

On a New Updating Rule of the Levenberg–Marquardt Parameter

Ruixue Zhao1 · Jinyan Fan¹

Received: 7 June 2016 / Revised: 21 January 2017 / Accepted: 16 June 2017 / Published online: 23 June 2017 © Springer Science+Business Media, LLC 2017

Abstract A new Levenberg–Marquardt (LM) algorithm is proposed for nonlinear equations, where the iterate is updated according to the ratio of the actual reduction to the predicted reduction as usual, but the update of the LM parameter is no longer just based on that ratio. When the iteration is unsuccessful, the LM parameter is increased; but when the iteration is successful, it is updated based on the value of the gradient norm of the merit function. The algorithm converges globally under certain conditions. It also converges quadratically under the local error bound condition, which does not require the nonsingularity of the Jacobian at the solution.

Keywords Levenberg–Marquardt method · Trust region method · Nonlinear equations · Local error bound · Quadratic convergence

1 Introduction

We consider the system of nonlinear equations

$$
F(x) = 0,\t(1.1)
$$

where $F(x)$: $R^n \rightarrow R^n$ is continuously differentiable.

The Levenberg–Marquardt method (LM) is one of the most well-known iterative methods for nonlinear equations $[5,6,15]$ $[5,6,15]$ $[5,6,15]$. At the *k*-th iteration, it computes the trial step

$$
d_k = -(J_k^T J_k + \lambda_k I)^{-1} J_k^T F_k, \qquad (1.2)
$$

 \boxtimes Jinyan Fan jyfan@sjtu.edu.cn

Jinyan Fan is partially supported by the NSFC Grant 11571234.

¹ School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China

where $F_k = F(x_k)$, $J_k = J(x_k)$ is the Jacobian at x_k , and λ_k is the LM parameter introduced to overcome the difficulties caused by the singularity or near singularity of J_k .

Let

$$
\min_{x \in R^n} \phi(x) := \|F(x)\|^2 \tag{1.3}
$$

be the merit function of (1.1) . Define the actual reduction of the merit function as

$$
A red_k = ||F_k||^2 - ||F(x_k + d_k)||^2,
$$

the predicted reduction as

$$
Pred_k = ||F_k||^2 - ||F_k + J_k d_k||^2,
$$

and the ratio of the actual reduction to the predicted reduction

$$
r_k = \frac{Ared_k}{Pred_k}.
$$

In classical LM methods, one sets

$$
x_{k+1} = \begin{cases} x_k + d_k, & \text{if } r_k \ge p_0, \\ x_k, & \text{otherwise,} \end{cases}
$$
 (1.4)

where $p_0 \geq 0$ is a constant, and updates the LM parameter as

$$
\lambda_{k+1} = \begin{cases}\nc_0 \lambda_k, & \text{if } r_k < p_1, \\
\lambda_k, & \text{if } r_k \in [p_1, p_2], \\
c_1 \lambda_k, & \text{if } r_k > p_2,\n\end{cases} \tag{1.5}
$$

where $p_0 < p_1 < p_2 < 1$, $0 < c_1 < 1 < c_0$ are positive constants (cf. [\[7](#page-16-3)[,9,](#page-16-4)[13](#page-16-5)[,16](#page-16-6)[,17\]](#page-16-7)).

It was shown in [\[14](#page-16-8)] that, if the LM parameter is chosen as $\lambda_k = ||F_k||^2$, then the LM method converges quadratically under the local error bound condition, which is weaker than the nonsingularity of the Jacobian at the solution. It was further proved in [\[4](#page-15-0)] that the LM method converges quadratically for all $\lambda_k = ||F_k||^{\delta} (\delta \in [1, 2])$ under the local error bound condition. In [\[1\]](#page-15-1), Fan chose

$$
\lambda_k = \mu_k \|F_k\|,\tag{1.6}
$$

and updated μ_k according to the ratio r_k as follows:

$$
\mu_{k+1} = \begin{cases}\nc_0 \mu_k, & \text{if } r_k < p_1, \\
\mu_k, & \text{if } r_k \in [p_1, p_2], \\
\max \{c_1 \mu_k, m\}, & \text{if } r_k > p_2,\n\end{cases} \tag{1.7}
$$

where $m > 0$ is a small constant to prevent the LM parameter from being too small.

Recently, Zhao and Fan [\[18](#page-16-9)] took the LM parameter as

$$
\lambda_k = \mu_k \| J_k^T F_k \|, \tag{1.8}
$$

where the update of μ_k is no longer just based on the ratio r_k . When the iteration is unsuccessful (i.e., $r_k < p_0$), μ_k is increased; but when the iteration is successful (i.e., $r_k \ge p_0$), μ_{k+1} is updated as

$$
\mu_{k+1} = \begin{cases}\nc_0 \mu_k, & \text{if } ||J_k^T F_k|| < \frac{p_1}{\mu_k}, \\
\mu_k, & \text{if } ||J_k^T F_k|| \in [\frac{p_1}{\mu_k}, \frac{p_2}{\mu_k}], \\
\max \{c_1 \mu_k, m\}, & \text{if } ||J_k^T F_k|| > \frac{p_2}{\mu_k}.\n\end{cases} \tag{1.9}
$$

 $\circled{2}$ Springer

It was shown that the global complexity bound of the above LM algorithm is $O(\varepsilon^{-2})$, that is, it takes at most $O(\varepsilon^{-2})$ iterations to derive the norm of the gradient of the merit function below the desired accuracy ε .

The logic behind the updating rule (1.9) follows from the fact that the LM step is actually the solution of the trust region subproblem

$$
\min_{d \in R^n} \|F_k + J_k d\|^2
$$

s.t. $||d|| \le \Delta_k := ||d_k||.$ (1.10)

So, the step size computed by solving [\(1.10\)](#page-2-0) is proportional to the norm of the model gradient $\Vert J_k^T F_k \Vert$. Hence, the trust region, a magnitude of the inverse of μ_k , should also be of comparable size.

In this paper, we present a new LM algorithm for (1.1) , where the LM parameter is computed as

$$
\lambda_k = \mu_k \|F_k\|^2. \tag{1.11}
$$

We update the iterate x_k according to the ratio r_k as classical LM algorithms. When the iteration is unsuccessful, we increase μ_k ; otherwise, we update μ_{k+1} by [\(1.9\)](#page-1-0). We show that the new LM algorithm preserves the global convergence of classical LM algorithms. We also prove that the algorithm converges quadratically under the local error bound condition.

The paper is organized as follows. In Sect. [2,](#page-2-1) we present the new LM algorithm for (1.1) . The global convergence of the algorithm is also proved. In Sect. [3,](#page-5-0) we study the convergence rate of the algorithm under the local error bound condition. Some numerical results are given in Sect. [4.](#page-12-0) Finally, we conclude the paper in Sect. [5.](#page-15-2)

2 The LM Algorithm and Global Convergence

In this section, we first give the new LM algorithm, then show that the algorithm converges globally under certain conditions.

