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Abstract AnewLevenberg–Marquardt (LM) algorithm is proposed for nonlinear equations,
where the iterate is updated according to the ratio of the actual reduction to the predicted
reduction as usual, but the update of the LM parameter is no longer just based on that ratio.
When the iteration is unsuccessful, the LM parameter is increased; but when the iteration is
successful, it is updated based on the value of the gradient norm of the merit function. The
algorithm converges globally under certain conditions. It also converges quadratically under
the local error bound condition, which does not require the nonsingularity of the Jacobian at
the solution.

Keywords Levenberg–Marquardt method · Trust region method · Nonlinear equations ·
Local error bound · Quadratic convergence

1 Introduction

We consider the system of nonlinear equations

F(x) = 0, (1.1)

where F(x) : Rn → Rn is continuously differentiable.
The Levenberg–Marquardt method (LM) is one of the most well-known iterative methods

for nonlinear equations [5,6,15]. At the k-th iteration, it computes the trial step

dk = −(J T
k Jk + λk I )−1 J T

k Fk, (1.2)
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where Fk = F(xk), Jk = J (xk) is the Jacobian at xk , and λk is the LM parameter introduced
to overcome the difficulties caused by the singularity or near singularity of Jk .

Let
min
x∈Rn

φ(x) := ‖F(x)‖2 (1.3)

be the merit function of (1.1). Define the actual reduction of the merit function as

Aredk = ‖Fk‖2 − ‖F(xk + dk)‖2,
the predicted reduction as

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2,
and the ratio of the actual reduction to the predicted reduction

rk = Aredk

Predk
.

In classical LM methods, one sets

xk+1 =
{

xk + dk, if rk ≥ p0,
xk, otherwise,

(1.4)

where p0 ≥ 0 is a constant, and updates the LM parameter as

λk+1 =
⎧⎨
⎩

c0λk, if rk < p1,
λk, if rk ∈ [p1, p2],
c1λk, if rk > p2,

(1.5)

where p0 < p1 < p2 < 1, 0 < c1 < 1 < c0 are positive constants (cf. [7,9,13,16,17]).
It was shown in [14] that, if the LM parameter is chosen as λk = ‖Fk‖2, then the LM

method converges quadratically under the local error bound condition, which is weaker than
the nonsingularity of the Jacobian at the solution. It was further proved in [4] that the LM
method converges quadratically for all λk = ‖Fk‖δ(δ ∈ [1, 2]) under the local error bound
condition. In [1], Fan chose

λk = μk‖Fk‖, (1.6)

and updated μk according to the ratio rk as follows:

μk+1 =
⎧⎨
⎩

c0μk, if rk < p1,
μk, if rk ∈ [p1, p2],
max {c1μk, m} , if rk > p2,

(1.7)

where m > 0 is a small constant to prevent the LM parameter from being too small.
Recently, Zhao and Fan [18] took the LM parameter as

λk = μk‖J T
k Fk‖, (1.8)

where the update of μk is no longer just based on the ratio rk . When the iteration is unsuc-
cessful (i.e., rk < p0), μk is increased; but when the iteration is successful (i.e., rk ≥ p0),
μk+1 is updated as

μk+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0μk, if ‖J T
k Fk‖ <

p1
μk

,

μk, if ‖J T
k Fk‖ ∈ [ p1

μk
,

p2
μk

],
max {c1μk, m} , if ‖J T

k Fk‖ >
p2
μk

.

(1.9)
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It was shown that the global complexity bound of the above LM algorithm is O(ε−2), that
is, it takes at most O(ε−2) iterations to derive the norm of the gradient of the merit function
below the desired accuracy ε.

The logic behind the updating rule (1.9) follows from the fact that the LM step is actually
the solution of the trust region subproblem

min
d∈Rn

‖Fk + Jkd‖2

s.t. ‖d‖ ≤ �k := ‖dk‖. (1.10)

So, the step size computed by solving (1.10) is proportional to the norm of the model gra-
dient ‖J T

k Fk‖. Hence, the trust region, a magnitude of the inverse of μk , should also be of
comparable size.

In this paper, we present a new LM algorithm for (1.1), where the LM parameter is
computed as

λk = μk‖Fk‖2. (1.11)

We update the iterate xk according to the ratio rk as classical LM algorithms. When the
iteration is unsuccessful, we increase μk ; otherwise, we update μk+1 by (1.9). We show that
the new LM algorithm preserves the global convergence of classical LM algorithms. We also
prove that the algorithm converges quadratically under the local error bound condition.

The paper is organized as follows. In Sect. 2, we present the new LM algorithm for (1.1).
The global convergence of the algorithm is also proved. In Sect. 3, we study the convergence
rate of the algorithm under the local error bound condition. Some numerical results are given
in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 The LM Algorithm and Global Convergence

In this section, we first give the new LM algorithm, then show that the algorithm converges
globally under certain conditions.

The LM algorithm is presented as follows.

