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Abstract In this paper, the block-centered finite difference method is introduced and ana-
lyzed to solve the compressible wormhole propagation. The coupled analysis approach to
deal with the fully coupling relation of multivariables is employed. By this, stability analysis
and error estimates for the pressure, velocity, porosity, concentration and its flux in different
discrete norms are established rigorously and carefully on non-uniform grids. Finally, some
numerical experiments are presented to verify the theoretical analysis and effectiveness of
the given scheme.

Keywords Block-centered finite difference · Compressible wormhole propagation ·
Non-uniform grids · Error estimates · Numerical experiments
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1 Introduction

A wormhole is a phenomenon in which a worm-like hole is generated and propagated in
the subsurface formations due to the injection of acids into a supercritical acid dissolution
system. To enhance oil production rate, matrix acidization technique was introduced and
applied widely. In this technique, we injected acid into matrix to dissolve the rocks, thus
a channel called wormhole [1–6] is established. Usually such channel is formed with high
porosities. Though this channel, we can easily push oil and gas components in the reservoir
to the surface. It is crucial to point out that the advancement of the chemical reaction front
does not propagate uniformly along the injection direction. Actually, the heterogeneity of
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porosity and permeability in the subsurface formations plays an significant role in promoting
the non-uniformity of the chemical reaction front. All in all, the chemical reaction front tends
to advance in certain directions more that other directions, thus a wormhole pattern is formed.

There are many numerical simulations for wormhole propagation due to its significant
role in subsurface reservoir management. Zhao et al. [7] presented the theoretical and numer-
ical analyses of chemical-dissolution front instability in fluid-saturated porous rocks by
combining the finite element method and the finite difference method. In 2015, the new
Darcy–Brinkman–Forchheimer framework was introduced to simulate the wormhole form-
ing procedure byWu et al. [3]. Besides, Kou et al. [1] developed a mixed finite element-based
fully conservative methods to simulate the wormhole propagation. Recently, Li and Rui [8]
have researched the characteristic block-centered finite difference method for simulating
incompressible wormhole propagation.

Block-centered finite differences, sometimes called cell-centered finite differences, can
be thought as the lowest order Raviart–Thomas mixed element method [9], with proper
quadrature formulation. In [10], Wheeler presented the mixed finite elements for elliptic
problems with tensor coefficients as cell-centered finite differences. And in 2012, a block-
centered finite difference method for the Darcy–Forchheimer model was considered [11].
In [12–15] block-centered finite difference methods were developed. A parallel CGS block-
centered finite difference method for a nonlinear time-fractional parabolic equation has been
studied [16]. Recently, Li and Rui [17] applied this method to the nonlinear time-fractional
parabolic equation. The applications of the block-centered finite difference methods enable
us to approximate pressure, velocity, porosity, concentration and its flux in different discrete
norms with second-order accuracy on non-uniform grids, which is the superconvergence.
Also the block-centered finite difference methods can guarantee local mass conservation.
Besides, the applications of the block-centered finite difference methods enable us to transfer
the saddle point problem to symmetric positive definite problem.

As far as we know, there is no block-centered finite difference method for compressible
wormhole propagation. Before analyzing the convergence of our block-centred finite dif-
ference method, we develop estimates of the mixed finite element method with quadrature
applied to linear parabolic equations. Using these estimates, we obtain the superconvergence
of the pressure, velocity, porosity, concentration and its flux in different discrete norms. In
fact, in our proposed scheme, there are at least three issues in theoretical analysis for the com-
pressible wormhole propagation: the first one is to estimate and bound the porosity which can
change during time evolution, the second one is the complication resulted from the introduced
auxiliary flux variable and the last one is the fully coupling relation of multi-variables. To
resolve these issues, we introduce some usefully lemmas and consider the coupled analysis
method. Recently, we have applied this method to the incompressible wormhole propagation
in [8]. But for compressible wormhole propagation, due to the appearance of the term ∂p

∂t
in the mass conservation equation, the same technique can not be used. Compared with the
error analyses in [8], the error estimates in this paper is more complex which should be taken
the time difference of approximate velocity and auxiliary flux into consideration. Moreover,
stability results are proven rigorously and carefully which are not given in [8]. The error esti-
mates are deduced rigorously and carefully in this paper, and we carry out some numerical
experiments to verify the theoretical analysis and effectiveness of the given scheme.

The paper is organized as follows. In Sect. 2 we give the problem and some preliminaries.
In Sect. 3 we present the block-centered finite difference algorithm. In Sect. 4 we demonstrate
stability estimates for the discrete scheme. In Sect. 5 we demonstrate error analysis for the
discrete scheme. InSect. 6 somenumerical experiments are carried out to verify the theoretical
analysis and effectiveness of the given scheme.
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Through out the paper we use C , with or without subscript, to denote a positive constant,
which could have different values at different appearances.

2 The Problem and Some Preliminaries

In this paper, we consider the usual differential system used to describe compressible worm-
hole propagation [1]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
∂p

∂t
+ ∂φ

∂t
+ ∇ · u = f, x ∈ �, t ∈ J, (1)

u = − K (φ)

μ
∇ p, x ∈ �, t ∈ J, (2)

∂(φc f )

∂t
+ ∇ · (uc f ) − ∇ · (φD ∇c f ) = kcav(cs − c f ) + fP c f + f I cI , (3)

∂φ

∂t
= αkcav(c f − cs)

ρs
, x ∈ �, t ∈ J, (4)

where � is a rectangular domain in R
2. J = (0, T̂ ], and T̂ denotes the final time. p is the

pressure, μ is the fluid viscosity, u is the Darcy velocity of the fluid, f = f I + fP , fP and
f I are production and injection rates respectively. γ is a pseudo-compressibility parameter
that results in slight change of the density of the fluid phase in the dissolution process. c f is
the cup-mixing concentration of the acid in the fluid phase. cI is the injected concentration.
The diffusion coefficient D is shown as

D(x,u) = dmI + αl |u|E + αt |u|E⊥, (5)

where E(u) = [ui u j/|u|2] is a 2 × 2 matrix representing projection along the velocity
vector and E⊥(u) its orthogonal complement. dm is the molecular diffusivity, the diffusion
coefficient αl measures the dispersion in the direction of flow and αt that transverse to the
flow.

kc is the local mass-transfer coefficient, av is the interfacial area available for reaction per
unit volume of the medium. The variable cs is the concentration of the acid at the fluid-solid
interface, and the relationship between c f and cs can be described as follows.

cs = c f

1 + ks/kc
, (6)

where ks is the surface reaction rate constant. The first term in the right hand side of Eq. (3)
represents the transfer of acid species from the fluid phase to the fluid-solid interface [2]. φ
and K are the porosity and permeability of the rock respectively, the relationship between
the permeability and the porosity is established by the Carman–Kozeny correlation [18]

K

K0
= φ

φ0

(
φ(1 − φ0)

φ0(1 − φ)

)2

, (7)

where φ0 and K0 are the initial porosity and permeability of the rock respectively. In Eq. (4),
α is the dissolving power of the acid and ρs is the density of the solid phase. Using porosity
and permeability, av is shown as

av

a0
= φ

φ0

√
K0φ

Kφ0
, (8)
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where a0 is the initial interfacial area.
The boundary and initial conditions are as follows.

⎧
⎪⎪⎨

⎪⎪⎩

u · n = 0, φD∇c f · n = 0, x ∈ ∂�, t ∈ J,

p(x, 0) = p0(x), x ∈ �,

c f (x, 0) = c f 0(x), x ∈ �,

φ(x, 0) = φ0(x), x ∈ �,

(9)

where n is the unit outward normal vector of the domain �. For the physical quantities, we
assume that 0 ≤ c f 0 ≤ 1 and 0 ≤ cI ≤ 1.

Let N > 0 be a positive integer. Set

�t = T̂ /N , tn = n�t, f or n ≤ N .

Let Lm(�) be the standard Banach space with norm

‖v‖Lm (�) =
(∫

�

|v|md�

)1/m

.

For simplicity, let

( f, g) = ( f, g)L2(�) =
∫

�

f gd�

denote the L2(�) inner product, ‖v‖∞ = ‖v‖L∞(�). And W k
p(�) be the standard Sobolev

space

W k
p(�) = {g : ‖g‖W k

p(�) < ∞},

where

‖g‖W k
p(�) =

⎛

⎝
∑

|α|≤k

‖Dαg‖p
L p(�)

⎞

⎠

1/p

. (10)

Let S = L2(�) and V = H(�, div) = {v ∈ (L2(�))2, ∇ · v ∈ L2(�)}. And V0 is
denoted as the subspaces of V containing functions with normal traces equal to 0.

