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Abstract This paper focuses on the optimal error estimates of a linearized semi-implicit
scheme for the nematic liquid crystal flows, which is used to describe the time evolution of
the materials under the influence of both the flow velocity and the microscopic orientation
configurations of rod-like liquid crystal flows. Optimal error estimates of the scheme are
proved without any restriction of time step by using an error splitting technique proposed
by Li and Sun. Numerical results are provided to confirm the theoretical analysis and the
stability of the semi-implicit scheme.
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1 Introduction

In this paper, we consider the following hydrodynamics systemmodeling the flow of nematic
liquid crystal material (see [28]):

ut − μ�u + (u · ∇)u + ∇ p + λdiv (∇b � ∇b) = f, (1.1)

bt − γ�b + (u · ∇)b − γ |∇b|2b = 0, (1.2)

div u = 0, |b| = 1. (1.3)

at x ∈ � and t ∈ [0, T ] for some positive constant T > 0. Here � ⊂ R
2 is a bounded

and convex domain with a smooth boundary ∂�. The unknown u(x, t) : � × [0, T ] −→
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R
2 and p(x, t) : � × [0, T ] −→ R represent the velocity and the pressure of the flows,

respectively. The unknown b(x, t) : � × [0, T ] −→ S, where S is the unit circle in R
2,

represents the macroscopic molecular orientation of the liquid crystal material. The vector
f : �×[0, T ] −→ R

2 represents a body force on the flow. The constantsμ, λ and γ denote the
viscosity, the competition between kinetic and potential energy, and the microscopic elastic
relaxation time for the molecular orientation field, respectively. The term ∇b�∇b is a 2×2
matrix whose (i, j)-the entry is given by (∇ib) · (∇ jb) for 1 ≤ i, j ≤ 2. It is noteworthy that
if b is a constant map, the system (1.1)–(1.3) reduces to the incompressible Navier–Stokes
equations [35]. If u = 0, the system (1.1)–(1.3) reduces to the heat flow of harmonic maps
[8]. In addition, the above system (1.1)–(1.3) should be completed by an appropriate initial
and boundary condition. For the sake of simplicity, we consider the following initial and
boundary conditions:

u(x, 0) = u0(x), b(x, 0) = b0(x), in �, (1.4)

u(x, t) = 0, ∂nb(x, t) = 0, on ∂� × [0, T ], (1.5)

where n denotes the unit outward normal vector on ∂�. Here, we require that the initial
vector functions u0 and b0 satisfy the compatibility condition div u0 = 0 and |b0| = 1.

The system (1.1)–(1.3) was firstly derived by Lin [28] as a simplified version of Ericksen–
Leslie model for the hydrodynamics of nematic liquid crystal flows developed by Ericksen
[10,11] and Leslie [22]. It is the macroscopic continuum description of the time evolution of
the materials under the influence of both the flow velocity u and the microscopic orientation
configurations b of rod-like liquid crystal flows. There have twomajor difficulties in studying
the above system. One is the presence of div (∇b � ∇b) such that the system (1.1)–(1.3)
becomes a strongly nonlinear coupled system. The other comes from the nonlinear constraint
|b| = 1.

The mathematical analysis for (1.1)–(1.5) was initiated by Lin and Liu [29,30]. The
nonlinear constraint |b| = 1was relaxed by introducing a Ginzburg–Landau penalty function
(1 − |b|2)b/ε2 to replace |∇b|2b in (1.2), where ε > 0 is a small penalty parameter. For
Ginzburg–Landau approximation problem, Lin and Liu [29] proved the local existence of
the strong solution and the global existence of the weak solution. It also has been shown that
the global strong solution exists in the case of the large viscosity μ. The partial regularity for
the suitable weak solution was proved in [30]. Some regularity criterions for the global weak
solution were studied for 3D bounded and smooth domain [15]. However, as pointed in [29,
30], since the estimates and arguments heavily depend on ε, it is still an open and challenging
problem to study the limiting case as ε tends to zero. Recently, some new theoretical analysis
for the original problem (1.1)–(1.5) have been studied. For example, Xu and Zhang [37]
proved the global existence and regularity of weak solution for 2DCauchy problem if ||u0||L2

and ||∇b0||L2 are small enough. For 3Dmodel in a bounded and smooth domain, Li andWang
[27] established the existence and uniqueness of the local strong solution with large initial
data and the global strong solutionwith small initial data. For the compressible nematic liquid
crystal flows, Huang et al. [21] proved the local existence and uniqueness of strong solution
provided that the initial data are sufficiently smooth and the pressure is a local Lipschitz
continuous function with respect to the density function.