Algorithm 2.1 (A Levenberg–Marquardt algorithm for nonlinear equations)

Step 1. Given x0 ∈ Rn, μ0 > m > 0, 0 < p0 < p1 < p2 < 1, c0 > 1, 0 < c1 < 1, ε ≥
0, k := 0.

Step 2. If ‖J T
k Fk‖ ≤ ε, then stop. Otherwise, solve

(J T
k Jk + λk I )d = −J T

k Fk with λk = μk‖Fk‖2 (2.1)

to obtain dk .
Step 3. Compute rk = Aredk

Predk
.

If rk ≥ p0, set xk+1 = xk + dk and compute μk+1 by (1.9);
Otherwise, set xk+1 = xk and compute μk+1 = c0μk .
Set k := k + 1 and go to step 2.

To study the global convergence of Algorithm 2.1, we make the following assumption.

Assumption 2.1 F(x) is continuously differentiable, both F(x) and its Jacobian J (x) is
Lipschitz continuous, i.e., there exist positive constants L1 and L2 such that

‖J (x) − J (y)‖ ≤ L1‖y − x‖, ∀x, y ∈ Rn (2.2)
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and
‖F(x) − F(y)‖ ≤ L2‖y − x‖, ∀x, y ∈ Rn . (2.3)

Due to the result given by Powell [10], we have the following lemma.

Lemma 2.1 The predicted reduction satisfies

‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ ‖J T
k Fk‖min

{
‖dk‖, ‖J T

k Fk‖
‖J T

k Jk‖

}
(2.4)

for all k.

Lemma 2.1 implies that the predicted reduction is always nonnegative.
In the following, we first prove the weak global convergence of Algorithm 2.1, that is,

at least one accumulation point of the sequence generated by Algorithm 2.1 is a stationary
point of the merit function φ(x).

Theorem 2.1 Under Assumption 2.1, Algorithm 2.1 terminates in finite iterations or satisfies

lim inf
k→∞ ‖J T

k Fk‖ = 0.

Proof We prove by contradiction. Suppose that there exists a constant τ > 0 such that

‖J T
k Fk‖ ≥ τ, ∀k. (2.5)

Define the index set of successful iterations:

S = {k : rk ≥ p0}.
We discuss in two cases.

Case I. S is infinite. Since ‖F(x)‖ is nonincreasing and bounded below, it follows from
(2.3) and (2.4) that

+∞ >
∑
k∈S

(‖Fk‖2 − ‖Fk+1‖2)

≥
∑
k∈S

p0(‖Fk‖2 − ‖Fk + Jkdk‖2)

≥
∑
k∈S

p0‖J T
k Fk‖min

{
‖dk‖, ‖J T

k Fk‖
‖J T

k Jk‖

}

≥
∑
k∈S

p0τ min

{
‖dk‖, τ

L2
2

}
. (2.6)

So,

lim
k∈S,k→∞ dk = 0. (2.7)

Note that dk = 0 for k /∈ S, we have

lim
k→∞ dk = 0. (2.8)

Since ‖Jk‖ ≤ L2 and ‖Fk‖ ≤ ‖F0‖, by (2.1), we have

μk → +∞. (2.9)
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On the other hand, it follows from (2.3) and (2.4) that

|rk − 1| =
∣∣∣∣ Aredk − Predk

Predk

∣∣∣∣
=|‖F(xk + dk)‖2 − ‖Fk + Jkdk‖2|

Predk

≤‖Fk + Jkdk‖O(‖dk‖2) + O(‖dk‖4)
τ min{‖dk‖, τ/L2

2}
→0. (2.10)

So, rk → 1. Thus, μk is updated by (1.9) and ‖J T
k Fk‖ > p2/μk for all sufficiently large k.

Hence, μk = max {c1μk, m} for all large k. Note that 0 < c1 < 1, there exists a positive
constant c̃ such that

μk < c̃

for all large k. This is a contradiction to (2.9).
Case II. S is finite. Then there exists a k̃ such that

rk < p0, k ≥ k̃. (2.11)

According to the updating rule of xk in Algorithm 2.1, we have dk → 0. By the same
arguments as (2.10), we get rk → 1, which contradicts (2.11). The proof is completed. 	


Based on Theorem 2.1, we can further prove the strong global convergence of Algorithm
2.1, that is, all limit points of the sequence generated by Algorithm 2.1 are stationary points
of the merit function φ(x). We first give an auxiliary result (cf. [3, Lemma 2.7]).

