫
Ii
(r̃hφ

−ρ(τ, ρ j+ 1
2
) − r̃hφ

+ρ(τ, ρ j− 1
2
))dτ − 1

4G

∫
Ki j

rhφρρdρdτ

+ A
∫
J j

(q̂hφ
−ρ(τi+ 1

2
, ρ) − q̂hφ

+ρ(τi− 1
2
, ρ))dρ − A

∫
Ki j

qhφτ ρdρdτ

+ N

2

∫
J j

( p̂2hφ
−ρ(τi+ 1

2
, ρ) − p̂2hφ

+ρ(τi− 1
2
, ρ))dρ − N

2

∫
Ki j

p2hφτ ρdρdτ,

(2.13)∫
Ki j

shψρdρdτ =
∫
Ii
( p̃hψ

−ρ(τ, ρ j+ 1
2
) − p̃hψ

+ρ(τ, ρ j− 1
2
))dτ

−
∫
Ki j

ph(ψρ)ρdρdτ, (2.14)

∫
Ki j

rhϕρdρdτ =
∫
Ki j

∂−1
τ shϕρdρdτ, (2.15)

∫
Ki j

qhζρdρdτ =
∫
J j

( p̂hζ
−ρ(τi+ 1

2
, ρ) − p̂hζ

+ρ(τi− 1
2
, ρ))dρ

−
∫
Ki j

phζτ ρdρdτ, (2.16)

hold for all test functions φ, ψ , ϕ, ζ ∈ V k
h . Note that we multiply the equations by ρ and

then integrate them, since the problem is axisymmetric and ρ denotes the radial distance.
The terms, p̂h , q̂h , p̃h , r̃h and p̂2h in (2.13)–(2.16) are the so-called numerical fluxes

resulting from integration by parts. They must be designed carefully at the boundary and
they are essential to ensure numerical stability. For the fluxes p̂h , q̂h , p̃h and r̃h , we use the
simple alternating fluxes,
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p̂h = p+
h , q̂h = q−

h , p̃h = p+
h , r̃h = r−

h , (2.17)

where all quantities are computed at the same points (i.e., the cell interface). We remark that
the choice of the fluxes (2.17) is not unique. We can, for example, alternatively choose the
numerical fluxes to be

p̂h = p−
h , q̂h = q+

h , p̃h = p−
h , r̃h = r+

h . (2.18)

For the flux p̂2h , we use the simple Lax–Friedrichs flux defined by

p̂2h(p
−
h , p+

h ) = 1

2

(
(p−

h )2 + (p+
h )2 + α(p+

h − p−
h )

)
, α = max|2ph |, (2.19)

where the sign before α is positive as the nonlinear term p2 appears on the right hand side
of the equation.

The following are the details of implementation of our proposed LDG methods. The first
non-trivial component comes from the non-local term ∂−1

τ sh in (2.15). As defined in (2.12),
this term can be calculated exactly since sh is now a piecewise polynomial in τ . The other
issue comes from the integration in polar coordinate ρ. The mass matrix now depends on the
location of ρ, and may be different in cell Ki j for different j . Therefore, we pre-calculate
these mass matrices at the beginning, and use them in the update of each time step. In order
to implement the boundary conditions, we apply the Neumann boundary condition at ρmin

and set
r̃h(τ, ρmin) = 0. (2.20)

At ρmax , τmin , τmax , when Dirichlet boundary conditions are applied, we set:

r̃h(τ, ρmax ) = rh
−(τ, ρmax ), p̃h(τ, ρmax ) = p(τ, ρmax ) = 0, (2.21)

q̂h(τmax , ρ) = qh
−(τmax , ρ), p̂h(τmax , ρ) = p(τmax , ρ) = 0, (2.22)

and
q̂h(τmin, ρ) = qh

+(τmin, ρ), p̂h(τmin, ρ) = p(τmin, ρ) = 0. (2.23)

Note that (2.23) indicates that the directions of q̂h and p̂h are flipped at the left boundary
τmin .

