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Abstract In this article, we present a second-order in time implicit–explicit (IMEX) local
discontinuous Galerkin (LDG) method for computing the Cahn–Hilliard equation, which
describes the phase separation phenomenon. It is well-known that the Cahn–Hilliard equation
has a nonlinear stability property, i.e., the free-energy functional decreases with respect
to time. The discretized Cahn–Hilliard system modeled by the IMEX LDG method can
inherit the nonlinear stability of the continuousmodel.We apply a stabilization technique and
prove unconditional energy stability of our scheme. Numerical experiments are performed
to validate the analysis. Computational efficiency can be significantly enhanced by using this
IMEX LDG method with a large time step.

Keywords Local discontinuous Galerkin method · Implicit–explicit · Second-order ·
Stability analysis · The Cahn–Hilliard equation

1 Introduction

TheCahn–Hilliard equationwas originally introduced as a phenomenologicalmodel of phase
separation in a binary alloy [6], which has been applied to a wide range of problems. It is
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⎧
⎨

⎩

∂u
∂t = �

(
f (u) − ε2�u

)
, (x, t) ∈ Ω × (0, T ],

u|t=0 = u0(x), x ∈ Ω.

(1)

Here, u0(x) is a given function andΩ ⊂ �d (d = 1, 2, 3) is a bounded domain.We only focus
on �2 in this paper. Also, for easy presentation of the analysis, we assume a box geometry
and a periodic boundary condition for u(·, t), however the method as well as the analysis
can be generalized to Dirichlet boundary condition as well. The parameter ε is a positive
constant and usually represents (the effect of) the interfacial energy in a phase separation
phenomenon, which is small compared to the characteristic length of the laboratory scale [6].
The reaction term f (u) = F ′(u), with F(u) = 1

4 (u
2 − 1)2 being a given energy potential,

drives the solution to the two pure states u = ±1.
Let the total free energy E(u) be defined by

E(u) =
∫

Ω

(ε2

2
|∇u|2 + F(u)

)
dx . (2)

It is well known that the solution u(x, t) of the Cahn–Hilliard equation possesses the property
that the total free energy E(u) decreases with respect to time, as the Cahn–Hilliard equation
is the H−1-gradient flow of the total free energy E(u) [6,18]. We differentiate the energy
E(u) and get

d

dt
E(u) =

∫

Ω

(
ε2|∇u| · |∇ut | + F ′(u)ut

)
dx

=
∫

Ω

(
f (u) − ε2�u

)
· utdx

= −
∫

Ω

(
∇( f (u) − ε2�u)

)2
dx ≤ 0. (3)

Therefore, the total energy is non-increasing in time and is a Lyapunov functional for the
solution of the Cahn–Hilliard equation.

Designing numerical schemes that satisfy the energy-decay property at the discrete level
has been extensively studied in the past. There have been many works [9,11–13,16,21–23],
and the references therein, on numerical analysis of the Cahn–Hilliard equation. Most of the
analyses are based on finite element methods, finite difference methods or Fourier-spectral
methods.

Finite element methods were first presented for the equation by Elliott et al. in [11,12].
In [7], a conservative nonlinear finite difference scheme was proposed, which was uncondi-
tionally stable in the L∞-norm and conserved the total mass. However, the energy stability
was not discussed. A linearized finite difference method was derived in [23]. Solvability
and convergence were studied, but the stability was conditional. In [9], Furihata proposed a
conservative difference method for solving the one-dimensional Cahn–Hilliard equation and
proved the unconditional stability in the sense of energy decay.

Since the simulation of theCahn–Hilliard equation needs very long time to reach the steady
state, methods allowing large time steps are needed. In [18], a large time-stepping method
was proposed for the Cahn–Hilliard equation. The time step can be increased by adding a
linear term dependent on the unknown numerical solution. The same large time-stepping
method was applied to the epitaxial growth models in [24]. In [20] and [27], adaptive time-
stepping methods for the molecular beam epitaxy models and the Cahn–Hilliard equation
were presented, respectively. The adaptive time step is selected based on the energy variation
or the change of the roughness of the solution.
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Later on, Shen and Yang [21] considered a few temporal discretization schemes for
the Allen–Cahn and Cahn–Hilliard equations, such as the first-order semi-implicit and the
second-order implicit schemes. They also showed energy stability under reasonable con-
ditions and established error estimates for two fully discretized schemes with a spatial
spectral-Galerkin approximation. Recently, Li and Qiao in [19] proposed a second-order
semi-implicit Fourier spectral method for solving 2D Cahn–Hilliard equations. They intro-
duced a new stabilization technique and proved the property of a decreasing total energy for
the discrete scheme with a stabilization depending only on the initial value and the parameter
ε. In this paper, we extend this new technique to the local discontinuous Galerkin method
(LDG). This extension is non-trivial, as several discrete operators, such as an inverse Lapla-
cian operator and a discrete Laplacian operator, as well as several properties, such as a broken
version of the Brezis–Gallouet inequality, must be defined and analyzed for the LDG spatial
discretization.

The LDG method was introduced by Cockburn and Shu in [8] as a generalization of the
discontinuous Galerkin (DG) method proposed by Bassi and Rebay in [4]. The LDGmethod
can be applied to PDEs containing higher order spatial derivatives, and the idea is to rewrite
the equationswith higher order derivatives as a first order system, then apply theDGmethod to
the system with suitable numerical fluxes. For a detailed description about the LDGmethods
for high order time-dependent PDEs, we refer the readers to the review paper [25]. The LDG
method possesses several propertieswhichmakes it very attractive for practical computations.
For example, themethoduses discontinuous-in-space approximations, is locally conservative,
which is a crucial property in applications for porous media flows, transport phenomena, etc.
From the computational point of view, since no inter-element continuity is imposed, the
method can be defined on very general meshes including those with hanging nodes.

The LDG method for the spatial variables is usually combined with fully implicit time-
discretization to avoid excessive restriction on the time steps. However, fully implicit schemes
may be more difficult in efficient implementation, especially for the fully nonlinear Cahn–
Hilliard equation. This is because such schemes require the solution of a coupled system
of nonlinear equations per time step, making it computationally challenging to achieve it
efficiently. Meanwhile, explicit methods have a strong restriction to the time steps. The small
positive parameter ε and the nonlinear term of the Cahn–Hilliard equation make most of the
finite difference methods to use time-step size of many orders of magnitude smaller than the
spatial mesh size. Developing novel numerical techniques for this equation to overcome this
difficulty has been extensively studied in the past, e.g., Eyre developed a convex-splitting
method and proved that the method is unconditionally gradient stable [14,15]. Guo and Xu
[17] proposed efficient solvers of DG methods for the Cahn–Hilliard equation. Besides, it
is known that implicit–explicit (IMEX) techniques have been introduced for time dependent
partial-differential equations and can often play an important role in enhancing stability
and efficiency [2,3]. The IMEX schemes usually have large stability regions than other
schemes over a wide parameter range. With this motivation, the implicit–explicit strategy
is developed for the Cahn–Hilliard equation in this paper. In order to alleviate the stringent
time-step restriction of explicit time discretization, we consider a class of implicit–explicit
time discretization which treats the nonlinear terms explicitly and the linear terms implicitly.
The spatial discretization is the standard local discontinuous Galerkin method. We perform
an energy stability analysis on this fully discrete scheme.