Lemma 2.2 Let b, a1, . . . , aN > 0. Then,

N∑
j=1

min{a j , b} ≥ min

⎧⎨
⎩

N∑
j=1

a j , b

⎫⎬
⎭ . (2.12)

Theorem 2.2 Under Assumption 2.1, Algorithm 2.1 terminates in finite iterations or satisfies

lim
k→∞ ‖J T

k Fk‖ = 0. (2.13)

Proof Suppose by contradiction that there exists τ > 0 such that the set

� = {k : ‖J T
k Fk‖ ≥ τ } (2.14)

is infinite. Given k ∈ �, consider the first index lk > k such that ‖J T
lk

Flk ‖ ≤ τ
2 . The existence

of such lk is guaranteed by Theorem 2.1. By (2.2), (2.3) and ‖Fk‖ ≤ ‖F0‖,
τ

2
≤‖J T

k Fk‖ − ‖J T
lk Flk ‖ ≤ ‖J T

k Fk − J T
lk Flk ‖

≤‖J T
k Fk − J T

lk Fk‖ + ‖J T
lk Fk − J T

lk Flk ‖ ≤ (L1‖F0‖ + L2
2)‖xk − xlk ‖,

which yields

‖xk − xlk ‖ ≥ τ

2(L1‖F0‖ + L2
2)

.

Define the set
Sk = { j : k ≤ j < lk, x j+1 �= x j }.
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Then,

τ

2(L1‖F0‖ + L2
2)

≤ ‖xk − xlk ‖ ≤
∑
j∈Sk

‖x j − x j+1‖ ≤
∑
j∈Sk

‖d j‖. (2.15)

It now follows from (2.4), (2.15) and Lemma 2.2 that, for all k ∈ �,

‖Fk‖2 − ‖Flk ‖2 =
∑
j∈Sk

(‖Fj‖2 − ‖Fj+1‖2)

≥
∑
j∈Sk

p0‖J T
j Fj‖min

{
‖d j‖,

‖J T
j Fj‖

‖J T
j J j‖

}

≥
∑
j∈Sk

p0τ

2
min

{
‖d j‖, τ

2L2
2

}

≥ p0τ

2
min

⎧⎨
⎩

∑
j∈Sk

‖d j‖, τ

2L2
2

⎫⎬
⎭

≥ p0τ

2
min

{
τ

2(L1‖F0‖ + L2
2)

,
τ

2L2
2

}

= p0τ 2

4(L1‖F0‖ + L2
2)

>0. (2.16)

However, since {‖Fk‖2} is nonincreasing and bounded below, ‖Fk‖2 − ‖Flk ‖2 → 0. This
contradicts (2.16). So, the set � defined by (2.14) is finite. Therefore, (2.13) holds true. The
proof is completed. 	


3 Local Convergence

We assume that the sequence {xk} generated by Algorithm 2.1 converges to the solution
set X∗ of (1.1) and lies in some neighbourhood of x∗ ∈ X∗. We first give some important
properties of the algorithm, then show that the algorithm converges quadratically under the
local error bound condition.

We make the following assumption.

Assumption 3.1 (a) F(x) is continuously differentiable, and ‖F(x)‖ provides a local error
bound on some neighbourhood of x∗ ∈ X∗, i.e., there exist positive constants c > 0 and
b1 < 1 such that

‖F(x)‖ ≥ c dist(x, X∗), ∀x ∈ N (x∗, b1) = {x : ‖x − x∗‖ ≤ b1}. (3.1)

(b) The Jacobian J (x) is Lipschitz continuous on N (x∗, b1), i.e., there exists a positive
constant L1 such that

‖J (y) − J (x)‖ ≤ L1‖y − x‖, ∀x, y ∈ N (x∗, b1). (3.2)

Note that, if J (x) is nonsingular at a solution of (1.1), then it is an isolated solution,
so ‖F(x)‖ provides a local error bound on its neighborhood. However, the converse is not

123



1152 J Sci Comput (2018) 74:1146–1162

necessarily true. Please see examples in [14]. Thus, the local error bound condition is weaker
than the nonsingularity.

By (3.2), we have

‖F(y) − F(x) − J (x)(y − x)‖ ≤ L1‖y − x‖2, ∀x, y ∈ N (x∗, b1). (3.3)

Moreover, there exists a constant L2 > 0 such that

‖F(y) − F(x)‖ ≤ L2‖y − x‖, ∀x, y ∈ N (x∗, b1). (3.4)

Throughout the paper, we denote by x̄k the vector in X∗ that satisfies

‖x̄k − xk‖ = dist(xk, X∗).

3.1 Some Properties

In the following, we first show the relationship between the length of the trial step dk and the
distance from xk to the solution set.

Lemma 3.1 Under Assumption 3.1, if xk ∈ N (x∗, b1/2), then

‖dk‖ ≤ c2‖x̄k − xk‖ (3.5)

holds for all sufficiently large k, where c2 =
√

L2
1c−2m−1 + 1 is a positive constant.

Proof Since xk ∈ N (x∗, b1/2), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖ + ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b1.

So, x̄k ∈ N (x∗, b1). Thus, it follows from (1.9) and (3.1) that the LM parameter λk satisfies

λk = μk‖Fk‖2 ≥ c2m‖x̄k − xk‖2. (3.6)

Note that dk is also a minimizer of

min
d∈Rn

‖Fk + Jkd‖2 + λk‖d‖2 � ϕk(d),

by (3.3) and (3.6), we have

‖dk‖2 ≤ ϕk(dk)

λk

≤ ϕk(x̄k − xk)

λk

= ‖Fk + Jk(x̄k − xk)‖2
λk

+ ‖x̄k − xk‖2

≤ L2
1‖x̄k − xk‖4

λk
+ ‖x̄k − xk‖2

≤ (L2
1c−2m−1 + 1)‖x̄k − xk‖2.