Applying the semi-discrete LDG scheme (2.13)–(2.16) to the KZK equation, we end up
with an ordinary differential equation system which can be written as

uσ = L(u), (2.24)

where L(u) is the discretization of the operators on the right hand side of KZK equation. To
update u, we choose a class of high order total variation diminishing (TVD) Runge–Kutta
(RK) typemethods developed by Shu andOsher [18]. In particular, we consider the following
second-order TVD Runge–Kutta method:

un,1 = un + 
σn L(un),

un+1 = 1

2
un + 1

2
un,1 + 1

2

σn L(un,1),

to update the numerical solution from σn to σn+1, with σn = σn+1 − σn .
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2.4 L2 Stability

In this subsection, we first show that the quantity
∫
	

ρp2dρdτ , the L2 norm of p in the
cylindrical coordinate, is a non-increasing function in the σ -direction for the exact solution
of the KZK equation. Again, the extra ρ is included in the definition of L2 norm, as the
problem is axisymmetric and ρ denotes the radial distance. Then we prove that

∫
	

ρp2hdρdτ

of the numerical solution ph is also non-increasing. This property indicates that our numerical
scheme is stable.

Proposition 1 The solution to the KZK equation (2.2) along with boundary conditions (2.6)
satisfies:

d

dσ

∫
	

ρp2dρdτ ≤ 0. (2.25)

Proof We multiply the Eq. (2.2) by ρp, integrate over the domain to obtain

1

2

d

dσ

∫
	

p2ρdρdτ =
∫

	

p
1

4Gρ
∂−1
τ (ρpρ)ρρdρdτ

+
∫

	

pApττ ρdρdτ +
∫

	

p
N

2
(p2)τ ρdρdτ

= 1

4G

∫ τmax

τmin

p∂−1
τ (ρpρ)|ρmax

ρmin
dτ − 1

8G

∫
	

((∂−1
τ pρ)2)τ ρdρdτ

+ A
∫ ρmax

ρmin

ppτ ρ|τmax
τmin

dρ − A
∫

	

(pτ )
2ρdρdτ + N

3

∫
	

(p3)τ ρdρdτ

= − 1

8G

∫
	

((∂−1
τ pρ)2)τ ρdρdτ − A

∫
	

(pτ )
2ρdρdτ

= − 1

8G

∫ ρmax

ρmin

(∫ τmax

τmin

pρ dτ

)2

ρdρ − A
∫

	

(pτ )
2ρdρdτ

≤ 0,

where the boundary conditions pρ(τ, ρmin, σ ) = 0, p(τ, ρmax , σ ) = 0, p(τmin, ρ, σ ) = 0
and p(τmax , ρ, σ ) = 0 are used. �	

We then show that the proposed semi-discrete LDG method will result in a numerical
solution with similar property, that is, the scheme is L2-stable.

Proposition 2 (cell entropy inequality) There exist numerical entropy fluxes Hi, j+ 1
2
, Ii+ 1

2 , j

and Ji+ 1
2 , j such that the solution to the scheme (2.13)–(2.16) satisfies:

∫
Ki j

(ph)σ phρdρdτ +
(
Hi, j+ 1

2
− Hi, j− 1

2

)
+

(
Ji+ 1

2 , j − Ji− 1
2 , j

)
+

(
Ii+ 1

2 , j − Ii− 1
2 , j

)

+ 1

4G

∫
Ki j

1

2
(∂−1

τ sh)
2
τ ρdρdτ ≤ 0. (2.26)

Proof Taking the test functions φ = ph , ψ = rh , ϕ = −sh , ζ = qh in Eqs. (2.13)–(2.16),
we have:

∫
Ki j

(ph)σ phρdρdτ = 1

4G

∫
Ii
r̃h p

−
h ρ(τ, ρ j+ 1

2
) − r̃h p

+
h ρ(τ, ρ j− 1

2
)dτ − 1

4G

∫
Ki j

rh(ph)ρρdρdτ
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+ A
∫
J j
q̂h p

