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Abstract Tempered fractional diffusion equations (TFDEs) involving tempered fractional
derivatives on the whole space were first introduced in Sabzikar et al. (J Comput Phys
293:14–28, 2015), but only the finite-difference approximation to a truncated problem on a
finite interval was proposed therein. In this paper, we rigorously show the well-posedness
of the models in Sabzikar et al. (2015), and tackle them directly in infinite domains by
using generalized Laguerre functions (GLFs) as basis functions. We define a family of GLFs
and derive some useful formulas of tempered fractional integrals/derivatives. Moreover, we
establish the related GLF-approximation results. In addition, we provide ample numerical
evidences to demonstrate the efficiency and “tempered” effect of the underlying solutions of
TFDEs.
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1 Introduction

The normal diffusion equation ∂t p(x, t) = ∂2x p(x, t) can be derived from the Brownian
motion which describes the particle’s random walks. Over the last few decades, a large body
of literature has demonstrated that anomalous diffusion, in which the mean square variance
grows faster (super-diffusion) or slower (sub-diffusion) than in a Gaussian process, offers a
superior fit to experimental data observed in many important practical applications, e.g., in
physical science [14,17–19], finance [10,16,24], biology [4,12] and hydrology [3,7,8]. The
anomalous diffusion equation takes the form

∂ν
t p(x, t) = ∂μ

x p(x, t), (1.1)

where 0 < ν ≤ 1 and 0 < μ < 2 (cf. [17] for a review on this subject), whose solution
exhibits heavy tails, i.e., power law decays at infinity. In order to “temper” the power law
decay, the authors of [22] incorporated an exponential factor e−λ|x | into the particle jump
density, and showed that the Fourier transform of the tempered probability density function
p(x, t) takes the form

F [p](ω, t) = e
−
[

p Aμ,λ
+ (ω)+q Aμ,λ

− (ω)
]

Dt
, 0 < μ < 2,

where 0 ≤ p ≤ 1, q = 1 − p, D is a constant and

Aμ,λ
± (ω) :=

{
(λ ± iω)μ − λμ, 0 < μ < 1,

(λ ± iω)μ − λμ − ±iωμλμ−1, 1 < μ < 2.
(1.2)

Moreover, they defined tempered fractional derivative operators ∂
μ,λ
±,x through Fourier trans-

form: F [∂μ,λ
±,x u](ω) = Aμ,λ

± (ω)F [u](ω), and derived the tempered fractional diffusion
equation:

∂t u(x, t) = (−1)kCT {p∂
μ,λ
+,x + q∂

μ,λ
−,x }u(x, t), μ ∈ (k − 1, k), k = 1, 2. (1.3)

It is believed that tempered anomalous diffusion models have advantages over the normal
diffusion models in some applications in geophysics [15,30] and finance [5].

It is challenging to numerically solve the tempered fractional diffusion equation (1.3),
partially due to (i) the non-local nature of tempered fractional derivatives; and (ii) the
unboundedness of the domain. In [22], a finite-difference method was applied to (1.3) on a
truncated (finite) interval. In [28], the authors considered tempered derivatives on afinite inter-
val and derived an efficient Petrov–Galerkin method for solving tempered fractional ODEs
by using the eigenfunctions of tempered fractional Sturm–Liouville problems. In [11], the
authors used Laguerre functions to approximate the substantial fractional ODEs, which are
similar to those we consider in Sect. 3, on the half line. In order to avoid the difficulty of
assigning boundary conditions at the truncated boundary, we shall deal with the unbounded
domain directly in this paper.

Since the tempered fractional diffusion equation is derived from the random walk on
the whole line, one is tempted to use Hermite polynomials/functions which are suitable
for many problems on the whole line [25]. Unfortunately, due to the exponential factor in
the tempered fractional derivatives, Hermite polynomials/functions are not suitable basis
functions. Instead, as we will show in Sect. 3, properly defined GLFs enjoy particularly
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simple form under the action of tempered fractional derivatives, just as the relations between
generalized Jacobi functions and usual fractional derivatives [6]. Hence, the main goal of
this paper is to design efficient spectral methods using GLFs as basis functions to solve
the tempered fractional diffusion equation (1.3) in various situations. However, Laguerre
polynomials/functions are mutually orthogonal on the half line, how do we use them to deal
with (1.3) on the whole line?We shall first consider special cases of (1.3) with p = 1, q = 0
or p = 0, q = 1. In these cases, we can reduce (1.3) to the half line, and the GLFs can be
naturally used. For the general case, we shall employ a two-domain spectral-element method,
and use GLFs as basis functions on each subdomain.

The rest of the paper is organized as follows. In the next section,we present the definition of
tempered fractional derivatives, and recall some useful properties of Laguerre polynomials.
In Sect. 3, we define a class of generalized Laguerre functions, study its approximation
properties, and apply it for solving simple one sided tempered fractional equations. In Sect. 4,
we develop a spectral-Galerkin method for solving a tempered fractional diffusion equation
on the half line. Finally, we present a spectral-Galerkin method for solving the tempered
fractional diffusion equation on the whole line in Sect. 5. Some concluding remarks are
given in the last section.

2 Preliminaries

LetN andR be respectively the sets of positive integers and real numbers. We further denote

N0 := {0} ∪ N, R
+ := {x ∈ R : x > 0}, R

− := {x ∈ R : x < 0}, R
±
0 := R

± ∪ {0}.
(2.1)

2.1 Usual (Non-tempered) Fractional Integrals and Derivatives

Recall the definitions of the fractional integrals and fractional derivatives in the sense of
Riemann–Liouville (see e.g., [20]).

Definition 2.1 (Riemann–Liouville fractional integrals and derivatives) For a, b ∈ R or
a = −∞, b = ∞, and μ ∈ R

+, the left and right fractional integrals are respectively
defined as

aI
μ
x u(x) = 1

�(μ)

∫ x

a

u(y)

(x − y)1−μ
dy, x I

μ
b u(x) = 1

�(μ)

∫ b

x

u(y)

(y − x)1−μ
dy,

x ∈ � := (a, b). (2.2)

For real s ∈ [k − 1, k) with k ∈ N, the left-sided Riemann–Liouville fractional derivative
(LRLFD) of order s is defined by

aD
s
x u(x) = 1

�(k − s)

dk

dxk

∫ x

a

u(y)

(x − y)s−k+1 dy, x ∈ �, (2.3)

and the right-sided Riemann–Liouville fractional derivative (RRLFD) of order s is defined
by

xD
s
bu(x) = (−1)k

�(k − s)

dk

dxk

∫ b

x

u(y)

(y − x)s−k+1 dy, x ∈ �. (2.4)

From the above definitions, it is clear that for any k ∈ N0,

aD
k
x = Dk, xD

k
b = (−1)kDk, where Dk := dk

dxk
. (2.5)
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Therefore, we can express the RLFD as

aD
s
x u(x) = Dk{

aI
k−s
x u(x)

}; xD
s
bu(x) = (−1)kDk{

x I
k−s
b u(x)

}
. (2.6)

According to [9, Thm. 2.14], we have that for any finite a and any f ∈ L1(�), and real
s ≥ 0,

aD
s
x aI

s
x f (x) = f (x), a.e. in �. (2.7)

Note that by commuting the integral and derivative operators in (2.6), we define the Caputo
fractional derivatives:

C
a D

s
x u(x) = aI

k−s
x

{
Dku(x)

}; C
x D

s
bu(x) = (−1)k

x I
k−s
b

{
Dku(x)

}
. (2.8)

For an affine transform x = λt, λ > 0, on account of

aI
μ
t v(λt) = 1

�(μ)

∫ t

a

v(λs)

(t − s)1−μ
ds = λ−μ

�(μ)

∫ t

a

v(λs)

(λt − λs)1−μ
λds

= λ−μ

�(μ)

∫ x

λa

v(y)

(x − y)1−μ
dy = λ−μ

λaI
μ
x v(x),

and d
dt

= λ d
dx

, we derive from Definition 2.1 that

aI
μ
t v(λt) = λ−μ

λaI
μ
x v(x), aD

s
t v(λt) = λs

λaD
s
xv(x), s, μ, λ > 0. (2.9)

Similarly, we have the following identities for the right fractional derivative:

t I
μ
b v(λt) = λ−μ

x I
μ
λbv(x), tD

s
bv(λt) = λs

xD
s
λbv(x), s, μ, λ > 0. (2.10)

2.2 Tempered Fractional Integrals and Derivatives on R

Recently, Sabzikar et al. [22, (19)–(23)] introduced the tempered fractional integrals and
derivatives on the whole line.

Definition 2.2 (Tempered fractional integrals) For λ ∈ R
+
0 , the left tempered fractional

integral of a suitable function u(x) of order μ ∈ R
+ is defined by

−∞Iμ,λ
x u(x) = 1

�(μ)

∫ x

−∞
e−λ(x−y)

(x − y)1−μ
u(y) dy, x ∈ R, (2.11)

and the right tempered fractional integral of order μ ∈ R
+ is defined by

x I
μ,λ∞ u(x) = 1

�(μ)

∫ ∞

x

e−λ(y−x)

(y − x)1−μ
u(y) dy, x ∈ R. (2.12)

It is evident that by (2.2) and (2.11)–(2.12), we have

−∞Iμx = −∞Iμ,0
x , x I

μ∞ = x I
μ,0∞ , (2.13)

and

−∞Iμ,λ
x u(x) = e−λx −∞Iμx

{
eλx u(x)

}
, x I

μ,λ∞ u(x) = eλx
x I

μ∞
{
e−λx u(x)

}
. (2.14)

As shown in [22], the tempered fractional derivative can be characterized by its Fourier
transform. Recall that, for any u ∈ L2(R), its Fourier transform and inverse Fourier transform
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are defined by

F [u](ω) =
∫ ∞

−∞
u(x)e−iωx dx; u(x) = F−1[F [u](ω)

]
(x) = 1

2π

∫ ∞

−∞
F [u](ω)eiωx dω.