The rest of the paper is organized as follows. In Sect. 2, we present some preliminaries
and notations, which will be used in the whole paper. In this section, the IMEX LDGmethod
is introduced, and the main theorem is given. In Sect. 3, we discuss two discrete operators
and some auxiliary results. In Sect. 4, we prove the unconditional energy stability of the
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IMEX LDG scheme. In Sect. 5, a few numerical experiments are carried out to confirm the
theoretical results and to demonstrate the good performance of this method for the Cahn–
Hilliard equation. Finally, some comments and conclusions are made in Sect. 6. A few
technical proofs are given in the “Appendix”.

2 The IMEX LDG Methods for the Cahn–Hilliard Equation

2.1 Notations

In this section, we first introduce some notations, whichwill be used throughout the paper.We
use Hm(Ω) and ‖ · ‖m to denote the standard Sobolev spaces and their norms, respectively.
In particular, the norm and inner product of L2(Ω) = H0(Ω) are denoted by ‖ · ‖ and (·, ·)
respectively.

Throughout the paper C will denote a generic positive constant, independent of the dis-
cretization parameters, whose value may change from line to line.

Let Th = {K } be a quasi-uniform partition of the domain Ω and set ∂Th := {∂K : K ∈
Th}. For example, in the one-dimensional case, K is a subinterval; in the two-dimensional
case, K is a shape-regular triangle for triangular meshes, or a shape-regular rectangle for
Cartesian meshes. We will only consider up to two dimensions in this paper.

Associated with this mesh, we define the discontinuous finite element space

Vh = {
v ∈ L2(Ω) : v|K ∈ Pk(K ),∀K ∈ Th

}
,

Φh =
{
φ = (φ1, . . . , φd)

T : φi |K ∈ Pk(K ), i = 1, . . . , d,∀K ∈ Th
}

,

where Pk(K ) denotes the space of polynomials in K of degree at most k ≥ 0. Now we give
the trace inequality with respect to the finite element space. For any function v ∈ Vh , there
exists a positive inverse constant μ > 0 independent of v, h and K such that

‖v‖∂K ≤
√

μh−1‖v‖K . (4)

Note that functions in Vh and Φh are allowed to have discontinuities across element
interfaces. At each element interface, for any function v, there are two traces along the
right-hand and left-hand sides. In the one-dimension case, we define

v±(x) = lim
λ→0

v(x ± λ).

In the multi-dimension case, let e be an interior face shared by the elements K1 and K2, and
define the unit normal vectors n1 and n2 on e pointing exterior to K1 and K2, respectively,
i.e. n1 = −n2 . We define the edge-jump and edge-average of v ∈ Vh by

[v] = v1n1 + v2n2, {v} = 1

2
(v1 + v2),

where vi = v|∂Ki . Similarly, for a vector-valued function w ∈ Φh , with an analogous
definition of vi , i = 1, 2,

[w] = w1 · n1 + w2 · n2, {w} = 1

2
(w1 + w2).

Let e0 be a fixed nonzero vector, we define

v± = {v} ± γ · [v],
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where γ is chosen by γ · n = 1
2 sign

(
e0 · n).

2.2 The Implicit–Explicit LDG Methods

We start with the Cahn–Hilliard equation, and rewrite (1) as a first order system,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (s1 − s2),

s1 = ∇r,

s2 = ∇ p,

p = ε2∇ · w,

w = ∇u,

r = f (u)

(5)

where u, s1, s2, p,w, r are the auxiliary functions on Ω .
We now consider the following second order in time implicit–explicit scheme,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3un+1−4un+un−1

2�t + A�t
(
un+1 − un

) = ∇ ·
(
sn1 − sn+1

2

)
,

sn1 = ∇rn,

sn+1
2 = ∇ pn+1,

pn+1 = ε2∇ · wn+1,

wn+1 = ∇un+1,

rn = 2 f (un) − f (un−1)

(6)

where �t > 0 denotes the time step, and A is a positive constant. The above scheme
combines second-order backward differentiation for the time derivative term with a second
order extrapolation for the nonlinear term. The stabilization term A�t (un+1 − un) is added
to enhance stability. Unfortunately, the parameter A must be chosen large enough to ensure
stability, according to the analysis below and numerical experiments in Sect. 5.

In order to define the implicit–explicit (IMEX) LDG method to the Eq. (6), we still use
un+1, sn1, s

n+1
2 , pn+1, wn+1, rn to denote the numerical solutions. The IMEX LDG scheme

is defined by an approximation
(
un+1, sn+1

2 , pn+1,wn+1
)

∈ Vh × Φh × Vh × Φh,

such that, ∀ρ,q, φ, ψ, ξ ∈ Vh × Φh × Vh × Φh × Vh on each K ∈ Th ,

(3un+1 − 4un + un−1

2�t
, ρ
)

K
+
(
A�t · (un+1 − un), ρ

)

K

= −
(
(sn1 − sn+1

2 ),∇ρ
)

K
+ < (ŝn1 − ŝn+1

2 ) · n, ρ >∂K , (7)
(
sn1,q1

)

K = −(rn,∇ · q1
)

K+ < r̂ n,q1 · n >∂K , (8)
(
sn+1
2 ,q2

)

K = −(pn+1,∇ · q2
)

K+ < p̂n+1,q2 · n >∂K , (9)

(pn+1, φ)K = −ε2(wn+1,∇φ)K + ε2 < ŵn+1 · n, φ >∂K , (10)

(wn+1, ψ)K = −(un+1,∇ψ)K+ < ûn+1, ψ · n >∂K , (11)

(rn, ξ)K =
(
2 f (un) − f (un−1), ξ

)

K
. (12)

123



J Sci Comput (2017) 73:1178–1203 1183

The hat terms in the equations above at the cell boundary from integration by parts are the so-
called “numerical fluxes”, which are functions defined on the edges and should be designed
based on different guiding principles for different PDEs to ensure stability. The flux choices
affect the stability and the accuracy of the method, as well as properties such as sparsity and
symmetry of the stiffnessmatrix; cf. [1,8]. Aswe shall see, different choices for the numerical
fluxes will lead to different methods. In this paper, we choose the so-called alternating fluxes
introduced in [8], i.e. the numerical fluxes (û, ŵ) are defined on inter-element faces as

ŝn1 = {
sn1
}− γ · [sn1

]
, r̂ n = {rn} + γ · [rn]

ŝn+1
2 =

{
sn+1
2

}
− γ ·

[
sn+1
2

]
, p̂n+1 = {pn+1} + γ · [pn+1],

ŵn+1 = {wn+1} − γ · [wn+1], ûn+1 = {un+1} + γ · [un+1].
By the definition of jump and average, we have

ŝn1 = sn,−
1 , ŝn+1

2 = sn+1,−
2 , r̂ n = rn,+,

p̂n+1 = pn+1,+, ŵn+1 = wn+1,−, ûn+1 = un+1,+.

We define H∂K (v,w) =< v̂,w · n >∂K + < v, ŵ · n >∂K − < v,w · n >∂K as the
numerical entropy flux, and choose the same numerical fluxes (v̂, ŵ) as the alternating fluxes

v̂ = v+, ŵ = w−.

Note that we can also choose

v̂ = v−, ŵ = w+.

Using the definition of the numerical fluxes, we get the following property of the numerical
entropy flux H∂K (v,w).

Lemma 1 [10] Suppose e is an inter-element face shared by the elements K1 and K2; then

H∂K1
⋂

e(v,w) + H∂K2
⋂

e(v,w) = 0, (13)

for any v ∈ Vh and w ∈ Φh. Moreover, we have
∑

K∈Th
H∂K (v,w) = 0. (14)

2.3 The Main Theorem

Considering the above second order in time IMEX LDG method, if we choose a good sta-
bilization term A, we can prove the unconditional energy stability for a modified energy
functional. We shall first state the main theorem as follows.