The numerical methods for Ginzburg–Landau approximation problem have been investi-
gated in some previous works. For example, the first numerical method was studied by Liu
andWalkington [31], whereQ3 Hermite finite element was used for the approximation of the
director. To avoid using Hermite finite element, a mixed finite element method was subse-
quently studied in [32]. In their works, the fully nonlinear implicit schemes were proposed.
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Although these schemes are unconditional stable, however, one has to solve a nonlinear
problem by Newton’s iteration scheme at each time step. Becker et al. [6] studied a new

mixed method by introducing w = −�b + |b|2 − 1

ε2
b. The fully discrete scheme proposed

in [6] was nonlinear at the step of solving w numerically, and allowed them to establish a
discrete energy law. With the help of this energy law, the authors showed the unconditional
convergence of the numerical solution to the solution of Ginzburg–Landau approximation
problem as h and τ tend to zero. But no error estimates were derived in [6]. Motivated by
Becker–Feng–Prohl, Girault and González-Santacreu [14] introduced the auxiliary variable
w = −�b to design a semiexplicit Euler scheme where the Ginzburg–Landau penalty func-
tion was explicitly discretizated. But the error estimate derived in [14] heavily depends on
O(e−1/ε2). Other mixed FEM fully discrete schemes were developed by González-Santacreu
[7,16] in views of a fully explicit time integration of the potential term and the projection
time-stepping method for Navier–Stokes equations [9,35]. Based on a saddle-point strategy,
Badia–González–Santacreu suggested a fully implicit scheme and a semi-implicit scheme
for Ginzburg–Landau approximation problem in [3]. We observe that no error estimates are
derived in [3,7,16]. The reader is referred to [2] for a survey of numerical methods on nematic
liquid crystal flows and the Ginzburg–Landau approximation.

Instead of using the Ginzburg–Landau penalty function to relax the nonlinear constraint
|b| = 1, there have some existing works in studying the fully discrete schemes which directly
approximate the original system (1.1)–(1.5). Becker et al. [6] investigated a fully discrete
scheme which was conditionally stable under the time step restriction τ ≤ O(h3). The
constraint |b| = 1 are derived in the sense of L2-norm by the convergence of the numerical
solution as h and τ tend to zero. The same approximation also has been used for Landau–
Lifshitz equation in [12]. Inspired by the projection time-stepping method for Navier–Stokes
equations [9,35] and Landau-Lifshitz equation [36], a time-stepping/projection scheme for
the approximation of (1.1)–(1.5) is proposed by Prohl [33]. However, the error estimates
derived in [33] are not optimal.

In this paper, we will propose a linearized semi-implicit finite element scheme for the
approximation of the original system (1.1)–(1.5) and prove the optimal error estimates of
this scheme. The derivations of the optimal error estimates are based upon the recent works
by Li and Sun [23,24] (also see [20,25]), where the error estimates are split into the temporal
error, the spatial error and the projection error by introducing a corresponding time-discrete
parabolic system (or elliptic system). A key issue is that the regularities of the solutions to the
discrete parabolic system need to be proved such that the uniform boundedness in different
norms hold.With this boundedness, we can show that the spatial error analysis are bounded by
Chσ for some σ > 0 and C > 0 independent of h and τ , from which the time step restriction
can be removed. Meanwhile, optimal error estimates in the discrete L∞(0, T ;L2(�))-norm
andL∞(0, T ;H1(�))-norm for u and in the discreteL∞(0, T ;H1(�))-norm for b are estab-
lished without any time step restriction.

The rest of the paper is organized as follows. In Sect. 2, we introduce some notations and
recall some known results for the nematic liquid crystal model (1.1)–(1.5). The uncoupled
and linearized semi-implicit Euler finite element scheme and themain results in this paper are
presented in Sect. 3. Meanwhile, the discrete parabolic system corresponding to the original
system is introduced. Moreover, from the regularity of (u, p), the lowest-order P1 − P0
stabilized finite elements are used to approximate the velocity and the pressure in (1.1). The
temporal error and the spatial error are shown in Sects. 4 and 5, respectively. The regularities
of the solution to the discrete parabolic system are established in Sect. 4. The numerical results
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are presented in Sect. 7 to confirm our theoretical analysis. The conclusions are summarized
in final section.