−
h ρ(τi+ 1

2
, ρ) − q̂h p

+
h ρ(τi− 1

2
, ρ)dρ − A

∫
Ki j

qh(ph)τ ρdρτ

+ N

2

∫
J j

p̂2h p
−
h ρ(τi+ 1

2
, ρ) − p̂2h p

+
h ρ(τi− 1

2
, ρ)dρ − N

2

∫
Ki j

p2h(ph)τ ρdρdτ,

(2.27)∫
Ki j

shrhρdρdτ =
∫
Ii
p̃hr

−
h ρ(τ, ρ j+ 1

2
) − p̃hr

+
h ρ(τ, ρ j− 1

2
)dτ −

∫
Ki j

ph(rhρ)ρdρdτ, (2.28)

−
∫
Ki j

rhshρdρdτ = −
∫
Ki j

∂−1
τ shshρdρdτ, (2.29)

∫
Ki j

qhqhρdρdτ =
∫
J j

p̂hq
−
h ρ(τi+ 1

2
, ρ) − p̂hq

+
h ρ(τi− 1

2
, ρ)dρ −

∫
Ki j

ph(qh)τ ρdρdτ. (2.30)

Wechoose the alternatingflux (2.17) alongwith (2.20)–(2.23),multiplyEqs. (2.28) and (2.29)
by 1/(4G), multiply Eq. (2.30) by A, and sum them up with (2.27). After some algebraic
manipulations, we have:∫

Ki j

(ph)σ phρdρdτ + A
∫
Ki j

q2hρdρdτ + 1

4G

∫
Ki j

1

2

(
∂−1
τ sh

)2
τ
ρdρdτ

+
(
Hi, j+ 1

2
− Hi, j− 1

2

)
+

(
Ji+ 1

2 , j − Ji− 1
2 , j

)
+

(
Ii+ 1

2 , j − Ii− 1
2 , j

)
+ �i− 1

2 , j = 0,

(2.31)
where the entropy fluxes are:

Hi, j+ 1
2

= − 1

4G

∫
Ii
r−
h p+

h ρ(τ, ρ j+ 1
2
)dτ,

Ji+ 1
2 , j = −A

∫
J j
q−
h p+

h ρ(τi+ 1
2
, ρ)dρ,

Ii+ 1
2 , j = −N

2

∫
J j

∫ p−
h (τ

i+ 1
2
,ρ) (

p̂2h − p2h

)
dphρdρ,

with the exception at the boundaries:

Hi, 12
= − 1

4G

∫
Ii
r−
h p+

h ρ(τ, ρ 1
2
)dτ,

J 1
2 , j = −A

∫
J j
q+
h p−

h ρ(τ 1
2
, ρ)dρ,

and the extra �i− 1
2 , j term is defined by

�i− 1
2 , j = N

2

∫
J j

∫ p+
h (τ

i− 1
2
,ρ)

p−
h (τ

i− 1
2
,ρ)

(
p̂2h − p2h

)
dphρdρ.

By the monotonicity of ̂−p2h , we have

� ≥ 0.

Notice also that

A
∫
Ki j

q2hρdρdτ ≥ 0.

Therefore, we can derive (2.26) and complete the proof. �	
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The L2 stability of the numerical method is a corollary as follows.

Proposition 3 The numerical solution to the scheme (2.13)–(2.16) satisfies:

d

dσ

∫
	

ρp2hdρdτ ≤ 0. (2.32)

Proof We sum up (2.26) over i and j and obtain

∫
	

(ph)σ phρdρdτ +
Nτ∑
i=1

(
Hi,Nρ+ 1

2
− Hi, 12

)
+

Nρ∑
j=1

(
JNτ + 1

2 , j − J 1
2 , j

)

+
Nτ∑
j=1

(
INτ + 1

2 , j − I 1
2 , j

)
+ 1

4G

∫
	

1

2

(
∂−1
τ sh

)2
τ
ρdρdτ ≤ 0.

Following the definition of fluxes at the boundary (2.20)–(2.23), we can obtain

Hi,Nρ+ 1
2

= Hi, 12
= JNτ + 1

2 , j = J 1
2 , j = 0.

