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Abstract In this paper, we develop a new mass conservative numerical scheme for the
simulations of a class of fluid—structure interaction problems. We will use the immersed
boundary method to model the fluid—structure interaction, while the fluid flow is governed
by the incompressible Navier—Stokes equations. The immersed boundary method is proven
to be a successful scheme to model fluid—structure interactions. To ensure mass conservation,
we will use the staggered discontinuous Galerkin method to discretize the incompressible
Navier—Stokes equations. The staggered discontinuous Galerkin method is able to preserve
the skew-symmetry of the convection term. In addition, by using a local postprocessing
technique, the weakly divergence free velocity can be used to compute a new postprocessed
velocity, which is exactly divergence free and has a superconvergence property. This strongly
divergence free velocity field is the key to the mass conservation. Furthermore, energy stability
is improved by the skew-symmetric discretization of the convection term. We will present
several numerical results to show the performance of the method.
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1 Introduction

Fluid—structure interaction, which models the interaction of movable structures and the sur-
rounding fluid flow, is the key to the design of many engineering problems. There are in
literature a variety of methods to model fluid—structure interactions, and among them the
immersed boundary (IB) method and the immersed interface method (IIM) are proven to
be very successful. The immersed interface method [31] was first introduced by Li, and a
detailed discussion can be found in [32]. The immersed boundary method was first intro-
duced by Peskin [36] for the numerical approximation of blood flow around the heart valves,
and a detailed discussion on the applications of IB method is given in [39]. These methods
have been successfully extended to other applications [35,37,38]. In this paper, we will focus
on the development of our scheme using the immersed boundary approach, since it can be
combined with the staggered discontinuous Galerkin method and gives a mass conservative
scheme.

One key feature of immersed boundary method is that the Eulerian mesh in the Cartesian
coordinate system is fixed, and the configuration of the immersed structure does not neces-
sarily adapt to the Eulerian mesh. This avoids the high cost of mesh updating. The source
term which represents the effects of the force exerted by the immersed structure on the fluid
is modelled by a Dirac delta function. In the original formulation of Immersed boundary
method, finite difference methods are used in spatial discretization for the governing equa-
tions of the fluid flows. Since the material points of the immersed boundary may not adapt
to the Eulerian grid, the Dirac delta function needs to be approximated. The construction of
approximations of the Dirac Delta function is discussed in [39].

On the contrary, in finite element and other Galerkin methods, the Dirac Delta functions
can be handled directly by the variational formulation and therefore approximations of the
Dirac Delta functions are not needed. In [3], a finite element approach for immersed boundary
method (FE-IBM) was proposed. More recent researches on FE-IBM can be found in [5] and
[6].

In this paper, we present a staggered discontinuous Galerkin immersed boundary method
(SDG-IBM). IB method is used for modelling the fluid—structure interaction, and the fluid flow
is modelled by incompressible Navier—Stokes equations which would be solved numerically
by a discontinuous Galerkin method based on staggered meshes. Discontinuous Galerkin
methods have been applied to problems in fluid dynamics and wave propagations with
great success, see for example [7,16,22,24-26,28,33,34,40,41]. On the other hand, stag-
gered meshes bring the advantages of reducing numerical dissipation in computational fluid
dynamics [1,2,27], and numerical dispersion in computational wave propagation [10-15,18].
Combining the ideas of DG methods and staggered meshes, a new class of staggered discon-
tinuous Galerkin (SDG) methods for approximations of the incompressible Navier—Stokes
equations was proposed [9]. The new class of SDG methods inherits many good proper-
ties, including local and global conservations, optimal convergence, and superconvergence
through the use of a local postprocessing technique in [22,23]. Furthermore, energy stabil-
ity is achieved by spectro-consistent discretizations with a novel splitting of the diffusion
and the convection term. An analysis of the SDG method for incompressible Navier—Stokes
equations is given in [21]. For a more complete discussion on the SDG method, see also [12—
15,19,20,29,30] and the references therein. We remark that another class of discontinuous
Galerkin methods based on space-time staggered meshes is proposed in [43—45].