2 Preliminaries

Standard Sobolev space notations are used in this paper [1]. We use the boldface Sobolev
spaces Hm(�),Wm,p(�) and Lp(�) to denote the vector Sobolev spaces Hm(�)2,
Wm,p(�)2 and L p(�)2 for m ∈ N and 1 ≤ p ≤ +∞, respectively. In particular, (·, ·)
denotes theL2(�) inner product. The symbolsC,C0,C1,C2, . . . are used to denote a generic
positive constant whichmay depends on u, p,b, f andμ, λ, γ and is independent of themesh
size h and the time step τ .

For the mathematical setting of the nematic liquid systemmodel (1.1)–(1.5), we introduce
the following spaces:

H = {u ∈ L2(�), div u = 0 in �, u · n = 0 on ∂�}, V = H1
0(�), X = H1(�),

V0 = {u ∈ V, div u = 0 in �}, M = L2
0(�) = {q ∈ L2(�),

∫
�

qdx = 0},
H(div ,�) = {u ∈ L2(�), div u ∈ L2(�)}.

It is well known that the norm ||∇v||L2 is equivalent to the standard H1 norm for any v ∈ V
due to Poincaré inequality. Define the following continuous bilinear forms a(·, ·) and d(·, ·)
on V × V and V × M , respectively, by

a(u, v) = μ

∫
�

∇u · ∇vdx, ∀ u, v ∈ V,

d(v, q) =
∫

�

qdiv vdx, ∀ v ∈ V, q ∈ M,

and a trilinear form on X × X × X by

b(u, v,w) =
∫

�

(u · ∇)v · wdx, ∀ u, v,w ∈ X.

Integrating by part, it is easy to check that

b(u, v, v) = 0, ∀ u ∈ V0, v ∈ X. (2.1)

Corresponding to (1.1), we recall Stokes operator A. Introduce the orthogonal projection
operator PH from L2(�) onto H which satisfies (cf. [35])

||PHu||H1 ≤ C ||u||H1 , ∀ u ∈ H1(�). (2.2)

Then Stokes operator A is defined by (cf. [35])

Au = −PH�u, ∀ u ∈ D(A) = V0 ∩ H2(�). (2.3)
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Now, we recall some known inequalities frequently used in this paper [1,35]:

||v||Lr ≤ C ||∇v||L2(2 ≤ r ≤ 6), ||v||L4 ≤ C ||v||1/2
L2 ||∇v||1/2

L2 , ∀ v ∈ V, (2.4)

||v||H2 ≤ C ||Av||L2 , ||v||L∞ ≤ C ||v||1/2
L2 ||Av||1/2

L2 , ∀ v ∈ D(A), (2.5)

||v||Lr ≤ C ||v||H1(2 ≤ r ≤ 6), ||v||L4 ≤ C ||v||1/2
L2 ||v||1/2

H1 , ∀ v ∈ X, (2.6)

||∇2v||L2 ≤ C ||�v||L2 , ∀ v ∈ H2(�) with ∂nv|∂� = 0, (2.7)

||v||L∞ ≤ C ||v||1/2
L2 (||v||2L2 + ||�v||2L2)

1/4, ∀ v ∈ H2(�) with ∂nv|∂� = 0, (2.8)

||∇v||L3 ≤ C(||∇v||2/3
L2 ||�v||1/3

L2 + ||∇v||L2), ∀ v ∈ H2(�). (2.9)

Next, we give a regularity result for the solution to the problem (1.1)–(1.5) established in
[21].

Theorem 2.1 Let u0 ∈ D(A) and b0 ∈ H3(�) with |b0| = 1 in �. For given f ∈
L∞(0, T ;H) ∩ L2(0, T ;L4(�)), then there exists some T 
 < T such that the problem
(1.1)–(1.5) admits a unique local strong solution (u, p, b) satisfying

u ∈ L2(0, T 
;W2,4(�)) ∩ L∞(0, T 
;D(A)), (2.10)

ut ∈ L2(0, T 
;V) ∩ L∞(0, T 
;H), (2.11)

b ∈ L∞(0, T 
;H3(�)) ∩ L2(0, T 
;H4(�)), (2.12)

bt ∈ L∞(0, T 
;H1(�)) ∩ L2(0, T 
;H2(�)), (2.13)

p ∈ L∞(0, T 
; H1(�) ∩ M). (2.14)

Remark 2.1 Although the authors investigated the compressible nematic liquid crystal model
in [21], the regularity results derived in [21] also hold for the incompressible nematic liquid
crystal model (1.1)–(1.3) with the initial and boundary conditions (1.4)–(1.5). The regularity
(2.14) for the pressure is not derived in [21] because the pressure p depends on the density in
the compressible nematic liquid crystal model. But it can be easily proved by using (2.10)–
(2.12) and inf-sup condition.