(2.15)
There holds the well-known Parseval’s identity:

∫ ∞

−∞
u(x) v(x) dx = 1

2π

∫ ∞

−∞
F [u](ω)F [v](ω) dω, (2.16)

where v̄ is the complex conjugate of v. Let H(x) be the Heaviside function, i.e., H(x) = 1
for x ≥ 0, and vanishing for all x < 0. Then we can reformulate the left tempered fractional
integral as

−∞Iμ,λ
x u(x) = 1

�(μ)

∫ ∞

0
yμ−1e−λyu(x − y) dy= 1

�(μ)

∫ ∞

−∞
yμ−1e−λy H(y) u(x − y) dy

= (K ∗ u
)
(x), where K (x) := xμ−1e−λx H(x)/�(μ).

(2.17)
Note that K (x) is related to the particle jump density (cf. [22, (8)]). Using the formula:
F [K ](ω) = (λ + iω)−μ, and the convolution property of Fourier transform (see, e.g., [23,
26]), we derive

F [−∞Iμ,λ
x u](ω) = F [K ∗ u](ω) = F [K ](ω)F [u](ω) = (λ + iω)−μF [u](ω). (2.18)

Similarly, the Fourier transform of the right tempered fractional integral is

F [x I
μ,λ∞ u](ω) = (λ − iω)−μF [u](ω). (2.19)

In view of (2.18)–(2.19), Sabzikar et al. [22] then introduced the left and right tempered
fractional derivatives as follows.

Definition 2.3 (Tempered fractional derivatives) For λ ∈ R
+
0 , the left and right tempered

fractional derivatives of order μ ∈ R
+ of a suitable function u(x), are defined by

F
[
−∞Dμ,λ

x u
]
(ω) = (λ + iω)μF [u](ω), F

[
xD

μ,λ∞ u
]
(ω) = (λ − iω)μF [u](ω), (2.20)

that is, for any x ∈ R,

−∞Dμ,λ
x u(x) = F−1[(λ + iω)μF [u](ω)

]
(x), xD

μ,λ∞ u(x)=F−1[(λ − iω)μF [u](ω)
]
(x).

(2.21)

Introduce the space

W μ,2
λ (R) :=

{
u ∈ L2(R) :

∫

R

(λ2 + ω2)μ
∣∣F [u](ω)

∣∣2dω < ∞
}
, μ, λ ∈ R

+. (2.22)

Thanks to the Parseval’s identity (2.16), the above tempered fractional derivatives are well-
defined for any u ∈ W μ,2

λ (R). Moreover, one verifies from (2.18)–(2.21) that

−∞Iμ,λ
x −∞Dμ,λ

x u(x) = u(x), x I
μ,λ∞ xD

μ,λ∞ u(x) = u(x), ∀ u ∈ W μ,2
λ (R);

−∞Dμ,λ
x −∞Iμ,λ

x u(x) = u(x), xD
μ,λ∞ x I

μ,λ∞ u(x) = u(x), ∀ u ∈ L2(R).
(2.23)

Similar to (2.14), we have the following explicit representations (see [13, Lemma 1 and
Remark 2]).
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Proposition 2.1 For any u ∈ W μ,2
λ (R), with λ ∈ R

+
0 , the left and right tempered fractional

derivatives of order μ ∈ [k − 1, k) with k ∈ N, have the explicit representations:

−∞Dμ,λ
x u(x) = e−λx −∞Dμ

x

{
eλx u(x)

}
, xD

μ,λ∞ u(x) = eλx
xD

μ∞
{
e−λx u(x)

}
, (2.24)

where −∞Dμ
x and xD

μ∞ are the Riemann–Liouville fractional derivative operators in Defi-
nition 2.1. Alternatively, we have

−∞Dμ,λ
x u(x) = (λ + D)k {−∞Ik−μ,λ

x u(x)
} = (λ + D)k {e−λx −∞Ik−μ

x

{
eλx u(x)

}};
xD

μ,λ∞ u(x) = (λ − D)k {
x I

k−μ∞ u(x)
} = (λ − D)k {eλx

x I
k−μ∞
{
e−λx u(x)

}}
.

(2.25)

We collect below some useful properties (see [22]).

Lemma 2.1 Given λ > 0 and μ ∈ [k − 1, k), k ∈ N, the tempered fractional derivative

−∞Dμ,λ
x u(x) = −∞Dk,λ

x −∞Ik−μ,λ
x u(x), xD

μ,λ∞ u(x) = xD
k,λ∞ x I

k−μ,λ∞ u(x). (2.26)

In addition, we have

−∞Iμ+ν,λ
x u(x) = −∞Iμ,λ

x −∞Iν,λ
x u(x), x I

μ+ν,λ∞ u(x) = x I
μ,λ∞ x I

ν,λ∞ u(x), (2.27)

−∞Dμ+ν,λ
x u(x) = −∞Dμ,λ

x −∞Dν,λ
x u(x), xD

μ+ν,λ∞ u(x) = xD
μ,λ∞ xD

ν,λ∞ u(x), (2.28)

(−∞Dμ,λ
x u, v) = (u, xD

μ,λ∞ v), (xD
μ,λ∞ u, v) = (u, −∞Dμ,λ

x v), (2.29)

where μ, ν ≥ 0.

Remark 2.1 For a suitable function f (x), x ∈ R
+, its reflection g(y) = f (−y), y ∈ R

−
satisfies

−∞Iμ,λ
y g(y) = e−λy

�(μ)

∫ y

−∞
eλτ (y − τ)μ−1 f (−τ)dτ

t=−τ= e−λy

�(μ)

∫ ∞

−y
e−λt (y + t)μ−1 f (t)dt

x=−y= eλx

�(μ)

∫ ∞

x
e−λt (t − x)μ−1 f (t)dt = x I

μ,λ∞ f (x).

(2.30)

Hence, we can use (2.26) and derivative relation
dk

dyk
= (−1)k dk

dxk
to obtain the tempered

derivative relation

−∞Dμ,λ
y f (−y) = xD

μ,λ∞ f (x), y = −x, x ∈ R
+. (2.31)

	

2.3 Laguerre Polynomials and Some Useful Formulas

For any a ∈ R and j ∈ N0, we recall that the rising factorial in the Pochhammer symbol and
the Gamma function have the relation:

(a)0 = 1; (a) j := a(a + 1) · · · (a + j − 1) = �(a + j)

�(a)
, for j ≥ 1. (2.32)

Recall the hypergeometric function (cf. [1]):

1F1(a; b; x) =
∞∑
j=0

(a) j

(b) j

x j

j ! , a, b, x ∈ R
+, −b /∈ N0. (2.33)
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If b − a > 0, then 1F1(a; b; x) is absolutely convergent for all x ∈ R. If a is a negative
integer, then it reduces to a polynomial.

The Laguerre polynomial with parameter α > −1 is defined as in Szegö [27, (5.3.3)]:

L(α)
n (x) = (α + 1)n

n! 1F1
(− n;α + 1; x

)
, n ≥ 1, x ∈ R

+, (2.34)

and L(α)
0 (x) ≡ 1. Note that

L(α)
n (0) = (α + 1)n

n! , (2.35)

and the Laguerre polynomials (with α > −1) are orthogonal with respect to the weight
function xαe−x , namely,

∫ ∞

0
L(α)

n (x) L(α)
m (x) xαe−x dx = γ α

n δmn, γ α
n = �(n + α + 1)

�(n + 1)
. (2.36)

They are eigenfunctions of the Sturm–Liouville problem:

x−αexD
(
xα+1e−xDL(α)

n (x)
)+ λn L(α)

n (x) = 0, λn = n. (2.37)

We have the following relations:

L(α)
n (x) = DL(α)

n (x) − DL(α)
n+1(x), (2.38)

xDL(α)
n (x) = nL(α)

n (x) − (n + α)L(α)
n−1(x), (2.39)

DL(α)
n (x) = −L(α+1)

n−1 (x) = −
n−1∑
k=0

L(α)
k (x). (2.40)

In particular, for α = −k, k = 1, 2, . . . (See Szegö [27, (5.2.1)]),

L(−k)
n (x) = (−1)k �(n − k + 1)

�(n + 1)
xk L(k)

n−k(x), n ≥ k.

For notational convenience, we denote

ha,b
n := �(n + 1 + a)

�(n + 1 + a − b)
. (2.41)

We present below some formulas related to Laguerre polynomials and fractional integrals
and derivatives, which play an important role in the algorithm development and analysis later.
We provide their derivations in “Appendix A”.