So, we obtain (3.5). 	

Next we show that the gradient of the merit function also provides a local error bound on

some neighbourhood of x∗ ∈ X∗.
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Lemma 3.2 Under Assumption 3.1, if xk ∈ N (x∗, b1/2), then there exists a constant c3 > 0
such that

‖J T
k Fk‖ ≥ c3‖x̄k − xk‖ (3.7)

holds for all sufficiently large k.

Proof It follows from (3.3) that

‖Fk + Jk(x̄k − xk)‖ ≤ L1‖x̄k − xk‖2.
Thus,

‖Fk‖2 + 2(x̄k − xk)
T J T

k Fk + (x̄k − xk)
T J T

k Jk(x̄k − xk) ≤ L2
1‖x̄k − xk‖4.

So,
‖Fk‖2 + 2(x̄k − xk)

T J T
k Fk ≤ L2

1‖x̄k − xk‖4.
By (3.1),

c2‖x̄k − xk‖2 − L2
1‖x̄k − xk‖4 ≤ 2‖x̄k − xk‖‖J T

k Fk‖.
Hence, (3.7) holds for sufficiently large k. The proof is completed. 	

Lemma 3.3 Under Assumption 3.1, if xk ∈ N (x∗, b1/2), then there exists a positive integer
K such that

rk ≥ p0, ∀k ≥ K .

That is, μk is updated by (1.9) when k ≥ K .

Proof It follows form (3.4), (3.5) and (3.7) that

Predk ≥ ‖J T
k Fk‖min

{
‖dk‖, ‖J T

k Fk‖
‖J T

k Jk‖

}

≥ c3‖x̄k − xk‖min{‖dk‖, c−1
2 c3
L2
2

‖dk‖}

= ‖dk‖O(‖x̄k − xk‖).
This, together with (3.3), (3.4) and ‖Fk + Jkdk‖ ≤ ‖Fk‖, gives

|rk − 1| = | Aredk − Predk

Predk
|

≤ ‖Fk + Jkdk‖O(‖dk‖2) + O(‖dk‖4)
Predk

≤ O(‖x̄k − xk‖)O(‖dk‖2) + O(‖dk‖4)
‖dk‖O(‖x̄k − xk‖)

= O(‖dk‖)
→ 0.

So, rk → 1. Therefore, we obtain the result. 	

Let

C1 = max{p2, c−1
1 mL2‖F0‖}, (3.8)

c4 = L2
2 + L1‖F0‖ (3.9)

be two positive constants.
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Lemma 3.4 Under Assumption 3.1 and c1 ≤ (1+ c4c2c−1
3 )−1, if k ≥ K and μk‖J T

k Fk‖ >

C1, then
μk+1‖J T

k+1Fk+1‖ ≤ μk‖J T
k Fk‖. (3.10)

Proof By (3.2) and (3.4),

|‖J T
k+1Fk+1‖ − ‖J T

k Fk‖| ≤|‖J T
k+1Fk+1‖ − ‖J T

k+1Fk‖| + |‖J T
k+1Fk‖ − ‖J T

k Fk‖|
≤‖Jk+1‖‖Fk+1 − Fk‖ + ‖Fk‖‖Jk+1 − Jk‖
≤(L2

2 + L1‖F0‖)‖dk‖
=c4‖dk‖.

It then follows from Lemmas 3.1 and 3.2 that

‖J T
k+1Fk+1‖ ≤ ‖J T

k Fk‖ + c4‖dk‖ ≤ (1 + c4c2c−1
3 )‖J T

k Fk‖. (3.11)

Since μk‖J T
k Fk‖ > C1, by (3.4) and ‖Fk‖ ≤ ‖F0‖, we have

μk >
p2

‖J T
k Fk‖

, μk‖J T
k Fk‖ ≥ mL2

c1
‖F0‖ ≥ m

c1
‖J T

k Fk‖.

So, μk ≥ m
c1
. It then follows from k ≥ K , Lemma 3.3 and the updating rule (1.9) that

μk+1 = c1μk .

By (3.11) and c1 ≤ (1 + c4c2c−1
3 )−1, we have

μk+1‖J T
k+1Fk+1‖ =c1μk‖J T

k+1Fk+1‖
≤c1(1 + c4c2c−1

3 )μk‖J T
k Fk‖

≤μk‖J T
k Fk‖.

The proof is completed. 	

Let

C2 =max{μK ‖J T
K FK ‖, c0(1 + c4c2c−1

3 )C1}
be a positive constant.

The next lemma shows that μk‖J T
k Fk‖ is upper bounded.