Remark 2.2 We require that the initial value u0 and π is the solution to the following Stokes
problem ⎧⎨

⎩
−μ�u0 + ∇π = f0, in �,

div u0 = 0, in �,

u0 = 0, on ∂�,

(2.15)

where f0 = f(x, 0) ∈ H. Then by the regularity result for Stokes problem [35], the solution
(u0, π) belongs to D(A) × H1(�) ∩ M .

Suppose that u0 ∈ D(A) satisfies (2.15). Under the following non-local compatibility
conditions:

∇ p0 = (μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)), on ∂�,

∇(γ�b0 + (u0 · ∇)b0 + γ |∇b0|2b0) · n = 0, on ∂�,

where p0 ∈ H1(�) ∩ M is the weak solution to{
�p0 = div (f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)), in �,

∂n p0 = (μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)) · n, on ∂�,
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the following regularities can be derived:

ut ∈ L∞(0, T 
;V) ∩ L2(0, T 
;D(A)), ∇ pt ∈ L2(0, T 
;L2(�)), (2.16)

ut t ∈ L∞(0, T 
;V′) ∩ L2(0, T 
;H), bt t ∈ L2(0, T 
;L2(�)) (2.17)

under ft ∈ L∞(0, T ;V′) ∩ L2(0, T ;H), where V′
0 is the dual space of V0. The proof of

(2.16)–(2.17) is given in Appendix.

3 Main Results

In this paper, we assume that� is a bounded and convex domain with a smooth boundary ∂�.
Let Th be a family of quasi-uniform triangular partition of �. The corresponding ordered
triangles are denoted by K1, K2, . . . , KM . Let hi = diam(Ki ), i = 1, . . . , M . Then we
denote by h = max{h1, h2, . . . , hM } the mesh size. For a triangle K j with two nodes on the
boundary, we use K̃ j to denote the triangle with one curved edge with the same nodes as K j .
For interior element, we simply set K̃ j as K j itself. Let �h = ⋃M

1 K j and x = G (̃x) be a
map from �h to � such that G and G−1 both are Lipschitz continuous, and G is the identity
mapping for interior element K j , and G maps K j onto K̃ j smoothly for K j at the boundary
[13,38]. For a given partition of �, we define

X̂h = {vh ∈ C(�h), vh ∈ P2(K ), ∀ K ∈ Th},
V̂h = {wh ∈ C(�h), wh ∈ P1(K ), ∀ K ∈ Th and wh = 0 on ∂�h},
M̂h = {qh ∈ L2(�h), qh ∈ P0(K ), ∀ K ∈ Th and

∫
�h

qh (̃x)|det(JG)|dx̃ = 0},
̂̃Mh = {φh ∈ L2(�h), φh ∈ P1(K ), ∀ K ∈ Th and

∫
�h

φh (̃x)|det(JG)|dx̃ = 0},

where JG denotes the Jacobian of G, and Pr (K ) denotes the space of the polynomials on
K of degree at most r for every K ∈ Th and a nonnegative integer r . For x ∈ �, we
define an operator GX on X̂h by GXvh(x) = vh(G−1(x)), and an operator GV on V̂h by
GVwh(x) = wh(G−1(x)), and an operator GM on M̂h by GMqh(x) = qh(G−1(x)), and an
operator GM̃ on ̂̃Mh by GM̃φh(x) = φh(G−1(x)). Then the finite element spaces are defined
by

Xh = {GXvh : vh ∈ X̂h}, Vh = {GVwh : wh ∈ V̂h},
Mh = {GMqh : qh ∈ M̂h}, M̃h = {GM̃φh : φh ∈ ̂̃Mh}.