The LM algorithm is presented as follows.

Algorithm 2.1 (*A Levenberg–Marquardt algorithm for nonlinear equations*)

Step 1. Given $x_0 \in \mathbb{R}^n$, $\mu_0 > m > 0$, $0 < p_0 < p_1 < p_2 < 1$, $c_0 > 1$, $0 < c_1 < 1$, $\varepsilon \ge$ $0, k := 0.$

Step 2. If $||J_k^T F_k|| \leq \varepsilon$, then stop. Otherwise, solve

$$
(J_k^T J_k + \lambda_k I)d = -J_k^T F_k \text{ with } \lambda_k = \mu_k \|F_k\|^2 \tag{2.1}
$$

to obtain d_k . Step 3. Compute $r_k = \frac{Ared_k}{Pred_k}$. If $r_k \ge p_0$, set $x_{k+1} = x_k + d_k$ and compute μ_{k+1} by [\(1.9\)](#page-1-0); Otherwise, set $x_{k+1} = x_k$ and compute $\mu_{k+1} = c_0 \mu_k$. Set $k := k + 1$ and go to step 2.

To study the global convergence of Algorithm 2.1, we make the following assumption.

Assumption 2.1 $F(x)$ is continuously differentiable, both $F(x)$ and its Jacobian $J(x)$ is Lipschitz continuous, i.e., there exist positive constants L_1 and L_2 such that

$$
||J(x) - J(y)|| \le L_1 ||y - x||, \quad \forall x, y \in R^n
$$
\n(2.2)

 \mathcal{L} Springer

and

$$
||F(x) - F(y)|| \le L_2 ||y - x||, \quad \forall x, y \in R^n.
$$
 (2.3)

Due to the result given by Powell [\[10\]](#page-16-10), we have the following lemma.

Lemma 2.1 *The predicted reduction satisfies*

$$
||F_k||^2 - ||F_k + J_k d_k||^2 \ge ||J_k^T F_k|| \min \left\{ ||d_k||, \frac{||J_k^T F_k||}{||J_k^T J_k||} \right\}
$$
 (2.4)

for all k.

Lemma [2.1](#page-3-0) implies that the predicted reduction is always nonnegative.

In the following, we first prove the weak global convergence of Algorithm [2.1,](#page-2-2) that is, at least one accumulation point of the sequence generated by Algorithm [2.1](#page-2-2) is a stationary point of the merit function $\phi(x)$.

Theorem 2.1 *Under Assumption* [2.1](#page-2-3)*, Algorithm* [2.1](#page-2-2) *terminates in finite iterations or satisfies*

$$
\liminf_{k\to\infty} \|J_k^T F_k\| = 0.
$$

Proof We prove by contradiction. Suppose that there exists a constant $\tau > 0$ such that

$$
||J_k^T F_k|| \ge \tau, \quad \forall k. \tag{2.5}
$$

Define the index set of successful iterations:

$$
S=\{k: r_k\geq p_0\}.
$$

We discuss in two cases.

Case I. *S* is infinite. Since $||F(x)||$ is nonincreasing and bounded below, it follows from [\(2.3\)](#page-3-1) and [\(2.4\)](#page-3-2) that

$$
+\infty > \sum_{k \in S} (\|F_k\|^2 - \|F_{k+1}\|^2)
$$

\n
$$
\geq \sum_{k \in S} p_0 (\|F_k\|^2 - \|F_k + J_k d_k\|^2)
$$

\n
$$
\geq \sum_{k \in S} p_0 \|J_k^T F_k\| \min \left\{ \|d_k\|, \frac{\|J_k^T F_k\|}{\|J_k^T J_k\|} \right\}
$$

\n
$$
\geq \sum_{k \in S} p_0 \tau \min \left\{ \|d_k\|, \frac{\tau}{L_2^2} \right\}. \tag{2.6}
$$

So,

$$
\lim_{k \in S, k \to \infty} d_k = 0. \tag{2.7}
$$

Note that $d_k = 0$ for $k \notin S$, we have

$$
\lim_{k \to \infty} d_k = 0. \tag{2.8}
$$

Since $||J_k|| \le L_2$ and $||F_k|| \le ||F_0||$, by [\(2.1\)](#page-2-4), we have

$$
\mu_k \to +\infty. \tag{2.9}
$$

 $\hat{\mathfrak{D}}$ Springer

On the other hand, it follows from (2.3) and (2.4) that

$$
|r_{k} - 1| = \left| \frac{Ared_{k} - Pred_{k}}{Pred_{k}} \right|
$$

=
$$
\frac{||F(x_{k} + d_{k})||^{2} - ||F_{k} + J_{k}d_{k}||^{2}|}{Pred_{k}}
$$

$$
\leq \frac{||F_{k} + J_{k}d_{k}||O(||d_{k}||^{2}) + O(||d_{k}||^{4})}{\tau \min{||d_{k}||, \tau/L_{2}^{2}}}
$$

$$
\to 0.
$$
 (2.10)

So, $r_k \to 1$. Thus, μ_k is updated by [\(1.9\)](#page-1-0) and $\|J_k^T F_k\| > p_2/\mu_k$ for all sufficiently large *k*. Hence, $\mu_k = \max\{c_1\mu_k, m\}$ for all large *k*. Note that $0 < c_1 < 1$, there exists a positive constant \tilde{c} such that

 $\mu_k < \tilde{c}$

for all large *k*. This is a contradiction to [\(2.9\)](#page-3-3).

Case II. *S* is finite. Then there exists a \tilde{k} such that

$$
r_k < p_0, \quad k \ge k. \tag{2.11}
$$

According to the updating rule of x_k in Algorithm [2.1,](#page-2-2) we have $d_k \to 0$. By the same arguments as [\(2.10\)](#page-4-0), we get $r_k \to 1$, which contradicts [\(2.11\)](#page-4-1). The proof is completed.

Based on Theorem [2.1,](#page-3-4) we can further prove the strong global convergence of Algorithm [2.1,](#page-2-2) that is, all limit points of the sequence generated by Algorithm [2.1](#page-2-2) are stationary points of the merit function $\phi(x)$. We first give an auxiliary result (cf. [\[3,](#page-15-3) Lemma 2.7]).