Lemma 2.2 For μ ∈ R
+, we have

0I
μ
x {xα L(α)

n (x)} = hα,−μ
n xα+μL(α+μ)

n (x), α > −1; (2.42)

0D
μ
x {xα L(α)

n (x)} = hα,μ
n xα−μL(α−μ)

n (x), α > μ − 1, (2.43)

and

x I
μ∞{e−x L(α)

n (x)} = e−x L(α−μ)
n (x), α > μ − 1; (2.44)

xD
μ∞{e−x L(α)

n (x)} = e−x L(α+μ)
n (x), α > −1. (2.45)

Moreover, we have that for k ∈ N and α > k − 1,

Dk{xαe−x L(α)
n (x)

} = �(n + k + 1)

�(n + 1)
xα−k L(α−k)

n+k (x)e−x . (2.46)
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3 Generalized Laguerre Functions

In this section, we introduce the generalized Laguerre functions (GLFs), and study its approx-
imation properties. In what follows, the operators 0I

μ,λ
x , 0D

μ,λ
x on the half line should be

understood as 0 in place of −∞ in (2.11) and (2.24)–(2.25).

3.1 Definition and Properties

We first introduce the GLFs and their associated properties related to tempered fractional
integrals/derivatives.

Definition 3.1 [GLFs] For real α ∈ R and λ > 0, we define the GLFs as

L(α,λ)
n (x) :=

{
x−αe−λx L(−α)

n (2λx), α < 0,

e−λx L(α)
n (2λx), α ≥ 0,

(3.1)

for all x ∈ R
+ and n ∈ N0.

Remark 3.1 It’s noteworthy that Zhang and Guo [29] introduced the GLFs

L̃
(α,β)

l (x) =
{

x−αe− β
2 x L(−α)

l (βx), α ≤ −1, l ≥ l̄α = [−α],
e− β

2 x L(α)
l (x), α > −1, l ≥ l̄α = 0,

(3.2)

where the scaling factor β > 0. It is seen that we modified the definition in the range of
0 < α < 1 (with β = 2λ). This turns out to be essential for the numerical solution of FDEs
of order μ ∈ (0, 1), as we shall see in the subsequent sections. 	


We next present the basic properties of GLFs. Firstly, one verifies readily from the orthog-
onality (2.36) and Definition 3.1 that for α ∈ R and λ > 0,

∫ ∞

0
L(α,λ)

n (x)L(α,λ)
m (x) xαdx = γ |α|,λ

n δnm, γ |α|,λ
n = γ

|α|
n

(2λ)|α|+1 , (3.3)

where γ
|α|
n is defined in (2.36).

We have the following important (left) “tempered” fractional integral and derivative rules.

Lemma 3.1 For μ, ν, λ, x ∈ R
+
0 , we have

0I
μ,λ
x L(−ν,λ)

n (x) = hν,−μ
n L(−ν−μ,λ)

n (x), (3.4)

0D
μ,λ
x L(−ν,λ)

n (x) = hν,μ
n L(μ−ν,λ)

n (x), ν ≥ μ, (3.5)

and
0D

μ+k,λ
x L(−μ,λ)

n (x) = (−2λ)khμ,μ
n L(k,λ)

n−k (x), n ≥ k ∈ N0, (3.6)

where ha,b
n is defined in (2.41).

Proof We obtain from (2.11) and (2.24)–(2.25) (with replacing −∞ by 0) that

0I
μ,λ
x L(−ν,λ)

n (x) = e−λx
0I

μ
x {eλxL(−ν,λ)

n (x)} = e−λx
0I

μ
x {xν L(ν)

n (2λx)},
and

0D
μ,λ
x L(−ν,λ)

n (x) = e−λx
0D

μ
x {eλxL(−ν,λ)

n (x)} = e−λx
0D

μ
x {xν L(ν)

n (2λx)}.
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Thus, from (2.9) and Lemma 2.2, we obtain (3.4)–(3.5).
Using (3.5) and the derivative relation (2.40) (with α = μ), we obtain

0D
μ+k,λ
x L(−μ,λ)

n (x) = 0D
k,λ
x 0D

μ,λ
x L(−μ,λ)

n (x) = e−λx Dk{eλx hμ,μ
n L(0,λ)

n (x)
}

= hμ,μ
n e−λxDk{L(0)

n (2λx)
} = (−2λ)khμ,μ

n L(k)
n−k(2λx) e−λx .

This leads to (3.6). 	

Similarly, we have the following rules of the (right) “tempered” fractional integrals and

derivatives.

Lemma 3.2 For μ, ν, λ, x ∈ R
+
0 , we have

x I
μ,λ∞ L(ν,λ)

n (x) = (2λ)−μL(ν−μ,λ)
n (x), ν ≥ μ, (3.7)

xD
μ,λ∞ L(ν,λ)

n (x) = (2λ)μL(μ+ν,λ)
n (x). (3.8)

Proof Identities (3.7) and (3.8) can be easily derived from (2.9), (2.10) and Lemma 2.2. 	

We highlight the fractional derivative formulas, which play an important role in the forth-

coming algorithm and analysis.

Theorem 3.1 Let k ∈ N and k − ν ≤ 0,

−∞Dk,λ
x

{L(−ν,λ)
n (x)

} = �(n + ν + 1)

�(n + ν − k + 1)
L(k−ν,λ)

n (x), (3.9)

xD
k,λ∞
{L(−ν,λ)

n (x)
} = (−1)k �(n + k + 1)

�(n + 1)
L(k−ν,λ)

n+k (x). (3.10)

Proof From Lemma 2.2 and relations

−∞Dk,λ
x u = e−λxDk{eλx u

}
, xD

k,λ∞ u = eλx (−1)kDk{e−λx u
}
, (3.11)

we obtain that for k − ν ≤ 0,

−∞Dk,λ
x

{
xνL(ν,λ)

n (x)
} = e−λx Dk{(2λ)−ν(2λx) ν L(ν)

n (2λx)
}

(2.43)= �(n + 1 + ν)

�(n + ν − k + 1)
xν−k L(ν−k)

n (2λx)e−λx = �(n + 1 + ν)

�(n + ν − k + 1)
L(k−ν,λ)

n (x),

and
xD

k,λ∞
{

xνL(ν,λ)
n (x)

} =eλx (−1)kDk{(2λ)−ν(2λx)ν L(ν)
n (2λx)e−2λx}

(2.46)= (−1)k �(n + k + 1)

�(n + 1)
xν−k L(ν−k)

n+k (2λx)e−λx

=(−1)k �(n + k + 1)

�(n + 1)
L(k−ν,λ)

n (x).

(3.12)

This ends the proof. 	

Another attractive property of GLFs is that they are eigenfunctions of Sturm–Liouville

problem.

Theorem 3.2 Let s, ν, x ∈ R
+
0 and n ∈ N0. Then,

xν
xD

s,λ∞ {xs−ν
0D

s,λ
x L(−ν,λ)

n (x)} = λ
s,ν
n,− L(−ν,λ)

n (x), ν − s ≥ 0, (3.13)

and
x−ν

0D
s,λ
x {xs+ν

xD
s,λ∞ L(ν,λ)

n (x)} = λ
s,ν
n,+ L(ν,λ)

n (x), (3.14)

where the corresponding eigenvalues λ
s,ν
n,− = (2λ)shν,s

n and λ
s,ν
n,+ = (2λ)shν+s,s

n .
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Proof Due to (3.5) and (3.8),

0D
s,λ
x L(−ν,λ)

n (x) = hν,s
n L(s−ν,λ)

n (x), xD
s,λ∞ L(ν−s,λ)

n (x) = (2λ)sL(ν,λ)
n (x).

It’s straightforward to obtain that

xν
xD

s,λ∞ {xs−ν
0D

s,λ
x L(−ν,λ)

n (x)} = hν,s
n xν

xD
s,λ∞ {xs−νL(s−ν,λ)

n (x)}
= hν,s

n xν
xD

s,λ∞ L(ν−s,λ)
n (x) = (2λ)shν,s

n L(−ν,λ)
n (x).

Similarly, we have

x−ν
0D

s,λ
x {xs+ν

xD
s,λ∞ L(ν,λ)

n (x)} = (2λ)s x−ν
0D

s,λ
x {xs+νL(s+ν,λ)

n (x)}
= (2λ)s x−ν

0D
s,λ
x L(−ν−s,λ)

n (x) = (2λ)shν+s,s
n L(ν,λ)

n (x).

This ends the derivation. 	

Remark 3.2 The above identities can be viewed as an extension of the standard Sturm–
Liouville problem of generalized Laguerre functions (cf. (2.37)) to the tempered fractional
derivative. We derive immediately from (3.13), (3.14) and the Stirling’s formula (see (3.23))
that for fixed s and ν,

λ
s,ν
n,− = λ

s,ν
n,+ = O

(
(2λn)s), n � 1.

When s → 1 and λ = 1/2, it recovers the O(n) growth of eigenvalues of the standard
Sturm–Liouville problem. 	

3.2 Approximation by GLFs

3.2.1 Approximation by
{L(−ν,λ)

n (x) : ν > 0
}∞

n=0

Denote byPN the set of all polynomials of degree atmost N , and define the finite dimensional
space

Fν,λ
N (R+) := {xνe−λx p(x) : p ∈ PN

}
, N ∈ N0. (3.15)

Define the L2
ω(R+) with the inner product and norm:

( f, g)ω :=
∫

R+
f ḡ ω dx, ‖ f ‖2ω = ( f, f )ω, (3.16)

whereω(x) be a genericweight function and ḡ is the conjugate of the function g. In particular,
we omit ω when ω ≡ 1.