Let�h be the quasi-uniformpartition of� into rectangles in two dimensionswithmaximal
mesh size h. The lowest-order Raviart–Thomas–Nédélec (RTN) space on rectangles [9,19]
is considered. Thus, on an element D ∈ �h , we have

Vh(D) =
{
(α1x + β1, α2y + β2)

T : αi , βi ∈ R, i = 1, 2
}

,

Sh(D) = {α : α ∈ R},
andV0

h is denoted as the subspaces ofVh containing functions with normal traces equal to 0.
Next the standard nodal basis is used, where the nodes are at the centers of the elements

for Sh , and the nodes are at the midpoints of edges for Vh . Moreover, the grid points are
denoted by

(xi+1/2, y j+1/2), i = 0, . . . , Nx , j = 0, . . . , Ny,
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and the notations similar to those in [20] are used.

xi =
(

xi− 1
2

+ xi+ 1
2

)
/2, i = 1, . . . , Nx ,

hx
i = xi+ 1

2
− xi− 1

2
, i = 1, . . . , Nx ,

hx
i+ 1

2
= xi+1 − xi = (

hx
i + hx

i+1

)
/2, i = 1, . . . , Nx − 1,

y j =
(

y j− 1
2

+ y j+ 1
2

)
/2, j = 1, . . . , Ny,

hy
j = y j+ 1

2
− y j− 1

2
, j = 1, . . . , Ny,

hy
j+ 1

2
= y j+1 − y j =

(
hy

j + hy
j+1

)
/2, j = 1, . . . , Ny,

h = max
i, j

{
hx

i , hy
j

}
.

Let gi, j , gi+ 1
2 , j , gi, j+ 1

2
denote g(xi , y j ), g(xi+ 1

2
, y j ), g(xi , y j+ 1

2
). Define the discrete

inner products and norms as follows,

( f, g)M =
Nx∑

i=1

Ny∑

j=1

hx
i hy

j fi, j gi, j ,

( f, g)x =
Nx −1∑

i=1

Ny∑

j=1

hx
i+ 1

2
hy

j fi+ 1
2 , j gi+ 1

2 , j ,

( f, g)y =
Nx∑

i=1

Ny−1∑

j=1

hx
i hy

j+ 1
2

fi, j+ 1
2

gi, j+ 1
2
,

(v, r)T M = (vx , r x )x + (vy, r y)y .

For simplicity from now on we always omit the superscript n if the omission does not cause
conflicts. Define

[dx g]i+ 1
2 , j = (

gi+1, j − gi, j
)
/hx

i+ 1
2
,

[dy g]i, j+ 1
2

= (
gi, j+1 − gi, j

)
/hy

j+ 1
2
,

[Dx g]i, j =
(

gi+ 1
2 , j − gi− 1

2 , j

)
/hx

i ,

[Dy g]i, j =
(

gi, j+ 1
2

− gi, j− 1
2

)
/hy

j ,

[dt g]n
i, j =

(
gn

i, j − gn−1
i, j

)
/	t.

Then we present some lemmas used in the following estimates.

Lemma 1 [20] Let qi, j , w
x
i+1/2, j and w

y
i, j+1/2 be any values such that wx

1/2, j =
wx

Nx +1/2, j = w
y
i,1/2 = w

y
i,Ny+1/2 = 0, then

(q, Dxw
x )M = −(dx q, wx )x ,

(q, Dyw
y)M = −(dyq, wy)y .
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For any r ∈ (H2(�))2, let r̂ denote the projection operator of r onto Vh , that is

(∇ · r̂, w) = (∇ · r, w), ∀w ∈ Sh, (11)

with approximation properties [21],

‖r − r̂‖ ≤ C‖r‖W 1
2 (�)h, (12)

‖∇ · (r − r̂)‖ ≤ C‖∇ · r‖W 1
2 (�)h. (13)

Moreover, by the definition of r̂ and the midpoint rule of integration, the L∞ norm of the
projection is obtained by

‖r̂ − r‖L∞(�) ≤ Ch‖r‖W 2∞(�). (14)

In Eq. (3), define q = −φD(x)∇c f , we can get the estimates which is necessary for the
derivative and analysis of our numerical scheme [22].

‖ûn − un‖T M ≤ Ch2, (15)

‖q̂n − qn‖T M ≤ Ch2. (16)

Next we define an interpolant operator which is similar to that in [21]. Define 
h p from
the values of pi, j for i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny as follows. For points (x, y),
assuming x ∈ [xi , xi+1], y ∈ [y j , y j+1], then, 
h p(x, y) can be evaluated by


h p(x, y) =
(

pi, j

(
xi+1 − x

xi+1 − xi

)

+ pi+1, j

(
x − xi

xi+1 − xi

))(
y j+1 − y

y j+1 − y j

)

+
(

pi, j+1

(
xi+1 − x

xi+1 − xi

)

+ pi+1, j+1

(
x − xi

xi+1 − xi

)) (
y − y j

y j+1 − y j

)

.

For j = 1, 2 . . . Ny , we set


h p(x1/2, y j ) =
(
2hx

1 + hx
2

)
p1 j − hx

1 p2 j

hx
1 + hx

2
.

This is a two-point extrapolation, and by Taylor’s expansion, we can obtain that

|(
h p − p)(x1/2, y j )| = O(h2).

For points (x, y), assuming x ∈ [x1/2, x1], y ∈ [y j , y j+1], then,
h p(x, y) can be evaluated
as the bilinear interpolant between p1, j , p1, j+1, 
h p(x1/2, y j ), and 
h p(x1/2, y j+1). And
for these points, we can obtain that |
h p − p| ≤ Ch2 by interpolation theory. Moreover, for
points (x, y), such that x ∈ [xNx , xNx +1/2], y ∈ [y j , y j+1] as well as points (x, y), where
x ∈ [xi , xi+1], y ∈ [y1/2, y1] or x ∈ [xi , xi+1], y ∈ [yNy , yNy+1/2], we can define 
h p
similarly. Lastly, we can define 
h p(x1/2, y1/2) using three-point extrapolation:


h p(x1/2, y1/2) = 
h p(x1, y1/2) + 
h p(x1/2, y1) − p1,1

= p1,1/2 + p1/2,1 − p1,1 + Ch2.

We can easily obtain that |(
h p − p)(x1/2, y1/2)| ≤ Ch2 by Taylor’s theorem. Hence,
for points (x, y), assuming x ∈ [x1/2, x1], y ∈ [y1/2, y1], 
h p(x, y) can be evaluated as
the bilinear interpolant between p1,1, 
h p1/2,1, 
h p1,1/2, and 
h p1/2,1/2. We can define

h p1/2,Ny+1/2, 
h pNx +1/2,1/2, 
h pNx +1/2,Ny+1/2 similarly. And in the other three corner
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regions, the same approximations can be obtained. Thus we can get the following lemma.

Lemma 2 [21] Suppose p is twice differentiable in space, then we have the estimate that

||
h p − p||∞ ≤ Ch2.

Lastly, we make the following assumptions which are similar to Kou et al. in [1].

(H1) p, c f ∈ W 2∞(0, T ; W 4∞(�)).
(H2) Dll(x) ∈ W 3∞(�), φ ∈ C1(0, T ; C2(�)).
(H3) There exist four positive constants K∗, K ∗, D∗ and D∗ such that

K∗ ≤ K (x, φ) ≤ K ∗, D∗ ≤ Dll(x) ≤ D∗, f or x ∈ �, φ ∈ R, l = 1, 2. (17)

(H4) K (φ)−1 is uniformly Lipschitz function of φ.
(H5) γ, α, ρs, μ, kc and ks are all given positive constants, and 0 < φ0∗ ≤ φ0 ≤ φ∗

0 < 1,
0 ≤ a0∗ ≤ a0 ≤ a∗

0 .

3 A Block-Centered Finite Difference Algorithm

In this section, in order to solve the nonlinear system (1)–(8) efficiently, the block-centered
finite difference algorithm is considered.

Using Eqs. (6)–(8), nonlinear system (1)–(4) can be transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
∂p

∂t
+ ∂φ

∂t
+ ∇ · u = f, (18)

u = − K (φ)

μ
∇ p, (19)

φ
∂c f

∂t
− γ c f

∂p

∂t
− (φD)−1u · q + ∇ · q + f I c f + kcks

kc + ks
avc f = f I cI , (20)

∂φ

∂t
= rφ(1 − φ)

1 − φ0
c f , (21)

where rφ = αa0kcks

ρs(kc + ks)
, and taking notice of assumption (H5), we obtain 0 ≤ rφ∗ ≤ rφ ≤

r∗
φ.