We also have

INτ + 1
2 , j = −N

2

∫ p−
h

(
τ
Nτ + 1

2

) (
p̂2h − p2h

)
dph

= −N

2

∫ p+
h

(
τ
Nτ + 1

2

) (
p̂2h − p2h

)
dph + N

2

∫ p+
h

(
τ
Nτ + 1

2

)

p−
h

(
τ
Nτ + 1

2

)
(
p̂2h − p2h

)
dph

= 0 + N

2

∫ p+
h

(
τ
Nτ + 1

2

)

p−
h

(
τ
Nτ + 1

2

)
(
p̂2h − p2h

)
dph

≥ 0,

I 1
2 , j = 0, and

1

4G

∫
	

1

2
(∂−1

τ sh)
2
τ ρdρdτ = 1

4G

∫ ρmax

ρmin

1

2

(∫ τmax

τmin

sh dτ

)2

ρdρ ≥ 0.

Finally we can obtain

d

dσ

∫
	

ρp2hdρdτ ≤ 0.

�	
Remark 1 In the case when the boundary conditions (2.6) are changed to periodic boundary
conditions, the stability inequalities (2.25), (2.26) and (2.32) still hold.

3 Numerical Experiments

In this section, we implement the previously described LDG algorithm together with an
explicit second order TVD Runge–Kutta integration. We will show the accuracy tests to
verify the rate of convergence, and also examine the performance of our scheme on the KZK
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equationwith the diffraction termonly, forwhich exact solutions exist. FullKZKequationwill
be simulated and the performance of our LDGmethods will also be compared with the results
of the finite difference methods in Lee [14]. Here let us briefly summarize Lee’s method first.
Lee used central difference method to approximate the spatial derivatives and trapezoidal
rule to approximate the integral. In the near field along the propagation of the wave, he used
implicit backward Euler method to update the solution, and used Crank–Nicolson method in
the far-field.

3.1 Example 1: KZK Equation with the Diffraction Term Only

3.1.1 Accuracy Test

We start by considering the KZK equation with the diffraction term only, which contains
both the derivative and integral. In this example, we perform a convergence test to check the
accuracy of our algorithm.Bymanufacturing an exact solution,we can construct a source term
to be added to the equation. The equation, after we add an extra term h(τ, ρ, σ ), becomes:

pσ = 1

4Gρ

∫ τ

τmin

(ρpρ)ρdτ + h(τ, ρ, σ ), π ≤ ρ ≤ 3π, 0 ≤ τ ≤ 2π, (3.1)

where

h(τ, ρ, σ )=e−σ

(
− sin(τ + ρ)− 1

4Gρ
(sin(τ + ρ) − sin(ρ) + ρ(cos(τ + ρ)−cos(ρ)))

)
.

We assume the periodic boundary conditions for τ and ρ:

p(τ, π, σ ) = p(τ, 3π, σ), p(0, ρ, σ ) = p(2π, ρ, σ ), (3.2)

and source condition at σ = 0:

p(τ, ρ, 0) = sin(τ + ρ). (3.3)

Therefore, this problem has the exact solution of the form

p(τ, ρ, σ ) = e−σ sin(τ + ρ). (3.4)

In the simulation, we use the following parameters:

σend = 0.01, 
σ = 4 × 10−3, (3.5)

where σend is the final stopping point and 
σ is the initial step size for the case N = 20,
and we choose G = 0.25. The mesh size is halved when we double N . We perform the
accuracy test for both Q0 and Q1 spaces. The first order accuracy for Q0 space and second
order accuracy for Q1 space are expected. Error Tables 1 and 2 clearly show that the expected
accuracy are achieved for the unknown ph in both cases. We observed that the convergence
rate of sh is 1.5 for Q1 space for the equationwith the diffraction term only. Various numerical
experiments show that, if the diffusion term pττ is included, the convergence rate of sh will
improve, which can also be seen in Table 4.