To characterize the approximation errors, we define the non-uniformly weighted Sobolev
space

Am
ν,λ(R

+) :=
{

u ∈ L2
ω−ν (R

+) : 0Dν+k,λ
x u ∈ L2

ωk (R
+), k = 0, . . . , m

}
, m ∈ N0, (3.17)

equipped with the norm and semi-norm

‖u‖Am
ν,λ

:=
(
‖u‖2

ω−ν +
m∑

k=0

‖0Dν+k,λ
x u‖2

ωk

)1/2
, |u|Am

ν,λ
:= ‖0Dν+m,λ

x u‖ωm , (3.18)

where the weight function ωa(x) = xa .

Consider the orthogonal projection π
−ν,λ
N : L2

ω−ν (R
+) → Fν,λ

N (R+) defined by

(π
−ν,λ
N u − u, φ)ω−ν = 0, ∀φ ∈ Fν,λ

N (R+). (3.19)
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Then, by the orthogonality (3.3), u and its L2-orthogonal projection can be expanded as

u(x) =
∞∑

n=0

ûnL(−ν,λ)
n (x), (π

−ν,λ
N u)(x) =

N∑
n=0

ûnL(−ν,λ)
n (x), (3.20)

where

ûn = (u, L(−ν,λ)
n

)
ω−ν

/
γ ν,λ

n .

Theorem 3.3 For λ, ν > 0, we have that for any u ∈ Am
ν,λ(R

+) with m ≤ N + 1,

‖π−ν,λ
N u − u‖ω−ν ≤ c (2λN )−

ν+m
2 ‖0Dν+m,λ

x u‖ωm , (3.21)

and for any k ≤ m,

∥∥0Dν+k,λ
x

(
π

−ν,λ
N u − u

)∥∥
ωk ≤ c (2λN )

k−m
2 ‖0Dν+m,λ

x u‖ωm , (3.22)

where c ≈ 1 for large N .

Proof By (3.20), we have

(u − π
−ν,λ
N u)(x) =

∞∑
n=N+1

ûn L(−ν,λ)
n (x).

By the orthogonality (3.3) and (3.6),

∥∥0Dν+k,λ
x L(−ν,λ)

n

∥∥2
ωk = (−2λ)2k (hν,ν

n )2
∫ ∞

0

(
L(k)

n−k(2λx)
)2

e−2λxωk(x)dx = (dν,λ
n,k )2γ

k,λ
n−k,

where we denoted dν,λ
n,k := (2λ)k hν,ν

n and used the fact:

∫ ∞

0
L(k)

n−m(2λx)L(k)
n−k(2λx) e−2λxωkdx = γ k

n−k

(2λ)k+1 δkm = γ
k,λ
n−kδkm,

Thus we can obtain

‖π−ν,λ
N u − u‖2

ω−ν =
∞∑

n=N+1

(ûn)2γ ν,λ
n ,

∣∣π−ν,λ
N u − u

∣∣2
Ak

ν,λ
=

∞∑
n=N+1

(ûndν,λ
n,k )2γ

k,λ
n−k,

∣∣u∣∣2Am
ν,λ

=
∞∑

n=m

(ûndν,λ
n,m)2γ

m,λ
n−m .

Then one verifies readily that

‖π−ν,λ
N u − u‖2

ω−ν ≤ γ
ν,λ
N+1

(dν,λ
N+1,m)2γ

m,λ
N+1−m

∣∣u∣∣2Am
ν,λ

,

∣∣π−ν,λ
N u − u

∣∣2
Ak

ν,λ
≤
(

dν,λ
N+1,k

dν,λ
N+1,m

)2
γ

k,λ
N+1−k

γ
m,λ
N+1−m

∣∣u∣∣2Am
ν,λ

.

Recall the property of the Gamma function (see [1, (6.1.38)]):

�(x + 1) = √
2πx x+1/2 exp

(
− x + θ

12x

)
, ∀ x > 0, 0 < θ < 1. (3.23)
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One can then obtain that for any constants a, b, and for n ≥ 1, n + a > 1 and n + b > 1,

�(n + a)

�(n + b)
≤ νa,b

n na−b, (3.24)

where

νa,b
n = exp

( a − b

2(n + b − 1)
+ 1

12(n + a − 1)
+ (a − b)2

n

)
. (3.25)

Therefore,

γ
ν,λ
N+1

(dν,λ
N+1,m)2γ

m,λ
N+1−m

= �(N + 2 − m)

(2λ)ν+m�(N + 2 + ν)
≤ (2λ)−ν−mν2−m,2+ν

n N−ν−m,

(
dν,λ

N+1,k

dν,λ
N+1,m

)2
γ

k,λ
N+1−k

γ
m,λ
N+1−m

= (2λ)k�(N + 2 − m)

(2λ)m�(N + 2 − k)
< (2λ)k−mν2−m,2−k

n N k−m,

(3.26)

where ν
2−m,2+ν
n ≈ 1 and ν

2−m,2−k
n ≈ 1 for fixed m and n ≥ N � 1. Then (3.21)–(3.22)

follow. 	


3.2.2 Approximation by
{L(ν,λ)

n (x) : ν ≥ 0
}∞

n=0

Introduce the non-uniformly weighted Sobolev space:

Br
ν,λ(R

+) :=
{

u ∈ L2
ων (R

+) : xD
s,λ∞ u ∈ L2

ων+s (R
+), 0 ≤ s ≤ r

}
, r ∈ R

+
0 , (3.27)

endowed with the norm and semi-norm

‖u‖Br
ν,λ

:=
(
‖u‖2ων + |u|2Br

ν,λ

)1/2
, |u|Br

ν
:= ‖xD

ν+r,λ∞ u‖ων+r . (3.28)

Consider the orthogonal projection �
ν,λ
N : L2

ων (R+) → F0,λ
N (R+), defined by

(
�

ν,λ
N u − u, φ

)
ων = 0, ∀φ ∈ F0,λ

N (R+), ν > −1. (3.29)

Theorem 3.4 Let λ, r, ν > 0. For any u ∈ Br
ν,λ(R

+) with 0 ≤ s ≤ r ≤ N , we have
∥∥xD

s,λ∞
{
�

ν,λ
N u − u

}∥∥
ων+s ≤ c (2λN )

s−r
2 ‖xD

r,λ∞ u‖ων+r , (3.30)

where c ≈ 1 for large N .

Proof Note that by definition,

u − �
ν,λ
N u =

∞∑
n=N+1

ûnL(ν,λ)
n (x), ûn = (u, L(ν,λ)

n

)
ων

/
γ ν,λ

n .

Then by (3.8), and the orthogonality,

‖xD
s,λ∞ L(ν,λ)

n ‖2
ων+s = ‖(2λ)sL(ν+s,λ)

n ‖2
ων+s = (2λ)2sγ ν+s,λ

n ,

we can derive

∣∣�ν,λ
N u − u

∣∣2
Bs

ν,λ
=
∥∥∥

∞∑
n=N+1

ûn(2λ)sL(ν+s,λ)
n

∥∥∥
2

ων+s
=

∞∑
n=N+1

(ûn)2(2λ)2sγ ν+s,λ
n ,

∣∣u∣∣2Br
ν+r,λ

=
∥∥∥

∞∑
n=0

ûn(2λ)rL(ν+r,λ)
n

∥∥∥
2

ων+r
=

∞∑
n=0

(ûn)2(2λ)2rγ ν+r,λ
n .
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Then,

∣∣�ν,λ
N u − u

∣∣2
Bs

ν,λ
=

∞∑
n=N+1

û2
n(2λ)2sγ ν+s,λ

n ≤ (2λ)2s−2r γ
ν+s,λ
N+1

γ
ν+r,λ
N+1

∞∑
n=N+1

û2
n(2λ)2rγ ν+r,λ

n ,

where by (3.24)–(3.25) and an argument similar to (3.26), we obtain

γ
ν+s,λ
N+1

γ
ν+r,λ
N+1

= (2λ)r�(N + ν + s + 2)

(2λ)s�(N + ν + r + 2)
≤ c(2λ)r−s N s−r .

Consequently, we have

‖xD
s,λ∞
{
�

ν,λ
N u − u

}‖ων+s ≤ c (2λN )
s−r
2 |u|Br

ν,λ
.

This ends the proof. 	

3.3 A Model Problem and Numerical Results

In what follows, we consider the GLF approximation to amodel tempered fractional equation
of order s ∈ [k − 1, k) with k ∈ N :

0D
s,λ
x u(x) = f (x), x ∈ R

+, λ > 0; u( j)(0) = 0, j = 0, 1, . . . , k − 1, (3.31)

where f ∈ L2(R+) is a given function. Using the fractional derivative relation (2.7), one can
find

u(x) = 0I
s,λ
x f (x) +

k∑
i=1

ci xs−i e−λx ,

where {ci } can be determined by the conditions at x = 0. In fact, we have all ci = 0, and

u(x) = 0I
s,λ
x f (x) = e−λx

�(s)

∫ x

0
(x−τ)s−1eλτ f (τ )dτ = xs

�(s)

∫ 1

0
(1−t)s−1e−λ(1−t)x f (xt)dt.

(3.32)
We see that if f (x) is smooth, then u(x) = xs F(x), where F(x) is smoother than f (x).

With this understanding, we construct the GLF Petrov–Galerkin approximation as: find uN ∈
F s,λ

N (R+) (defined in (3.15)) such that

(0D
s,λ
x uN , vN ) = ( f, vN ), ∀ vN ∈ F0,λ

N (R+). (3.33)

We expand f and uN as

f (x) =
∞∑

n=0

f̂nL(0,λ)
n (x), uN =

N∑
n=0

ûnL(−s,λ)
n (x). (3.34)

Using the derivative relation (3.5), we find immediately that ûn = f̂n/hs,s
n for n =

0, 1, . . . , N , which also implies 0D
s,λ
x uN = π

0,λ
N f.