To obtain superconvergence, we shall also consider onlymolecular diffusion [23,24] in the
following.Denoted by {Zn,Wn, �n,Qn}N

n=0, the block-centered finite difference approxima-
tions to {pn,un, cn

f , q
n}N

n=0 respectively are as follows, where Zn, �n ∈ Sh, Wn, Qn ∈ V0
h .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ dt Zn + dt�
n + ∇ · Wn, w) = ( f n, w), ∀w ∈ Sh, (22)

(
μ

K (
h�n)
Wn, v

)

T M
= (Zn,∇ · v), ∀v ∈ V0

h, (23)

(�ndt�
n, w) − (γ�

n−1
dt Zn, w) − (

(�nD)−1
hWn · 
hQn, w
) + (

f n
I �n, w

)

+ (∇ · Qn, w) + kcks

kc + ks

(
av(�

n)�n, w
) = (

f n
I cn

I , w
)
, ∀w ∈ Sh, (24)

((
h�nD)−1Qn, v)T M = (�n,∇ · v), ∀v ∈ V0
h . (25)
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For the calculation of the discrete porosity �, we use the following scheme.

[dt�]n
i, j =

rn
φ,i, j

(
1 − �n

i, j

)

1 − φ0,i, j
�

n−1
i, j , (26)

where �
n−1 = max

{
0,min{�n−1, 1}} .

Set the boundary and initial approximations as follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W x,n
1/2, j = W x,n

Nx +1/2, j = 0, 1 ≤ j ≤ Ny,

W y,n
i,1/2 = W y,n

i,Ny+1/2 = 0, 1 ≤ i ≤ Nx ,

Qx,n
1/2, j = Qx,n

Nx +1/2, j = 0, 1 ≤ j ≤ Ny,

Qy,n
i,1/2 = Qy,n

i,Ny+1/2 = 0, 1 ≤ i ≤ Nx ,

Z0
i, j = p0,i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny,

�0
i, j = c f 0,i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny,

�0
i, j = φ0,i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny .

(27)

The difference method will consist of three parts: firstly, if the approximate concentration
�n−1

i, j and porosity �n−1
i, j , n = 1, . . . , N are known, Eq. (26) will be used to obtain a new

porosity �n
i, j ; Secondly, by difference scheme (22)–(23), an approximation Zn

i, j to the pres-

sure will be calculated using �n
i, j , and the approximate velocity W x,n

i+1/2, j and W y,n
i, j+1/2 will

be evaluated; Finally, a new concentration �n
i, j will be calculated using W x,n

i+1/2, j , W y,n
i, j+1/2,

dt Zn
i, j and �n

i, j , then we get the approximations Qx,n
i+1/2, j and Qy,n

i, j+1/2. It is easy to see
that at each time level, the difference scheme has an explicit solution or is a linear system
with strictly diagonally dominant coefficient matrix, thus the approximate solutions exist
uniquely.

Remark 1 For the case that D is defined by Eq. (5), the block-centered finite difference
approximations have a little difference in Eqs. (24) and (25). Here we define q̃ = −∇c f ,

q = φD(u)̃q, then denoted by {�n, Q̃n,Qn}N
n=0, the block-centered finite difference approx-

imations to {cn
f , q̃

n, qn}N
n=0 respectively are as follows:

(
�ndt�

n, w
) −

(
γ�

n−1
dt Zn, w

)
−

(

hWn · 
hQ̃

n
, w

)
+ (

f n
I �n, w

)

+ (∇ · Qn, w) + kcks

kc + ks

(
av(�

n)�n, w
) = (

f n
I cn

I , w
)
, ∀w ∈ Sh, (28)

(
Q̃

n
, v

)

T M
= (

�n,∇ · v) , ∀v ∈ V0
h, (29)

(
Qn, v

)

T M = (
h�nD(
hWn)Q̃
n
, v)T , ∀v ∈ V0

h, (30)

where (·, ·)T is the trapezoidal rule defined by

(f, g)T =
Nx −1∑

i=1

Ny∑

j=1

hx
i+1/2hy

j · 1
2

(
f x
i+1/2, j−1/2gx

i+1/2, j−1/2 + f x
i+1/2, j+1/2gx

i+1/2, j+1/2

)

+
Nx∑

i=1

Ny−1∑

j=1

hx
i hy

j+1/2 · 1
2

(
f y
i−1/2, j+1/2gy

i−1/2, j+1/2 + f y
i+1/2, j+1/2gy

i+1/2, j+1/2

)
.

Here we use the trapezoidal rule to maintain symmetry in the case that D is not diagonal,
which is similar to that in [10].
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4 Stability Analysis for the Discrete Scheme

In this section, we will give the analysis of stability for the scheme (22)–(26).
For the purpose of theoretical analysis, we first analysis a priori bounds for the discrete

solution �.

Theorem 3 Assuming that 0 < φ0∗ ≤ φ0 ≤ φ∗
0 < 1, then the discrete porosity �n

i, j is
bounded, i.e.,

φ0∗ ≤ �n
i, j < 1, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, n ≤ N .

Proof The proof is given by induction. It is trivial that φ0∗ ≤ �0
i, j < 1. Suppose that

φ0∗ ≤ �k−1
i, j < 1, k ≤ N ,

next we prove that �k
i, j also does.

For simplicity, set βk−1 = rφ�
k−1

1 − φ0
	t, where �

n−1 = max
{
0,min{�n−1, 1}} . Then Eq.

(26) can be transformed into the following.

�k
i, j = βk−1

i, j

1 + βk−1
i, j

+ �k−1
i, j

1 + βk−1
i, j

. (31)

By Eq. (31), we can easily obtain that �k
i, j < 1. Equation (26) can also be calculated as

�k
i, j − �k−1

i, j = βk−1
i, j (1 − �k

i, j ), (32)

thus we have that �k
i, j > �k−1

i, j . Then the proof ends. ��
Theorem 4 The approximate solutions of (22)–(25) satisfy

‖Zm‖2M + ‖ μ

K (
h�m)
Wm‖2T M

≤ C
m∑

n=1

	t‖ f n‖2M + C‖p0‖2M + C‖u0‖2T M + Cr∗
φ
2
, m ≤ N , (33)

‖�m‖2M + ‖Qm‖2T M +
m∑

n=1

	t‖Qn‖2T M

≤ C
(
‖q0‖2T M+‖u0‖2T M+‖c f 0‖2M + r∗

φ
2
)

+C
m∑

n=1

	t
(‖ f n

I cn
I ‖2M + ‖ f n‖2M

)
, m ≤ N .

(34)

Proof Taking notice of Eq. (23), we have
(

dt

(
μ

K (
h�n)
Wn

)

, v
)

T M
= (

dt Z
n,∇ · v) , ∀v ∈ V0

h . (35)

Setting w = dt Zn and v = Wn in Eqs. (22) and (35) respectively, we have

γ ‖dt Zn‖2M + (∇ · Wn, dt Zn) = (
f n, dt Zn) − (

dt�
n, dt Zn)

, (36)
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and (

dt

(
μ

K (
h�n)
Wn

)

,Wn
)

T M
= (dt Z

n,∇ · Wn). (37)

Then using Cauchy–Schwarz inequality, we have

γ ‖dt Zn‖2M +
(

dt

(
μ

K (
h�n)
Wn

)

,Wn
)

T M

≤ C‖ f n‖2M + C‖dt�
n‖2M + γ

2
‖dt Zn‖2M . (38)

The second term in the left hand side of Eq. (38) can be estimated by
(

dt

(
μ

K (
h�n)
Wn

)

,Wn
)

T M

= 1

2
dt‖ μ

K (
h�n)
Wn‖2T M + 	t

2

μ

K (
h�n−1)
‖dtWn‖2T M

+ 1

2

(

dt

(
μ

K (
h�n)

)

Wn,Wn
)

T M
. (39)

Noting Theorem 3, we can easily obtain

|dt�
n
i, j | ≤ 1 − φ0∗

1 − φ∗
0

r∗
φ ≤ Cr∗

φ. (40)

Combining Eq. (38) with Eqs. (39) and (40), we have

γ

2
‖dt Zn‖2M + 1

2
dt‖ μ

K (
h�n)
Wn‖2T M

≤ C‖ f n‖2M + C‖Wn‖2T M + Cr∗
φ
2
. (41)

Multiplying Eq. (41) by 2	t , summing for n from 1 to m, m ≤ N and applying Gronwall’s
inequality, we have

γ

m∑

n=1

	t‖dt Zn‖2M + ‖ μ

K (
h�m)
Wm‖2T M

≤ C
m∑

n=1

	t‖ f n‖2M + C‖u0‖2T M + Cr∗
φ
2
. (42)

Taking notice of that

Zn
i, j = Z0

i, j + 	t
n∑

k=1

dt Zk
i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, 1 ≤ n ≤ N ,

and using Cauchy–Schwarz inequality, we obtain that

(
Zn

i, j

)2 ≤ 2
(

Z0
i, j

)2 + 2

(

	t
n∑

k=1

dt Zk
i, j

)2

≤ 2
(

Z0
i, j

)2 + 2T 	t
n∑

k=1

(
dt Zk

i, j

)2
, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, 1 ≤ n ≤ N .