Lemma 2.2 *Let b*, $a_1, \ldots, a_N > 0$ *. Then,*

$$
\sum_{j=1}^{N} \min\{a_j, b\} \ge \min\left\{\sum_{j=1}^{N} a_j, b\right\}.
$$
 (2.12)

Theorem 2.2 *Under Assumption* [2.1](#page-2-3)*, Algorithm* [2.1](#page-2-2) *terminates in finite iterations or satisfies*

$$
\lim_{k \to \infty} \|J_k^T F_k\| = 0. \tag{2.13}
$$

Proof Suppose by contradiction that there exists $\tau > 0$ such that the set

$$
\Omega = \{k : \|J_k^T F_k\| \ge \tau\}
$$
\n
$$
(2.14)
$$

is infinite. Given $k \in \Omega$, consider the first index $l_k > k$ such that $||J_{l_k}^T F_{l_k}|| \leq \frac{\tau}{2}$. The existence of such l_k is guaranteed by Theorem [2.1.](#page-3-4) By [\(2.2\)](#page-2-5), [\(2.3\)](#page-3-1) and $||F_k|| \le ||F_0||$,

$$
\frac{\tau}{2} \leq ||J_k^T F_k|| - ||J_{l_k}^T F_{l_k}|| \leq ||J_k^T F_k - J_{l_k}^T F_{l_k}||
$$
\n
$$
\leq ||J_k^T F_k - J_{l_k}^T F_k|| + ||J_{l_k}^T F_k - J_{l_k}^T F_{l_k}|| \leq (L_1 ||F_0|| + L_2^2) ||x_k - x_{l_k}||,
$$

which yields

$$
||x_k - x_{l_k}|| \geq \frac{\tau}{2(L_1 || F_0 || + L_2^2)}.
$$

Define the set

$$
S_k = \{ j : k \le j < l_k, x_{j+1} \ne x_j \}.
$$

 \circledcirc Springer

Then,

$$
\frac{\tau}{2(L_1 \|F_0\| + L_2^2)} \le \|x_k - x_{l_k}\| \le \sum_{j \in S_k} \|x_j - x_{j+1}\| \le \sum_{j \in S_k} \|d_j\|.
$$
 (2.15)

It now follows from [\(2.4\)](#page-3-2), [\(2.15\)](#page-5-1) and Lemma [2.2](#page-4-2) that, for all $k \in \Omega$,

$$
||F_k||^2 - ||F_{l_k}||^2 = \sum_{j \in S_k} (||F_j||^2 - ||F_{j+1}||^2)
$$

\n
$$
\geq \sum_{j \in S_k} p_0 ||J_j^T F_j|| \min \left\{ ||d_j||, \frac{||J_j^T F_j||}{||J_j^T J_j||} \right\}
$$

\n
$$
\geq \sum_{j \in S_k} \frac{p_0 \tau}{2} \min \left\{ ||d_j||, \frac{\tau}{2L_2^2} \right\}
$$

\n
$$
\geq \frac{p_0 \tau}{2} \min \left\{ \sum_{j \in S_k} ||d_j||, \frac{\tau}{2L_2^2} \right\}
$$

\n
$$
\geq \frac{p_0 \tau}{2} \min \left\{ \frac{\tau}{2(L_1 ||F_0|| + L_2^2)}, \frac{\tau}{2L_2^2} \right\}
$$

\n
$$
= \frac{p_0 \tau^2}{4(L_1 ||F_0|| + L_2^2)}
$$

\n
$$
> 0.
$$
\n(2.16)

However, since $\{\|F_k\|^2\}$ is nonincreasing and bounded below, $\|F_k\|^2 - \|F_{l_k}\|^2 \to 0$. This contradicts [\(2.16\)](#page-5-2). So, the set Ω defined by [\(2.14\)](#page-4-3) is finite. Therefore, [\(2.13\)](#page-4-4) holds true. The proof is completed.

3 Local Convergence

We assume that the sequence ${x_k}$ generated by Algorithm [2.1](#page-2-2) converges to the solution set X^* of [\(1.1\)](#page-0-0) and lies in some neighbourhood of $x^* \in X^*$. We first give some important properties of the algorithm, then show that the algorithm converges quadratically under the local error bound condition.

We make the following assumption.

Assumption 3.1 (a) $F(x)$ is continuously differentiable, and $||F(x)||$ provides a local error bound on some neighbourhood of $x^* \in X^*$, i.e., there exist positive constants $c > 0$ and b_1 < 1 such that

$$
||F(x)|| \ge c \operatorname{dist}(x, X^*), \quad \forall x \in N(x^*, b_1) = \{x : ||x - x^*|| \le b_1\}. \tag{3.1}
$$

(b) The Jacobian $J(x)$ is Lipschitz continuous on $N(x^*, b_1)$, i.e., there exists a positive constant L_1 such that

$$
||J(y) - J(x)|| \le L_1 ||y - x||, \quad \forall x, y \in N(x^*, b_1).
$$
 (3.2)

Note that, if $J(x)$ is nonsingular at a solution of (1.1) , then it is an isolated solution, so $||F(x)||$ provides a local error bound on its neighborhood. However, the converse is not necessarily true. Please see examples in [\[14\]](#page-16-8). Thus, the local error bound condition is weaker than the nonsingularity.

By (3.2) , we have

$$
||F(y) - F(x) - J(x)(y - x)|| \le L_1 ||y - x||^2, \quad \forall x, y \in N(x^*, b_1). \tag{3.3}
$$

Moreover, there exists a constant $L_2 > 0$ such that

$$
||F(y) - F(x)|| \le L_2 ||y - x||, \quad \forall x, y \in N(x^*, b_1). \tag{3.4}
$$

Throughout the paper, we denote by \bar{x}_k the vector in X^* that satisfies

$$
\|\bar{x}_k - x_k\| = \text{dist}(x_k, X^*).
$$

3.1 Some Properties

In the following, we first show the relationship between the length of the trial step d_k and the distance from x_k to the solution set.

Lemma [3.1](#page-5-4) *Under Assumption* 3.1*, if* $x_k \in N(x^*, b_1/2)$ *, then*

$$
\|d_k\| \le c_2 \|\bar{x}_k - x_k\| \tag{3.5}
$$

holds for all sufficiently large k, where $c_2 = \sqrt{L_1^2 c^{-2} m^{-1} + 1}$ *is a positive constant.*

Proof Since $x_k \in N(x^*, b_1/2)$, we have

$$
\|\bar{x}_k - x^*\| \le \|\bar{x}_k - x_k\| + \|x_k - x^*\| \le 2\|x_k - x^*\| \le b_1.
$$

So, $\bar{x}_k \in N(x^*, b_1)$. Thus, it follows from [\(1.9\)](#page-1-0) and [\(3.1\)](#page-5-5) that the LM parameter λ_k satisfies

$$
\lambda_k = \mu_k \|F_k\|^2 \ge c^2 m \|\bar{x}_k - x_k\|^2. \tag{3.6}
$$

Note that d_k is also a minimizer of

$$
\min_{d\in R^n} \|F_k + J_k d\|^2 + \lambda_k \|d\|^2 \triangleq \varphi_k(d),
$$

by (3.3) and (3.6) , we have

$$
||d_k||^2 \le \frac{\varphi_k(d_k)}{\lambda_k}
$$

\n
$$
\le \frac{\varphi_k(\bar{x}_k - x_k)}{\lambda_k}
$$

\n
$$
= \frac{||F_k + J_k(\bar{x}_k - x_k)||^2}{\lambda_k} + ||\bar{x}_k - x_k||^2
$$

\n
$$
\le \frac{L_1^2 ||\bar{x}_k - x_k||^4}{\lambda_k} + ||\bar{x}_k - x_k||^2
$$

\n
$$
\le (L_1^2 c^{-2} m^{-1} + 1) ||\bar{x}_k - x_k||^2.
$$

So, we obtain (3.5) .