Moreover, we can show that the numerical solution uN is precisely the orthogonal pro-
jection in the following sense:

(uN − u , wN )ω−s = 0, ∀ wN ∈ F s,λ
N (R+). (3.35)

To this end, we first show

(uN − u , xD
s,λ∞ vN ) = (0D

s,λ
x uN − 0D

s,λ
x u, vN ) = 0, ∀ vN ∈ F0,λ

N (R+). (3.36)
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Fig. 1 Convergence of the GLF approximation to (3.31) with f (x) = e−x sin x .

Indeed, thanks to u( j)(0) = 0 for j = 0, . . . , k − 1, we have

0D
s,λ
x {uN − u} = e−λx

0D
s
x {eλx (uN − u)} = e−λx

0I
k−s
x 0D

k
x {eλx (uN − u)}.

Then, (
0D

s,λ
x uN − 0D

s,λ
x u , vN

) =
(
0I

k−s
x 0D

k
x {eλx (uN − u)}, e−λxvN

)

=
(

eλx (uN − u) , (−1)kDk
x I

k−s,λ∞ vN

)
= (uN − u , xD

s,λ∞ vN
)
,

so (3.36) is valid. In addition, thanks to Lemma 2.2 and (2.10), we have

xD
s,λ∞ L(0,λ)

n (x) = eλx
xD

s∞
{
e−2λx L(0)

n (2λx)
} = (2λ)se−λx L(s)

n (2λx) = (2λ)s x−sL(−s,λ)
n (x).

Hence, (3.35) is valid.
Thanks to (3.35), we derive from Theorem 3.3 the following estimate where the conver-

gence rate only depends on the regularity of the source term.

Theorem 3.5 Let u and uN be respectively the solutions of (3.31) and (3.33). Then for
0D

m,λ
x f ∈ L2

ωm (I ) with m ∈ N0, we have

‖u − uN ‖ω−s ≤ c (2λN )−
s+m
2 ‖0Ds+m,λ

x u‖ωm = c (2λN )−
s+m
2 ‖0Dm,λ

x f ‖ωm , (3.37)

where c ≈ 1 for large N .

We provide some numerical results to illustrate the convergence behaviour. We take
f (x) = e−x sin x and then evaluate the exact solution by (3.32). Note that as 0D

m,λ
x f =

e−λx Dm{eλx f }, a direct calculation leads to

e−λxDm{eλx f } = e−λx
m∑

k=0

(
m

k

)
λm−keλx Dk f =

m∑
k=0

(
m

k

)
λm−kDk f.

We infer from (3.37) that the spectral accuracy can be achieved by the GLF approximation.
Indeed, we observe from Fig. 1 such a convergence behaviour.

4 Application to Tempered Fractional Diffusion Equation on the Half Line

In this section, we apply the GLFs to solve a tempered fractional diffusion equation on the
half line.
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4.1 The Tempered Fractional Diffusion Equation on the Half Line

Consider the tempered fractional diffusion equation of order μ ∈ (0, 1) on the half line:

⎧⎪⎨
⎪⎩

∂t u(x, t) + 0D
μ,λ
x u(x, t) − λμu(x, t) = f (x, t), (x, t) ∈ R

+ × (0, T ],
u(0, t) = 0, lim

x→∞ u(x, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ R
+.

(4.1)

This equationmodels the particles jumping on the half lineR+ with the probability density
function (see [22, (8)]):

fε(x) = C−1
ε x−μ−1e−λx1(ε,∞)(x), 0 < μ < 1.

Remark 4.1 Note that (4.1) can be viewed as the TFDE (1.3) on the half line with

∂
μ,λ
+,x u = 0D

μ,λ
x u − λμu, 0 < μ < 1.

Indeed, we can show that for μ ∈ (0, 1) and real λ > 0,

0D
μ,λ
x u = e−λx

0D
μ
x

{
eλx u(x)

} = e−λx −∞Dμ
x

{
eλx ũ(x)

}
, x ∈ R

+,

where ũ = u for x ∈ R
+ and ũ = 0 for x ∈ (−∞, 0). Moreover, we have

F
[
e−λx −∞Dμ

x

{
eλx ũ(x)

}]
(ω) =

∫

R

D−∞I1−μ
x

{
eλx ũ(x)

}
e−(λ+iω)xdx

= (λ + iω)

∫

R

−∞I1−μ
x

{
eλx ũ(x)

}
e−(λ+iω)xdx

=(λ + iω)

∫

R

eλx ũ(x) x I
1−μ∞ e−(λ+iω)xdx

= (λ + iω)μF [ũ](ω)
(2.20)= F

[
−∞Dμ,λ

x ũ(x)
]
(ω).

This implies ũ ∈ W μ,2
λ (R) and the extended tempered fractional derivative 0D

μ,λ
x u can be

understood in the sense of the original definition in [22].

4.2 Spectral-Galerkin Scheme

Observe from Remark 4.1 that the identities (2.29) are also valid on R+. A weak form of the
problem (4.1) is to find u(·, t) ∈ W μ/2,2

λ (R+) such that
{(

∂t u(·, t), v
)+ aμ,λ

(
u(·, t), v

) = ( f (·, t), v
)
, ∀v ∈ W μ/2,2

λ (R+), 0 < t ≤ T,(
u(·, 0), v) = (u0, v), ∀v ∈ W μ/2,2

λ (R+)

(4.2)
where the spaceW μ/2,2

λ (R+) consists of all functionswhose zero extensions are inW μ/2,2
λ (R)

(cf. (2.22)), and the bilinear form reads

aμ,λ(u, v) : = (0D
μ/2,λ
x u, xD

μ/2,λ∞ v) − λμ(u, v). (4.3)

The semi-discrete Galerkin approximation scheme is to find uN (·, t) ∈ Fν,λ
N (R+) such

that (
∂t uN (·, t), v

)+ aμ,λ

(
uN (·, t), v

) = ( f (·, t), v
)
, ∀v ∈ Fν,λ

N (R+), (4.4)
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with

uN (x, 0) = π
−ν,λ
N u0(x) =

N∑
n=0

c0,n L(−ν,λ)
n (x),

where the projection operatorπ−ν,λ
N is defined in (3.19)withmax

{
0, μ−1/2

}
< ν ≤ 1.Note

that the boundary condition u(0, t) = 0 is automatically met, and we choose the parameter
ν is to better fit the singularity behavior of the solution near x = 0.

Remark 4.2 We show in next section (see Theorem 5.1 and Remark 5.1) the positivity of the
bilinear form, that is, for any 0 �= v ∈ W μ/2,2

λ (R+), aμ,λ(v, v) > 0. Then we can show the
stability of the solutions of (4.2) and (4.4) as in (5.9) (with R

+ in place of R). Moreover,
we can conduct the error analysis of the semi-discrete scheme by using the approximation
results in Sect. 3, and following a standard argument for usual diffusion equations. 	

4.3 Numerical Algorithm

Now, set

uN (x, t) =
N∑

n=0

cn(t) ϕn(x), ϕn(x) := L(−ν,λ)
n (x). (4.5)

We derive from the scheme (4.4) that

M
d

dt
c(t) + Ac(t) = f(t); c(0) = c0. (4.6)

where for fixed t > 0, vectors

c(t) = (c0(t), c1(t), . . . , cN (t)
)T

, c0 = (c0,0(t), c0,1(t), . . . c0,N (t)
)T

,

f(t) = ( f0(t), f1(t), . . . fN (t)
)T

, fn(t) = ( f, ϕn), 0 ≤ n ≤ N .
(4.7)

Note that for any u, v ∈ Fν,λ
N (R+), there exists

(0D
μ/2,λ
x u, xD

μ/2,λ∞ v) = (0D
μ,λ
x u, v).

ThemassmatrixM and the stiffnessmatrix S can be computed by Laguerre-Gauss quadrature
formula. In fact, by using the tempered fractional derivative relations (3.5), it’s straightforward
to obtain that for m, n = 0, 1, 2, . . . , N ,

Mmn = (ϕn, ϕm) = (L(−ν,λ)
n ,L(−ν,λ)

m

)
,

Amn = aμ(ϕn, ϕm) = hν,μ
n

(L(μ−ν,λ)
n ,L(−ν,λ)

m

)− λμMmn,
(4.8)

where hν,μ
n = �(n + 1 + ν)/�(n + 1 + ν − μ) was defined in (2.41).

4.4 Numerical Results

Typically, we test three cases as follows.

(i) Choose the exact solution to be u(x, t) = xe−λx cos (t). By a direct calculation, the
source term is given by

f (x, t) = −xe−λx sin(t) +
( �(2)

�(2 − μ)
x1−μ − λμx

)
e−λx cos (t).
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Fig. 3 TFDE with f ≡ 0, λ = 2/3, μ = 2/3. Left Profiles of the solutions at different time. Right
Convergence behavior for different ν at t = 10.

Figure 2 (left) illustrates that the error decays to zero rapidly for the spectralmethod built
upon the GLF basis with ν = −1 and N = 50, and the third-order explicit Runge-Kutta
method in time with λ = μ = 2/3 and time stepping size h ∈ (10−3, 10−1).

(ii) Set f (x, t) = cos(x)e−x sin(t), and choose λ,μ as above. Figure 2 (right) verifies that
the solution is singular even though f (x, t) is a smooth function. Here, we compare the
error with an reference “exact” solution computed with N = 100.