In the finite element formulation of IB method in [3], the convection term was neglected and
linearized Navier—Stokes equations was considered. In our proposed method, by an iterative
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approach and a skew-symmetric discretization of the convection term, we can also handle the
convection term without losing any stability in terms of energy. Our stability result is subject
to CFL type restriction on time step since our scheme treats the fluid structure interaction
explicitly. Otherwise the implementation is not feasible due to the presence of nonlinear term
in the fluid model, which also requires iteration. We note that a stability result without time
step restriction was proven for a simple linear fluid model when fluid structure interaction
was treated implicitly using an iterative method, see [8].

Another important issue of IB method is that the loss in volume enclosed by the immersed
structure in the numerical approximation, which can be resolved by improving the divergence-
free property of the interpolated velocity field which drives the Lagrangian markers, see [39]
for a detailed discussion. A key component of our method is the use of postprocessing
techniques to obtain a pointwise divergence-free velocity field approximation at each time
level, which is used to drive the Lagrangian markers of the immersed boundary and acts as
a convection velocity in the iterative approach of solving the incompressible Navier—Stokes
equations. In particular, by using the pointwise divergence-free postprocessed velocity to
drive the Lagrangian markers of the immersed boundary, our method significantly resolves the
numerical error of lack of volume conservation. In these regards, our method has advantages
over the FE-IBM and other discontinuous Galerkin methods.

The paper is organized as follows. In Sect. 2, we will have a brief discussion on the problem
formulation of the IB method. Next, in Sect. 3, we will present the derivation of SDG-IBM.
In our scheme, we approximate the immersed structure by a piecewise linear function. In
Sect. 4, we will provide a stability analysis of SDG-IBM. Then, in Sect. 5, we will present
extensive numerical examples to show the performance of SDG-IBM. Finally, a conclusion
is given.

2 Problem Description

Suppose, for ¢ € [0, T'], in a two-dimensional domain Q C R2, the immersed boundary is
an elastic incompressible fibre, modeled by a simple closed curve I; contained in 2. The
Eulerian coordinates of I} are denoted by X(s, ), where 0 < s < L is the Lagrangian
coordinates labeling material points along the curve, and

X(0,1) =X(L,t) fort € [0, T]. (1)
The motion of the fluid is described by the incompressible Navier—Stokes equations
pu; — puAu+ pu-Va+Vp=F inQ x (0, T),
divu=0 in Q x (0, T),

u=0 ond2 x (0,7),
u=ug in Q x {0},

(@)

where p is the pressure with fQ pdx = 0,u = (uy, up) is the velocity and F = (Fy, F>)
is the source term. Here p and p are the density and the viscosity of the fluid, respectively.
Let f(s, #) denote the elastic force density resulted from the deformation of the immersed
boundary. In the IB method, the force F(x, t) exerted on the fluid by the immersed boundary
is given by

L
F(x,t) = / f(s,1)6(x — X(s5,1))dsin Q2 x (0, T). 3)
0
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Finally, a no-slip condition is imposed between the immersed boundary and the fluid. The
motion of the immersed boundary is described by the Euler-Lagrange eqnarray

ad .
gX(s, t) =u(X(s,t)) in[0, L] x [0, T], @
X(s, 0) = Xp(s) in [0, L].

In the current work, we only consider the case when both p and p are uniform. Extension
to a more general model with varying p and p across the interface will be addressed in our
future work.

We consider a simple model with a massless closed curve I; immersed in an incompress-
ible fluid. Suppose y is the tension in I and 7 is the unit tangent to ;. Then the local force
density f acting on the fluid by I7 is given by

9
f= a(yr). ®)]

We assume y is proportional to

0X
— . Then we have
as

). 9*X
]/T:Ka :f:Km, (6)

where « is the elasticity constant of the material along the immersed boundary.

3 Derivation of SDG-IBM

In this section, we will give a detailed derivation of SDG-IBM. We will start with the temporal
discretization, and then discuss the details of full discretization. We will discuss an iterative
approach of linearizing the nonlinear convection term of Navier—Stokes equations (2). Next,
we will give the construction of the staggered mesh and the construction of finite element
spaces with staggered continuity property. After that, we will explain the derivation of the
SDG method and the resultant system of linear equations in each iteration. We will also present
the postprocessing technique (c.f. [22]) to obtain a pointwise divergence-free velocity field
and discuss the significance of the post-processed velocity in our method. Then, we will
move on to discuss the discretization of the source term (3) in the simple model (6). Finally,
we will discuss the full discretization of the Euler—Lagrange equation (4).