Next we show that the gradient of the merit function also provides a local error bound on some neighbourhood of $x^* \in X^*$.

Lemma 3.2 *Under Assumption* [3.1](#page-5-4)*, if* $x_k \in N(x^*, b_1/2)$ *, then there exists a constant c*₃ > 0 *such that*

$$
||J_k^T F_k|| \ge c_3 ||\bar{x}_k - x_k|| \tag{3.7}
$$

holds for all sufficiently large k.

Proof It follows from [\(3.3\)](#page-6-0) that

$$
||F_k + J_k(\bar{x}_k - x_k)|| \le L_1 ||\bar{x}_k - x_k||^2.
$$

Thus,

$$
||F_k||^2 + 2(\bar{x}_k - x_k)^T J_k^T F_k + (\bar{x}_k - x_k)^T J_k^T J_k(\bar{x}_k - x_k) \le L_1^2 ||\bar{x}_k - x_k||^4.
$$

So,

$$
||F_k||^2 + 2(\bar{x}_k - x_k)^T J_k^T F_k \le L_1^2 ||\bar{x}_k - x_k||^4.
$$

 $By (3.1),$ $By (3.1),$ $By (3.1),$

$$
c^2 \|\bar{x}_k - x_k\|^2 - L_1^2 \|\bar{x}_k - x_k\|^4 \le 2 \|\bar{x}_k - x_k\| \|J_k^T F_k\|.
$$

Hence, (3.7) holds for sufficiently large *k*. The proof is completed.

Lemma 3.3 *Under Assumption* [3.1](#page-5-4)*, if* $x_k \in N(x^*, b_1/2)$ *, then there exists a positive integer K such that*

$$
r_k \ge p_0, \quad \forall k \ge K.
$$

That is, μ_k *is updated by* [\(1.9\)](#page-1-0) *when* $k \geq K$.

Proof It follows form [\(3.4\)](#page-6-3), [\(3.5\)](#page-6-2) and [\(3.7\)](#page-7-0) that

$$
Pred_{k} \geq ||J_{k}^{T} F_{k}|| \min \left\{ ||d_{k}||, \frac{||J_{k}^{T} F_{k}||}{||J_{k}^{T} J_{k}||} \right\}
$$

\n
$$
\geq c_{3} ||\bar{x}_{k} - x_{k}|| \min \{ ||d_{k}||, \frac{c_{2}^{-1} c_{3}}{L_{2}^{2}} ||d_{k}|| \}
$$

\n
$$
= ||d_{k}|| O(||\bar{x}_{k} - x_{k}||).
$$

This, together with [\(3.3\)](#page-6-0), [\(3.4\)](#page-6-3) and $||F_k + J_k d_k|| \le ||F_k||$, gives

$$
|r_{k} - 1| = |\frac{Ared_{k} - Pred_{k}}{Pred_{k}}|
$$

\n
$$
\leq \frac{||F_{k} + J_{k}d_{k}||O(||d_{k}||^{2}) + O(||d_{k}||^{4})}{Pred_{k}}
$$

\n
$$
\leq \frac{O(||\bar{x}_{k} - x_{k}||)O(||d_{k}||^{2}) + O(||d_{k}||^{4})}{||d_{k}||O(||\bar{x}_{k} - x_{k}||)}
$$

\n
$$
= O(||d_{k}||)
$$

\n
$$
\to 0.
$$

So, $r_k \rightarrow 1$. Therefore, we obtain the result.

Let

$$
C_1 = \max\{p_2, c_1^{-1}mL_2||F_0||\},\tag{3.8}
$$

$$
c_4 = L_2^2 + L_1 \|F_0\| \tag{3.9}
$$

be two positive constants.

 \Box

Lemma 3.4 *Under Assumption* [3.1](#page-5-4) *and* $c_1 \leq (1 + c_4 c_2 c_3^{-1})^{-1}$, if $k \geq K$ *and* $\mu_k || J_k^T F_k || >$ *C*1*, then*

$$
\mu_{k+1} \| J_{k+1}^T F_{k+1} \| \le \mu_k \| J_k^T F_k \|.
$$
\n(3.10)

Proof By [\(3.2\)](#page-5-3) and [\(3.4\)](#page-6-3),

$$
\begin{aligned} \|\|J_{k+1}^T F_{k+1}\| - \|J_k^T F_k\|\| &\leq \|\|J_{k+1}^T F_{k+1}\| - \|J_{k+1}^T F_k\|\| + \|\|J_{k+1}^T F_k\| - \|J_k^T F_k\|\| \\ &\leq \|J_{k+1}\| \|F_{k+1} - F_k\| + \|F_k\| \|J_{k+1} - J_k\| \\ &\leq (L_2^2 + L_1 \|F_0\|) \|d_k\| \\ &= c_4 \|d_k\|. \end{aligned}
$$

It then follows from Lemmas [3.1](#page-6-4) and [3.2](#page-6-5) that

$$
||J_{k+1}^T F_{k+1}|| \le ||J_k^T F_k|| + c_4 ||d_k|| \le (1 + c_4 c_2 c_3^{-1}) ||J_k^T F_k||. \tag{3.11}
$$

Since $\mu_k \| J_k^T F_k \| > C_1$, by [\(3.4\)](#page-6-3) and $||F_k|| \le ||F_0||$, we have

$$
\mu_k > \frac{p_2}{\|J_k^T F_k\|}, \quad \mu_k \|J_k^T F_k\| \ge \frac{mL_2}{c_1} \|F_0\| \ge \frac{m}{c_1} \|J_k^T F_k\|.
$$

So, $\mu_k \geq \frac{m}{c_1}$. It then follows from $k \geq K$, Lemma [3.3](#page-7-1) and the updating rule [\(1.9\)](#page-1-0) that

$$
\mu_{k+1}=c_1\mu_k.
$$

By [\(3.11\)](#page-8-0) and $c_1 \le (1 + c_4 c_2 c_3^{-1})^{-1}$, we have

$$
\mu_{k+1} \| J_{k+1}^T F_{k+1} \| = c_1 \mu_k \| J_{k+1}^T F_{k+1} \|
$$

\n
$$
\leq c_1 (1 + c_4 c_2 c_3^{-1}) \mu_k \| J_k^T F_k \|
$$

\n
$$
\leq \mu_k \| J_k^T F_k \|.
$$

The proof is completed.