(iii) Consider f (x, t) ≡ 0, and let μ = 2/3, λ = 2/3 in (4.1). Figure 3 (left) exhibits
the evolution of the tempered fractional diffusion model with the initial distribution
u0(x) = xe−x . Figure 3 (right) shows the convergence rate of the scheme, where the
error is compared with the reference solution u100(x, t) with different ν at t = 10.

5 Tempered Fractional Diffusion Equation on the Whole Line

In this section,wepresent amulti-domain spectral-elementmethod for the tempered fractional
diffusion equation on the whole line originally proposed by [22].
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5.1 Tempered Fractional Diffusion Equation

Consider the tempered fractional diffusion equation of order μ ∈ (k − 1, k), k = 1, 2 on the
whole line: ⎧⎨

⎩
∂t u(x, t) + Aμ,λ

p,q u(x, t) = f (x, t), x ∈ R, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ R; lim|x |→∞ u(x, t) = 0, 0 ≤ t ≤ T,
(5.1)

where p, q are nonnegative constants such that p + q = 1, and f, u0 are given functions.
Here, we denote

Aμ,λ
p,q u = (−1)k−1{p∂

μ,λ
+,x + q∂

μ,λ
−,x

}
u, (5.2)

where the involved fractional operators are

(i) for 0 < μ < 1,

∂
μ,λ
+,x u = −∞Dμ,λ

x u − λμu, ∂
μ,λ
−,x u = xD

μ,λ∞ u − λμu; (5.3)

(ii) for 1 < μ < 2,

∂
μ,λ
+,x u = −∞Dμ,λ

x u −μλμ−1∂x u −λμu, ∂
μ,λ
−,x u = xD

μ,λ∞ u +μλμ−1∂x u −λμu. (5.4)

We refer to Definition 2.3 for the tempered derivative operators.
A weak form of (5.1) is to find u(·, t) ∈ V μ

λ (R) for 0 < t ≤ T, such that
{

∂t (u(·, t), v) + aμ,λ
p,q (u(·, t), v) = ( f (·, t), v), ∀ v ∈ V μ

λ (R), 0 < t ≤ T,

(u(·, 0), w) = (u0, w), ∀ w ∈ V μ
λ (R),

(5.5)

where (·, ·) is the inner product of L2(R) as before. The space V μ
λ (R) and the bilinear form

aμ,λ
p,q (·, ·) are defined as
(i) for 0 < μ < 1, and u, v ∈ V μ

λ (R) = W μ/2,2
λ (R) ∩ L2(R) (cf. (2.22)),

aμ,λ
p,q (u, v) = p

(
−∞Dμ/2,λ

x u, xD
μ/2,λ∞ v

)+q
(

xD
μ/2,λ∞ u, −∞Dμ/2,λ

x v
)−λμ (u, v), (5.6)

(ii) for 1 < μ < 2, and u, v ∈ V μ
λ (R) = W μ−1,2

λ (R) ∩ H1(R),

aμ,λ
p,q (u, v) = − p(−∞Dμ−1,λ

x u, xD
1,λ∞ v) − q(xD

1,λ∞ u, −∞Dμ−1,λ
x v)

+ λμ(u, v) + (p − q)μλμ−1(∂x u, v).
(5.7)

Note that in (5.7), xD
1,λ∞ u = λu − ∂x u (cf. (2.25)).

Importantly, we can show that the involved bilinear form is strictly positive, so the well-
posedness of (5.5) folows.

Theorem 5.1 For any 0 �= v ∈ V μ
λ (R) with μ ∈ (0, 1) ∪ (1, 2) and λ > 0, we have

aμ,λ
p,q (v, v) > 0. (5.8)

If u0 ∈ L2(R) and f ∈ L2(R × (0, T )), then the problem (5.5) has a unique solution
u ∈ L∞(0, T ; V μ

λ (R)) such that

‖u(·, t)‖2L2(R)
≤ et

(
‖u0‖2L2(R)

+
∫ t

0
‖ f (·, s)‖2L2(R)

ds
)
, ∀ 0 ≤ t ≤ T, (5.9)
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Proof We first consider 0 < μ < 1. Using (2.20) and the Parseval’s identity (2.16), leads to

(
−∞Dμ/2,λ

x v, xD
μ/2,λ∞ v

) =
∫

R

(λ + iω)μ
∣∣F [v](ω)

∣∣2dω

=
∫

R

(λ2 + ω2)
μ
2 eiμ�(ω)

∣∣F [v](ω)
∣∣2dω (5.10)

where �(ω) is the argument of λ + iω, i.e.,

�(ω) = arccos (λ/
√

λ2 + ω2), if ω > 0, �(ω) = − arccos (λ/
√

λ2 + ω2), if ω < 0.
(5.11)

It is evident that�(ω) is odd in ω. In fact, for real function v,
∣∣F [v](ω)

∣∣2 is an even function
inω, thanks to the propertyF [v](ω) = F [v](−ω), which can be derived from the definition
(2.15) straightforwardly. Thus, we derive from (5.10) that

(
−∞Dμ/2,λ

x v, xD
μ/2,λ∞ v

) = 2
∫ ∞

0
(λ2 + ω2)

μ
2 cos(μ�(ω))

∣∣F [v](ω)
∣∣2dω. (5.12)

For notational convenience, we denote

Kμ(ω) := (λ2 + ω2)
μ
2 cos(μ�(ω)). (5.13)

Noting that

�′(ω) = λ

λ2 + ω2 , cos� = λ√
λ2 + ω2

, sin� = ω√
λ2 + ω2

,

we find

K′
μ(ω) = μ(λ2 + ω2)

μ−1
2

(
ω√

λ2 + ω2
cos(μ�) − λ√

λ2 + ω2
sin(μ�)

)

= μ(λ2 + ω2)
μ−1
2 sin

(
(1 − μ)�

)
.

(5.14)

As � ∈ (0, π/2), Kμ(ω) is ascending with respect to ω, when μ ∈ (0, 1). Consequently,
for μ ∈ (0, 1),

Kμ(ω) > Kμ(0) = λμ, ∀ ω > 0. (5.15)

Combing (5.12) and (5.15) leads to

(
−∞Dμ/2,λ

x v, xD
μ/2,λ∞ v

) = 2
∫ ∞

0
Kμ(ω)

∣∣F [v](ω)
∣∣2dω

> 2λμ

∫ ∞

0

∣∣F [v](ω)
∣∣2dω = λμ‖v‖2L2(R)

,

where in the last, we used the property |F [v](ω)|2 is even in ω. As p + q = 1, we obtain
from (5.6) and the above that

aμ,λ
p,q (v, v) = (−∞Dμ/2,λ

x v, xD
μ/2,λ∞ v

)− λμ ‖v‖2L2(R)
> 0. (5.16)

For 1 < μ < 2, we can follow the same derivation and show that

(−∞Dμ−1,λ
x v, xD

1,λ∞ v) = 2
∫ ∞

0
Kμ(ω)

∣∣F [v](ω)
∣∣2dω, (5.17)

but by (5.14), we have K′
μ(ω) < 0, so

Kμ(ω) < Kμ(0) = λμ, ∀ ω > 0. (5.18)
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Observe that

(v′, v) = 1

2

∫

R

(v2(x))′ dx = 0. (5.19)

From (5.7) and (5.17)–(5.19), we obtain

aμ,λ
p,q (v, v) = −(−∞Dμ−1,λ

x v, xD
1,λ∞ v) + λμ ‖v‖2L2(R)

> 0. (5.20)

This ends the proof of (5.8).
Next, taking v = u in (5.5), we obtain from the Cauchy–Schwarz inequality that

1

2

d

dt
‖u(·, t)‖2L2(R)

+ aμ,λ
p,q (u(·, t), u(·, t)) = ( f (·, t), u(·, t))

≤ ‖ f (·, t)‖L2(R+)‖u(·, t)‖L2(R),

(5.21)

which, together with (5.8), implies

d

dt
‖u(·, t)‖2L2(R)

≤ ‖u(·, t)‖2L2(R)
+ ‖ f (·, t)‖2L2(R+)

, ∀ 0 ≤ t ≤ T . (5.22)

We immediately obtain (5.9), which implies the uniqueness of the solution. The existence
follows form the equivalence of uniqueness and existence for linear problems. 	


Remark 5.1 We see from the proof that the same result is valid forμ ∈ (0, 1) and u(x, 0) = 0
on the half lineR+ through zero extension. Therefore, we can show the stability of the model
in the previous section (see Remark 4.2). 	