(43)
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Then multiplying both sides of Eq. (43) by hi k j , and making summation on i, j for 1 ≤ i ≤
Nx , 1 ≤ j ≤ Ny , we have that

‖Zn‖2m ≤ 2‖Z0‖2m + 2T 	t
n∑

k=1

‖dt Zk‖2m . (44)

Thus we have

‖Zm‖2M +
∥
∥
∥
∥

μ

K (
h�m)
Wm

∥
∥
∥
∥

2

T M

≤ C
m∑

n=1

	t‖ f n‖2M + C‖p0‖2M + C‖u0‖2T M + Cr∗
φ
2
. (45)

We now turn to prove Eq. (34). From Eq. (25), we have

(dt ((
h�nD)−1Qn), v)T M = (dt�
n,∇ · v), ∀v ∈ V0

h . (46)

Setting w = dt�
n and v = Qn in Eqs. (24) and (46) leads to

(�ndt�
n, dt�

n) + (∇ · Qn, dt�
n)

= ( f n
I cn

I , dt�
n) + (γ�

n−1
dt Zn, dt�

n) + (
(�nD)−1
hWn · 
hQn, dt�

n)

− ( f n
I �n, dt�

n) − kcks

kc + ks
(av(�

n)�n, dt�
n), (47)

and
(dt ((
h�nD)−1Qn),Qn)T M = (dt�

n,∇ · Qn). (48)

Combining Eq. (47) with Eq. (48) and using Cauchy–Schwarz inequality, we have

φ0∗‖dt�
n‖2M + (dt ((
h�nD)−1Qn),Qn)T M

≤ C‖ f n
I cn

I ‖2M + C‖dt Zn‖2M + C‖�n‖2M + φ0∗
4

‖dt�
n‖2M

+ (
(�nD)−1
hWn · 
hQn, dt�

n)
. (49)

The second term in the left hand side of Eq. (49) can be estimated by
(
dt ((
h�nD)−1Qn),Qn)

T M

= 1

2
dt‖(
h�nD)−1Qn‖2T M + 	t

2
(
h�n−1D)−1‖dtQn‖2T M

+ 1

2

(
dt ((
h�nD)−1)Qn,Qn)

T M . (50)

To estimate the last term in the right hand side of Eq. (49), we give the following hypothesis
first. Suppose that there exists a positive constant C∗ such that

‖
hWn‖∞ ≤ C∗. (51)

Then we have

φ0∗
2

‖dt�
n‖2M + 1

2
dt‖(
h�nD)−1Qn‖2T M

≤ C‖ f n
I cn

I ‖2M + C‖dt Zn‖2M + C‖�n‖2M + C‖Qn‖2T M . (52)
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Multiplying Eq. (52) by 2	t , and summing for n from 1 to m, m ≤ N , we have

φ0∗
m∑

n=1

	t‖dt�
n‖2M + ‖(
h�mD)−1Qm‖2T M

≤ C
m∑

n=1

	t‖ f n
I cn

I ‖2M + C
m∑

n=1

	t‖dt Zn‖2M + C
m∑

n=1

	t‖�n‖2M

+ C
m∑

n=1

	t‖Qn‖2T M + C‖(
h�0D)−1q0‖2T M (53)

Next we give the estimates for ‖�n‖2M . Setting w = �n and v = Qn in Eqs. (24) and (25)
respectively, we have

(
�ndt�

n, �n) + (∇ · Qn, �n)

= (
f n
I cn

I , �
n) +

(
γ�

n−1
dt Zn, �n

)
+ (

(�nD)−1
hWn · 
hQn, �n)

− (
f n
I �n, �n) − kcks

kc + ks

(
av(�

n)�n, �n)
, (54)

and
((
h�nD)−1Qn,Qn)T M = (�n,∇ · Qn). (55)

By the similar estimates with the above equations, we can easily obtain

‖�m‖2M + C
m∑

n=1

	t‖Qn‖2T M

≤ C
m∑

n=1

	t‖ f n
I cn

I ‖2M + C
m∑

n=1

	t‖dt Zn‖2M

+ C
m∑

n=1

	t‖�n‖2M + C‖c f 0‖2M . (56)

Combining Eq. (53) with Eq. (56) and using Gronwall’s inequality lead to

m∑

n=1

	t‖dt�
n‖2M + ‖�m‖2M + ‖Qm‖2T M +

m∑

n=1

	t‖Qn‖2T M

≤ C
m∑

n=1

	t‖ f n
I cn

I ‖2M + C
m∑

n=1

	t‖dt Zn‖2M

+ C‖q0‖2T M + C‖c f 0‖2M . (57)

Taking notice of Eq. (42), we have

m∑

n=1

	t‖dt�
n‖2M + ‖�m‖2M + ‖Qm‖2T M +

m∑

n=1

	t‖Qn‖2T M

≤ C
m∑

n=1

	t‖ f n
I cn

I ‖2M + C
m∑

n=1

	t‖ f n‖2M

+ C
(
‖q0‖2T M + ‖u0‖2T M + ‖c f 0‖2M + r∗

φ
2
)

. (58)
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Then the proof ends. ��

5 Error Analysis for the Discrete Scheme

In this section, to give the error estimates, we consider the following elliptic projections first.
Let Zn ∈ Sh , Wn ∈ V0

h be defined by

(∇ · Wn, w) = (∇ · un, w), ∀w ∈ Sh, (59)
(

μ

K (φn)
Wn, v

)

T M
= (Zn,∇ · v), ∀v ∈ V0

h . (60)

And �n ∈ Sh , Qn ∈ V0
h be defined by

(∇ · Qn, w) = (∇ · qn, w), ∀w ∈ Sh, (61)

((φnDn)−1Qn, v)T M = (�n,∇ · v), ∀v ∈ V0
h . (62)

Set ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E A
u = W − W, E B

u = W − u,

E A
p = Z − Z , E B

p = Z − p,

E A
q = Q − Q, E B

q = Q − q,

E A
c f

= � − �, E B
c f

= � − c f ,

Eφ = � − φ.

(63)

Assume (H1)–(H5) hold, it’s shown by Dawson et al. in [21] that preliminary functions
defined by Eqs. (59)–(62) exist and are unique. Besides, the error estimates are illustrated in
Lemma 5.

Lemma 5 Assume (H1)–(H5) hold, then there exists a positive constant C independent of
h and 	t such that

‖dt E B,m
p ‖M + ‖E B,m

p ‖M + ‖E B,m
u ‖T M ≤ C

(
	t + h2) , m ≤ N . (64)

‖dt E B,m
c f

‖M + ‖E B,m
c f

‖M + ‖E B,m
q ‖T M ≤ C

(
	t + h2) , m ≤ N . (65)

Lemma 6 The approximate errors of discrete porosity satisfy

‖Em
φ ‖2M ≤ C

m∑

n=1

	t
(
‖En

φ‖2M + ‖E A,n−1
c f

‖2M
)

+ C
(
	t2 + h4) , (66)

m∑

n=1

	t‖dt En
φ‖2M ≤ C

m∑

n=1

	t
(
‖En

φ‖2M + ‖E A,n−1
c f

‖2M
)

+ C
(
	t2 + h4) , m ≤ N , (67)

where the positive constant C is independent of h and �t .
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Proof Subtracting Eq. (21) from Eq. (26), we can obtain

dt En
φ,i, j =

rn
φ,i, j

(
1 − �n

i, j

)

1 − φ0,i, j
�

n−1
i, j −

rn
φ,i, j

(
1 − φn

i, j

)

1 − φ0,i, j
cn

f,i, j + ∂φn
i, j

∂t
− dtφ

n
i, j

=
rn
φ,i, j

(
1 − �n

i, j

)

1 − φ0,i, j

(
�

n−1
i, j − cn−1

f,i, j

)
+

rn
φ,i, j

(
1 − �n

i, j

)

1 − φ0,i, j

(
cn−1

f,i, j − cn
f,i, j

)

− rn
φ,i, j c

n
f,i, j

1 − φ0,i, j
En

φ,i, j + Rn
1 , (68)

where Rn
1 = ∂φn

i, j

∂t
− dtφ

n
i, j .