3.1.2 Linear Lossless KZK Equation

Next, let’s consider the linear lossless KZK equation, which contains only the diffraction
term, with a focused circular source of uniform amplitude distributions, where the exact
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Table 1 Example 1 with Q0 space: numerical errors and orders with uniform meshes

N L1 error

Error of p Order Error of s Order Error of r Order

20 2.4843 4.3154 5.6775

40 1.2308 1.0132 2.1716 0.9907 2.8458 0.9964

80 6.1168E−01 1.0087 1.0861 0.9996 1.4235 0.9939

160 3.0481E−01 1.0049 5.4313E−01 0.9997 7.1174E−01 1.0000

320 1.5213E−01 1.0026 2.7156E−01 1.0000 3.5585E−01 1.0001

N L2 error

Error of p Order Error of s Order Error of r Order

20 5.6211E−01 9.0338E−01 1.2188

40 2.8182E−01 0.9960 4.5208E−01 0.9987 6.1034E−01 0.9778

80 1.4101E−01 0.9989 2.2579E−01 1.0015 3.0497E−01 1.0009

160 7.0515E−02 0.9997 1.1279E−01 1.0013 1.5238E−01 1.0010

320 3.5259E−02 0.9999 5.6362E−02 1.0008 7.6156E−02 1.0006

Table 2 Example 1 with Q1 space: numerical errors and orders with uniform meshes

N L1 error

Error of p Order Error of s Order Error of r Order

20 1.8840E−01 1.5243 1.7661

40 3.4438E−02 2.4517 2.2738E−01 2.7449 9.9438E−02 4.1506

80 8.5838E−03 2.0043 5.6965E−02 1.9969 1.7207E−02 2.5308

160 2.1312E−03 2.0099 1.8032E−02 1.6595 3.6299E−03 2.2450

320 5.3081E−04 2.0054 6.0362E−03 1.5788 8.3356E−04 2.1226

N L2 error

Error of p Order Error of s Order Error of r Order

20 4.0515E−02 4.028E−01 6.2927E−01

40 7.6368E−03 2.4074 5.5082E−02 2.8704 2.2863E−02 4.7826

80 1.9361E−03 1.9798 1.4356E−02 1.9399 3.7482E−03 2.6087

160 4.8411E−04 1.9997 4.7282E−03 1.6022 7.7742E−04 2.2694

320 1.2103E−04 1.9999 1.6349E−03 1.5320 1.7717E−04 2.1336

solution in the axial wave forms exists. Consider a Gaussian modulated sinusoid source
wave form with radius a in (2.4) by specifying f and g:

f (t) = exp

[
−

(
ω0t

3

)2
]
sin(ω0t), (3.6)
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and

g(r) =
{
1, r ≤ a,

0, r ≥ a.
(3.7)

In dimensionless parameters, this source condition becomes

p(τ, ρ, 0) =

⎧⎪⎨
⎪⎩
exp

[
−

(
τ + Gρ2

3

)2
]
sin

(
τ + Gρ2) , ρ ≤ 1,

0, ρ ≥ 1.

The boundary condition (2.6) is used.
As shown in [11,13], the exact axial solution (at ρ = 0) takes the form of

p(τ, ρ = 0, σ ) = 1

1 − σ

(
exp

(
−

(τ

3

)2)
sin(τ ) − exp

(
−1

9

(
τ + G − G

σ

)2
)

sin

(
τ + G − G

σ

))
.

In our simulation, we used the following parameters:

G = 10, τmin = −10π, τmax = 24π, 
τ = 0.1,

ρmax = 4, 
ρ = 0.01, 
σ1 = 5 × 10−5, 
σ2 = 2 × 10−4,

where 
σ1 is used for σ ≤ 0.1, and 
σ2 is used for σ > 0.1. In the far-field when σ > 0.1,
the pressure p usually varies smoothly, which allows us to choose a larger step size.

We compare the performance of our LDG method with Lee’s algorithm. For fair compar-
ison, when we use LDGmethod with Q1 space, we choose the spatial mesh that is two times
less dense than Lee’s to ensure that both algorithms have the same degree of freedom. For
LDGmethod with Q0 space, we use the same spatial mesh size as in Lee’s method. The time
evolution plots from different schemes are overlaid and compared with the exact solution in
Fig. 1.