3.1 BE/FE Temporal Discretization

We will first discretize the continuous problem in time, and obtain a temporally discrete
and spatially continuous system. We will use backward-Euler method for the temporal dis-
cretization of Navier—Stokes equations. In order to avoid a fully implicit system of equations
at each time-step, we use forward-Euler method in time discretization for Euler-Lagrange
equation (4) and the fibre force (3). A similar approach was employed by [3], and such an
approach is regarded as the BE/FE scheme [42]. We note that fully implicit scheme was con-
sidered in [8] for a simple linear fluid model. For our nonlinear fluid model, that approach is
not feasible.

Let K be the number of divisions in [0, 7] in the temporal domain, At = T /K be the time
step size and t,, = nAt. From now on, a function with a superscript n stands for evaluation
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of the function at time t = t,. Forn = 1,2,..., K, given u ! our goal is to solve for
(u", p") in the following system of nonlinear PDEs:
P n n n n n P n—1 n
—u" — A Y vp'=— F Q,
Atu nAu” + pu u +Vp Atu + in
diva” =0 in , )
u’ =0 ondg,
w = ug in €2,
where the source term F” is given by
L
F*(x) =/ 1 1(5)s(x — X" 1(s)) ds in Q. 8)
0
On the other hand, the immersed boundary X" is evolved by
X" =X"""+ Aru" (X"7!) in[0, L], ©

X% =X, in[0, L].
3.2 Linearization of Navier—Stokes Equations by Iterative Approach

In our method, for solving the system (7) of nonlinear PDE at# = 1, the nonlinear convection
term is linearized by a sequence of Picard fixed-point iterations:

P P -1 :
A—tuZ—MAufn—i-pV’fn-Vu,’;—i—fon:A—tu” +F" in Q,
o
divu;, =0 in , (10)
u), =0 ondQ,

W = up in 2,
where V7, is a given pointwise divergence-free velocity field depending on u); _ ;.

The choice of the velocity field VJ, in the formulation of (10) will be discussed in Sect.
3.7. The SDG method for solving (10) in a particular iteration will be discussed in Sects.
3.3-3.6. The fixed point (0", p") of the sequence {(u},,, p;,)}5-_, is then our solution for (7).
In practice, we set a suitable stopping criterion for the Picard fixed-point iterations when the
number of iterations done is sufficient or when the successive difference of the elements in
a particular iteration is small enough.

3.3 Staggered Meshes

Let 7, be a triangulation of the two-dimensional domain 2 by a set of triangles without
hanging nodes. We introduce the notation F,, to denote the set of all edges in the triangulation
7, and }',9 to denote the subset of all interior edges in F, excluding those on the boundary
of Q. For each triangle in 7,,, we take an interior point v, denote the initial triangle by S(v),
and divide S(v) into three triangles by joining the point v and the three vertices of S(v). We
also denote the set of all interior points v by A/, the set of all new edges generated by the
subdivision of triangles by ), and the triangulation after subdivision by 7. Note that the
interior point v of each triangle in 7, should be chosen such that the new triangulation 7°
observes the shape regularity criterion. In practice, we can simply choose v as the centroid
of the triangle. Also, 7 = F, U F, denotes the set of all edges of triangles in 7 and
Fo= ]—'B U Fp denotes the set of all interior edges of triangles in 7. For each edge e € F,,
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S(v2)

Fig. 1 An illustration of the staggered mesh in two dimensions

we let R(e) be the union of the all triangles in the new triangulation 7 sharing the edge e.
Figure 1 demonstrates these definitions. The edges e € F,, are represented in solid lines and
the e € F), are represented in dotted lines.

For each edge e € F, we will also define a unit normal vector n, in the following way.
If e € F\ FV is a boundary edge, then we define n, as the outward unit normal vector of e
from Q. If e € FV is an interior edge, then n, is fixed as one of the two possible unit normal
vectors on e. When it is clear that which edge we are considering, we omit the index e and
write the unit normal vector as n.