It is clear that Xh is a finite element subspace of X and Vh is a finite element subspace

of V. Moreover, there holds
∫

�

GMqh(x)dx =
∫

�

GM̃φh(x)dx = 0. Thus, Mh and M̃h

both are finite element spaces of M . For any v ∈ X, we define 0
hv = GX ̂hG−1

X v, where
̂h : C(�h) → X̂h is the Lagrange interpolation operator. Then for any v ∈ H3(�), (cf.
[13,26])

||v − 0
hv||L2 + h||v − 0

hv||H1 ≤ Ch3||v||H3 . (3.1)

Similarly, For any w ∈ V, we define R0
hv = GV R̂hG−1

V w, where R̂h : C(�h) → V̂h is the
Lagrange interpolation operator. Then for any w ∈ H2(�) ∩ V, (cf. [34])

||w − R0
hw||L2 + h||∇(w − R0

hw)||L2 ≤ Ch2||w||H2 . (3.2)

123



J Sci Comput (2018) 74:979–1008 985

Observe that P1 − P0 finite element space for velocity and pressure does not satisfy the
so-called discrete inf-sup condition. Here, we use a stabilized technique proposed by Bochev
et al. [4] for Stokes problem. Introduce the generalized bilinear forms defined by

B(wh, rh; vh, qh) = a(wh, vh) − d(vh, rh) + d(wh, qh),

Bh(wh, rh; vh, qh) = B(wh, rh; vh, qh) + αG(rh, qh),

for all (wh, rh), (vh, qh) ∈ Vh × Mh . Here α > 0 is the stable parameter. The stable term
G(rh, qh) is defined by

G(rh, qh) = (rh − 1rh, qh − 1qh), ∀ rh, qh ∈ Mh,

where 1 is a continuous projection operator from Mh to M̃h .
Suppose that the solution (u, p,b) satisfies the regularities (2.10)–(2.14) and (2.16)–(2.17)

in [0, T ] for some T > 0. Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the
time interval [0, T ] with time step τ = T/N and tn = nτ for 0 ≤ n ≤ N . Let

un = u(x, tn), pn = p(x, tn), bn = b(x, tn), fn = f(x, tn).

For any sequence {gn}Nn=0, denote Dτ gn+1 = gn+1 − gn

τ
for 0 ≤ n ≤ N − 1.

Under the above notations, we propose a linearized semi-implicit Euler finite element
scheme for the nematic liquid crystal model (1.1)–(1.5), which is to find Bn+1

h ∈ Xh and
(Un+1

h , Pn+1
h ) ∈ Vh × Mh for n = 0, 1, . . . , N − 1, such that

(DτB
n+1
h , φh) + γ (∇Bn+1

h ,∇φh) + bh(Un
h,B

n+1
h , φh) = γ (|∇Bn

h |2Bn
h, φh), ∀ φh ∈ Xh,

(3.3)

(DτU
n+1
h , vh) + Bh(U

n+1
h , Pn+1

h ; vh, qh) + bh(Un
h,U

n+1
h , vh)

− λ(∇Bn+1
h � ∇Bn

h,∇vh) = (fn+1, vh), ∀ (vh, qh) ∈ Vh × Mh, (3.4)

with B0
h = 0

hb0 ∈ Xh , U0
h = R0

hu0 ∈ Vh and

bh(u, v,w) =
∫

�

(u · ∇)v · wdx + 1

2

∫
�

(div u)v · wdx . (3.5)

The emphasis of this paper is to show optimal error estimates for the semi-implicit Euler
scheme (3.3)–(3.4). The main result derived in this paper is presented in the following theo-
rem.

Theorem 3.1 Suppose u0 ∈ V0 ∩ H2(�), b0 ∈ H3(�) with |b0| = 1, f ∈ L∞(0, T ;H) ∩
L2(0, T ;L4(�)) and ft ∈ L∞(0, T ;V′

0)∩L2(0, T ;H). Then the finite element semi-implicit
discrete system (3.3)–(3.4) exists a unique solution (Un

h, P
n
h ,Bn

h) ∈ Vh × Mh × Xh for
n = 1, . . . , N. Moreover, there have two constants h0 > 0 and τ0 > 0 such that when
h < h0 and τ < τ0, the following optimal error estimates hold:

max
0≤n≤N

(||bn − Bn
h ||H1 + ||1 − |Bn

h |2||L2 + ||un − Un
h ||L2

) ≤ C0(τ + h2), (3.6)

max
0≤n≤N

||∇un − ∇Un
h ||L2 ≤ C0(τ + h). (3.7)

To prove Theorem 3.1 by using the temporal-spatial error splitting method proposed by
Li and Sun in [23,24], for B0 = b0 and U0 = u0 and n = 0, 1, . . . , N − 1, we define Bn+1