Let

$$
C_2 = \max\{\mu_K \, \| \, J_K^T F_K \|, \, c_0 \, (1 + c_4 c_2 c_3^{-1}) C_1\}
$$

be a positive constant.

The next lemma shows that $\mu_k || J_k^T F_k ||$ is upper bounded.

Lemma 3.5 *Under conditions of Lemma* [3.4](#page-7-2)*,*

$$
\mu_k \| J_k^T F_k \| \le C_2, \quad \forall k \ge K. \tag{3.12}
$$

Proof We discuss in two cases.

Case 1 $\mu_K || J_K^T F_K || \le c_0 (1 + c_4 c_2 c_3^{-1}) C_1$. Then, we must have

$$
\mu_{K+1} \| J_{K+1}^T F_{K+1} \| \le c_0 (1 + c_4 c_2 c_3^{-1}) C_1. \tag{3.13}
$$

Otherwise, suppose

$$
\mu_{K+1} \| J_{K+1}^T F_{K+1} \| > c_0 (1 + c_4 c_2 c_3^{-1}) C_1. \tag{3.14}
$$

It follows from [\(3.11\)](#page-8-0) and $\mu_{K+1} \leq c_0 \mu_K$ that

$$
(1 + c_4 c_2 c_3^{-1}) C_1 < \mu_K \| J_{K+1}^T F_{K+1} \| \le (1 + c_4 c_2 c_3^{-1}) \mu_K \| J_K^T F_K \|. \tag{3.15}
$$

 \Box

This gives

$$
\mu_K \| J_K^T F_K \| > C_1.
$$

By Lemma [3.4,](#page-7-2) we obtain

$$
\mu_{K+1} \| J_{K+1}^T F_{K+1} \| \le \mu_K \| J_K^T F_K \| \le c_0 (1 + c_4 c_2 c_3^{-1}) C_1.
$$

This is a contradiction to (3.14) . So (3.13) holds true.

By induction, we can obtain

$$
\mu_k \| J_k^T F_k \| \le c_0 (1 + c_4 c_2 c_3^{-1}) C_1, \quad \forall k \ge K.
$$
\n(3.16)

Case 2 $\mu_K || J_K^T F_K || > c_0 (1 + c_4 c_2 c_3^{-1}) C_1$. Note that $c_0 > 1$, we have

$$
\mu_K \| J_K^T F_K \| > C_1.
$$

So, by Lemma [3.4,](#page-7-2)

$$
\mu_{K+1} \| J_{K+1}^T F_{K+1} \| \le \mu_K \| J_K^T F_K \|.
$$
\n(3.17)

If $\mu_{K+1} \| J_{K+1}^T F_{K+1} \| > c_0 (1 + c_4 c_2 c_3^{-1}) C_1$, then by Lemma [3.4](#page-7-2) and [\(3.17\)](#page-9-0),

$$
\mu_{K+2} \| J_{K+2}^T F_{K+2} \| \le \mu_{K+1} \| J_{K+1}^T F_{K+1} \|.
$$
\n(3.18)

Otherwise, if $\mu_{K+1} || J_{K+1}^T F_{K+1} || \leq c_0 (1 + c_4 c_2 c_3^{-1}) C_1$, then by the same arguments as in case 1, we have

$$
\mu_{K+2} \| J_{K+2}^T F_{K+2} \| \le c_0 (1 + c_4 c_2 c_3^{-1}) C_1. \tag{3.19}
$$

In view of (3.17) – (3.19) , we obtain

$$
\mu_{K+2} \| J_{K+2}^T F_{K+2} \| \le \max\{ \mu_{K+1} \| J_{K+1}^T F_{K+1} \|, c_0 (1 + c_4 c_2 c_3^{-1}) C_1 \} \\
\le \max\{ \mu_K \| J_K^T F_K \|, c_0 (1 + c_4 c_2 c_3^{-1}) C_1 \}.
$$
\n(3.20)

By induction, we can prove that, for all $k > K$,

$$
\mu_k \| J_k^T F_k \| \le \max \{ \mu_{k-1} \| J_{k-1}^T F_{k-1} \|, c_0 (1 + c_4 c_2 c_3^{-1}) C_1 \}
$$

$$
\le \cdots
$$

$$
\le \max \{ \mu_K \| J_K^T F_K \|, c_0 (1 + c_4 c_2 c_3^{-1}) C_1 \}
$$

$$
= C_2.
$$

The proof is completed.

Let

$$
C_3 = c_3^{-1} L_2 C_2.
$$

The following lemma shows that $\mu_k || F_k ||$ is bounded by C_3 .

Lemma 3.6 *Under conditions of Lemma [3.4,](#page-7-2)*

$$
\mu_k \|F_k\| \le C_3 \tag{3.21}
$$

holds for all sufficiently large k.

 \Box

Proof It follows from [\(3.4\)](#page-6-3) that

$$
||F_k|| \le L_2 ||\bar{x}_k - x_k||.
$$

This, together with [\(3.7\)](#page-7-0), gives

$$
||F_k|| \leq c_3^{-1} L_2 ||J_k^T F_k||.
$$

Thus, by (3.12) , we obtain (3.21) . The proof is completed.

3.2 Quadratic Convergence

Based on the above lemmas, we study the quadratic convergence of Algorithm [2.1](#page-2-2) under the local error bound condition, by using the singular value decomposition (SVD) technique.

Suppose the SVD of $J(\bar{x}_k)$ is

$$
\begin{aligned} \bar{J}_k &= \bar{U}_k \bar{\Sigma}_k \bar{V}_k^T \\ &= (\bar{U}_{k,1}, \bar{U}_{k,2}) \left(\frac{\bar{\Sigma}_{k,1}}{0} \right) \left(\frac{\bar{V}_{k,1}^T}{V_{k,2}^T} \right) \\ &= \bar{U}_{k,1} \bar{\Sigma}_{k,1} \bar{V}_{k,1}^T, \end{aligned}
$$

where $\Sigma_{k,1} = \text{diag}(\bar{\sigma}_{k,1}, \dots, \bar{\sigma}_{k,r})$ with $\bar{\sigma}_{k,1} \ge \bar{\sigma}_{k,2} \ge \dots \ge \bar{\sigma}_{k,r} > 0$, and the correspondingly SVD of *Jk* is