Lemma 3.5 Under conditions of Lemma 3.4,

μk‖J T
k Fk‖ ≤ C2, ∀k ≥ K . (3.12)

Proof We discuss in two cases.

Case 1 μK ‖J T
K FK ‖ ≤ c0(1 + c4c2c−1

3 )C1. Then, we must have

μK+1‖J T
K+1FK+1‖ ≤ c0(1 + c4c2c−1

3 )C1. (3.13)

Otherwise, suppose
μK+1‖J T

K+1FK+1‖ > c0(1 + c4c2c−1
3 )C1. (3.14)

It follows from (3.11) and μK+1 ≤ c0μK that

(1 + c4c2c−1
3 )C1 < μK ‖J T

K+1FK+1‖ ≤ (1 + c4c2c−1
3 )μK ‖J T

K FK ‖. (3.15)

123



J Sci Comput (2018) 74:1146–1162 1155

This gives
μK ‖J T

K FK ‖ > C1.

By Lemma 3.4, we obtain

μK+1‖J T
K+1FK+1‖ ≤ μK ‖J T

K FK ‖ ≤ c0(1 + c4c2c−1
3 )C1.

This is a contradiction to (3.14). So (3.13) holds true.
By induction, we can obtain

μk‖J T
k Fk‖ ≤ c0(1 + c4c2c−1

3 )C1, ∀k ≥ K . (3.16)

Case 2 μK ‖J T
K FK ‖ > c0(1 + c4c2c−1

3 )C1. Note that c0 > 1, we have

μK ‖J T
K FK ‖ > C1.

So, by Lemma 3.4,

μK+1‖J T
K+1FK+1‖ ≤ μK ‖J T

K FK ‖. (3.17)

If μK+1‖J T
K+1FK+1‖ > c0(1 + c4c2c−1

3 )C1, then by Lemma 3.4 and (3.17),

μK+2‖J T
K+2FK+2‖ ≤ μK+1‖J T

K+1FK+1‖. (3.18)

Otherwise, if μK+1‖J T
K+1FK+1‖ ≤ c0(1 + c4c2c−1

3 )C1, then by the same arguments as in
case 1, we have

μK+2‖J T
K+2FK+2‖ ≤ c0(1 + c4c2c−1

3 )C1. (3.19)

In view of (3.17)–(3.19), we obtain

μK+2‖J T
K+2FK+2‖ ≤max{μK+1‖J T

K+1FK+1‖, c0(1 + c4c2c−1
3 )C1}

≤max{μK ‖J T
K FK ‖, c0(1 + c4c2c−1

3 )C1}. (3.20)

By induction, we can prove that, for all k > K ,

μk‖J T
k Fk‖ ≤max{μk−1‖J T

k−1Fk−1‖, c0(1 + c4c2c−1
3 )C1}

≤ · · ·
≤max{μK ‖J T

K FK ‖, c0(1 + c4c2c−1
3 )C1}

=C2.

The proof is completed. 	


Let
C3 = c−1

3 L2C2.

The following lemma shows that μk‖Fk‖ is bounded by C3.

Lemma 3.6 Under conditions of Lemma 3.4,

μk‖Fk‖ ≤ C3 (3.21)

holds for all sufficiently large k.
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Proof It follows from (3.4) that

‖Fk‖ ≤ L2‖x̄k − xk‖.
This, together with (3.7), gives

‖Fk‖ ≤ c−1
3 L2‖J T

k Fk‖.
Thus, by (3.12), we obtain (3.21). The proof is completed. 	

3.2 Quadratic Convergence

Based on the above lemmas, we study the quadratic convergence of Algorithm 2.1 under the
local error bound condition, by using the singular value decomposition (SVD) technique.

Suppose the SVD of J (x̄k) is

J̄k = Ūk
̄k V̄ T
k

= (Ūk,1, Ūk,2)

(

̄k,1

0

)(
V̄ T

k,1
V̄ T

k,2

)

= Ūk,1
̄k,1V̄ T
k,1,

where 
̄k,1 = diag(σ̄k,1, . . . , σ̄k,r ) with σ̄k,1 ≥ σ̄k,2 ≥ · · · ≥ σ̄k,r > 0, and the correspond-
ingly SVD of Jk is

Jk = Uk
k V T
k

= (Uk,1, Uk,2)

(

k,1


k,2

)(
V T

k,1
V T

k,2

)

= Uk,1
k,1V T
k,1 + Uk,2
k,2V T

k,2,

where 
k,1 = diag(σk,1, . . . , σk,r ) with σk,1 ≥ · · · ≥ σk,r > 0, and 
k,2 =
diag(σk,r+1, . . . , σk,n) with σk,r ≥ · · · ≥ σk,n ≥ 0. In the following, if the context is
clear, we neglect the subscription k in 
k,i and Uk,i , Vk,i (i = 1, 2), and write Jk as

Jk = U1
1V T
1 + U2
2V T

2 .