Theorem 1 (Unconditional stability for the IMEX LDG method) Consider the IMEX LDG
finite element method (7)–(12) with ε > 0 and �t > 0. Assume u0 ∈ H4(Ω) with mean
zero. Denote E0 = E(u0) as the initial energy. There exists a constant C > 0 depending
only on E0 and u0, such that if

A ≥ C (1 + ε−36| log ε|8), (15)

then

Ẽ(un+1) ≤ Ẽ(un), ∀n ≥ 1
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where Ẽ(un) is defined for n ≥ 1 as a modified energy functional:

Ẽ(un) := E(un) + 1

4�t
‖σ n

h ‖2 + 1

2
‖un − un−1‖2 (16)

where σ n
h will be defined later.

To obtain this main theorem, let us begin with the introduction of several operators and
lemmas.

3 Operators and Auxiliary Results

In this section we introduce some operators and auxiliary results, such as the LDG discrete
“inverse Laplacian” operator, the discrete Laplacian operator, and the broken version of the
Brezis–Gallouet inequality . They will be used in the energy stability proof later.

3.1 The LDG Discrete “inverse Laplacian” Operator and Its Properties

We would like to introduce the LDG discrete “inverse Laplacian” operator (−�)−1 on each
K ∈ Th . Let v = (−�)−1u, then we have the second-order elliptic boundary value problem

{−�v = u, x ∈ Ω,

periodic boundary.
(17)

To obtain the LDG discrete “inverse Laplacian” operator (−�)−1 on each K ∈ Th , we
first derive the LDG finite element method for the problem (17). We start with rewriting the
above problem as follows:

{∇v = σ,

−∇ · σ = u.
(18)

Using the same triangulation Th of Ω and the discontinuous finite element spaces Vh , Φh ,
we consider the following weak form: find vh ∈ Vh and σh ∈ Φh such that ∀τ, η ∈ Φh × Vh
on each K ∈ Th ,

(
u, η

)

K = (
σh,∇η

)

K− < σ̂h · n, η >∂K , (19)
(
σh, τ

)

K = −(vh,∇ · τ
)

K+ < v̂h, τ · n >∂K . (20)

where σ̂h = σ−
h , v̂h = v+

h .
We need the important lemma in [26] (Lemma 3.1), which illustrates a relationship

between the gradient and the element interface jump of the numerical solution with the
numerical solution of the gradient.

Lemma 2 [26] Suppose (vh, σh) is the solution of (20), then there exists a positive constant
Cμ independent of h but dependent on the inverse constant μ, such that

‖∇vh‖ +
√

μh−1‖[vh]‖∂Th ≤ Cμ‖σh‖, (21)

where ‖ · ‖ =
(∑

K
‖ · ‖2K

) 1
2
, ‖ · ‖∂Th =

( ∑

e∈∂Th

‖ · ‖2e
) 1

2
.

Using the above important relationship, we have the following proposition.
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Proposition 1 (The existence and uniqueness) Consider the LDG method defined by the
weak form (19) and (20), with the numerical fluxes defined by σ̂h = σ−

h , v̂h = v+
h . It defines

a unique approximate solution vh = (−�)−1u in V 0
h = {v ∈ Vh,

∫

Ω
vdx = 0}.

The proof of Proposition 1 is presented in “Appendix A”.
If we let u = un+1 − un ∈ Vh and u = un − un−1 ∈ Vh in Eq. (19) respectively, we can

have
{(

un+1 − un, η
)

K = (
σ n+1
h ,∇η

)

K− < σ̂ n+1
h · n, η >∂K ,

(
σ n+1
h , τ

)

K = −(vn+1
h ,∇ · τ

)

K+ < v̂n+1
h , τ · n >∂K .

(22)

and
{(

un − un−1, η
)

K = (
σ n
h ,∇η

)

K− < σ̂ n
h · n, η >∂K ,

(
σ n
h , τ

)

K = −(vnh ,∇ · τ
)

K+ < v̂nh , τ · n >∂K .
(23)

Using the above LDGdiscrete “inverse Laplacian” operator (−�)−1, we should have vn+1
h =

(−�)−1
(
un+1−un

)
and vnh = (−�)−1

(
un −un−1

)
. So we can obtain the following lemma.

Lemma 3 Suppose
(
vn+1
h , σ n+1

h

)
and

(
vnh , σ

n
h

)
are the solutions of (22) and (23) respec-

tively, we have
∑

K

(
un+1 − un, vn+1

h

)

K
=
∑

K

(
σ n+1
h , σ n+1

h

)

K
. (24)

∑

K

(
δ2un+1, vn+1

h

)

K
=
∑

K

(
σ n+1
h , σ n+1

h − σ n
h

)

K
. (25)

where δ2un+1 = un+1 − 2un + un−1.

For clarity, we leave the proof of this lemma to “Appendix B”.

3.2 The LDG Discrete Laplacian Operator

For the second-order elliptic problem with a periodic boundary condition

− �u = f, in Ω (26)

where f is a given function in L2(Ω), from the above LDG discrete “inverse Laplacian”
operator, we can derive the LDG discrete Laplacian operator through its first order version

{∇u = z,
−∇ · z = f.

Multiplying the first and second equations by the test functions τ and η, respectively, and
integrating on a subset K of Th , we define the LDG “discrete Laplacian” �h as follows:
given uh ∈ Vh , find −�huh ∈ Vh such that

(
zh, τ

)

K = −(uh,∇ · τ
)

K+ < ûh, τ · n >∂K , (27)
(− �huh, η

)

K = (
zh,∇η

)

K− < ẑh · n, η >∂K , (28)

where ûh = u+
h , ẑh = z−

h . The well-posedness of the operator can be obtained in V 0
h .

By the definition of the LDG discrete Laplacian operator, we can rewrite the Eqs. (10)
and (11) as

(pn+1, φ) = −ε2
(−�hu

n+1, φ
)
. (29)
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3.3 The Broken Version of the Brezis–Gallouet Inequality

The well known Brezis–Gallouet interpolation inequality is an inequality valid in two dimen-
sions. It shows that a function of two variables which is sufficiently smooth has an explicit
bound, which depends only logarithmically on the second derivatives (see [5]):

‖u‖∞ ≤ C
(
1 + ‖u‖1

√
log(1 + ‖�u‖)

)

where C depends only on the domain.
An alternative version of the above inequality is

‖u‖∞ ≤ C(1 + ‖u‖1)
√
log(1 + ‖�u‖). (30)

We can get the following broken version of the Brezis–Gallouet inequality, which will be
needed in the next section.

Lemma 4 For any uh ∈ V 0
h := {v ∈ Vh : (v, 1) = 0}, we have

‖uh‖∞ ≤ C(1 + ‖zh‖)
√
log(1 + ‖�huh‖), (31)

where zh satisfies
(
zh, τ

)

K = −(uh,∇ · τ
)

K+ < ûh, τ · n >∂K , ∀τ ∈ Φh .

Proof For ∀uh ∈ V 0
h , ∃!λ ∈ V 0

h , s.t. λ = −�huh , i.e.

(−�huh, η) = (λ, η) = (
zh,∇η

)

K− < ẑh · n, η >∂K . (32)

For λ ∈ V 0
h , ∃!δh = (−�)−1λ, which satisfies (19) and (20), i.e.