Multiplying Eq. (68) by En
φ,i, j h

x
i hy

j and making summation on i, j for 1 ≤ i ≤ Nx , 1 ≤
j ≤ Ny , we have that

(dt En
φ, En

φ)M

=
(

rn
φ(1 − �n)

1 − φ0

(
�

n−1 − cn−1
f

)
, En

φ

)

M

+
(

rn
φ(1 − �n)

1 − φ0

(
cn−1

f − cn
f

)
, En

φ

)

M

−
(

rn
φcn

f

1 − φ0
En

φ, En
φ

)

M

+
(

Rn
1 , En

φ

)

M
. (69)

The term in the left side of Eq. (69) can be transformed into

(dt En
φ, En

φ)M = ‖En
φ‖2M − ‖En−1

φ ‖2M
2	t

+ 	t

2
‖dt En

φ‖2M . (70)

Taking notice of Lemma 5, the first term in the right side of Eq. (69) can be estimated by
(

rn
φ(1 − �n)

1 − φ0

(
�

n−1 − cn−1
f

)
, En

φ

)

M

≤ r∗
φ

2

(
‖E A,n−1

c f
+ E B,n−1

c f
‖2M + ‖En

φ‖2M
)

≤ r∗
φ

2

(
‖E A,n−1

c f
‖2M + ‖En

φ‖2M
)

+ C
(
	t2 + h4) , (71)

where we used the fact that |�n−1 − cn−1
f | ≤ |�n−1 − cn−1

f |.
Noting the smoothness assumption (H1), the second term in the right side of Eq. (69) can
be bounded by

(
rn
φ(1 − �n)

1 − φ0

(
cn−1

f − cn
f

)
, En

φ

)

M

≤ r∗
φ

2
‖En

φ‖2M + C	t2. (72)

Combing Eq. (69) with Eqs. (70)–(72), multiplying by 2	t , and summing for n from 1 to m,
m ≤ N , we have

‖Em
φ ‖2M ≤ ‖E0

φ‖2M + C	t
m∑

n=1

‖E A,n−1
c f

‖2M + C	t
m∑

n=1

‖En
φ‖2M + C

(
	t2 + h4) . (73)

Recalling the initial condition on T 0 gives Eq. (66).
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On the other hand, multiplying Eq. (68) by dt En
φ,i, j h

x
i hy

j and making summation on i, j
for 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny , we have that

‖dt En
φ‖2M =

(
rn
φ(1 − �n)

1 − φ0

(
�

n−1 − cn−1
f

)
, dt En

φ

)

M

+
(

rn
φ(1 − �n)

1 − φ0

(
cn−1

f − cn
f

)
, dt En

φ

)

M

−
(

rn
φcn

f

1 − φ0
En

φ, dt En
φ

)

M

+
(

Rn
1 , dt En

φ

)

M
. (74)

Similarly we can obtain that

m∑

n=1

	t‖dt En
φ‖2M ≤ C

m∑

n=1

	t‖En
φ‖2M + C

m∑

n=1

	t‖E A,n−1
c f

‖2M + C
(
	t2 + h4) .

Then the proof ends. ��
Lemma 7 The approximate errors of discrete pressure and velocity satisfy

γ

m∑

n=1

	t‖dt E A,n
p ‖2M + ‖ μ

K (
h�m)
E A,m
u ‖2T M

≤ C
m∑

n=1

	t
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

m∑

n=1

	t‖E A,n
u ‖2T M

+ C
(
	t2 + h4) , m ≤ N ,

where the positive constant C is independent of h and �t .

Proof Subtracting Eq. (59) from Eq. (22), we have that

(
γ dt Zn + dt�

n, w
) +

(
∇ · E A,n

u , w
)

=
(

γ
∂pn

∂t
+ ∂φn

∂t
, w

)

. (75)

We can get the following equation by subtracting Eq. (60) from Eq. (23).
(

μ

K (
h�n)
Wn, v

)

T M
−

(
μ

K (φn)
Wn, v

)

T M
=

(
E A,n

p ,∇ · v
)

, ∀v ∈ V0
h . (76)

By Eq. (76), we have that
(

dt

(
μ

K (
h�n)
Wn − μ

K (φn)
Wn

)

, v
)

T M
=

(
dt E A,n

p ,∇ · v
)

, ∀v ∈ V0
h . (77)

Setting w = dt E A,n
p and v = E A,n

u in Eqs. (75) and (77) respectively, we have

γ ‖dt E A,n
p ‖2M +

(
∇ · E A,n

u , dt E A,n
p

)
= γ

(
∂pn

∂t
− dt pn, dt E A,n

p

)

− γ
(

dt E B,n
p , dt E A,n

p

)

−
(

dt En
φ, dt E A,n

p

)
+

(
∂φn

∂t
− dtφ

n, dt E A,n
p

)

, (78)

and (

dt

(
μ

K (
h�n)
Wn − μ

K (φn)
Wn

)

, E A,n
u

)

T M
=

(
dt E A,n

p ,∇ · E A,n
u

)
. (79)
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By Cauchy–Schwarz inequality, the first term in the right hand side of Eq. (78) can be
estimated by

γ

(
∂pn

∂t
− dt pn, dt E A,n

p

)

≤ C‖p‖2W∞
2 (tn−1,tn;L∞(�))

	t2 + γ

8
‖dt E A,n

p ‖2M . (80)

The second term in the right hand side of Eq. (78) can be estimated by

γ
(

dt E B,n
p , dt E A,n

p

)
≤ C‖dt E B,n

p ‖2M + γ

8
‖dt E A,n

p ‖2M . (81)

Easily we have (
dt En

φ, dt E A,n
p

)
≤ C‖dt En

φ‖2M + γ

8
‖dt E A,n

p ‖2M , (82)

and (
∂φn

∂t
− dtφ

n, dt E A,n
p

)

≤ C‖φ‖2W∞
2 (tn−1,tn;L∞(�))

	t2 + γ

8
‖dt E A,n

p ‖2M . (83)

The term in the left hand side of Eq. (79) can be transformed into
(

dt

(
μ

K (
h�n)
Wn − μ

K (φn)
Wn

)

, E A,n
u

)

T M

=
(

dt

(
μ

K (
h�n)
E A,n
u

)

, E A,n
u

)

T M

+
(

dt

((
μ

K (
h�n)
− μ

K (φn)

)

Wn
)

, E A,n
u

)

T M
. (84)

The first term in the right hand side of Eq. (84) can be estimated by
(

dt

(
μ

K (
h�n)
E A,n
u

)

, E A,n
u

)

T M
= 1

2
dt‖ μ

K (
h�n)
E A,n
u ‖2T M

+ 	t

2

μ

K (
h�n−1)
‖dt E A,n

u ‖2T M

+ 1

2

(

dt (
μ

K (
h�n)
)E A,n

u , E A,n
u

)

T M
. (85)

The second term in the right hand side of Eq. (84) can be bounded by
(

dt

(

(
μ

K (
h�n)
− μ

K (φn)
)Wn

)

, E A,n
u

)

T M

=
(

dt

(
μ

K (
h�n)
− μ

K (φn)

)

Wn, E A,n
u

)

T M

+
(

(
μ

K (
h�n)
− μ

K (φn)
)dtWn, E A,n

u

)

T M
(86)

Then,we prove the boundedness of ‖Wn‖∞, which is necessary in the following estimates.
By the triangle inequality,

‖Wn‖∞ ≤ ‖Wn − ûn‖∞ + ‖ûn − un‖∞ + ‖un‖∞.

Taking notice of the inverse assumption and the triangle inequality, we have

‖Wn − ûn‖∞ ≤ Ch−1‖Wn − ûn‖T M

≤ Ch−1 (‖Wn − un‖T M + ‖un − ûn‖T M
)
.
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Then using Eqs. (14), (15) and Lemma 5, we obtain

‖Wn‖∞ ≤ Ch−1 (‖Wn − un‖T M + ‖un − ûn‖T M
) + ‖ûn − un‖∞ + ‖un‖∞

≤ Ch−1(h2 + 	t) + ‖un‖∞ ≤ C1, (87)

where h, �t are selected such that h−1�t is sufficiently small and similar to the derivation
of Eq. (87), we can obtain that

‖dtWn‖∞ ≤ C2. (88)

Noting the definition of 
h , the first term in the right hand side of Eq. (86) can be bounded
by

(

dt

(
μ

K (
h�n)
− μ

K (φn)

)

Wn, E A,n
u

)

T M

=
(

dt

(
μ

K (
h�n)
− μ

K (
hφn)

)

Wn, E A,n
u

)

T M

+
(

dt

(
μ

K (
hφn)
− μ

K (φn)

)

Wn, E A,n
u

)

T M

≤ C

∥
∥
∥
∥
∂3(μK −1)

∂φ∂t2

∥
∥
∥
∥

L∞(tn−1,tn;L∞(R))

(
‖En

φ‖2M + ‖
hφn − φn‖2M
)

+ C‖E A,n
u ‖2T M

+ C

∥
∥
∥
∥
∂(μK −1)

∂φ

∥
∥
∥
∥

L∞(R)

(
‖dt En

φ‖2M + ‖dt (
hφn − φn)‖2M
)

. (89)