$$
J_k = U_k \Sigma_k V_k^T
$$

= $(U_{k,1}, U_{k,2}) \begin{pmatrix} \Sigma_{k,1} \\ \Sigma_{k,2} \end{pmatrix} \begin{pmatrix} V_{k,1}^T \\ V_{k,2}^T \end{pmatrix}$
= $U_{k,1} \Sigma_{k,1} V_{k,1}^T + U_{k,2} \Sigma_{k,2} V_{k,2}^T$,

where $\Sigma_{k,1}$ = diag($\sigma_{k,1}, \ldots, \sigma_{k,r}$) with $\sigma_{k,1} \geq \cdots \geq \sigma_{k,r} > 0$, and $\Sigma_{k,2}$ = $diag(\sigma_{k,r+1},\ldots,\sigma_{k,n})$ with $\sigma_{k,r} \geq \cdots \geq \sigma_{k,n} \geq 0$. In the following, if the context is clear, we neglect the subscription *k* in $\Sigma_{k,i}$ and $U_{k,i}$, $V_{k,i}$ ($i = 1, 2$), and write J_k as

$$
J_k = U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T.
$$

By the theory of matrix perturbation $[12]$ and the Lipschitzness of J_k ,

$$
\|\mathrm{diag}(\Sigma_1 - \bar{\Sigma}_1, \Sigma_2)\| \le \|J_k - \bar{J}_k\| \le L_1 \|\bar{x}_k - x_k\|.
$$

So,

$$
\|\Sigma_1 - \bar{\Sigma}_1\| \le L_1 \|\bar{x}_k - x_k\| \quad \text{and} \quad \|\Sigma_2\| \le L_1 \|\bar{x}_k - x_k\|.\tag{3.22}
$$

Since $\{x_k\}$ converges to the solution set X^* , we assume that $L_1 \|\bar{x}_k - x_k\| \le \bar{\sigma}_r/2$ holds for all sufficiently large *k*. Then, it follows from [\(3.22\)](#page-10-0) that

$$
\|\Sigma_1^{-1}\| \le \frac{1}{\bar{\sigma}_r - L_1 \|\bar{x}_k - x_k\|} \le \frac{2}{\bar{\sigma}_r}.
$$
 (3.23)

Lemma 3.7 *Under Assumption* [3.1](#page-5-4)*, if* $x_k \in N(x^*, b_1/2)$ *, then we have*

 (a) $||U_1U_1^T F_k|| \leq L_2 ||\bar{x}_k - x_k||;$ (b) $||U_2U_2^T F_k|| \leq 2L_1 ||\bar{x}_k - x_k||^2;$

where L_1 , L_2 *are given in* [\(3.2\)](#page-5-3) *and* [\(3.4\)](#page-6-3) *respectively.*

Proof (a) follows from (3.4) directly.

Denote $F(\bar{x}_k)$ by F_k . By [\(3.3\)](#page-6-0) and [\(3.22\)](#page-10-0),

$$
||U_2U_2^T F_k|| = ||U_2U_2^T(\bar{F}_k - F_k)||
$$

\n
$$
\leq ||U_2U_2^T J_k(\bar{x}_k - x_k)|| + L_1||U_2U_2^T|| \|\bar{x}_k - x_k\|^2
$$

\n
$$
\leq ||U_2U_2^T (U_1\Sigma_1V_1^T + U_2\Sigma_2V_2^T)|| \|\bar{x}_k - x_k\| + L_1\|\bar{x}_k - x_k\|^2
$$

\n
$$
\leq ||\Sigma_2|| \|\bar{x}_k - x_k\| + L_1\|\bar{x}_k - x_k\|^2
$$

\n
$$
\leq 2L_1\|\bar{x}_k - x_k\|^2.
$$

The proof is completed.

Now we can give the main result of this section.

Theorem 3.1 *Under Assumption* [3.1](#page-5-4)*, the sequence generated by Algorithm* [2.1](#page-2-2) *converges to some solution of* [\(1.1\)](#page-0-0) *quadratically.*

Proof By the SVD of J_k ,

$$
d_k = -V_1(\Sigma_1^2 + \lambda_k I)^{-1} \Sigma_1 U_1^T F_k - V_2(\Sigma_2^2 + \lambda_k I)^{-1} \Sigma_2 U_2^T F_k,
$$

and

$$
F_k + J_k d_k = \lambda_k U_1 (\Sigma_1^2 + \lambda_k I)^{-1} U_1^T F_k + \lambda_k U_2 (\Sigma_2^2 + \lambda_k I)^{-1} U_2^T F_k.
$$

It follows from [\(3.4\)](#page-6-3), [\(3.23\)](#page-10-1), Lemmas [3.6](#page-9-3) and [3.7](#page-10-2) that

$$
||F_k + J_k d_k|| \leq \mu_k ||F_k||^2 ||\Sigma_1^{-2}|| ||U_1 U_1^T F_k|| + ||U_2 U_2^T F_k||
$$

$$
\leq \frac{4L_2^2 C_3}{\bar{\sigma}_r^2} ||\bar{x}_k - x_k||^2 + 2L_1 ||\bar{x}_k - x_k||^2
$$

$$
\leq c_5 ||\bar{x}_k - x_k||^2,
$$

where $c_5 = \frac{4L_2^2C_3}{\bar{\sigma}_r^2}$ $\frac{\sigma_2 S_3}{\sigma_r^2}$ + 2*L*₁ is a positive constant. So, by [\(3.1\)](#page-5-5), [\(3.3\)](#page-6-0) and Lemma [3.1,](#page-6-4)

$$
c\|\bar{x}_{k+1} - x_{k+1}\| \le \|F_{k+1}\|
$$

\n
$$
\le \|F_k + J_k d_k\| + L_1 \|d_k\|^2
$$

\n
$$
\le c_5 \|\bar{x}_k - x_k\|^2 + L_1 c_2^2 \|\bar{x}_k - x_k\|^2
$$

\n
$$
\le c_6 \|\bar{x}_k - x_k\|^2,
$$
 (3.24)

where $c_6 = c_5 + c_2^2 L_1$ is a positive constant. Note that

$$
\|\bar{x}_k - x_k\| \le \|\bar{x}_{k+1} - x_{k+1}\| + \|d_k\|.\tag{3.25}
$$

By [\(3.24\)](#page-11-0),

$$
\|\bar{x}_k - x_k\| \le 2\|d_k\|
$$

holds for all sufficiently large *k*. Combining [\(3.5\)](#page-6-2), [\(3.24\)](#page-11-0) and [\(3.25\)](#page-11-1), we obtain