By the theory of matrix perturbation [12] and the Lipschitzness of Jk ,

‖diag(
1 − 
̄1, 
2)‖ ≤ ‖Jk − J̄k‖ ≤ L1‖x̄k − xk‖.
So,

‖
1 − 
̄1‖ ≤ L1‖x̄k − xk‖ and ‖
2‖ ≤ L1‖x̄k − xk‖. (3.22)

Since {xk} converges to the solution set X∗, we assume that L1‖x̄k − xk‖ ≤ σ̄r/2 holds
for all sufficiently large k. Then, it follows from (3.22) that

‖
−1
1 ‖ ≤ 1

σ̄r − L1‖x̄k − xk‖ ≤ 2

σ̄r
. (3.23)

Lemma 3.7 Under Assumption 3.1, if xk ∈ N (x∗, b1/2), then we have

(a) ‖U1U T
1 Fk‖ ≤ L2‖x̄k − xk‖;

(b) ‖U2U T
2 Fk‖ ≤ 2L1‖x̄k − xk‖2;

where L1, L2 are given in (3.2) and (3.4) respectively.
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Proof (a) follows from (3.4) directly.
Denote F(x̄k) by F̄k . By (3.3) and (3.22),

‖U2U T
2 Fk‖ =‖U2U T

2 (F̄k − Fk)‖
≤‖U2U T

2 Jk(x̄k − xk)‖ + L1‖U2U T
2 ‖‖x̄k − xk‖2

≤‖U2U T
2 (U1
1V T

1 + U2
2V T
2 )‖‖x̄k − xk‖ + L1‖x̄k − xk‖2

≤‖
2‖‖x̄k − xk‖ + L1‖x̄k − xk‖2
≤2L1‖x̄k − xk‖2.

The proof is completed. 	

Now we can give the main result of this section.

Theorem 3.1 Under Assumption 3.1, the sequence generated by Algorithm 2.1 converges to
some solution of (1.1) quadratically.

Proof By the SVD of Jk ,

dk = −V1(

2
1 + λk I )−1
1U T

1 Fk − V2(

2
2 + λk I )−1
2U T

2 Fk,

and
Fk + Jkdk = λkU1(


2
1+λk I )−1U T

1 Fk +λkU2(

2
2+λk I )−1U T

2 Fk .

It follows from (3.4), (3.23), Lemmas 3.6 and 3.7 that

‖Fk + Jkdk‖ ≤μk‖Fk‖2‖
−2
1 ‖‖U1U T

1 Fk‖ + ‖U2U T
2 Fk‖

≤4L2
2C3

σ̄ 2
r

‖x̄k − xk‖2 + 2L1‖x̄k − xk‖2

≤c5‖x̄k − xk‖2,

where c5 = 4L2
2C3

σ̄ 2
r

+ 2L1 is a positive constant. So, by (3.1), (3.3) and Lemma 3.1,

c‖x̄k+1 − xk+1‖ ≤ ‖Fk+1‖
≤ ‖Fk + Jkdk‖ + L1‖dk‖2
≤ c5‖x̄k − xk‖2 + L1c22‖x̄k − xk‖2
≤ c6‖x̄k − xk‖2, (3.24)

where c6 = c5 + c22L1 is a positive constant.
Note that

‖x̄k − xk‖ ≤ ‖x̄k+1 − xk+1‖ + ‖dk‖. (3.25)

By (3.24),
‖x̄k − xk‖ ≤ 2‖dk‖

holds for all sufficiently large k. Combining (3.5), (3.24) and (3.25), we obtain

‖dk+1‖ ≤ O(‖dk‖2).
The proof is completed. 	
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Table 1 Results on the first singular test set with rank(F ′(x∗)) = n − 1

λk = μk‖Fk‖ with (1.7) λk = μk‖Fk‖2 with (1.7) λk = μk‖Fk‖2 with (1.9)
Prob n x0 NF/NJ/NF+NJ*n NF/NJ/NF+NJ*n NF/NJ/NF+NJ*n

1 2 1 16/16/48 16/16/48 16/16/48

10 19/19/57 19/19/57 19/19/57

100 22/22/66 23/23/69 23/23/69

4 4 1 18/18/90 18/18/90 18/18/90

10 20/20/100 20/20/100 20/20/100

100 24/24/120 24/24/120 24/24/120

5 3 1 8/8/32 8/8/32 8/8/32

10 8/8/32 8/8/32 8/8/32

100 8/8/32 8/8/32 8/8/32

6 31 1 156/124/4000 68/35/1153 737/368/12145

8 10 1 9/9/99 9/9/99 9/9/99

10 24/24/264 24/24/264 24/24/264

9 10 1 5/5/55 5/5/55 5/5/55

10 6/6/66 6/6/66 6/6/66

100 10/10/110 10/10/110 10/10/110

10 30 1 7/7/217 7/7/217 7/7/217

10 9/9/279 9/9/279 9/9/279

100 10/10/310 10/10/310 10/10/310

11 30 1 31/13/421 45/18/585 37/14/457

12 10 1 15/15/165 15/15/165 15/15/165

10 17/17/187 17/17/187 17/17/187

100 21/21/231 21/21/231 21/21/231

13 30 1 11/11/341 11/11/341 11/11/341

10 15/15/465 15/15/465 15/15/465

100 19/19/589 19/19/589 19/19/589

14 30 1 14/14/434 14/14/434 14/14/434

10 20/20/620 20/20/620 20/20/620

100 26/26/806 26/26/806 26/26/806

Remark 3.1 If the Levenberg–Marquardt parameter is chosen as λk = μk‖Fk‖δ , where μk