By the boundedness of ‖dtWn‖∞, the second term in the right hand side of Eq. (86) can be
bounded by

((
μ

K (
h�n)
− μ

K (φn)

)

dtWn, E A,n
u

)

T M

≤ C

∥
∥
∥
∥
∂(μK −1)

∂φ

∥
∥
∥
∥

L∞(R)

(
‖En

φ‖2M + ‖
hφn − φn‖2M
)

+ C‖E A,n
u ‖2T M . (90)

Combining the above equations and noting Lemma 5, we obtain

γ

2
‖dt E A,n

p ‖2M + 1

2
dt‖ μ

K (
h�n)
E A,n
u ‖2T M

≤ C
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C‖E A,n

u ‖2T M + C
(
	t2 + h4) . (91)

Multiplying by 2	t , and summing for n from 1 to m, m ≤ N , we have

γ

m∑

n=1

	t‖dt E A,n
p ‖2M +

∥
∥
∥
∥

μ

K (
h�m)
E A,m
u

∥
∥
∥
∥

2

T M

≤ C
m∑

n=1

	t
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

m∑

n=1

	t‖E A,n
u ‖2T M

+ C
(
	t2 + h4) . (92)

Then the proof ends. ��
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Lemma 8 The approximate errors of discrete concentration and flux variable satisfy

φ0∗
m∑

n=1

	t‖dt E A,n
c f

‖2M + ‖E A,m
c f

‖2M + ‖(
h�mD)−1E A,m
q ‖2T M + C

m∑

n=1

	t‖E A,n
q ‖2T M

≤ C
m∑

n=1

	t
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

m∑

n=1

	t‖dt E A,n
p ‖2M

+ C
m∑

n=1

	t
(
‖E A,n

q ‖2T M + ‖E A,n
u ‖2T M

)

+ C
(
	t2 + h4) , (93)

where the positive constant C is independent of h and �t .

Proof Subtracting Eq. (61) from Eq. (24), we have that

(�ndt�
n, w) − (γ�

n−1
dt Zn, w) − (

(�nD)−1
hWn · 
hQn, w
)

+
(
∇ · E A,n

q , w
)

+ (
f n
I �n, w

) + kcks

kc + ks

(
av(�

n)�n, w
)

= φn
∂cn

f

∂t
− γ cn

f
∂pn

∂t
−

(
(φnD)−1un · qn + f n

I cn
f , w

)

+ kcks

kc + ks

(
av(φ

n)cn
f , w

)
, ∀w ∈ Sh . (94)

And subtracting Eq. (62) from Eq. (25), we can obtain

(
(
h�nD)−1Qn, v

)

T M − (
(φnD)−1Qn, v

)

T M
=

(
E A,n

c f
,∇ · v

)
, ∀v ∈ V0

h . (95)

By Eq. (95), we have that

(
dt

(
(
h�nD)−1Qn − (φnD)−1Qn)

, v
)

T M
=

(
dt E A,n

c f
,∇ · v

)
, ∀v ∈ V0

h, (96)

Set w = dt E A,n
c f and v = E A,n

q in Eqs. (94) and (96) respectively, we have

(
�ndt E A,n

c f
, dt E A,n

c f

)
+

(
∇ · E A,n

q , dt E A,n
c f

)

=
(

φn
∂cn

f

∂t
− �ndt�

n, dt E A,n
c f

)

−
(

γ cn
f
∂pn

∂t
− γ�

n−1
dt Zn, dt E A,n

c f

)

+
(
(�nD)−1
hWn · 
hQn − (φnD)−1un · qn, dt E A,n

c f

)

− kcks

kc + ks

(
av(�

n)�n − av(φ
n)cn

f , dt E A,n
c f

)

−
(

f n
I (�n − cn

f ), dt E A,n
c f

)
, (97)

and (
dt

(
(
h�nD)−1Qn − (φnD)−1Qn)

, E A,n
q

)

T M
=

(
dt E A,n

c f
,∇ · E A,n

q

)
. (98)
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By Cauchy–Schwarz inequality, the first term in the right hand side of Eq. (97) can be
estimated by

(

φn
∂cn

f

∂t
− �ndt�

n, dt E A,n
c f

)

=
(

(φn − �n)
∂cn

f

∂t
, dt E A,n

c f

)

+
(

�n

(
∂cn

f

∂t
− dt c

n
f

)

, dt E A,n
c f

)

−
(
�ndt E B,n

c f
, dt E A,n

c f

)

≤ C‖c f ‖2W∞
1 (J ;L∞(�))

‖En
φ‖2M + C‖�‖2L∞(J ;L∞(�))‖c f ‖2W∞

2 (J ;L∞(�))
	t2

+ C‖�‖2L∞(J ;L∞(�))‖dt E B,n
c f

‖2M + φ0∗
14

‖dt E A,n
c f

‖2M . (99)

The second term in the right hand side of Eq. (97) can be estimated by

γ

(

cn
f
∂pn

∂t
− �

n−1
dt Zn, dt E A,n

c f

)

= γ

((
cn

f − �
n−1

) ∂pn

∂t
, dt E A,n

c f

)

+ γ

(

�
n−1

(
∂pn

∂t
− dt pn

)

, dt E A,n
c f

)

− γ
(
�

n−1
(

dt E A,n
p + dt E B,n

p

)
, dt E A,n

c f

)

≤ C‖p‖2W∞
1 (J ;L∞(�))

(
‖E A,n

c f
‖2M + ‖E B,n

c f
‖2M + ‖c f ‖2W∞

1 (J ;L∞(�))
	t2

)

+ C‖�‖2L∞(J ;L∞(�))‖p‖2W∞
2 (J ;L∞(�))

	t2 + φ0∗
14

‖dt E A,n
c f

‖2M
+ C‖�‖2L∞(J ;L∞(�))

(
‖dt E A,n

p ‖2M + ‖dt E B,n
p ‖2M

)
. (100)

The third term in the right hand side of Eq. (97) can be estimated by

(
(�nD)−1
hWn · 
hQn − (φnD)−1un · qn, dt E A,n

c f

)

=
(
(�nD)−1
hWn · (
hQn − qn), dt E A,n

c f

)

+
(
(�nD)−1(
hWn − un) · qn, dt E A,n

c f

)

+
(
(�−n − φ−n)D−1un · qn, dt E A,n

c f

)
(101)

The first term in the right hand side of Eq. (101) can be estimated by

(
(�nD)−1
hWn · (
hQn − qn), dt E A,n

c f

)

≤ C‖(�nD)−1
hWn‖2L∞(�)

(‖
hQn−
hqn‖2M+‖
hqn − qn‖2M
) +φ0∗

14
‖dt E A,n

c f
‖2M

≤ C
(
‖E A,n

q ‖2T M + ‖E B,n
q ‖2T M

)
+ φ0∗

14
‖dt E A,n

c f
‖2M + Ch4. (102)
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The second term in the right hand side of Eq. (101) can be estimated by
(
(�nD)−1(
hWn − un) · qn, dt E A,n

c f

)

≤ C‖(�nD)−1qn‖2L∞(�)

(‖
hWn − 
hun‖2M + ‖
hun − un‖2M
) + φ0∗

14
‖dt E A,n

c f
‖2M

≤ C(‖E A,n
u ‖2T M + ‖E B,n

u ‖2T M ) + φ0∗
14

‖dt E A,n
c f

‖2M + Ch4. (103)

The last term in the right hand side of Eq. (101) can be estimated by

(
(�−n − φ−n)D−1un · qn, dt E A,n

c f

)
≤ C

∥
∥
∥
∥
un · qn

�nφn

∥
∥
∥
∥

L∞(�)

‖En
φ‖2M + φ0∗

14
‖dt E A,n

c f
‖2M .