5.2 A Two-Domain Spectral-Element Method

An interesting observation of the model in [22] (i.e., (5.1)) is its solution might have a limited
regularity across x = 0. This motivates us to use the Laguerre polynomial approximations
on (−∞, 0) and (0,∞), respectively. Thus, we decompose the whole line as

R = �1 ∪ �2, �1 = (−∞, 0), �2 = [0,∞),

and denote u� j (x, t) := u(x, t)
∣∣
� j

, j = 1, 2. Introduce the approximation space:

V λ
N (R) := {φ ∈ C(R) : φ(x) = e−λ|x | p, p|�i ∈ PNi −1(�i )

}
, (5.23)

and define

φ∗(x) = e−λ|x |, φ−
n1(x) =

{
L(−1,λ)

n1 (−x), x ≤ 0,

0, x > 0,
φ+

n2(x) =
{
0, x ≤ 0,

L(−1,λ)
n2 (x), x > 0,

(5.24)
where L(−1,λ)

n (x) = e−λx x L(1)
n (2λx). One verifies readily that

V λ
N (R) = span

{
φ∗(x); φ−

n1(x), 0 ≤ n1 ≤ N1 − 1; φ+
n2(x), 0 ≤ n2 ≤ N2 − 1

}
. (5.25)

Then, our semi-discrete spectral-Galerkin method is to find uN (·, t) ∈ V λ
N (R) such that

{(
∂t uN (·, t), v

) + aμ,λ
p,q
(
uN (·, t), v

) = ( f (·, t), v
)
, ∀v ∈ V λ

N (R),(
uN (·, 0), v) = (u0, v), ∀v ∈ V λ

N (R).
(5.26)
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We provide below some details of the algorithm.

uN (x, t) = c∗(t)φ∗(x) +
N1−1∑
n1=0

c−
n1(t)φ

−
n1(x) +

N2−1∑
n2=0

c+
n2(t)φ

+
n2(x),

uN (x, 0) = c∗
0φ

∗(x) +
N1−1∑
n1=0

c−
0,n1

φ−
n1(x) +

N2−1∑
n2=0

c+
0,n2

φ+
n2(x).

(5.27)

Let H(x) be the Heaviside function as before. Thanks to the tempered fractional derivative
and integral relations with GLFs, and a reflected mapping from positive half line R

+ to
negative half line R−, we can derive the following identities (see “Appendix B”):

xD
1,λ∞ φ∗(x) = −2λe−λx H(x), xD

1,λ∞ φ−
n1(x) = (n1 + 1)L(0,λ)

n1 (−x)H(−x),

−∞Ds,λ
x φ∗(x) =

⎧⎨
⎩

(2λ)seλx , x ≤ 0,
2λeλx

�(1 − s)

∫ ∞

x

e−2λt

t s
dt, x > 0,

−∞Ds,λ
x φ−

n1(x) =

⎧⎪⎨
⎪⎩

−(2λ)s−1(n1 + 1)L(s−1)
n1+1 (−2λx)eλx , x ≤ 0,

−eλx n1 + 1

�(1 − s)

∫ ∞

x

L(0)
n1+1(2λ(t − x))e−2λt

t s
dt, x > 0,

xD
1,λ∞ φ+

n2(x) = −(n2 + 1)L(0,λ)
n2+1(x)H(x),

−∞Ds,λ
x φ+

n2(x) = �(n2 + 2)

�(n2 + 2 − s)
x1−sL(1−s,λ)

n2 (x)H(x).

(5.28)

Then (5.26) leads to the linear system of ordinary differential equations:

M
d

dt

−→
C (t) + A

−→
C (t) = −→

F (t), (5.29)

where
−→
C (t) = (c∗(t),−→C −(t),

−→
C +(t)

)T
,

−→
F (t) = ( f ∗(t),−→F −(t),

−→
F +(t)

)T
,

−→
C −(t) = (c−

0 (t), c−
1 (t), . . . , c−

N1−1(t)
)T

,
−→
C +(t) = (c+

0 (t), c+
1 (t), . . . , c+

N2−1(t)
)T

.

−→
F −(t) = ( f −

0 (t), f −
1 (t), . . . , f −

N1−1(t)
)T

,
−→
F +(t) = ( f +

0 (t), f +
1 (t), . . . , f +

N2−1(t)
)T

.

f ∗(t) = ( f, φ∗), f −
n1(t) = ( f, φ−

n1), f +
n2(t) = ( f, φ+

n2), 0 ≤ ni ≤ Ni − 1, i = 1, 2,

and the matrices

M =

⎛
⎜⎜⎜⎜⎜⎝

M(∗,∗)
1×1 M(∗,−)

1×N1
M(∗,+)

1×N2

M(−,∗)
N1×1 M(−,−)

N1×N1
M(−,+)

N1×N2

M(+,∗)
N2×1 M(+,−)

N2×N1
M(+,+)

N2×N2

⎞
⎟⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎜⎝

A(∗,∗)
1×1 A(∗,−)

1×N1
A(∗,+)
1×N2

A(−,∗)
N1×1 A(−,−)

N1×N1
A(−,+)

N1×N2

A(+,∗)
N2×1 A(+,−)

N2×N1
A(+,+)

N2×N2

⎞
⎟⎟⎟⎟⎟⎠

, (5.30)

with the entries

M(a,b)
c×d (i + 1, j + 1) = (φb

j , φ
a
i ), A(a,b)

c×d (i + 1, j + 1) = aμ,λ
p,q (φb

j , φ
a
i ),

a, b = ∗,−,+, c, d = 1, N1, N2, 0 ≤ i ≤ c − 1, 0 ≤ j ≤ d − 1,
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Fig. 4 Left f (x, t) = (1 + x2)−1. Right f (x, t) = cos t e−x2

and
−→
C (0) is determined by the initial data.

The derivation of the tempered derivative relation (5.28), and of the entries of the matrix
A can be found in “Appendix B”. Base on the semi-discrete scheme (5.29), we further use
the third-order explicit Runge-Kutta method in time direction with step size h = 10−3 to
numerically solve the problem.

5.3 Numerical Results

We solve (5.1) with CT = 1 and u0 = 10e−5|x | as the initial distribution by using the
proposed method. We first test its accuracy. In Fig. 4, we plot the convergence rate of the
spectral method at T = 5 with fixed time step h = 10−3. We choose a slow decay f (x, t) =
(1 + x2)−1, and an exponential decay f (x, t) = cos t e−x2 , respectively. Observe from
Fig. 4 an exponential convergence for the latter, but an algebraic convergence for the former.
In fact, we expect the solution with f (x, t) = cos t e−x2 decays exponentially in space.
Indeed, as the Fourier transform of the Gaussian e−x2 is invariant, so we can use the model
by using Fourier transform and then solve the resulted equation. However, the solution with
f (x, t) = (1 + x2)−1 should decay very slowly. As a result, we observe a very different
convergence behavior.

Next, we examine behaviors of the solution under various situations. In Fig. 5, we plot
the snapshots at different times of the tempered fractional diffusion with p = 1/3, q = 2/3
and p = 3/4, q = 1/4, respectively. The case with p = q = 1/2 is plotted in Fig. 6.

• The parameters p and q reflect the directional preference of the particle jumping. More
precisely, if p > q , the particles tend to jump to the right, and if p < q , the particles
tend to jump to the left, see Fig. 5. In particular, p = q produces a symmetric profile in
the case of f (x, t) = 0, see the left in Fig. 6.

• The parameter λ determines the probability of the jump distance of the particles. A larger
λ indicates a shorter jump distance, see the right of Fig. 6.

• To compare with the usual fractional diffusion equation, i.e., λ = 0, , we plot in Fig. 7
the particle distributions of the usual fractional diffusion and the tempered fractional
diffusion with initial distribution u0(x) = 10e−4x2 at time t = 10. We observe that the
tail of the tempered fractional diffusion behaves like |x |−μ−1e−λ|x | for large |x | while
that that of the usual fractional diffusion behaves like |x |−μ−1.
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Fig. 5 Left p = 1/3, q = 2/3. Right p = 3/4, q = 1/4.

Fig. 6 Left p = q = 1/2, λ = 5/2. Right p = q = 1/2, t = 2.

Fig. 7 Initial distribution u0(x) = 10e−4x2
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6 Concluding Remarks

Wepresented in this paper efficient spectralmethods using the generalizedLaguerre functions
for solving the tempered fractional differential equations on infinite intervals. Our numerical
methods and analysis are based on an important observation that the tempered fractional
derivative, when restricted to the half line, is intrinsically related to the generalized Laguerre
functions that we defined in Sect. 3. By exploring the properties of generalized Laguerre
functions, we derived optimal approximation results in properly weighted Sobolev spaces. In
Sect. 4, we developed a spectral-Galerkin method for solving a tempered fractional diffusion
equation on the half line. Finally, we presented a spectral-Galerkin method for solving the
tempered fractional diffusion equation on the whole line in Sect. 5. More importantly, we
rigorously showed the well-posedness of the tempered fractional model in [22]. Also to the
best of our knowledge, this is perhaps the first attempt in solving this model directly on
infinite intervals, and also show the well-posedness of the models in [22]. Indeed, a finite-
difference approach on a truncated domain was employed in [22]. Moreover, our numerical
results demonstrated some expected properties and behaviors of the underlying solution of
such a tempered diffusion model.

Appendix A: Proof of Lemma 2.2

We first prove (2.42)–(2.43). Recall the fractional integral formula of hypergeometric func-
tions see [2, P. 287]: for real b, μ ≥ 0,

xb+μ−1
1F1(a; b+μ; x) = �(b + μ)

�(b)�(μ)

∫ x

0
(x −t)μ−1tb−1

1F1(a; b; t) dt, x ∈ R
+. (A.1)

Taking a = −n, b = α + 1 and using the hypergeometric representation (2.34) of the
Laguerre polynomials, we obtain

xα+μL(α+μ)
n (x) = �(n + α + μ + 1)

�(n + α + 1)�(μ)

∫ x

0
(x − t)μ−1tα L(α)

n (t) dt,

which yields (2.42), i.e.,

0I
μ
x {xα L(α)

n (x)} = hα,−μ
n xα+μ L(α+μ)

n (x).

Then, performing 0D
μ
x on both sides and taking α + μ → α, we derive from the relation

(2.7) that for α − μ > −1,

0D
μ
x {xα L(α)

n (x)} = 1

hα−μ,−μ
n

xα−μL(α−μ)
n (x) = �(n + α + 1)

�(n + α − μ + 1)
xα−μL(α−μ)

n (x).