is updated by (1.9) and δ ∈ (1, 2], the algorithm converges superlinearly to some solution of
the nonlinear equations with the order δ. The proof is almost the same as above, except that
we have ‖Fk + Jkdk‖ ≤ c5‖x̄k − xk‖δ instead of ‖Fk + Jkdk‖ ≤ c5‖x̄k − xk‖2 in the proof
of Theorem 3.1, which then yields ‖dk+1‖ ≤ O(‖dk‖δ).

4 Numerical Results

We test Algorithm 2.1, where the LM parameter is computed by λk = μk‖Fk‖2 with μk

updated by (1.9), on some singular nonlinear equations, and compare it with other two LM
algorithms, where λk = μk‖Fk‖ and λk = μk‖Fk‖2 with μk updated by (1.7), respectively.
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Table 2 Results on the second singular test set with rank(F ′(x∗)) = n − 2

λk = μk‖Fk‖ with (1.7) λk = μk‖Fk‖2 with (1.7) λk = μk‖Fk‖2 with (1.9)
Prob n x0 NF/NJ/NF+NJ*n NF/NJ/NF+NJ*n NF/NJ/NF+NJ*n

1 2 1 12/12/36 12/12/36 12/12/36

10 14/14/42 14/14/42 14/14/42

100 18/18/54 18/18/54 18/18/54

3 2 1 38/26/90 211/138/487 260/180/620

10 30/15/60 37/15/67 19/12/43

100 34/18/70 39/16/71 22/16/54

4 4 1 15/15/75 OF 15/15/75

10 18/18/90 OF 18/18/90

100 22/22/110 OF 22/22/110

5 3 1 15/15/60 15/15/60 15/15/60

10 16/16/64 16/16/64 16/16/64

100 16/16/64 16/16/64 16/16/64

6 31 1 3200/2621/84451 –/–/– 1288/665/21903

8 10 1 9/9/99 9/9/99 9/9/99

10 23/23/253 24/24/264 24/24/264

9 10 1 5/5/55 5/5/55 5/5/55

10 8/8/88 8/8/88 8/8/88

100 10/10/110 10/10/110 10/10/110

10 30 1 7/7/217 7/7/217 7/7/217

10 10/10/310 9/9/279 9/9/279

100 10/10/310 11/11/341 22/18/562

11 30 1 30/13/420 36/14/456 65/44/1385

12 10 1 15/15/165 15/15/165 15/15/165

10 17/17/187 17/17/187 17/17/187

100 21/21/589 21/21/589 21/21/589

13 30 1 11/11/341 11/11/341 11/11/341

10 15/15/465 15/15/465 15/15/465

100 19/19/589 –/–/– 19/19/589

14 30 1 14/14/434 14/14/434 14/14/434

10 20/20/620 19/19/589 19/19/589

100 26/26/806 25/25/775 26/26/806

The test problems are created by modifying the nonsingular problems given by Moré,
Garbow and Hillstrom in [8], and have the same form as in [11],

F̂(x) = F(x) − J (x∗)A(AT A)−1AT (x − x∗),

where F(x) is the standard nonsingular test function, x∗ is its root, and A ∈ Rn×k has full
column rank with 1 ≤ k ≤ n. Obviously, F̂(x∗) = 0 and

Ĵ (x∗) = J (x∗)(I − A(AT A)−1AT )
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Table 3 Results on the first singular test set with rank n − 1

λk = μk‖Fk‖ with (1.7) λk = μk‖Fk‖2 with (1.7) λk = μk‖Fk‖2 with (1.9)
Prob n x0 NF/NJ/NF+NJ*n/t(s) NF/NJ/NF+NJ*n/t(s) NF/NJ/NF+NJ*n/t(s)