(104)

Recalling that 0 ≤ av(�
n) ≤ a0 and |av(φ

n) − av(�
n)| ≤ a0

1−φ0
|Eφ |, we can estimate the

second to last term in the right hand side of Eq. (97) by

kcks

kc + ks

(
av(φ

n)cn
f − av(�

n)�n, dt E A,n
c f

)

≤ kcks

kc + ks

(
(av(φ

n) − av(�
n))cn

f , dt E A,n
c f

)
+ kcks

kc + ks

(
av(�

n)(cn
f − �n), dt E A,n

c f

)

≤ C‖cn
f ‖2L∞‖En

φ‖2M + φ0∗
14

‖dt E A,n
c f

‖2M + C
(
	t2 + h4) . (105)

The last term in the right hand side of Eq. (97) can be estimated by

f n
I (cn

f − �n, dt E A,n
c f

) ≤ C‖E A,n
c f

‖2M + φ0∗
14

‖dt E A,n
c f

‖2M + C
(
	t2 + h4) . (106)

The term in the left hand side of Eq. (98) can be transformed into
(

dt
(
(
h�nD)−1Qn − (φnD)−1Qn)

, E A,n
q

)

T M

=
(

dt

(
(
h�nD)−1E A,n

q

)
, E A,n

q

)

T M

+
(

dt
(
(
h�nD)−1 − (φnD)−1)Qn)

, E A,n
q

)

T M
. (107)

The first term in the right hand side of Eq. (107) can be estimated by
(

dt

(
(
h�nD)−1E A,n

q

)
, E A,n

q

)

T M

= 1

2
dt‖(
h�nD)−1E A,n

q ‖2T M + 	t

2
(
h�n−1D)−1‖dt E A,n

q ‖2T M

+ 1

2

(
dt ((
h�nD)−1)E A,n

q , E A,n
q

)

T M
. (108)

The second term in the right hand side of Eq. (107) can be bounded by
(

dt
(
(
h�nD)−1 − (φnD)−1)Qn)

, E A,n
q

)

T M

=
(

dt
(
(
h�nD)−1 − (φnD)−1)Qn, E A,n

q

)

T M

+
(
((
h�nD)−1 − (φnD)−1)dtQn, E A,n

q

)

T M
. (109)
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Similar to the derivations of Eqs. (87) and (89), the first term in the right hand side of Eq.
(109) can be bounded by

(
dt

(
(
h�nD)−1 − (φnD)−1)Qn, E A,n

q

)

T M

≤ C‖dt (
h�Dφ)−1‖L∞(tn−1,tn;L∞(R))

(
‖En

φ‖2M + ‖
hφn − φn‖2M
)

+ C‖E A,n
q ‖2T M

+ C‖(
h�Dφ)−1‖L∞(tn−1,tn;L∞(R))

(
‖dt En

φ‖2M + ‖dt (
hφn − φn)‖2M
)

. (110)

Similar to the derivations of Eqs. (88) and (90), the second term in the right hand side of Eq.
(109) can be bounded by

(
((
h�nD)−1 − (φnD)−1)dtQn, E A,n

q

)

T M

≤ C‖(
h�Dφ)−1‖L∞(tn−1,tn;L∞(R)

(
‖En

φ‖2M + ‖
hφn − φn‖2M
)

+ C‖E A,n
q ‖2T M .

(111)

Combining Eq. (97) with Eqs. (98)–(111), we can obtain

φ0∗
2

‖dt E A,n
c f

‖2M + 1

2
dt‖(
h�nD)−1E A,n

q ‖2T M

≤ C
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

(
‖E A,n

c f
‖2M + ‖dt E A,n

p ‖2M
)

+ C
(
‖E A,n

q ‖2T M + ‖E A,n
u ‖2T M

)

+ C
(
	t2 + h4) . (112)

Multiplying by 2	t , and summing for n from 1 to m, m ≤ N , we have

φ0∗
m∑

n=1

	t‖dt E A,n
c f

‖2M + ‖(
h�mD)−1E A,m
q ‖2T M

≤ C
m∑

n=1

	t
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

m∑

n=1

	t
(
‖E A,n

c f
‖2M + ‖dt E A,n

p ‖2M
)

+ C
m∑

n=1

	t
(
‖E A,n

q ‖2T M + ‖E A,n
u ‖2T M

)

+ C
(
	t2 + h4) . (113)

Next we give the estimates for ‖E A,n
c f ‖2M . Taking w = E A,n

c f and v = E A,n
q in Eqs. (94) and

(95) respectively, we have
(
�ndt E A,n

c f
, E A,n

c f

)
+

(
∇ · E A,n

q , E A,n
c f

)

=
(

φn
∂cn

f

∂t
− �ndt�

n, E A,n
c f

)

−
(

γ cn
f
∂pn

∂t
− γ�

n−1
dt Zn, E A,n

c f

)

+
(
(�nD)−1
hWn · 
hQn − (φnD)−1un · qn, E A,n

c f

)

− kcks

kc + ks

(
av(�

n)�n − av(φ
n)cn

f , E A,n
c f

)

−
(

f n
I

(
�n − cn

f

)
, E A,n

c f

)
, (114)
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and
(
(
h�nD)−1Qn, E A,n

q

)

T M
−

(
(φnD)−1Qn, E A,n

q

)

T M
=

(
E A,n

c f
,∇ · E A,n

q

)
. (115)

By the similar estimates with the above equations, we can easily obtain

‖E A,m
c f

‖2M + C
m∑

n=1

	t‖(
h�nD)−1E A,n
q ‖2T M

≤ C
m∑

n=1

	t
(
‖E A,n

c f
‖2M + ‖dt E A,n

p ‖2M + ‖En
φ‖2M

)

+ C
m∑

n=1

	t‖E A,n
u ‖2T M + C

(
	t2 + h4) . (116)

Combining Eq. (113) with (116) and using Gronwall’s inequality, we have

φ0∗
m∑

n=1

	t‖dt E A,n
c f

‖2M + ‖E A,m
c f

‖2M + ‖(
h�mD)−1E A,m
q ‖2T M + C

m∑

n=1

	t‖E A,n
q ‖2T M

≤ C
m∑

n=1

	t
(
‖En

φ‖2M + ‖dt En
φ‖2M

)
+ C

m∑

n=1

	t‖dt E A,n
p ‖2M

+ C
m∑

n=1

	t‖E A,n
u ‖2T M + C

(
	t2 + h4) . (117)

Then the proof ends. ��
It remains to testify induction hypothesis (51). This proof is given through two steps.
Steps 1 (Definition of C∗ ): Using scheme (22)–(23) for n = 0 and Eq. (87), we can get

the approximationW1 and the following property.

‖W1‖∞ ≤ ‖E A,1
u ‖∞ + ‖W1‖∞ ≤ Ch−1‖E A,1

u ‖T M + ‖W1‖∞
≤ C(h + h−1	t) + ‖W1‖∞ ≤ C.

Thus define the positive constant C∗ independent of h and 	t such that

C∗ ≥ max{‖W1‖∞, 2‖Wn‖∞}.
Steps 2 (Induction): By the definition of C∗, it is trivial that hypothesis (51) holds true for

l = 1. Supposing that ‖
hWl−1‖∞ ≤ C∗ holds true for an integer l = 1, . . . , N − 1, by
Lemmas 6–8 with m = l, we have that

‖E A,l
u ‖T M ≤ C(h2 + 	t).

Next we prove that ‖
hWl‖∞ ≤ C∗ holds true. Since

‖Wl‖∞ ≤ ‖E A,l
u ‖∞ + ‖W l‖∞ ≤ Ch−1‖E A,l

u ‖T M + ‖Wl‖∞
≤ C3(h + h−1	t) + ‖Wl‖∞. (118)

Let 	t ≤ C4h2 and a positive constant h1 be small enough to satisfy

C3(1 + C4)h1 ≤ C∗

2
.
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Then for h ∈ (0, h1], Eq. (118) can be estimated by

‖Wl‖∞ ≤ C3(h + h−1	t) + ‖Wl‖∞

≤ C3(h1 + C4h1) + C∗

2
≤ C∗.

It is obvious that

‖
hWl‖∞ ≤ ‖Wl‖∞ ≤ C∗,

then the proof ends.
Based on the above lemmas and using Gronwall’s inequality, we have the main error

estimates below.

Theorem 9 Suppose (H1)–(H5) hold then there exists a positive constant C independent
of h and �t such that

‖(Z − p)m‖M + ‖(W − u)m‖T M + ‖(� − c f )
m‖M + ‖(Q − q)m‖T M

+
(

C
m∑

n=1

	t‖(Q − q)n‖2T M

)1/2

+ ‖(� − φ)m‖2M

≤ C(	t + h2), m ≤ N .

Remark 2 In our future work, we will consider the case thatD is defined in Eq. (5). By using
the similar technique in [10], it is supposed that the superconvergence rate O(h2 + 	t) is
obtained for concentration of the acid and rate O(h3/2 + 	t) for its flux in certain discrete
norms. Besides, Examples 5 and 6 in the next section are presented to verify that the block-
centered finite difference method is still effective for the case that D is not diagonal.

6 Numerical Examples

In this section, some numerical experiments using the block-centered finite differencemethod
have been carried out.