To end this section, we define the jumps in the following way: for any edge e € F, denote
one of the triangles in the refined triangulation 7, which contains e by 7T, and denote the
other triangle, if exists, by t~. The outward unit normal vectors on e in T+ and T~ are
denoted by n* and n~, respectively. Also, for any quantity ¢, the notations ¢* are defined
on the edge e by the values of ¢|,+ restricted on e. Then, if ¢ is a scalar quantity, the notation
[¢] over an edge e defined as

(@]l := (m-n")pT +@m-n")p". 1n
If @ is a vector quantity, then the notation [® - n] is similarly defined as
(@ -n]l,:=m-n")(@T -n)+m-n" )P -n). (12)
3.4 SDG Finite Element Spaces
We will define the SDG finite element spaces. Let k > 0 be a non-negative integer. Let
7 €T and e € F. We define P¥(t) and P¥(e) as the space of polynomials whose order is
not greater than k on t and e, respectively. We will also define norms on the spaces. We use
the standard notations || - |0, to denote the standard L?normon € and || - llo.e to denote the

L? norm on an edge e.
First, we define the following locally H ! (€2)-conforming finite element space for velocity:

Uh = fv vl e Pk(r); T € 7; v is continuous over ¢ € f,?; v]aq = 0. (13)

Note that for any v € U", we have V|R(e) € H(R(e)) for each edge e € F,,. We define the
following discrete L2-norm || - || x and discrete H'-norm || - ||z on the space U h,
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e

llx = | vI§a+ Y kelvlg, | -
ecFY
1 (14)
2
iz = IVavlg e+ D> kG, | -
eeF)p

where V}, denotes the gradient operator applied piecewise on the given triangulation 7. For
v= (v, 1) € [U"]3, we also define an energy norm

1
IVle = (vrll% + llvalld) 2. (15)

Next, we define the following locally H (div; 2)-conforming finite element space for
velocity gradients:

wh = (¥ : V|, e Pk(r)z; T € T; W - nis continuous over e € F)}. (16)
Note that for any W € W, we have Vs € H(div; S(v)) for each v € N. We define the
following discrete L2%-norm || - || x and discrete H (div; Q)-norm || - || on the space wh:
1
2
IWlx = [ 1¥I5q+ D k¥ ni, | .
eeFp
. (17)
2
1Wlz = | Idiva®ll5o + Y A ' 10 - mll5,
ecFY

Here div;, denotes the divergence operator applied piecewise on the given triangulation 7.
We also define the following locally H ! (€2)-conforming finite element space for pressure:

Pl = {q 2 gl € Pk(r); T € 7T; q is continuous over e € Fp; / q dx = 0}. (18)
Q

We define the following discrete L2-norm || - || p on the space P
1
2
lglle = [ llglgq+ D helql, | - (19)
eeFy

Finally, we define a finite element space for the Eulerian coordinates of the immersed
boundary. Suppose we have a partition of the interval D = [0, L] in the Lagrangian coordinate
system:

O=sp<si<sr<...<s,=L. (20)
We denote the subintervals by J; = (s;_1, s;) and define the following space:
sh = {Y 1 Y|y, € Pl(Ji); 1 <i <m; Yiscontinuous at s;; Y(0) =Y(L)}. (21)

For any Y € S", Y is an m-sided polygon with vertices Y (s;).
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3.5 SDG Spatial Discretization

In view of (10), at each time step n and each iteration m, one needs to solve the system of
linear PDEs:

au — pAu+ pV-Vu+Vp =F in Q,

divua =0 in Q, (22)
u=0 onad.
We introduce the auxiliary variables
w=.puVu; — P urV,
2/
0
= Vu, — V,
z \/ﬁ uz 2\/ﬁu2 (23)
w=uV,
Z=u)V.

Then (22) can be reformulated as a system of first-order linear PDEs:

2
. o 7 .
_ d V. —V. =F Q,
auyp — /1 1vw—i-2«/'l7 W+4M W+ px | in
p o*
— Judi L v+l Vvitp, =F inQ, 24
auy \/ﬁlvz—i-z = Z+4,u Z+ py 5 in (24)
divu =0 in Q,
u=0 onof.