123



986 J Sci Comput (2018) 74:979–1008

and (Un+1, Pn+1) to be the solutions of the following discrete parabolic (or elliptic) system
corresponding to the time-dependent system (1.1)–(1.5):

DτBn+1 − γ�Bn+1 + (Un · ∇)Bn+1 = γ |∇Bn |2Bn (3.8)

with homogeneous Neumann boundary condition ∂nBn+1| = 0 on ∂�, and

DτUn+1 − μ�Un+1 + (Un · ∇)Un+1 + ∇Pn+1

+ λdiv (∇Bn+1 � ∇Bn) = fn+1, div Un+1 = 0, (3.9)

with homogeneous boundary condition Un+1 = 0 on ∂�.

Remark 3.1 For givenUn with div Un = 0 andBn , the existence and uniqueness of the weak
solution Bn+1 to the linear elliptic problem (3.8) with Neumann boundary condition follows
from Lax–Milgram theorem by using b(Un,Bn+1,Bn+1) = 0. For given Un,Bn and Bn+1,
the existence and uniqueness of the weak solution (Un+1, Pn+1) to the linearized Navier–
Stokes equations (3.9) with homogeneous boundary condition follows from the classical
existence and uniqueness theorem for steady Navier–Stokes problem [35].

Let us denote

E0
u = R0

hU
0 − U0, e0uh = R0

hU
0 − U0

h, E0
b = 0

hB
0 − B0, e0bh = 0

hB
0 − B0

h,

and for 1 ≤ n ≤ N ,

enu = un − Un, enp = pn − Pn, enb = bn − Bn,

enuh = RhUn − Un
h, enph = Qh P

n − Pn
h , enbh = n

hB
n − Bn

h,

En
u = RhUn − Un, En

p = Qh P
n − Pn, En

b = n
hB

n − Bn,

where Rh, Qh and n
h are projection operators defined in Sect. 5. The proof of (3.6)–(3.7)

is based upon the following error splitting in some norm || · ||:
||un − Un

h || ≤ ||enu|| + ||En
u|| + ||enuh ||,

||bn − Bn
h || ≤ ||enb|| + ||En

b|| + ||enbh ||,
||pn − Pn

h || ≤ ||enp|| + ||En
p|| + ||enph ||.

Here ||enu||, ||enb||, ||enp|| are temporal errors, and ||enuh ||, ||enbh ||, ||enph || are spatial errors, and||En
u||, ||En

b||, ||En
p|| are projection errors.

Before the proof of Theorem 3.1, we recall the following inverse inequality which holds
for vh ∈ Vh or vh ∈ Xh [5]:

||vh ||Wl,q1 ≤ Ch
m−l+2min{ 1

q1
− 1

q2
,0}||vh ||Wm,q2 , ∀ 1 ≤ q1, q2 ≤ ∞, 0 ≤ m ≤ l. (3.10)

Finally, a discrete version of Gronwall’s inequality established in [19] is frequently used
in this paper.

Lemma 3.1 Let ak, bk, ck and γk , for integers k ≥ 0, be the nonnegative numbers such that

an + τ

n∑
k=0

bk ≤ τ

n∑
k=0

γkak + τ

n∑
k=0

ck + B for n ≥ 0. (3.11)

Suppose that τγk < 1, for all k, and set σk = (1 − τγk)
−1. Then

an + τ

n∑
k=0

bk ≤ exp

(
τ

n∑
k=0

γkσk

) (
τ

n∑
k=0

ck + B

)
for n ≥ 0. (3.12)
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Remark 3.2 If the first sum on the right in (3.11) extends only up to n − 1, then the estimate
(3.12) holds for all τ > 0 with σk = 1.

4 Temporal Error Analysis

In this section, we begin to estimate temporal errors enu, e
n
b and e

n
p for 1 ≤ n ≤ N .Meanwhile,

some regularities of solutions Bn and (Un, Pn) to the discrete parabolic system (3.8)–(3.9)
are derived. For 0 ≤ n ≤ N − 1, we take t = (n + 1)τ at (1.1)–(1.5) to yield

Dτun+1 − μ�un+1 + (un+1 · ∇)un+1 + ∇ pn+1

+ λdiv (∇bn+1 � ∇bn+1) = fn+1 − Rn+1
u , (4.1)

Dτbn+1 − γ�bn+1 + (un+1 · ∇)bn+1 = γ |∇bn+1|2bn+1 − Rn+1
b , (4.2)

div un+1 = 0, |bn+1| = 1, (4.3)

with boundary conditions un+1 = 0 and ∂nbn+1 = 0 on ∂�, where

Rn+1
u = 1

τ

∫ tn+1

tn
(s − tn)∂t tu(s)ds, Rn+1

b = 1

τ

∫ tn+1

tn
(s − tn)∂t tb(s)ds.