This leads to (2.43).
We now turn to (2.44)–(2.45). According to [20, (6.146), P. 191 ] (or [21, (B-7.2), P. 307]),

we have
x I

μ∞{e−x L(α+μ)
n (x)} = e−x L(α)

n (x), α > −1, μ > 0.

Similarly, from the property: xD
μ∞x I

μ∞ u(x) = u(x), we derive

xD
μ∞{e−x L(α)

n (x)} = e−x L(α+μ)
n (x).

Finally, we prove (2.46). Noting that

1F1(a; c; x) = ex
1F1(c − a; c;−x), (A.2)
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(cf. [2, P. 191]), we derive from (2.34) and (A.2) that

xα L(α)
n (x)e−x = xα (α + 1)n

n! 1F1
(− n;α + 1; x

)
e−x

= (α + 1)n

n! xα
1F1
(
n + α + 1;α + 1;−x

) = (α + 1)n

n! xα
1F1
(
n + α + 1;α + 1;−x

)

= (α + 1)n

n!
∞∑
j=0

(n + α + 1) j (−1) j

(α + 1) j

x j+α

j ! . (A.3)

Then acting the derivative Dk on (A.3) and using the identities (2.34), (A.2) again, we obtain

Dk{xα L(α)
n (x)e−x} = (α + 1)n

n!
∞∑
j=0

(n + α + 1) j (−1) j

(α + 1) j

Dk x j+α

j !

= (α + 1)n

n!
∞∑
j=0

(n + α + 1) j (−1) j

(α + 1) j

�( j + α + 1)

�( j + α − k + 1)

x j+α−k

j !

= xα−k (α + 1)n

n!
�(α + 1)

�(α − k + 1)

∞∑
j=0

(n + α + 1) j

(α − k + 1) j

(−x) j

j !

= xα−k (α − k + 1)n+k

n! 1F1
(
n + α + 1;α − k + 1;−x

)

= (n + k)!
n! xα−k (α − k + 1)n+k

(n + k)! 1F1
(− n − k;α − k + 1; x

)
e−x

= �(n + k + 1)

�(n + 1)
xα−k L(α−k)

n+k (x)e−x .

This ends the proof.

Appendix B: Derivation of (5.28) and the Entries of A

Derivation of (5.28)

• for x ∈ R
−, 0 < s < 1,

−∞Ds,λ
x φ∗(x) = −∞I1−s,λ

x −∞D1,λ
x φ∗(x) = e−λx

�(1 − s)

∫ x

−∞
eλτ (2λ)eλτ

(x − τ)s
dτ

t=x−τ= 2λe−λx

�(1 − s)

∫ ∞

0

e2λ(x−t)

t s
dt = (2λ)seλx

�(1 − s)

∫ ∞

0
e−2λt (2λt)−sd(2λt)

= (2λ)seλx ,

−∞Ds,λ
x φ−

n1(x) = −∞I1−s,λ
x −∞D1,λ

x φ−
n1(x)

(3.10)= −∞I1−s,λ
x {−(n1 + 1)L(0,λ)

n1+1(−x)}
(2.44)= −(n1 + 1)(2λ)s−1L(s−1)

n1+1 (−2λx)e−λx

−∞Ds,λ
x φ+

n2(x) = 0
(B.1)
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• for x ∈ R
+, 0 < s < 1,

−∞Ds,λ
x φ∗(x) = −∞I1−s,λ

x −∞D1,λ
x φ∗(x)= e−λx

�(1 − s)

∫ 0

−∞
2λe2λτ

(x − τ)s
dτ

τ=x−t= 2λeλx

�(1 − s)∫ ∞

x

e−2λt

t s
dt,

−∞Ds,λ
x φ−

n1(x) = −∞I1−s,λ
x −∞D1,λ

x φ−
n1(x)

(3.10)= e−λx

�(1 − s)
∫ 0

−∞
−(n1 + 1)L(0)

n1+1(−2λτ)e2λτ

(x − τ)s
dτ

τ=x−t= −eλx n1 + 1

�(1 − s)

∫ ∞

x

L(0)
n1+1(2λ(t − x))e−2λt

t s
dt,

−∞Ds,λ
x φ+

n2(x) = −∞I1−s,λ
x −∞D1,λ

x φ+
n2(x)

(3.9)= e−λx

�(1 − s)

∫ x

0

(n2 + 1)L(0)
n2 (x)

(x − τ)s
dτ

= �(n2 + 2)

�(n2 + 2 − s)
x1−sL(1−s,λ)

n2 (x).

(B.2)

The entries of matrix A with 1 < μ = 1 + s < 2.

(
−∞Ds,λ

x φ∗,xD
1,λ∞ φ∗) = −(2λ)2

�(1 − s)

∫ ∞

0

∫ ∞

x

e−2λt

t s
dtdx = −(2λ)2

�(1 − s)

∫ ∞

0

e−2λt

t s

∫ t

0
1dxdt

= −(2λ)2

�(1 − s)

∫ ∞

0
t1−se−2λtdt

τ=2λt= −(2λ)s

�(1 − s)

∫ ∞

0
τ 1−se−τdτ=(s − 1)(2λ)s .

(B.3)
Since

D
{
(2λx)L(1)

n2+1(2λx)
} = 2λ(n2 + 2)L(0)

n2+1(2λx), i.e.
∫ t

0
L(0)

n2+1(2λx)dx

= 1

n2 + 2
t L(1)

n2+1(2λt),

then,

(
−∞Ds,λ

x φ∗, xD
1,λ∞ φ+

n2

) = −2λ(n2 + 1)

�(1 − s)

∫ ∞

0

∫ ∞

x

e−2λt

t s
dt L(0)

n2+1(2λx)dx

=−2λ(n2 + 1)

�(1 − s)

∫ ∞

0

e−2λt

t s

∫ t

0
L(0)

n2+1(2λx)dx dt

= −2λ(n2 + 1)

(n2 + 2)�(1 − s)

∫ ∞

0
t1−s L(1)

n2+1(2λt)e−2λtdt.

(B.4)

Similarly, we have
(
−∞Ds,λ

x φ−
n1 , xD

1,λ∞ φ+
n2

)

= (n1 + 1)(n2 + 1)

�(1 − s)

∫ ∞

0

∫ ∞

x

L(0)
n1+1(2λ(t − x))e−2λt

t s
dt L(0)

n2+1(2λx)dx

= (n1 + 1)(n2 + 1)

�(1 − s)

∫ ∞

0
t−se−2λt

∫ t

0
L(0)

n2+1(2λx)L(0)
n1+1(2λ(t − x))dxdt
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x=tξ= (n1 + 1)(n2 + 1)

�(1 − s)

∫ ∞

0
t1−se−2λt

∫ 1

0
L(0)

n2+1(2λtξ)L(0)
n1+1(2λt (1 − ξ))dξdt.

(B.5)

The entries of matrix A with 0 < μ = s < 1.

(
−∞Ds,λ

x φ∗, φ∗) = (2λ)s
∫ 0

−∞
e2λxdx + 2λ

�(1 − s)

∫ ∞

0

∫ ∞

x

e−2λt

t s
dtdx

= (2λ)s−1 + 2λ

�(1 − s)

∫ ∞

0

e−2λt

t s

∫ t

0
1dxdt = (2λ)s−1 + 2λ

�(1 − s)

∫ ∞

0
t1−se−2λtdt

τ=2λt= (2λ)s−1 + (2λ)s−1

�(1 − s)

∫ ∞

0
τ 1−se−τdτ = (2 − s)(2λ)s−1.

(B.6)
Owing to

D
{
(2λx)2L(2)

n2 (2λx)
} = (2λ)2(n2 + 2)x L(1)

n2 (2λx),

i.e.,
∫ t

0
x L(1)

n2 (2λx)dx = 1

n2 + 2
t2L(2)

n2 (2λt),

we obtain that

(
−∞Ds,λ

x φ∗, φ+
n2

) =
∫ ∞

0

e−λx

�(1 − s)

∫ 0

−∞
2λe2λτ

(x − τ)s
dτ x L(1)

n2 (2λx)e−λxdx

τ=x−t= 2λ

�(1 − s)

∫ ∞

0

∫ ∞

x

e−2λt

t s
dt x L(1)

n2 (2λx)dx= 2λ

�(1 − s)∫ ∞

0

e−2λt

t s

∫ t

0
x L(1)

n2 (2λx)dx dt

= 2λ

(n2 + 2)�(1 − s)

∫ ∞

0
t2−s L(2)

n2 (2λt)e−2λtdt.

(B.7)

Similarly, we have

(
−∞Ds,λ

x φ−
n1 , φ

+
n2

)= − n1 + 1

�(1 − s)

∫ ∞

0

∫ ∞

x

L(0)
n1+1(2λ(t − x))e−2λt

t s
dt x L(1)

n2 (2λx)dx

= − n1 + 1

�(1 − s)

∫ ∞

0
t−se−2λt

∫ t

0
x L(1)

n2 (2λx)L(0)
n1+1(2λ(t − x))dxdt

x=tξ= − n1 + 1

�(1 − s)

∫ ∞

0
t2−se−2λt

∫ 1

0
ξ L(1)

n2 (2λtξ)L(0)
n1+1(2λt (1 − ξ))dξdt

(B.8)

The above equations are enough to calculate out the matrix A due to some symmetric prop-
erties of the entries.
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