(λ, η) = (
σh,∇η

)

K− < σ̂h · n, η >∂K ,
(
σh, τ

)

K = −(δh,∇ · τ
)

K+ < δ̂h, τ · n >∂K .

This implies that
(
zh − σh,∇η

)

K− < (ẑh − σ̂h) · n, η >∂K= 0,
(
zh − σh, τ

)

K = −(uh − δh,∇ · τ
)

K+ < ûh − δ̂h, τ · n >∂K .

Taking η = uh − δh, τ = zh − σh , summing up over K and using the same argument as
in Proposition 1, we can get that uh = δh in V 0

h .
On the other hand, we define the following adjoint elliptic problem

{
σ = ∇δ,

λ = −∇ · σ

which is assumed to have the elliptic regularity:

‖σ‖H1(Ω) + ‖δ‖H2(Ω) ≤ C‖λ‖. (33)

Obviously, (δh, σh) is the elliptic projection of (δ, σ ), and satisfies
{(

σ,∇η
)

K− < σ̂ · n, η >∂K= (
σh,∇η

)

K− < σ̂h · n, η >∂K ,
(
σh, τ

)

K = −(δh,∇ · τ
)

K+ < δ̂h, τ · n >∂K .

Using Lemma in [26] (Lemma 3.2), we have

‖δ − δh‖ ≤ Ch2‖δ‖2
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which yields the result

‖uh‖∞ = ‖δh‖∞ ≤ ‖δ − δh‖∞ + ‖δ‖∞
≤ Ch−1‖δ − δh‖ + (1 + ‖δ‖1)

√
log(1 + ‖δ‖2)

≤ Ch‖δ‖2 + (1 + ‖δ − δh‖1 + ‖δh‖1)
√
log(1 + ‖δ‖2)

≤ C(h‖δ‖2 + ‖δh‖1 + 1)
√
log(1 + ‖δ‖2)

≤ C(h‖λ‖ + ‖δh‖1 + 1)
√
log(1 + ‖λ‖),

where the last inequality is due to the elliptic regularity, namely ‖δ‖2 ≤ C‖λ‖.
For the estimate of h‖λ‖, taking η = λ in (32) and using the inverse property, we can

have

‖λ‖2 ≤
(
‖∇λ‖ +

√
μh−1‖[λ]‖∂Th

)
‖zh‖ ≤ Ch−1‖λ‖ ‖zh‖.

Applying the above inequality and Lemma 2, we obtain

‖uh‖∞ ≤ C(1 + ‖zh‖ + ‖uh‖1) ·√log(1 + ‖�huh‖)
≤ C(1 + ‖zh‖) ·√log(1 + ‖�huh‖).

��

4 The Proof of the Energy Stability

In this section, we will prove the unconditional energy stability for the fully discrete implicit–
explicit LDG scheme.

Lemma 5 Consider the IMEX LDG scheme (7)–(12) in Sect. 2, we have

E(un+1) − E(un) +
√

2ε2
(

1

�t
+ A�t

)

· ‖un+1 − un‖2

+ 1

4�t

[
‖σ n+1

h ‖2 − ‖σ n
h ‖2

]
+ 1

2
·
(
‖un+1 − un‖2 − ‖un − un−1‖2

)

≤
[3

2

(‖un+1‖2∞ + ‖un‖2∞
)+

(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)2

2

]
· ‖un+1 − un‖2.

Clearly if
√

2ε2
(

1

�t
+ A�t

)

≥ 3

2

(‖un+1‖2∞ + ‖un‖2∞
)+

(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)2

2
, (34)

then

E(un+1) + 1

4�t
‖σ n+1

h ‖2 + 1

2
· ‖un+1 − un‖2

≤ E(un) + 1

4�t
‖σ n

h ‖2 + 1

2
· ‖un − un−1‖2.

Proof We take the test functions in (7), (8), (9), (10) and (12) as

ρ = vn+1
h = (−�)−1(un+1 − un

)
, q1 = q2 = σ n+1

h ,

φ = (
un+1 − un

)
, ξ = (

un+1 − un
)
. (35)
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Using the definition of the LDG discrete “inverse Laplacian” operator (−�)−1 in (19)
and (20), we have

(3un+1 − 4un + un−1

2�t
, vn+1

h

)

K
+
(
A�t · (un+1 − un), vn+1

h

)

K

= −
(
sn1 − sn+1

2 ,∇vn+1
h

)

K
+ < (ŝn1 − ŝn+1

2 ) · n, vn+1
h >∂K , (36)

(
sn1, σ

n+1
h )K = −(rn,∇ · σ n+1

h

)

K+ < r̂ n, σ n+1
h · n >∂K , (37)

(
sn+1
2 , σ n+1

h )K = −(pn+1,∇ · σ n+1
h

)

K+ < p̂n+1, σ n+1
h · n >∂K , (38)

(pn+1, un+1 − un)K

= −ε2(wn+1,∇(un+1 − un))K + ε2 < ŵn+1 · n, un+1 − un >∂K , (39)

(rn, un+1 − un)K =
(
2 f (un) − f (un−1), un+1 − un

)

K
. (40)

Now the terms on the right-hand side ofEqs. (36), (37), (38) can be bounded fromEqs. (19),
(20). Taking τ = sn1 − sn+1

2 and η = rn − pn+1,

(
σ n+1
h , sn1 − sn+1

2

)

K + (
vn+1
h ,∇ · (sn1 − sn+1

2 )
)

K

− < v̂n+1
h ,

(
sn1 − sn+1

2

)
· n >∂K= 0, (41)

(
un+1 − un, rn − pn+1)

K − (
σ n+1
h ,∇(rn − pn+1)

)

K

+ < σ̂ n+1
h · n, rn − pn+1 >∂K= 0. (42)

Subtracting (41) from (36), subtracting the sum of (38) and (42) from (37), and using
integration by parts, we obtain

(3un+1 − 4un + un−1

2�t
, vn+1

h

)

K
+
(
A�t · (un+1 − un), vn+1

h

)

K

= −(σ n+1
h , sn1 − sn+1

2

)

K + H∂K

(
vn+1
h , (sn1 − sn+1

2 )
)
, (43)

(
sn1 − sn+1

2 , σ n+1
h )K = (

un+1 − un, rn − pn+1)

K + H∂K

(
rn − pn+1, σ n+1

h

)
. (44)

For the Eq. (11), we have

(wn+1, ψ)K = −(un+1,∇ψ)K+ < ûn+1, ψ · n >∂K . (45)

At the same time, we have

(wn, ψ)K = −(un,∇ψ)K+ < ûn, ψ · n >∂K . (46)

Taking ψ = wn+1, then subtracting (46) from (45), we have

(wn+1 − wn,wn+1) = (un − un+1,∇wn+1)K+ < ûn+1 − ûn,wn+1 · n >∂K

=
(
∇(un+1 − un),wn+1

)

K
− < un+1 − un,wn+1 · n >∂K

+ < ûn+1 − ûn,wn+1 · n >∂K

=
(
∇(un+1 − un),wn+1

)

K
+ H∂K

((
un+1 − un

)
,wn+1

)

− < ŵn+1 · n, un+1 − un >∂K . (47)
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Subtracting (44) from (43), then adding to it the sum of (39) and ε2 times the difference
of (47) and (40), we have

1

2�t

(
3un+1 − 4un + un−1, vn+1

h

)

K
+
(
A�t · (un+1 − un), vn+1

h

)

K

+ ε2(wn+1 − wn,wn+1)K +
(
2 f (un) − f (un−1), un+1 − un

)

K

= H∂K

(
vn+1
h , sn+1

)
− H∂K

(
rn − pn+1, σ n+1

h

)
+ ε2 · H∂K

((
un+1 − un

)
,wn+1

)

Summing up over K , with the numerical fluxes at the domain boundary and Lemma 1, we
obtain

∑

K∈Th

{
H∂K

(
vn+1
h , sn+1

)
− H∂K

(
rn+1 − pn+1, σ n+1

h

)

+ ε2 · H∂K

((
un+1 − un

)
,wn+1

)}
= 0.