We will derive the discrete problem in our SDG formulation starting from the system of
first order equations in (23) and (24).

Multiplying the first equation of (23) by W € W and integrating over S(v) for v € N,
we obtain

/ w-\I»']dx:—\/ﬁ/ uldiv\lﬁdx—l—\/ﬁ/ w1V, -ndo
Sv) Sv) 9

S(v)

o -
- W - W dx. (25)
2V Jsw

Similarly, multiplying the second equation of (23) by W» € W and integrating over S(v)
for v € NV, we have

/ z-\llzdx:—\/ﬁ/ urdiv Wo dx + /10 urWr -ndo
Sv) S®) aS(v)

0

21 Jsw)

Multiplying the third equation of (23) by W3 € W/ and integrating over S(v) for v € N,
we have

7V, dx. (26)

/ w- W3 dx = / V-3 dx. 27)
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Similarly, multiplying the fourth equation of (23) by W4 € W’ and integrating over S(v) for
v € N, we have

/ 7 Wy dx =/ usV - Wy dx. (28)
S(v)

Multiplying the first equation of (24) by v; € U” and integrating over R(e) for e € ]-',9 ,
we have

a/ uwulx—i—ﬁ/ w - Vvldx—f/ (w- n)vlda—i-— V- -wuy dx
R(e) R(e) IR(e) 2/ JRe)
2
+L V.-wu dx —/ p(v))x +/ pvin) do :/ Fivy dx. (29)
4 JRe) R(e) IR() R

Similarly, multiplying the second equation of (24) by v» € U and integrating over R(e) for
ee .7-’,9 , we have

a/ uzvzdx—f—ﬁ/ z-szdx—ﬁ/ (z- n)vzda—i—— V-zvdx
R(e) Re) IR (e 21 IR
2
f— V Zvydx — / p(v2)y dx +/ pvany do = / Frov, dx. (30)
M JR(e) Re) IR (e) Re)

Finally, multiplying the third equation of (24) by ¢ € P", and integrating over S(v) for
v € N, we have

—/ u~qux+/ (u-n)qg do = 0. (31
S(v) S (v)

Summing those equations in (25)—(31) overall R(e) and S(v), our staggered discontinuous
Galerkin method for (22) is obtained: find (wy, Wy, Z, Wn, Zy, p) € [U"]? x [W'* x P!
such that for any v = (v, 12) € (U2, Wy, Wy, W3, Wy € Wh, q € P, we have

a(uy, v)o,o + uBr (Wi, v1) + /By (zp, v2)

P *
L R , —R , by (pr,v) = (F, ,
+2f h(Wh wah Ul>+2ﬁ h(zh+2fzh v2)+ n(prsv) = (F,v)0,0
NIBJ (up 1, W) — ——= (W, ¥1)o,0 = (Wi, 1)o@,

\/,
Zﬁ 3
Ry (up,1, ¥3) = (Wi, ¥3)0,9,
Ry (up2, Va) = (@n, Va)o, 0,

VB (up 2, W) — U)o = (2, ¥2)o,0,

bp(uy, q) =0,
(32)
where bilinear forms B, (W, v) and BZ (v, V) are defined as
By (W, v) _/ Ve Vyvde— ) / -n[v] do,
eeF)y
B (v, V) =—/ vdivy Wdx + Y /v[lIJ n] do, (33)

ecFY
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and the bilinear forms b} (¢, v) and by, (v, g) as

bi(g,v) = — fqdlvhvdx—i- Z/q[v n] do,

eeF)

(34)
br(v, q) = f VeVagdx— ) /v nlq] do.
ecFy
The bilinear forms R, (W, v) and R; (v, ¥) are also defined as
Ry(W,v) = / V-¥)vdx,
- (35)
R;(v, W) = / v(V-W)dx.
Q
Moreover, (-, -)o,q denotes the standard L?(2) inner product.
By [13], the two bilinear forms in (33) satisfy the adjoint relation
By (W, v) = B, (v, ¥) (36)

forall v € Uy and ¥ € W". The bilinear forms B;, and BZ are also continuous with respect
to suitable discrete norms