It follows from Hölder’s inequality and (2.17) that

τ

N−1∑
n=0

||Rn+1
u ||2L2 + τ

N−1∑
n=0

||Rn+1
b ||2L2 ≤ Cτ 2. (4.4)

Subtracting (3.8) from (4.2), and (3.9) from (4.1), (4.3) leads to

Dτ e
n+1
b − γ�en+1

b = γ (|∇bn+1|2bn+1 − |∇Bn |2Bn) − Rn+1
b

−((un+1 · ∇)bn+1 − (Un · ∇)Bn+1), (4.5)

and

Dτ en+1
u − μ�en+1

u + ∇en+1
p = −((un+1 · ∇)un+1 − (Un · ∇)Un+1)

−λ(div (∇bn+1 � ∇bn+1) − div (∇Bn+1 � ∇Bn)) − Rn+1
u , div en+1

u = 0 (4.6)

with boundary conditions en+1
u = 0 and ∂ne

n+1
b = 0 on ∂�.

First, we prove the following temporal errors.

Lemma 4.1 Suppose that the solution (u, p, b) to (1.1)–(1.5) satisfies the regularities (2.10)–
(2.14) and (2.16)–(2.17) in [0, T ]. For 0 ≤ n ≤ N − 1, there exists some τ1 > 0 such that
when τ < τ1, there hold

max
0≤m≤n+1

(
||emb ||2H1 + ||∇emu ||2L2 + τ

m∑
k=0

||ekb||2H2 + τ

m∑
k=0

||Aeku||2L2

)
≤ C2

0

16
τ 2, (4.7)

max
1≤m≤n+1

(
||Dτ emb ||2H1 + ||emb ||2H2 + τ

m∑
k=1

||Dτ ekb||2H2

)
≤ C1 (4.8)

max
1≤m≤n+1

(
||∇Dτ emu ||2L2 + τ

m∑
k=1

||ADτ eku||2L2

)
≤ C1. (4.9)
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Proof Due to u0 = U0 = u0 and b0 = B0 = b0, the inequalities (4.7)–(4.9) obviously
hold for m = 0. Suppose that (4.7)–(4.9) hold for m ≤ n, then we need to show that these
inequalities also hold for m ≤ n + 1. Multiplying (4.5) by en+1

b and integrating over �, we
obtain

1

2
Dτ ||en+1

b ||2L2 + 1

2τ
||en+1

b − enb||2L2 + γ ||∇en+1
b ||2L2

≤ γ |(|∇bn+1|2bn+1 − |∇Bn |2Bn, en+1
b )| + |(Rn+1

b , en+1
b )|

+ |b(un+1,bn+1, en+1
b ) − b(Un,Bn+1, en+1

b )| = I1 + I2 + I3. (4.10)

Rewrite |∇bn+1|2bn+1 − |∇Bn |2Bn as

|∇bn+1|2bn+1 − |∇Bn |2Bn

= (∇bn+1 − ∇bn) · (∇bn+1 + ∇bn)bn+1 + |∇bn |2(bn+1 − bn)

+ |∇bn |2enb + 2(∇enb · ∇bn)bn − 2(∇enb · ∇bn)enb + |∇enb|2enb − |∇enb|2bn .
By using (2.12), (2.13), (2.6), (4.7) for m ≤ n, Hölder’s inequality and Young’s inequality,
I1 is bounded by

I1 ≤ γ (||∇bn+1 + ∇bn ||L∞ + ||∇bn ||2L∞)||bn+1 − bn ||H1 ||en+1
b ||L2

+ γ (||∇bn ||2L∞||enb||L2 + ||∇bn ||L∞||bn ||L∞||∇enb||L2)||en+1
b ||L2

+ γ ||∇bn ||L∞||∇enb||L2 ||enb||H2 ||en+1
b ||L2

+ γ (||enb||H2 + ||bn ||L∞)||∇enb||2L4 ||en+1
b ||L2

≤ C2(||en+1
b ||2L2 + ||enb||2L2 + τ 2) + γ

4
||enb||2H1 + C2C2

0

8
τ 2||enb||2H2 ,

where C2 > 0 is independent of C0. Moreover, we use

||bn+1 − bn ||2H1 = ||
∫ tn+1

tn
bt (t)dt ||2H1 ≤ τ 2||bt ||2L∞(0,T ;H1(�))

. (4.11)

From Hölder’s inequality and Young’s inequality again, we estimate I2 as

I2 ≤ C2(||en+1
b ||2L2 + ||Rn+1

b ||2L2).