Noticing 3un+1 − 4un + un−1 = 2(un+1 − un) + δ2un+1 and using Lemma 3,

(
1

�t
+ A�t

)

‖σ n+1
h ‖2 + 1

4�t
‖σ n+1

h − σ n
h ‖2 + 1

4�t

[
‖σ n+1

h ‖2 − ‖σ n
h ‖2

]

+ε2

2

(
‖wn+1‖2 − ‖wn‖2 + ‖wn+1 − wn‖2

)

= −
∑

K

(
2 f (un) − f (un−1), un+1 − un

)

K
(48)

where we have applied the simple identity a(a − b) = 1/2[a2 − b2 + (a − b)2].
For the last nonlinear term, note that

2 f (un) − f (un−1) = f (un) + (
f (un) − f (un−1)

)
,

and recalling f (u) = F ′(u) , F(u) = (u2 − 1)2/4 and f ′(u) = 3u2 − 1,

F(un+1) − F(un) = f (un) · (un+1 − un) + 1

2
f ′(un + θ1(u

n+1 − un)
) · (un+1 − un)2

= f (un) · (un+1 − un) + 3

2

(
un + θ1(u

n+1 − un)
)2 · (un+1 − un)2 − 1

2
(un+1 − un)2

where 0 < θ1 < 1.
Because of the convexity of the function x2, we have

(
un + θ1(u

n+1 − un)
)2 ≤ (1 − θ1)

(
un
)2 + θ1

(
un+1)2.

Therefore

f (un) · (un+1 − un)

= F(un+1) − F(un) + 1

2
(un+1 − un)2 − 3

2

(
un + θ(un+1 − un)

)2 · (un+1 − un)2

≥ F(un+1) − F(un) + 1

2
(un+1 − un)2 − 3

2

(‖un+1‖2∞ + ‖un‖2∞
) · (un+1 − un)2.
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Similarly, we have
(
f (un) − f (un−1)

) · (un+1 − un) = f ′(un−1 + θ2(u
n − un−1)

)

·(un − un−1) · (un+1 − un)

≥ −(3‖un‖2∞ + 3‖un−1‖2∞ + 1
) · (un − un−1) · (un+1 − un).

Collecting the estimates, we obtain
(

1

�t
+ A�t

)

‖σ n+1
h ‖2 + 1

4�t
‖σ n+1

h − σ n
h ‖2 + 1

4�t

[
‖σ n+1

h ‖2 − ‖σ n
h ‖2

]

+ε2

2

(
‖wn+1‖2 − ‖wn‖2 + ‖wn+1 − wn‖2

)

+
∑

K

(
F(un+1) − F(un), 1

)

K
+ 1

2
‖un+1 − un‖2

≤ 3

2

(‖un+1‖2∞ + ‖un‖2∞
) · ‖un+1 − un‖2

+(3‖un‖2∞ + 3‖un−1‖2∞ + 1
) · ‖un − un−1‖ · ‖un+1 − un‖.

Applying the definition of E(u),

E(un+1) − E(un) + 1

4�t

[
‖σ n+1

h ‖2 − ‖σ n
h ‖2

]

+
(

1

�t
+ A�t

)

‖σ n+1
h ‖2 + ε2

2
‖wn+1 − wn‖2 + 1

2
‖un+1 − un‖2

≤ 3

2

(‖un+1‖2∞ + ‖un‖2∞
) · ‖un+1 − un‖2

+(3‖un‖2∞ + 3‖un−1‖2∞ + 1
) · ‖un − un−1‖ · ‖un+1 − un‖.

By using the inequality 2ab ≤ a2 + b2,
(

1

�t
+ A�t

)

‖σ n+1
h ‖2 + ε2

2
‖wn+1 − wn‖2

≥
√

2ε2
(

1

�t
+ A�t

)∑

K

(
σ n+1
h ,wn+1 − wn

)

K
.

From the LDG discrete “inverse Laplacian” and Eqs. (45 ), (46),

(wn+1 − wn, ψ) + (un+1 − un,∇ψ)K− < ûn+1 − ûn, ψ · n >∂K= 0,
(
un+1 − un, η

)

K − (
σ n+1
h ,∇η

)

K+ < σ̂ n+1
h · n, η >∂K= 0.

Taking ψ = σ n+1
h and η = un+1 − un ,

(
wn+1 − wn, σ n+1

h

)

K
=
(
un+1 − un, un+1 − un

)

K
+ H∂K

(
un+1 − un, σ n+1

h

)
.

So we have
(

1

�t
+ A�t

)

‖σ n+1
h ‖2 + ε2

2
‖wn+1 − wn‖2

≥
√

2ε2
(

1

�t
+ A�t

)∑

K

(
un+1 − un, un+1 − un

)

K
.
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On the other hand,
(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

) · ‖un − un−1‖ · ‖un+1 − un‖

≤ 1

2
· ‖un − un−1‖2 +

(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)2

2
· ‖un+1 − un‖2.

Now we have

E(un+1) − E(un) +
√

2ε2
(

1

�t
+ A�t

)

· ‖un+1 − un‖2

+ 1

4�t

[
‖σ n+1

h ‖2 − ‖σ n
h ‖2

]
+ 1

2
·
(
‖un+1 − un‖2 − ‖un − un−1‖2

)

≤
[3

2

(‖un+1‖2∞ + ‖un‖2∞
)+

(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)2

2

]
· ‖un+1 − un‖2.

��
We should prove that the energy stability condition (34) is satisfied. The first step is to

estimate ‖un+1‖∞, then we shall inductively prove that the condition (15) suffices.

4.1 Estimate for ‖un+1‖∞

Lemma 6 Suppose Ẽ(un) ≤ M, Ẽ(un−1) ≤ M for some M ≥ 0 dependent of E(u0),
(n ≥ 1). Then

‖un+1‖2 � 1 + ε−2,

‖wn+1‖2 � ε−2 + ε−4,

‖�hu
n+1‖2 � 1

ε2�t
+ A�t

ε2
+ ε−4,

‖un+1‖∞ ≤ C
√

ε−2 + ε−4 ·
√
√
√
√
log

(
1 +

(
1

ε2�t
+ A�t

ε2
+ ε−4

) 1
2 )

where C is independent of �t and wn+1 satisfies
(
wn+1, ψ

)

K = −(un+1,∇ · ψ
)

K+ < ûn+1, ψ · n >∂K , ∀ψ ∈ Φh .

Proof Since E(un) ≤ Ẽ(un) ≤ M , we have

E(un) = ε2

2

∑

K

‖wn‖2 +
∑

K

(
F(un), 1

) ≤ M,

So that

‖wn‖ � ε−1, ‖un‖ � 1.

Similarly

‖wn−1‖ � ε−1, ‖un−1‖ � 1.