[Br(W, v)| < [W]x vz,

(37
1By (v, V)| < lvllx ¥z,

forall v € Uy, and ¥ € W". Moreover, the bilinear forms B;, and Bj; satisfy a pair of inf-sup
conditions: there exists constants 8 and >, independent of 4, such that

B, (¥
inf sup _Bu(®.0) > B,
veUM\(0} yewn (o IV lIx IvliZ 3
. Bh(v,\IJ) (38)
inf > Bo.

up 7
‘I’GW’Z\{O}vEUh\[()] ol x W]z

By [29], the two bilinear forms in (34) satisfy the adjoint relation
by (q.v) = bp(v.q) (39)

forallg € P,andv € [Un]%. The bilinear form by, is also continuous: there exists a constant
Cp, such that

1br(v, @) = CplIvllnligllo.e. (40)

forall g € P, and v € [U]*. Moreover, the bilinear form by, satisfies an inf-sup condition:
there exists a constant y, independent of /, such that

b
lnf M > (41)
aeP"\(0} yerunpqoy 1VIInllgllo.@
Finally, the two bilinear forms in (35) satisfy
R, (v, V) = Ry (¥, v) (42)

forallv € Uy and U € W,
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3.6 Linear System

In this section, we derive the linear system resulting from (32). We denote the corresponding
matrix representation of the bilinear forms By, b, and Ry, by B, C and R, respectively. Then
by the adjoint properties, the matrix representation of the bilinear forms Bj;, b} and R} are
given by BT, CT and R, respectively. Also, the notations for the finite element solutions
would be abused to denote their corresponding vector representations.

The second and the third equations of (32) can be written as

P ~
«//TLBTMh_l — ﬁMWh = Mwy,
(43)
0
VIEBupy — ——M7 = Mz,
, 2K

where M is the mass matrix for the space W”. Similarly, the fourth and the fifth equations

of (32) can be written as

RTup = MWy,
P (44)
R upr =M1z,

Lastly, the first and the last equations of (32) can be written as

Mup Bwy, p  [RWn+ 25;7‘%) T Fp1
hh, - - C — s ,
“ (Muh,2> R (Bzh) e ( R+ 503 | ¢ PP \Fn) ws)
Cuy =0,

where M is the mass matrix for the space U". We can now obtain a linear system with the
unknowns wy, zj, Wy, Z, eliminated. Combining (43) and (44), we have

-1 T P pT
Wy =M (JuB up — R up1),
VEB T~ 5

_ p
z, =M l(ﬁBTuh,z - 7RTuh,2),

N (46)
W, = M_IRTth,

~ =T

Z, =M™ R upp.

We note that the elimination can be done by solving small problems in each S(v) since M is
a block diagonal matrix with each block corresponding to the mass matrix of W"|s,).
We further introduce the notations

Ap=—-BM'BT,
1 1
V-Vy=—3BM'RT+ RM”'BT. @7
A:aM—uAh+pV-Vh-

We note that the negative of the discrete Laplacian operator —Aj, is symmetric and positive-
definite, and the discrete convection operator V - Vj, is skew-symmetric. Combining (45) and
(46), the algebraic system of the discrete problem (32) can then be reduced to

A0 cT Up,1 Fi1
0A up2 | =\ Fno2 (48)
cC 0 Ph 0
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and the above system is solved for the unknowns (u,1, up 2, pn)-

3.7 Postprocessing

In this section, we present a postprocessing technique for the velocity, which was introduced
in [22]. In our case, we perform the postprocessing on each S(v) to obtain a divergence-free
velocity with a higher convergence rate.