Some oscillations can be seen when σ is small, which are caused by the discontinuity in
the source condition. At σ = 0.2, LDGmethod in both Q0 and Q1 space produces oscillated
waves coming from the right. Notice here the horizontal axis represents the dimensionless
retarded time. Note that Lee’s algorithm has no visible oscillated waves on the right since it
used the implicit backward temporal method which is effective in suppressing oscillations.
The visual effect that two major waves traveling closer as σ becomes greater agrees with
the fact that the difference of the arrival time of the axial wave and edge wave diminishes
in the far-field. If we concentrate on the magnitude of the edge wave spike (the right spike
for σ = 0.2, 0.3, 0.5), we can observe that the LDG scheme in Q1 space resulted in a much
better approximation, while the result from Lee’s method only becomes comparable when
σ ≥ 0.5. A zoomed-in view at the pressure at σ = 2 is shown in Fig. 2, where we can observe
that the difference between results of LDG with Q1 space and the exact solution is almost
indistinguishable at the exhibited measure, while discrepancy is more obvious between the
exact solution and LDG scheme with Q0 space and Lee’s finite difference method.

3.2 Example 2: Accuracy Test for the Full KZK Equation

Next, we consider the full KZK equation with all three terms on the right hand side. To check
the accuracy of the proposed methods, we again manufacture an exact solution, and, as a
result, add an extra source term to the KZK equation. We consider the following equation:
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Fig. 1 Comparison of LDG, Lee’s method and exact solution for axial wave forms for a focused uniform
piston source with a Gaussian modulated pulse, at σ = 0.1, 0.2, 0.3, 0.5, 0.7, 2
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Fig. 2 Zoomed-in plot for Fig. 1
at σ = 2
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pσ = 1

4Gρ

∫ τ

τmin

(ρpρ)ρdτ +Apττ + N

2
(p2)τ +h(τ, ρ, σ ), π ≤ ρ ≤ 3π, 0 ≤ τ ≤ 2π,

(3.8)

where the extra source term is given by

h(τ, ρ, σ ) = − e−2σ N

2
sin(2τ + 2ρ) + e−σ

(
− sin(τ + ρ) − 1

4Gρ
(sin(τ + ρ)

− sin(ρ) + ρ(cos(τ + ρ) − cos(ρ)) + A sin(τ + ρ))

)
. (3.9)

We again assume the periodic boundary conditions as in (3.2), and the source conditions in
(3.3). This problem has the same exact solution as in (3.4).

The parameters in (3.5) are also used here. The error tables are displayed in Tables 3 and
4, where we obtain the first order accuracy with Q0 space and second order accuracy with
Q1 space as expected.

3.3 KZK Equation with Focused Source

In this example, we investigate the propagation of a non-linear ultrasound beam generated
by a focused circular short tone bursts (pulses with only a few cycles). Consider the wave
form (2.5) with f (t) given by

f (t) = exp

[
−

(
ω0t

3π

)2
]
sin(ω0t). (3.10)

and g(r) defined in (3.7). Written with respect to the dimensionless parameters, the source
form becomes

p(τ, ρ, 0) = exp

[
−

(
τ + Gρ2

3π

)2
]
sin(τ + Gρ2).
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Fig. 3 Comparison of axial wave forms of KZK equation with focused source simulations from Lee’s
algorithm and LDG method with Q1 space
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Fig. 4 Comparison of axial
wave forms of KZK equation
with focused sources simulations
at σ = 0.1 using refined mesh.

ρ = 0.01, 
τ = 0.05,

σ = 3 × 10−5 are used for
LDG method. 
ρ = 0.01/3,

τ = 0.05/3, 
σ = 1 × 10−5

are used for Lee’s method
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We impose the boundary condition (2.6). The parameters used in this example are

A = 0.1, N = 1, G = 5,

ρmax = 4, τmin = −15π, τmax = 23π,


ρ = 0.02, 
τ = 0.1, 
σ = 5 × 10−5.

These settings are in accordance with the original setting in (2.7) from [14]. Again, we use
a mesh size that is half of that in the simulation of finite difference algorithm, in order to
provide a fair comparison with Lee’s results.