Taking the test functions in (7), (8), (9), (10) and (11) as

ρ = ε2un+1, q1 = q2 = −ε2wn+1, φ = pn+1 − rn, ψ = ε2
(
sn1 − sn+1

2

)
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we have

ε2
(3un+1 − 4un + un−1

2�t
, un+1

)

K
+ ε2

(
A�t · (un+1 − un), un+1

)

K

+ ε2
(
sn1 − sn+1

2 ,∇un+1
)

K
− ε2 < (ŝn+1

1 − ŝn+1
2 ) · n, un+1 >∂K= 0,

− ε2
(
sn1,w

n+1)K − ε2
(
rn − pn+1,∇ · wn+1)

K

+ ε2 < r̂ n − p̂n+1,wn+1 · n >∂K= 0,

− ε2
(
sn+1
2 ,wn+1)K − ε2

(
rn − pn+1,∇ · wn+1)

K

+ ε2 < r̂ n − p̂n+1,wn+1 · n >∂K= 0,

(pn+1, pn+1 − rn)K + ε2(wn+1,∇(pn+1 − rn))K

− ε2 < ŵn+1 · n, pn+1 − rn >∂K= 0,

ε2(wn+1, sn1 − sn+1
2 )K + ε2(un+1,∇ · (sn1 − sn+1

2 )
)

K

− ε2 < ûn+1,
(
sn1 − sn+1

2

)
· n >∂K= 0.

Adding the above equations and using Lemma 1,

ε2
(

3

2�t
+ A�t

)

·
(
un+1 − un, un+1

)

K

− ε2

2�t
·
(
un − un−1, un+1

)

K
+ (pn+1, pn+1 − rn)K = 0.

Reorganizing the above equality,

ε2
(

3

2�t
+ A�t

)

·
(
un+1 − un, un+1

)

K
− ε2

2�t
·
(
un − un−1, un+1 − un

)

K

+ ε2

2�t
·
(
un − un−1, un

)

K
+ (pn+1, pn+1)K = (pn+1, rn)K .

Summing up over K , we obtain

ε2

2

(
3

2�t
+ A�t

)

·
(
‖un+1‖2 − ‖un‖2

)
+ ε2

4�t
·
(
‖un‖2 − ‖un−1‖2

)
+ ‖pn+1‖2

+ε2

2

(
3

2�t
+ A�t

)

· ‖un+1 − un‖2 − ε2

2�t

∑

K

(
un − un−1, un+1 − un

)

K

+ ε2

4�t
· ‖un − un−1‖2

=
∑

K

(pn+1, rn)K ≤ 1

2

(
‖pn+1‖2 + ‖rn‖2

)
.

Obviously,

ε2

2

(
3

2�t
+ A�t

)

· ‖un+1 − un‖2 − ε2

2�t

∑

K

(
un − un−1, un+1 − un

)

K

+ ε2

4�t
· ‖un − un−1‖2 ≥ 0.
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So we have,

ε2

2

(
3

2�t
+ A�t

)

‖un+1‖2 ≤ ε2

2

(
1

�t
+ A�t

)

‖un‖2

+ ε2

4�t
‖un−1‖2 + 1

2
‖2 f (un) − f (un−1)‖2.

We can get the result ‖un+1‖2 � 1 + ε−2 (independent of �t).
At the same time, we also have

‖pn+1‖2 ≤ ε2
(

1

�t
+ A�t

)

‖un‖2 + ε2

2�t
‖un−1‖2 + ‖rn‖2. (49)

For the estimation of ‖�hun+1‖, taking φ = −�hun+1 in (29), we obtain

‖�hu
n+1‖2 = 1

ε2

(
pn+1,�hu

n+1) ≤ 1

ε2
‖pn+1‖ · ‖�hu

n+1‖.
Then

‖�hu
n+1‖2 ≤ 1

ε4
‖pn+1‖2

�
( 1

ε2�t
+ A�t

ε2

)
‖un‖2 + 1

2�tε2
‖un−1‖2 + 1

ε4
‖2 f (un) − f (un−1)‖2

� 1

ε2�t
+ A�t

ε2
+ 1

ε4

(‖(un)3‖ + ‖un‖ + ‖(un−1)3‖ + ‖un−1‖)

� 1

ε2�t
+ A�t

ε2
+ 1

ε4
.

Finally, for the estimation of ‖wn+1‖, using the Eq. (48) and the boundedness of Ẽ(un)
and ‖un+1‖, ‖un‖, ‖un−1‖,

‖wn+1‖2 ≤ ‖wn‖2 + 1

4ε2�t
‖σ n

h ‖2 + ε−2[‖2 f (un) − f (un−1)‖2 + ‖un+1 − un‖2]

� ε−2 + ε−4.

We can apply Lemma 4 to obtain

‖un+1‖∞ ≤ C
√

ε−2 + ε−4 ·
√
√
√
√
log

(
1 +

(
1

ε2�t
+ A�t

ε2
+ ε−4

) 1
2 )

. (50)

��
4.2 Estimate for the First Step u1

In order to start the iteration, we should computer u1 according to the following first-order
scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
u1−u0

t1
, ρ
)

K
+ (s01 − s12,∇ρ)K− < (ŝ01 − ŝ12) · n, ρ >∂K= 0,

(
s01 − s12,q

)+ (
r0 − p1,∇ · q)− < r̂0 − p̂1,q · n >∂K= 0,

(p1, φ) + ε2(w1,∇φ) − ε2 < ŵ1 · n, φ >∂K= 0,

(w1, ψ) + (u1,∇ · ψ)− < û1, ψ · n >∂K= 0,

(r0, ξ) = ( f (u0), ξ).

(51)

123



1194 J Sci Comput (2017) 73:1178–1203

So we now have the following lemma

Lemma 7 Consider the above scheme (51), and assume u0 ∈ H4(Ω) with mean zero,

‖u1‖2 ≤ ‖u0‖2 + t1
ε2

‖ f (u0)‖2,

‖�hu
1‖2 ≤ 1

ε2t1
‖u0‖2 + 1

ε4
‖ f (u0)‖2,

‖w1‖2 ≤ C
(
E(u0), ‖u0‖H4

) 1

ε2
,

‖u1‖∞ ≤ C
√
1 + ε−1 ·

√
√
√
√
log

(
1 +

(
1

ε2t1
+ ε−4

) 1
2 )

,

where C is independent of �t and only depends on the initial value.

The proof of this lemma is very similar to Lemma 6. We skip the details at present, but
for the completeness of this paper, we put the concise proof in “Appendix C”.

4.3 Proof of Theorem 1

In this proof we shall denote by C a generic constant which depends only on u0. The value
of C may vary from line to line. Let

M = max{Ẽ(u1), E(u0)}.
We shall inductively prove the result for every n ≥ 1:

Ẽ(un+1) ≤ M, Ẽ(un+1) ≤ Ẽ(un),

We first check the case n = 1. Applying Lemma 6, let n = 1, then

‖w2‖2 � ε−2 + ε−4.

By Lemmas 4 and 6, we obtain

‖u2‖∞ ≤ C
√

ε−2 + ε−4 ·
√
√
√
√
log

(
1 +

(
1

ε2�t
+ A�t

ε2
+ ε−4

) 1
2 )

.

We should check the inequality
√

2ε2
(

1

�t
+ A�t

)

≥ 3

2

(‖u2‖2∞ + ‖u1‖2∞
)+

(
3‖u1‖2∞ + 3‖u0‖2∞ + 1

)2

2
.

Using the bound on ‖u2‖∞ and ‖u1‖∞, we only need to verify that the choice of A in (15)
ensures

√

2ε2
(

1

�t
+ A�t

)

≥ C(ε−2 + ε−4) log
(
1 +

(
1

ε2�t
+ A�t

ε2
+ ε−4

) 1
2 )

.