$$
||d_{k+1}|| \le O(||d_k||^2).
$$

The proof is completed.

```
\Box
```
² Springer

Prob	\boldsymbol{n}	x_0	$\lambda_k = \mu_k F_k $ with (1.7) $NF/NJ/NF+NJ*n$	$\lambda_k = \mu_k F_k ^2$ with (1.7) $NF/NJ/NF+NJ*n$	$\lambda_k = \mu_k F_k ^2$ with (1.9) $NF/NJ/NF+NJ*n$
$\mathbf{1}$	$\mathfrak{2}$	$\mathbf{1}$	16/16/48	16/16/48	16/16/48
		10	19/19/57	19/19/57	19/19/57
		100	22/22/66	23/23/69	23/23/69
4	$\overline{4}$	1	18/18/90	18/18/90	18/18/90
		10	20/20/100	20/20/100	20/20/100
		100	24/24/120	24/24/120	24/24/120
5	3	1	8/8/32	8/8/32	8/8/32
		10	8/8/32	8/8/32	8/8/32
		100	8/8/32	8/8/32	8/8/32
6	31	1	156/124/4000	68/35/1153	737/368/12145
8	10	1	9/9/99	9/9/99	9/9/99
		10	24/24/264	24/24/264	24/24/264
9	10	1	5/5/55	5/5/55	5/5/55
		10	6/6/66	6/6/66	6/6/66
		100	10/10/110	10/10/110	10/10/110
10	30	1	7/7/217	7/7/217	7/7/217
		10	9/9/279	9/9/279	9/9/279
		100	10/10/310	10/10/310	10/10/310
11	30	1	31/13/421	45/18/585	37/14/457
12	10	1	15/15/165	15/15/165	15/15/165
		10	17/17/187	17/17/187	17/17/187
		100	21/21/231	21/21/231	21/21/231
13	30	$\mathbf{1}$	11/11/341	11/11/341	11/11/341
		10	15/15/465	15/15/465	15/15/465
		100	19/19/589	19/19/589	19/19/589
14	30	1	14/14/434	14/14/434	14/14/434
		10	20/20/620	20/20/620	20/20/620
		100	26/26/806	26/26/806	26/26/806

Table 1 Results on the first singular test set with rank $(F'(x^*)) = n - 1$

Remark 3.1 If the Levenberg–Marquardt parameter is chosen as $\lambda_k = \mu_k \|F_k\|^{\delta}$, where μ_k is updated by [\(1.9\)](#page-1-0) and $\delta \in (1, 2]$, the algorithm converges superlinearly to some solution of the nonlinear equations with the order δ . The proof is almost the same as above, except that we have $||F_k + J_k d_k|| \leq c_5 ||\bar{x}_k - x_k||^{\delta}$ instead of $||F_k + J_k d_k|| \leq c_5 ||\bar{x}_k - x_k||^2$ in the proof of Theorem 3.1, which then yields $||d_{k+1}|| \le O(||d_k||^{\delta})$.

4 Numerical Results

We test Algorithm [2.1,](#page-2-2) where the LM parameter is computed by $\lambda_k = \mu_k \|F_k\|^2$ with μ_k updated by [\(1.9\)](#page-1-0), on some singular nonlinear equations, and compare it with other two LM algorithms, where $\lambda_k = \mu_k \|F_k\|$ and $\lambda_k = \mu_k \|F_k\|^2$ with μ_k updated by [\(1.7\)](#page-1-1), respectively.

Prob	\boldsymbol{n}	x_0	$\lambda_k = \mu_k \ F_k\ $ with (1.7) $NF/NJ/NF+NJ*n$	$\lambda_k = \mu_k F_k ^2$ with (1.7) $NF/NJ/NF+NJ*n$	$\lambda_k = \mu_k F_k ^2$ with (1.9) $NF/NJ/NF+NJ*n$
1	$\overline{2}$	1	12/12/36	12/12/36	12/12/36
		10	14/14/42	14/14/42	14/14/42
		100	18/18/54	18/18/54	18/18/54
3	2	1	38/26/90	211/138/487	260/180/620
		10	30/15/60	37/15/67	19/12/43
		100	34/18/70	39/16/71	22/16/54
4	4	1	15/15/75	OF	15/15/75
		10	18/18/90	OF	18/18/90
		100	22/22/110	OF	22/22/110
5	3	1	15/15/60	15/15/60	15/15/60
		10	16/16/64	16/16/64	16/16/64
		100	16/16/64	16/16/64	16/16/64
6	31	1	3200/2621/84451	$-/-/-$	1288/665/21903
8	10	1	9/9/99	9/9/99	9/9/99
		10	23/23/253	24/24/264	24/24/264
9	10	$\mathbf{1}$	5/5/55	5/5/55	5/5/55
		10	8/8/88	8/8/88	8/8/88
		100	10/10/110	10/10/110	10/10/110
10	30	1	7/7/217	7/7/217	7/7/217
		10	10/10/310	9/9/279	9/9/279
		100	10/10/310	11/11/341	22/18/562
11	30	1	30/13/420	36/14/456	65/44/1385
12	10	1	15/15/165	15/15/165	15/15/165
		10	17/17/187	17/17/187	17/17/187
		100	21/21/589	21/21/589	21/21/589
13	30	$\mathbf{1}$	11/11/341	11/11/341	11/11/341
		10	15/15/465	15/15/465	15/15/465
		100	19/19/589	$-/-/-$	19/19/589
14	30	1	14/14/434	14/14/434	14/14/434
		10	20/20/620	19/19/589	19/19/589
		100	26/26/806	25/25/775	26/26/806

Table 2 Results on the second singular test set with rank $(F'(x^*)) = n - 2$

The test problems are created by modifying the nonsingular problems given by Moré, Garbow and Hillstrom in [\[8](#page-16-12)], and have the same form as in [\[11](#page-16-13)],

$$
\hat{F}(x) = F(x) - J(x^*)A(A^T A)^{-1}A^T(x - x^*),
$$

where $F(x)$ is the standard nonsingular test function, x^* is its root, and $A \in R^{n \times k}$ has full column rank with $1 \le k \le n$. Obviously, $\hat{F}(x^*) = 0$ and

$$
\hat{J}(x^*) = J(x^*)(I - A(A^T A)^{-1} A^T)
$$

² Springer

Table 3 Results on the first singular test set with rank $n - 1$

Prob	\boldsymbol{n}	x_0	$\lambda_k = \mu_k F_k $ with (1.7) $NF/NJ/NF+NJ*n/t(s)$	$\lambda_k = \mu_k F_k ^2$ with (1.7) $NF/NJ/NF+NJ*n/t(s)$	$\lambda_k = \mu_k F_k ^2$ with (1.9) $NF/NJ/NF+NJ*n/t(s)$
9	3000	1	1/1/3001/0.3	1/1/3001/0.3	1/1/3001/0.3
		10	2/2/6002/20.3	2/2/6002/19.3	2/2/6002/19.5
		100	8/8/24008/147	8/8/24008/131	8/8/24008/128
10	3000	1	18/9/27018/593	27/9/27027/714	20/9/27020/562
		10	20/11/33020/645	29/11/33029/848	20/11/33020/623
		100	10/10/30010/415	10/10/30010/415	10/10/30010/426
13	3000	1	11/11/33011/220	11/11/33011/220	11/11/33011/218
		10	15/15/45015/289	15/15/45015/302	16/16/48016/298
		100	19/19/57019/388	19/19/57019/393	19/19/57019/379
14	3000	1	14/14/42014/386	14/14/42014/302	14/14/42014/270
		10	20/20/60020/588	20/20/60020/446	20/20/60020/412
		100	26/26/78026/789	26/26/78026/584	26/26/78026/557