9 3000 1 1/1/3001/0.3 1/1/3001/0.3 1/1/3001/0.3

10 2/2/6002/20.3 2/2/6002/19.3 2/2/6002/19.5

100 8/8/24008/147 8/8/24008/131 8/8/24008/128

10 3000 1 18/9/27018/593 27/9/27027/714 20/9/27020/562

10 20/11/33020/645 29/11/33029/848 20/11/33020/623

100 10/10/30010/415 10/10/30010/415 10/10/30010/426

13 3000 1 11/11/33011/220 11/11/33011/220 11/11/33011/218

10 15/15/45015/289 15/15/45015/302 16/16/48016/298

100 19/19/57019/388 19/19/57019/393 19/19/57019/379

14 3000 1 14/14/42014/386 14/14/42014/302 14/14/42014/270

10 20/20/60020/588 20/20/60020/446 20/20/60020/412

100 26/26/78026/789 26/26/78026/584 26/26/78026/557

Table 4 Results on the first singular test set with rank n − 2

λk = μk‖Fk‖ with (1.7) λk = μk‖Fk‖2 with (1.7) λk = μk‖Fk‖2 with (1.9)
Prob n x0 NF/NJ/NF+NJ*n/t(s) NF/NJ/NF+NJ*n/t(s) NF/NJ/NF+NJ*n/t(s)

9 3000 1 1/1/3001/0.4 1/1/3001/0.3 1/1/3001/0.3

10 2/2/6002/21.3 2/2/6002/20.3 2/2/6002/20.1

100 10/10/30010/200 9/9/27009/169 6/6/18006/103

10 3000 1 18/9/27018/591 29/10/30029/831 20/9/27020/620

10 20/11/33020/696 29/11/33029/1039 20/11/33020/604

100 25/15/45025/903 34/15/45034/1270 10/10/30010/364

13 3000 1 11/11/33011/203 11/11/33011/229 11/11/33011/202

10 15/15/45015/303 15/15/45015/299 16/16/48016/306

100 19/19/57019/402 19/19/57019/402 19/19/57019/374

14 3000 1 14/14/42014/398 14/14/42014/367 14/14/42014/308

10 20/20/60020/441 20/20/60020/444 20/20/60020/454

100 26/26/78026/579 26/26/78026/599 26/26/78026/597

has rank n − k. A disadvantage of these problems is that F̂(x) may have roots that are not
roots of F(x). We create two sets of singular problems, with Ĵ (x∗) having rank n − 1 and
n − 2, by using

A ∈ Rn×1, AT = (1, 1, . . . , 1)

and

A ∈ Rn×2, AT =
(
1 1 1 1 · · · 1
1 −1 1 −1 · · · ±1

)
,

respectively. Meanwhile, we make a slight alteration on the variable dimension problem,
which has n + 2 equations in n unknowns; we eliminate the (n − 1)-th and n-th equations.
(The first n equations in the standard problem are linear.)
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We set p0 = 0.0001, p1 = 0.25, p2 = 0.75, c0 = 4, c1 = 0.25, μ0 = 10−8, m =
10−8, ε = 10−6 for all the tests. The stopping criterion is ‖J T

k Fk‖ ≤ ε or when the number
of iterations exceeds 100(n + 1). The results for the first set problems of rank n − 1 with
small scale are listed in Table 1, and the second set of rank n − 2 in Table 2. We also test the
algorithms on some large scale problems. The results are given in Tables 3 and 4.

The third column of the table indicates that the starting point is x0, 10x0, and 100x0,
where x0 is suggested by Moré, Garbow and Hillstrom in [8]; “NF” and “NJ” represent the
numbers of function calculations and Jacobian calculations, respectively. If the algorithm
fails to find the solution in 100(n + 1) iterations, we denote it by the sign “−”, and if the
algorithm has underflows or overflows, we denote it by OF. Note that, for general nonlinear
equations, the calculations of the Jacobian are usually n times of the function calculations.
So, for small scale problems, we also present the values “NF+n*N” for comparisons of the
total calculations. However, if the Jacobian is sparse, this kind of value does not mean much.
For the large scale problem, the computing time is also given.

From Tables 1 and 2, we can see that Algorithm 2.1 works almost the same as other two
LM algorithms for small scale problems. From Tables 3 and 4, we can see that Algorithm
2.1 outperforms the other two algorithms for most large scale problems.

5 Conclusion and Discussion

In traditional LM algorithms for nonlinear equations, both the iterate and the LM parameter
are updated according to the ratio of the actual reduction to the predicted reduction of the
merit function (cf. [1,2]). In this paper, we proposed a new LM algorithm for nonlinear
equations, where the LM parameter is taken as λk = μk‖Fk‖2 with μk being updated by
(1.9). Though the iterate is still updated according to the ratio of the actual reduction to
the predicted reduction, the update of μk is no longer based on it. When the iteration is
unsuccessful,μk is increased; otherwise it is updated based on the value of the gradient norm
of the merit function as in (1.9). We proved that all limit points of the sequence generated by
the algorithm are stationary points of the merit function under standard conditions. Since the
updating rule ofμk changes, the analysis of the convergence rate in this paper is quite different
from those in [1,3]. We developed new techniques to prove the quadratic convergence of the
algorithm under the local error bound condition.

We also discussed the LM parameter as λk = μk‖Fk‖δ , where μk is updated by (1.9)
and δ ∈ [1, 2). We found that the algorithm converges with the order δ, by using the similar
analysis in this paper. We conjecture that the convergence rate is quadratic for any δ ∈ [1, 2).
This will be our future study.
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