In Fig. 3, it can be observed that at σ = 0.1, both the solutions of LDG and Lee’s method
have a wave coming from the right boundary. That is similar to the propagation of the edge
wave. However, the solution of the finite difference algorithm has much smaller magnitude
for such wave than that of our LDG method. As the wave propagates, the central wave and
the edge wave merge. The maximal positive pressure appeared at σ = 0.7 in Lee’s solution,
while with LDG method, this appears at σ = 0.8. The solutions of the LDG scheme and
the finite difference scheme agree relatively well afterwards. We can clearly observe from
Fig. 3 that the major difference between the two solutions occurs at σ = 0.1. In order
to determine which one is more accurate, we refine the mesh for these two methods and
compare the solutions. As we decrease 
ρ, 
τ and 
σ , the magnitude of the edge wave for
both methods increases. When the mesh size is small enough, the two solutions eventually
approach each other. Figure 4 shows the solution by our LDG method with 
ρ = 0.01,

τ = 0.05 and 
σ = 3 × 10−5, which is about half the size of the parameters in Fig. 3.
In contrast, for the Lee’s method, we have to use three times finer mesh size than that of
LDG method to achieve similar solution. Such observations indicate that our LDG method
is more efficient than Lee’s method for this numerical example. In Fig. 5, we display the
three-dimensional view of waveforms at different σ .
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Fig. 5 Three-dimensional plot of the evolution of a focused piston source

3.4 Unfocused Pulsed Sound Beams

In this last example, we investigate the propagation of unfocused, pulsed, finite ampli-
tude sound beams in the thermoviscous fluids. The LDG algorithm can deal with any
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Fig. 6 Comparison of axial wave forms of KZK equation with unfocused source simulations from Lee’s
algorithm and LDG method with Q1 space
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Fig. 7 Comparison of wave forms of KZK equation with unfocused source simulations from Lee’s algorithm
and LDG method with Q1 space when σ = 9
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Fig. 8 Comparison of wave forms of KZK equation with unfocused source simulations from Lee’s algorithm
and LDG method with Q1 space when σ = 13

123



J Sci Comput (2017) 73:593–616 615

axisymmetric sound sources, that is, the amplitude distribution g(r) in the source condi-
tion can be arbitrary under the constraints imposed by the parabolic approximation. For
simplicity, here we consider the source with a uniform amplitude evolution.

The equation for the unfocused source is given by (2.8). The algorithm (2.13)–(2.16) can
be applied with a slight modification on the coefficients. We use the step and mesh sizes
suggested by Lee [14]. The source waveforms defined in (2.5) and (3.7) are considered
in this example. Written with respect to the dimensionless parameters after the variable
transformation, the source becomes:

p(τ, ρ, 0) =

⎧⎪⎨
⎪⎩
exp

(
−

(
(τ + ρ2)

3π

)2
)
sin

(
τ + ρ2) , ρ < 1,

0, ρ ≥ 1.

(3.11)

We use (2.6) as the boundary conditions. The following parameters are used in this example:

A = 1, N = 1,

ρmax = 8, τmin = −13π, τmax = 23π,


ρ = 0.03, 
τ = 0.2, 
σ = 5 × 10−5.

The comparison of the results of LDGmethods and Lee’s finite difference algorithm is shown
in Figs. 6, 7, and 8. We can observe that these two methods provide similar results both on
and off axis.

4 Concluding Remarks

In this paper, a LDG method was proposed for solving the KZK equation, which is widely
used in medical ultrasound simulations. L2 stability analysis of our LDG method has been
provided. Because the solutions of the KZK equation have stronger oscillations in the near
field (with relatively small σ ) than in the far field (with large σ ), we choose smaller step size
for σ ≤ 0.1 and larger step size elsewhere in our simulations. Such choice is good to capture
the correct magnitude of the oscillations and keep the simulations efficient. In the future,
time integrator such as implicit temporal method will be implemented to further accelerate
the calculation. Based on our numerical results, we observe that our scheme provides more
accurate results for the case of a focused uniform piston source with a Gaussian modulated
pulse, when compared with the solution by an existing finite difference approach. For the
unfocused pulsed sound beams, our numerical solutions match well with the benchmark
solutions. These numerical results indicate that our LDG scheme has great potential in various
applications of the KZK equation.
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