Table 4 Results on the first singular test set with rank $n - 2$

has rank *n* − *k*. A disadvantage of these problems is that $\hat{F}(x)$ may have roots that are not roots of *F*(*x*). We create two sets of singular problems, with $\hat{J}(x^*)$ having rank *n* − 1 and $n - 2$, by using

 $A \in R^{n \times 1}$, $A^T = (1, 1, \ldots, 1)$

and

$$
A \in R^{n \times 2}, \qquad A^T = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 1 & -1 & \cdots & \pm 1 \end{pmatrix},
$$

respectively. Meanwhile, we make a slight alteration on the variable dimension problem, which has $n + 2$ equations in *n* unknowns; we eliminate the $(n - 1)$ -th and *n*-th equations. (The first *n* equations in the standard problem are linear.)

We set $p_0 = 0.0001$, $p_1 = 0.25$, $p_2 = 0.75$, $c_0 = 4$, $c_1 = 0.25$, $\mu_0 = 10^{-8}$, $m =$ 10^{−8}, $\varepsilon = 10^{-6}$ for all the tests. The stopping criterion is $||J_k^T F_k|| \leq \varepsilon$ or when the number of iterations exceeds 100(*n* + 1). The results for the first set problems of rank *n* − 1 with small scale are listed in Table [1,](#page-12-1) and the second set of rank $n - 2$ in Table [2.](#page-13-0) We also test the algorithms on some large scale problems. The results are given in Tables [3](#page-14-0) and [4.](#page-14-1)

The third column of the table indicates that the starting point is x_0 , $10x_0$, and $100x_0$, where x_0 is suggested by Moré, Garbow and Hillstrom in [\[8](#page-16-12)]; "NF" and "NJ" represent the numbers of function calculations and Jacobian calculations, respectively. If the algorithm fails to find the solution in $100(n + 1)$ iterations, we denote it by the sign "−", and if the algorithm has underflows or overflows, we denote it by OF. Note that, for general nonlinear equations, the calculations of the Jacobian are usually n times of the function calculations. So, for small scale problems, we also present the values "NF+*n**N" for comparisons of the total calculations. However, if the Jacobian is sparse, this kind of value does not mean much. For the large scale problem, the computing time is also given.

From Tables [1](#page-12-1) and [2,](#page-13-0) we can see that Algorithm [2.1](#page-2-2) works almost the same as other two LM algorithms for small scale problems. From Tables [3](#page-14-0) and [4,](#page-14-1) we can see that Algorithm 2.1 outperforms the other two algorithms for most large scale problems.

5 Conclusion and Discussion

In traditional LM algorithms for nonlinear equations, both the iterate and the LM parameter are updated according to the ratio of the actual reduction to the predicted reduction of the merit function (cf. $[1,2]$ $[1,2]$). In this paper, we proposed a new LM algorithm for nonlinear equations, where the LM parameter is taken as $\lambda_k = \mu_k \|F_k\|^2$ with μ_k being updated by [\(1.9\)](#page-1-0). Though the iterate is still updated according to the ratio of the actual reduction to the predicted reduction, the update of μ_k is no longer based on it. When the iteration is unsuccessful, μ_k is increased; otherwise it is updated based on the value of the gradient norm of the merit function as in (1.9) . We proved that all limit points of the sequence generated by the algorithm are stationary points of the merit function under standard conditions. Since the updating rule of μ_k changes, the analysis of the convergence rate in this paper is quite different from those in [\[1](#page-15-1)[,3](#page-15-3)]. We developed new techniques to prove the quadratic convergence of the algorithm under the local error bound condition.

We also discussed the LM parameter as $\lambda_k = \mu_k \|F_k\|$ [§], where μ_k is updated by [\(1.9\)](#page-1-0) and $\delta \in [1, 2)$. We found that the algorithm converges with the order δ , by using the similar analysis in this paper. We conjecture that the convergence rate is quadratic for any $\delta \in [1, 2)$. This will be our future study.

References

- 1. Fan, J.Y.: A modified Levenberg–Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. **21**, 625–636 (2003)
- 2. Fan, J.Y.: The modified Levenberg–Marquardt method for nonlinear equations with cubic convergence. Math. Comput. **81**, 447–466 (2012)
- 3. Fan, J.Y., Pan, J.Y., Song, H.Y.: A retrospective trust region algorithm with trust region converging to zero. J. Comput. Math. **34**, 421–436 (2016)
- 4. Fan, J.Y., Yuan, Y.X.: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing **74**, 23–39 (2005)
- 5. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quardt. Appl. Math. **2**, 164–166 (1944)
- 6. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear inequalities. SIAM J. Appl. Math. **11**, 431–441 (1963)
- 7. Moré, J.J.: The Levenberg–Marquardt algorithm: implementation and theory. Numer. Anal. **630**, 105–116 (1978)
- 8. Moré, J.J., Garbow, B.S., Hillstrom, K.H.: Testing unconstrained optimization software. ACM Trans. Math. Softw. **7**, 17–41 (1981)
- 9. Osborne, M.R.: Nonlinear least squares-the Levenberg–Marquardt algorithm revisited. J. Aust. Math. Soc. **19**, 343–357 (1976)
- 10. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 2, pp. 1–27. Academic Press, New York (1975)
- 11. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. **21**, 815–843 (1984)
- 12. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, San Diego (1990)
- 13. Wright, S.J., Holt, J.N., Holt, J.N.: An inexact Levenberg–Marquardt method for large sparse nonlinear least squares. J. Aust. Math. Soc. **26**, 387–403 (1985)
- 14. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt mehod. Computing (Supplement) **15**, 237–249 (2001)
- 15. Yuan, Y.X.: Trust region algorithms for nonlinear equations. Information **1**, 7–20 (1998)
- 16. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures. Numer. Algebra Control Optim. **1**, 15–34 (2011)
- 17. Yuan, Y.X.: Recent advances in trust region algorithms. Math. Program. Ser. B **151**, 249–281 (2015)
- 18. Zhao, R.X., Fan, J.Y.: Global complexity bound of the Levenberg–Marquardt method. Optim. Methods Softw. **31**, 805–814 (2016)