Let (wy, Wi, Zn, Wi, Zn, pp) € [U"1% x [W"]* x P! be the solution of (32). We introduce
the notations

~ 1 P~
Wy = ﬁ (Wh + th> ,
~ 1 P~
h = ﬁ <Zh + th) , (49)

T
w

Ly = (4).
Zy

Then Ly is an approximation for the matrix L of Vu.
Letuj € P*F1(S(v))? be the post-processed velocity. For every edge e € dS(v), ujy
satisfies

/(u; —w,) -nvdo =0, Vve Pe) (50)
and
/((n x V)(u}) —n x ({L,{}n)) mx Vivdo =0, Vve PXe). (51)

In the two-dimensional case, we have n X V = n0; — n1d, n X a = njax — naap, and
V x a = diap — dza1. In addition, uj satisfies

/ (uy —w)-Vodx =0, Vve P (S () (52)
S(v)

and

/ (Vxul—Ly)vBdx =0, Yve PF1(SWw) (53)
S(v)

where £, = (Lp)21 — (Lp)12 and B is the bubble function, defined by the product of
barycentric coordinates of vertices of S(v).

We solve (50)-(53) to obtain the post-processed velocity uj. In [21], it is shown that uj;
is exactly divergence-free.

The pointwise divergence-free property of post-processed velocity is vital in SDG-IBM.
First, in the sequence of Picard fixed point iterations in (10), the velocity field V7, is chosen
to be the post-processed velocity from uj, ;. Second, in the full discretization of (9), the
Lagrangian markers are driven by the post-processed velocity of the fixed point velocity field
at a certain time step. More details will be explained in Sect. 3.9.

3.8 Discretization of Source Term

In Sect. 3.7, we have discussed the linearization of the convection term by the post-processed
velocity in each iteration. In Sects. 3.3—3.6, we have discussed the SDG method for solving
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D. se [0,L]

Fig. 2 Illustration of the preimage set D, in the Lagrangian coordinate system

the linearized eqnarray in each iteration, given a particular source term. To complete the
discussion on our method for solving (10), it remains to discuss the spatial discretization of
the source term given by (8) at each time level.

We will start with a variational eqnarray with local test functions for the continuous
problem. Let e € ]-'L? . Suppose v € H'(R(e)). Let D, be the preimage set of R(e) under
X(-, 1), i.e.

={s €[0,L]: X(s,1) € R(e)}. (54)

Figure 2 illustrates the preimage set D, in the Lagrangian coordinate system.
Without loss of generality assume D, is connected. Similar to [3], we have the following
the variational eqnarray:

Definition 1 Suppose X(-, 1) € W([0, L]) forr € [0, T] and f € L?([0, L] x (0, T)).
Then for e € _7-’,9, fort € (0, T), the force density F(z) is defined as follows:

(F(1), V)o.R(e) = / f(s, H)V(X(s,1)ds forv e [H' (R(e))]*. (55)

In particular, in our simple model, for v € [H LR (e, substituting (6) into (55) and
using integration by parts over D,, we have

82X
F(@),v)o.q = Z / (S D v(X(s, 1))ds
eeFY
8X(v 1)) X (s, 1) 0v(X(s, 1)) (56)
=Z< v(X(s, t))‘ f o 22 > ds).
e 70 . as as

In our approach, we use (56) for the force exerted on the fluid by the immersed structure. For
simplicity, in our scheme we will approximate X (s, t) by a piecewise linear function on the
partition, so =0 < 51 < --- < s, = L.
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Next, we consider a corresponding full discretization of (56) using forward-Euler time-
stepping as described in (8). Note that for X;, € S, by construction we have
X X
—”()——h(s y fors e J, (57)

where sif% = %(si_l +s;) fori = 1,2, ..., m.Using (56), the source term can be discretized
by: for v € [U"]?,

axn! i) GRIT0. Ga!
F. _ h X1 ‘ _/ d
(Fyi- Vo.o Z (K s VX, )BDe DeK ds s g
X}’l 18 (XI‘I l)
o, -3,
aD, De'ﬂjl as as
axr! U G Fv(x!!
Z P h V(XZ_I)‘ _ZK h (Slfl)\/\ Mds
as e = as 2" Jp.nu; as

I
5M

ecFy
m Xn ]
==k D (VX ) = VX i) )
— - 8XZ_1 BXZ_I anl 58
—Ex T (sip) = =) | VEGT s). (58)

For the sake of simplifying notations, we use periodic indices, i.e. sy, +, = s,. We remark that
the variational equation (55) for source term is local on D, in SDG-IBM and global on €2
in FE-IBM proposed by [3]. Despite the difference in the variational equations, the resulting
formula of the discrete source term in (58) is identical to that of [5].