Let α = 1
�t + A�t , then α ≥ 2

√
A. We need

√
2ε2α ≥ C(ε−2 + ε−4) log(1 + ε−2α + ε−4).

In terms of ε, we should have the following two cases.
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1. ε2 < 1, we need

√
α ≥ Cε−5

(
| log ε| + | logα|

)
.

or

α ≥ Cε−10| log ε|2.
2. ε2 ≥ 1, we need

√
α ≥ Cε−5

(
| logα|

)
,

or

α ≥ C.

From the above two cases, we can deduced the condition of α,

α ≥ C · (1 + ε−10| log ε|2). (52)

Because α ≥ 2
√
A, the condition on A given in (15) ensures (52). We have Ẽ(u2) ≤ Ẽ(u1).

Next, we will check the induction step to prove the inequality Ẽ(un+1) ≤ Ẽ(un). Assume
the induction hypothesis hold for all 1 ≤ κ ≤ n, n ≥ 1. Then for n + 1 (n ≥ 2), we only
need to check the condition (34), i.e.

√

2ε2
(

1

�t
+ A�t

)

≥ 3

2

(‖un+1‖2∞ + ‖un‖2∞
)+

(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)2

2
. (53)

By the L∞ estimation (50) on un+1, un and un−1,
√

2ε2
(

1

�t
+ A�t

)

≥ C
(
ε−2 + ε−4) log

(

1 + 1

ε2�t
+ A�t

ε2
+ ε−4

)

+C
(
ε−4 + ε−8) log

(

1 + 1

ε2�t
+ A�t

ε2
+ ε−4

)2

.

Using the same analysis as the case n = 1, we can show that the condition on A given in
(15) ensures (53). We have now completed the proof of Theorem 1.

5 Numerical Results

In this section, we present some numerical results for the Cahn–Hilliard equation obtained by
using the IMEX LDGmethod, then we verify the orders of accuracy and the energy stability.
In Sect. 5.1, we consider the Cahn–Hilliard equation in one spatial dimension, and test the
accuracy using an explicitly given exact solution. In Sect. 5.2, the Cahn–Hilliard equation in
two spatial dimension is discussed.

5.1 Numerical Results for the Cahn–Hilliard Equation in 1D

In this subsection we discuss the numerical results for the Cahn–Hilliard equation in 1D
because there are many benchmark examples and results for this case.
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Fig. 1 The comparison of the numerical solutions (bottom) and energy curves (top) obtained by using the
LDG method with A = 0 (left) and A = 105 (right) for ε2 = 0.001

Example 5.1 We consider

ut = (
f (u) − ε2uxx

)

xx , (x, t) ∈ (0, 1] × (0, T ],
u(x, 0) = u0(x), (54)

with periodic boundary condition. The initial condition is given by

u0(x) = 0.1 sin(2πx) + 0.01 cos(4πx) + 0.06 sin(4πx) + 0.02 cos(10πx). (55)

For the spatial discretization, we use P1 and P2 elements of the LDG method to approxi-
mate (54). The dependency of the numerical solution and the energy stability on the parameter
A is demonstrated in Table 1, where “NaN” denotes “not a number”. The result in the table
are obtained with P1 and P2. They have the same result, so we only list one table. From this
table, we can see that the choice of the parameter A is important for the stability, which is
consistent with our earlier theoretical analysis. We can also see that the size of A to ensure
stability is not as pessimistic as shown in (15) from the analysis. The comparison of the
numerical solutions and energy curves obtained by using the IMEX LDG method with dif-
ferent A is given in Fig. 1. We can see that the energy could increase and the numerical
solution becomes strange when A = 0, and the energy is non-increasing and the solution
looks nice when A = 105.

Example 5.2 Accuracy test for the Cahn–Hilliard equation.
We consider the Cahn–Hilliard equation (54) with ε2 = 1 in the domain x ∈ [0, 2π] and

with periodic boundary condition. We test our method taking the exact solution

u(x, t) = e−t sin x (56)

for the Eq. (54) with a source term , which is a given function so that (56) is an exact
solution. We take T = 1 , A = 10 and list the L2 errors and numerical orders of accuracy
with �t = 10−5 for the second-order and third-order LDG methods in Tables 2 and 3
respectively. It is clearly observed that the IMEX LDGmethods give the desired spatial order
of accuracy.

Furthermore, we test accuracy for the Cahn–Hilliard equation with a smaller ε2 = 0.1
and a larger A = 100 again at T = 1. This time, we aim at verifying the second order time
accuracy, hence we choose �t = h for the second order case and �t = h3/2 for the third
order case, to match the orders of accuracy in space and in time. The results, given in Table 4,
again demonstrate the designed order of accuracy.
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Table 1 The relationship of A and the energy stability with ε2 = 0.001

�t A = 0 A = 105 A = 5 ∗ 105

�t = 0.01 NaN Energy not decreasing Energy decreasing

�t = 0.001 Energy not decreasing Energy decreasing Solution is stable

Table 2 Example 5.2: Errors
and numerical order of accuracy
in space for the P1-element

N ‖u − uh‖ Order of accuracy

16 1.21e−02 –

32 3.00e−03 2.02

64 7.43e−04 2.00

128 1.91e−04 1.96

Table 3 Example 5.2: Errors
and numerical order of accuracy
in space for the P2-element

N ‖u − uh‖ Order of accuracy

16 6.77e−04 –

32 8.48e−05 3.00

64 1.06e−05 3.00

128 1.45e−06 2.88

Table 4 Example 5.2: Accuracy
test for the Cahn–Hilliard
equation with ε2 = 0.1 at time
T = 1

N ‖u − uh‖ Order of accuracy

P1 16 3.71e−01 –

�t = h 32 1.38e−01 1.43

A=100 64 4.19e−02 1.72

128 1.18e−02 1.83

P2 16 5.98e−01 –

�t = h3/2 32 4.28e−01 0.48

A=100 64 5.64e−02 2.92

128 6.00e−03 3.22

5.2 Numerical Results for the Cahn–Hilliard Equation in 2D

Now, let us turn our attention to the 2D problem.

Example 5.3 We consider

∂u

∂t
+ �(u − u3 + ε2�u) = 0, (57)

and the initial condition is

u0(x, y) = 0.05 sin 2πx sin 2πy,

The parameter ε2 is again taken as 0.001. Ω = [0, 1] × [0, 1].

123



1198 J Sci Comput (2017) 73:1178–1203

Table 5 The relationship of A and the energy stability with ε2 = 0.001 in 2D

�t A = 0 A = 5 ∗ 105 A = 106

�t = 0.01 NaN Energy not decreasing Energy decreasing

�t = 0.001 NaN Energy decreasing Solution is stable
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Fig. 2 The initial triangular mesh

FromTable 5, we can observe the same results as in 1D, which indicates that the parameter
A plays an essential role in the stability property, and also the size of A to ensure stability is
not as pessimistic as shown in (15) from the analysis.

Similarly, we verify the numerical order of convergence. A suitable source term is chosen
such that

u(x, y, t) = 0.05et sin 2πx sin 2πy

is the exact solution. The physical domain is partitioned with general triangular meshes.
In our experiments, the initial mesh is in Fig. 2, and in each refinement, every triangle is
subdivided to four children triangles by joining the mid-points of the edges of it, see Fig. 3.
Firstly, we compute with polynomial degree 1 or 2 on 32 triangles, then we refine the meshes
to compute on 2048 triangles.