We test Examples 1 and 2 to verify the convergence rates. The time step is refined as
	t = 1/N 2

x = 1/N 2
y to show the convergence and

⎧
⎨

⎩

D = 10−2 I, K0 = 1, T̂ = 0.5,
α = kc = ks = μ = f I = 1,
a0 = 0.5, ρs = 10, γ = 0.1,

where I is an identity matrix. In Example 1, the domain � = (0, 1) × (0, 1) is uniformly
divided by the rectangles decomposition. The numerical results are listed in Tables1 and 2.
Moreover, as to report the features of the block-centered finite difference method vividly,
Figs. 1, 2, 3 and 4 are given with N = 20, t = 0.5 for Example 1. And in Example 2,
set � = (−1, 1) × (−1, 1). The initial spatial partition is a 5 × 5 grid. Then the grid is
refined by dividing each edge into two equal parts and the nonuniform meshes are used
which are generated from the corresponding uniformmesh by adding a random in both x and
y directions (cf. Fig. 5). The numerical results are listed in Tables3 and 4.
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Table 1 Error and convergence rates of Example 1 on uniform grids

Nx × Ny ‖Z − p‖L∞(L2) Order ‖W − u‖L∞(L2) Order ‖ψ − c f ‖L∞(L2) Order

5 × 5 1.09E−2 – 1.72E−2 – 8.41E−5 –

10 × 10 2.84E−3 1.97 4.45E−3 1.95 2.18E−5 1.95

20 × 20 7.06E−4 2.01 1.11E−3 2.00 5.33E−6 2.03

40 × 40 1.76E−4 2.00 2.78E−4 2.00 1.32E−6 2.01

80 × 80 4.41E−5 2.00 6.94E−5 2.00 3.30E−7 2.00

Table 2 Error and convergence rates of Example 1 on uniform grids

Nx × Ny ‖Q − q‖L∞(L2) Order ‖Q − q‖L2(L2) Order ‖� − φ‖L∞(L2) Order

5 × 5 5.06E−6 – 1.67E−6 – 3.74E−7 –

10 × 10 1.51E−6 1.82 4.72E−7 1.74 9.75E−8 1.94

20 × 20 3.83E−7 2.00 1.18E−7 1.98 2.42E−8 2.01

40 × 40 9.59E−8 2.00 2.94E−8 2.00 6.04E−9 2.00

80 × 80 2.40E−8 2.00 7.35E−9 2.00 1.51E−9 2.00
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Fig. 1 The pressure figures for Example 1. Left the exact solution p. Right the numerical solution Z
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Fig. 2 The velocity figures for Example 1. Left the exact solution u. Right the numerical solution W
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Fig. 3 The concentration figures for Example 1. Left the exact solution c f . Right the numerical solution �
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Fig. 5 The non-uniform mesh generated from the 20 × 20 uniform mesh for Example 2
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Table 3 Error and convergence rates of Example 2 on nonuniform grids

Nx × Ny ‖Z − p‖L∞(L2) Order ‖W − u‖L∞(L2) Order ‖ψ − c f ‖L∞(L2) Order

5×5 7.42E−1 – 8.29E−2 – 2.22E−2 –

10×10 1.45E−1 2.36 2.46E−2 1.75 5.27E−3 2.08

20×20 3.75E−2 1.95 6.70E−3 1.88 1.52E−3 1.79

40×40 9.23E−3 2.02 1.71E−3 1.97 3.80E−4 2.00

80×80 2.30E−3 2.00 4.30E−4 1.99 9.49E−5 2.00

Table 4 Error and convergence rates of Example 2 on nonuniform grids

Nx × Ny ‖Q − q‖L∞(L2) Order ‖Q − q‖L2(L2) Order ‖� − φ‖L∞(L2) Order

5×5 3.73E−4 — 1.64E−4 – 2.00E−3 –

10×10 1.13E−4 2.12 3.76E−5 1.73 5.00E−4 2.00

20×20 3.22E−5 1.81 1.02E−5 1.88 1.29E−4 1.95

40×40 8.07E−6 2.00 2.58E−6 1.98 3.23E−5 2.00

80×80 1.94E−6 2.06 5.87E−7 2.14 8.07E−6 2.00

Fig. 6 The distributions of porosity for Example 3. a time = 5×105 s,b time = 1×106 s, c time = 1.5×106 s,
d time = 2 × 106 s
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Fig. 7 The distributions of porosity for Example 4. a time = 5×105 s,b time = 1×106 s, c time = 1.5×106 s,
d time = 2 × 106 s

Example 1 Here the initial condition and the right hand side of the equation are computed
according to the analytic solution given as below.

⎧
⎨

⎩

p(x, t) = tcos(πx)cos(πy),

c f (x, t) = t x2(1 − x)2y2(1 − y)2,

φ(x, t) = 1 − e− 1
80 t2x2(1−x)2 y2(1−y)2ex+y+1−(x+y+1).

Example 2 Here the initial condition and the right hand side of the equation are computed
according to the analytic solution given as below.

⎧
⎨

⎩

p(x, t) = t (x + 1)2(x − 1)2(y + 1)2(y − 1)2,
c f (x, t) = t

(
sin( πx

2 )sin(
πy
2 ) + 1

)
,

φ(x, t) = 1 − e− 1
80 t2(sin( πx

2 )sin(
πy
2 )+1)ex+y+3−(x+y+3).

In the following examples, � = (0, 1) × (0, 1), J = [0, 2 × 106], 	t = 2 × 104. the
physical parameter is more realistic which is taken from the data in [1,3]. The the initial
concentration of acid flow is zero. The initial pressure is 105 Pa. The parameter γ is set to
0.01. Besides, some properties of acid flow in porous media, the injection and production
flow rates are listed as follows:
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Fig. 8 The distributions of porosity for Example 5. a time = 5×105 s,b time = 1×106 s, c time = 1.5×106 s,
d time = 2 × 106 s

{
μ = 10−2, ρs = 2500, a0 = 0.5,
α = kc = 0.1, cI = 10, ks = 1.

f I =
{
1, x = 1/160,
0, otherwise.

fP =
{−1, x = 159/160,
0, otherwise.

Example 3 In this example,D = 10−9 I. The distributions of initial porosity and permeability
are listed as follows:

⎧
⎨

⎩

φ0 = 0.4, K0 = 10−6, (x, y) = (1/160, 41/160),
φ0 = 0.6, K0 = 10−5, (x, y) = (1/160, 121/160),
φ0 = 0.2, K0 = 10−7, otherwise.

Example 4 In this example, D = 10−9 I. The initial porosity in the porous medium also
obeys the uniform distribution and the range is from 0.05 to 0.35. The initial permeability of
the porous media comply with the uniform distribution and the range is from 10−5 to 10−4.
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Fig. 9 The distributions of porosity for Example 6. a time = 5×105 s,b time = 1×106 s, c time = 1.5×106 s,
d time = 2 × 106 s

Example 5 In this example, dm = 10−9, αl = 10−3, αt = 10−4. The distributions of initial
porosity and permeability are listed as follows:

⎧
⎨

⎩

φ0 = 0.4, K0 = 10−6, (x, y) = (1/160, 41/160),
φ0 = 0.6, K0 = 10−5, (x, y) = (1/160, 121/160),
φ0 = 0.2, K0 = 10−7, otherwise.

Example 6 In this example, dm = 10−9, αl = 10−3, αt = 10−4. The initial porosity in the
porous medium also obeys the uniform distribution and the range is from 0.05 to 0.35. The
initial permeability of the porous media comply with the uniform distribution and the range
is from 10−5 to 10−4.

The distributions of porosity for Examples 3–6 are calculated at the end of 25th time step,
50th time step, 75th time step and 100th time step respectively. We show the distributions of
porosity in Figs. 6, 7, 8 and 9. These results are computed on the grid of 80 × 80 cells.

From Figs. 6, 7, 8 and 9, we can see that the average porosities in all frameworks are
increasing, which reveal that the matrix is eaten by the acid. Moreover, it can be observed
that at the beginning of the development, all frameworks demonstrate the formation of some
small fingers. As time elapses, some major fingers appear. However, compared Figs. 6 and 7
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with 8 and 9, we can see that the framework curves are thinner when the effective dispersion
tensor De is diagonal.

From Tables1, 2, 3 and 4 and Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9, we can see that the block-
centered finite difference approximations for the pressure, velocity, porosity, concentration
and its flux have the (h2 + 	t) accuracy in discrete norms. These results are in consistent
with the error estimates in Theorem 9. As shown in Figs. 6, 7, 8 and 9, the heterogeneity of
porosity and permeability in wormhole formations also has great effect on the field, which
promotes the non-uniformity of the chemical reaction. Those examples vividly show that
the block-centered finite difference method is capable of effectively simulating wormhole
propagation.

7 Conclusion

In this paper, we have developed a block-centered finite difference method for compressible
wormhole propagation during reactive dissolution of carbonate, which is effectively applied
to enhance oil and gas production rate. The coupled analysis approach to deal with the fully
coupling relation of multivariables is employed. Based on this method, stability analysis are
established rigorously and carefully. Using estimates of the mixed finite element method
with quadrature applied to linear parabolic equations, we obtain superconvergence of the
pressure, velocity, porosity, concentration and its flux in different discrete norms on non-
uniform grids. Finally, some numerical experiments are presented to verify the theoretical
analysis and effectiveness of the given scheme.
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