3.9 Discretization of Euler-Lagrange Equation

Finally, we discuss the full discretization of Euler-Lagrange eqnarray (9). For n =
1,2,..., K, given XZ_I e S" from the previous time step and a fixed-point solution
(uy, p;) € [U n12 x P" of (7), we obtain the postprocessed velocity uZ’* from uj, as discussed
in Sect. 3.7. The immersed boundary at time ¢ = #, is then evolved by

X (s) =X (si) + Arul* (X;*l(si)) fori =0,1,2,...,m, )
X0 (s;) = Xo(s;) fori =0,1,2,...,m

3.10 Summary of SDG-IBM

The fully discrete SDG- IBM for numerically solving (2)—(4) is summarized as follows: for
n=1,2,..., K, given uh le [Uh]2 and XZ_I € S" from the previous time step,

1. let u0 n= uh ! be the initial guess of the sequence of fixed-point iterations,
2. form=1,2,..., given u;’1_1y , from the previous iteration,
(a) obtain the postprocessed velocity V7, = “:{:1, p fromul by (50)-(53),
(b) leta = —,F = Euz 'L Frand V = V7 to obtain the linear system (10),
]2

C computet e discrete source term o ,Vjoglrorallv € according to N
©) h di f (F", v)o.q forall v e [U" ding to (58)
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(d) formulate the system of linear equations (48) for the SDG method (32),
(e) obtain the numerical solution (u;’n, P pfn’ R h2 % ph,
until a suitably specified stopping criterion is satisfied, and let (uf, p}) € [U"]* x P"
be the termination of the sequence of fixed-point iterations,
3. obtain the postprocessed velocity uj,™* from u]} by (50)—(53),
4. obtain the new immersed boundary particle configuration X} € S " by (59).

We remark that despite the computation of the source term is placed under the inner iterations
in the above procedure, the source term is independent of m and needs to be computed only
once for each time level.

4 Stability Analysis
In this section, we will provide a stability analysis of SDG-IBM similar to [5]. First, we intro-
duce some tools which will facilitate our analysis. The space Q" of piecewise polynomials
on 7 € 7 is defined by

0"={v : vy e P(r); T eT). (60)

We define the broken H'! semi-norm | - |1, on [Q"]? by

Wie = [ IVavlG o+ Y hHIVIIG, | forvelQ", (61)

ecFO
where 79 is the set of all the edges of triangles in 7 interior to €2, i.e., the union of ¥, and
.7-’,9. Note that the broken H! semi-norm | - [1,» coincides with the energy norm || - [|;, on
[
We begin with the following stability result:

Lemma 1 Let (wy,, Wy, 2, Wi, 2, pr) € [UM)? x [W"]* x P" be the solution of (32). Then
we have

alluglf o + Bulunli, < (Fup)o.q. (62)

where B is the inf-sup constant By in (38).

Proof 1In (32), we take test functions as follows:

V=,
W = —wp,
Wy = —zp,
v =L, (63)
2
o
Wy = —5n:
q = —Ph,
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where the definitions of Wj, and Z;, are given in (49). We then have
a(uy, up)o,Q + /UWBR(Wh, up,1) 4+ /UBR(Zn, up2)
o N
+ Ry (Wn, un1) + ERh (Z. un2) + by (pr.up) = (F,up)o.q,

2
— VB 1, Wi) + (Wi, wi)o.g = 0,

— JUB) (un 2, 20) + /1L@n, 2n)0.2 = 0, (64)
P P
- ERZ(uh,u W) + E(Wh, Wi)o,o =0,

P S SN
- ERZ(Mh,z, Zn) + E(Zhvzh)O,Q =0.

— by (uy, pp) = 0.

Summing up all the equations in (64), using the adjoint relations (36), (39) and (42) and
combining the terms, we have

allunlif.q + 1l Lalg.q = F.upo.q. (65)

Next, by the first inf-sup condition of U" and W” in (38) and then using (36), for all v € U",
we h