We take T = 1 , A = 100 and list the L2 errors and the numerical orders of accuracy with
ε2 = 0.1 in Table 6. The tables show that the errors decrease as the mesh resolution becomes
fine, and we can clearly observe optimal orders of spatial accuracy and second-order time
accuracy for the 2D Cahn–Hilliard equation on triangular meshes.
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Fig. 3 The refinement of the triangular mesh

Table 6 Example 5.3: Accuracy
test for Cahn–Hilliard equation
with ε2 = 0.1 at time T = 1

h ‖u − uh‖ Order of accuracy

P1 1/4 1.22e−02 –

�t = h 1/8 5.60e−03 1.12

A=100 1/16 1.70e−03 1.72

1/32 4.44e−04 1.94

P2 1/4 7.60e−03 –

�t = h3/2 1/8 1.20e−03 2.66

A=100 1/16 1.29e−04 3.21

1/32 2.38e−05 2.44

6 Conclusion

In this paper, we have developed second-order implicit–explicit local discontinuous Galerkin
(LDG) method for the Cahn–Hilliard equation. Unconditional energy stability independent
of the time step �t is proved, when the stabilization parameter A is taken to be sufficiently
large but depending only on the initial data and the coefficient ε2. This method can thus
achieve substantial improvement in efficiency by using larger time steps. Using the LDG
method, we have computed the Cahn–Hilliard equation in 1D and 2D. The numerical results
have been presented to demonstrate the stability and approximation accuracy for the IMEX
LDG method. One drawback of this method is that the stabilization parameter A has to be
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chosen sufficiently large in order to ensure unconditional stability. This may adversely affect
the accuracy of the scheme, especially for small ε (of course, when ε is small, the phase
transition tends to be sharper and hence the accuracy deteriorates in the rapid transition
region anyway). It would be interesting to look for methods which do not rely on such large
stabilization parameters, can be implicit only for the linear terms as the method in this paper,
and can still have unconditional energy stability.

Acknowledgements We would like to thank the referees for their constructive comments and suggestions
which have led to an improvement of the paper.

Appendix A: The Proof of Proposition 1

Due to the linearity and finite dimensionality of the problem, it is enough to show that the
only solution to (19) and (20) with u = 0 is vh = 0.

(
σh, τ

)

K + (
vh,∇ · τ

)

K− < v̂h, τ · n >∂K= 0,
(
σh,∇η

)

K− < σ̂h · n, η >∂K= 0.

Taking τ = σh and η = vh ,
(
σh, σh

)

K + (
vh,∇ · σh

)

K− < v̂h, σh · n >∂K= 0,
(
σh,∇vh

)

K− < σ̂h · n, vh >∂K= 0.

Applying integration by parts, and adding the two equations, we get

H∂K (vh, σh)K = (σh, σh)K .

Summing over K , we can obtain
∑

K

(σh, σh)K = 0

which implies σh = 0. Using the relationship (21), we have ∇vh = 0 on every K and
[vh] = 0, since μ > 0. Then vh |K = C . Because of [vh] = 0, vh = C . However

∫

Ω

vhdx = C · |Ω| = 0,

which implies vh = 0. Thus we have completed the proof.

Appendix B: The Proof of Lemma 3

Using the LDG discrete “inverse Laplacian” and taking τ = σ n+1
h and η = vn+1

h in (22),
(
un+1 − un, vn+1

h

)

K − (
σ n+1
h ,∇vn+1

h

)

K+ < σ̂ n+1
h · n, vn+1

h >∂K= 0,
(
σ n+1
h , σ n+1

h

)

K + (
vn+1
h ,∇ · σ n+1

h

)

K− < v̂n+1
h , σ n+1

h · n >∂K= 0.

Then (
un+1 − un, vn+1

h )K + H∂K (vn+1
h , σ n+1

h )K = (σ n+1
h , σ n+1

h )K .

Summing over K and using the Lemma 1, we can obtain the result (24).
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Note that δ2un+1 = un+1 − 2un + un−1, clearly
{(

δ2un+1, η
)

K = (
σ n+1
h − σ n

h ,∇η
)

K− < (σ̂ n+1
h − σ̂ n

h ) · n, η >∂K ,
(
σ n+1
h , τ

)

K = −(vn+1
h ,∇ · τ

)

K+ < v̂n+1
h , τ · n >∂K .

Similarly, taking η = vn+1
h and τ = σ n+1

h − σ n
h ,

(
δ2un+1, vn+1

h

)

K − (
σ n+1
h − σ n

h ,∇vn+1
h

)

K+ < (σ̂ n+1
h − σ̂ n

h ) · n, vn+1
h >∂K= 0,

(
σ n+1
h , σ n+1

h − σ n
h

)

K + (
vn+1
h ,∇ · (σ n+1

h − σ n
h )
)

K− < v̂n+1
h , (σ n+1

h − σ n
h ) · n >∂K=0.

So that
(
δ2un+1, vn+1

h )K + H∂K (vn+1
h , σ n+1

h − σ n
h )

=
(
σ n+1
h , σ n+1

h − σ n
h

)

K
.

Summing over K and using the Lemma 1, we can obtain the result (25). This completes the
proof.

Appendix C: The Proof of the Lemma 7

Taking ρ = ε2u1,q = −ε2w1, φ = p1 − r0, ψ = ε2(s01 − s12) in Eqs. (51), and using the
same analysis as the Lemma 6, we have

ε2

t1

(
u1 − u0, u1

)+ (p1, p1 − r0) = 0.

Summing up over K ,

ε2

t1
·
(
‖u1‖2 − ‖u0‖2

)
+ ‖p1‖2 ≤ 1

2

(‖p1‖2 + ‖r0‖2),

So we have the result

‖u1‖2 ≤ ‖u0‖2 + t1
ε2

‖ f (u0)‖2,
and

‖p1‖2 ≤ ε2

t1
‖u0‖2 + ‖ f (u0)‖2,

By the definition of the discrete Laplacian operator,

(p1, φ) = −ε2(−�hu
1, φ),

Then Taking φ = −�hu1, we obtain

‖�hu
1‖2 ≤ 1

ε2t1
‖u0‖2 + 1

ε4
‖ f (u0)‖2,

Next, taking ρ = v1h = (−�)−1(u1 − u0),q = σ 1
h , φ = u1 − u0, ξ = u1 − u0 in Eqs. (51),

and

(w1 − w0,w1)K = (∇(u1 − u0),w1)K + H∂K (u1 − u0,w1)− < ŵ1 · n, u1 − u0 >∂K ,
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using the same argument as Eqs. (36)–(48), then

(u1 − u0

t1
, v1h

)

K
+ ε2(w1 − w0,w1)K + ( f (u0), u1 − u0)K − ε2H∂K (u1 − u0,w1) = 0.

Using Lemmas 1, 3, and summing on K ,

1

t1
‖σ 1

h ‖2 + ε2

2
‖w1‖2 +

∑

K

(F(u1), 1)

≤ E(u0) + | f ′(u0)| · ‖u1 − u0‖2
≤ C

(
E(u0), ‖u0‖H4

)
.

So that

‖w1‖2 ≤ C
(
E(u0), ‖u0‖H4

) 1

ε2
,

Finally, by the Lemma 4,

‖u1‖∞ ≤ C
√
1 + ε−1 ·

√
√
√
√log

(

1 +
(

1

ε2t1
+ ε−4

) 1
2
)

.
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