An alternative to I3 is

I3 = |b(un+1 − un,bn+1, en+1
b ) + b(un − Un,bn+1, en+1

b )|.
Then, from (2.11) and (2.12), we get

I3 ≤ (||un+1 − un ||L2 + ||enu||L2)||∇bn+1||L∞||en+1
b ||L2

≤ C2(||en+1
b ||2L2 + ||enu||2L2 + τ 2),

where we use

||un+1 − un ||2L2 = ||
∫ tn+1

tn
ut (t)dt ||2L2 ≤ τ 2||ut ||2L∞(0,T ;H). (4.12)
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Then combining these estimates for I1, I2 and I3 into (4.10), we obtain

Dτ ||en+1
b ||2L2 + 1

τ
||en+1

b − enb||2L2 + γ ||∇en+1
b ||2L2

≤ C2(||en+1
b ||2L2 + ||enb||2L2 + ||enu||2L2 + ||Rn+1

b ||2L2 + τ 2) + γ

2
||enb||2H1

+ C2C2
0

4
τ 2||enb||2H2 . (4.13)

Testing (4.6) by en+1
u yields

1

2
Dτ ||en+1

u ||2L2 + 1

2τ
||en+1

u − enu||2L2 + μ||∇en+1
u ||2L2

≤ |b(Un,Un+1, en+1
u ) − b(un+1,un+1, en+1

u )| + |(Rn+1
u , en+1

u )|
+ |λ(∇bn+1 � ∇bn+1 − ∇Bn+1 � ∇Bn,∇en+1

u )| = I4 + I5 + I6. (4.14)

From Hölder’s inequality and Young’s inequality, I4 satisfies

I4 = |b(en+1
u ,un+1, en+1

u ) − b(enu,u
n+1, en+1

u )|
≤ (||enu||L2 ||un+1||W 2,4 + ||en+1

u ||L2 ||∇un+1||L2)||∇en+1
u ||L2

≤ μ

4
||∇en+1

u ||2L2 + C2||en+1
u ||2L2 + C2||enu||2L2 ||un+1||2W 2,4 .

Similarly, it is easy to show that

I5 ≤ C2(||en+1
u ||2L2 + ||Rn+1

u ||2L2).

We rewrite I6 as

I6 = |λ(∇en+1
b � ∇bn+1,∇en+1

u ) + λ(∇en+1
b � ∇(bn+1 − bn),∇en+1

u )

− λ(∇bn+1 � ∇(bn+1 − bn),∇en+1
u ) + λ(∇en+1

b � ∇enb,∇en+1
u )

− λ(∇bn+1 � ∇enb,∇en+1
u )|

Then I6 is bounded by

I6 ≤ λ||∇en+1
b ||L2 ||∇bn+1||L∞||∇en+1

u ||L2 + λ||∇en+1
b ||L4 ||∇(bn+1 − bn)||L4 ||∇en+1

u ||L2

+ λ||∇bn+1||L∞||∇(bn+1 − bn)||L2 ||∇en+1
u ||L2 + λ||∇en+1

b ||L4 ||∇enb||L4 ||∇en+1
u ||L2

+ λ||∇bn+1||L∞||∇enb||L2 ||∇en+1
u ||L2

≤ μ

4
||∇en+1

u ||2L2 + C2(||∇en+1
b ||2L2 + ||∇enb||2L2 + ||∇(bn+1 − bn)||2L2)

+ C2||∇(bn+1 − bn)||2L2 ||en+1
b ||2H2 + C2||bn+1 − bn ||2H2 ||∇bn+1||2L2

+ C2||∇enb||L2 ||enb||H2 ||en+1
b ||2H2

≤ μ

4
||∇en+1

u ||2L2 + C2(||∇en+1
b ||2L2 + ||∇enb||2L2 + τ 2)

+ C2τ
2||en+1

b ||2H2 + C2τ ||∇en+1
b ||2L2

∫ tn+1

tn
||bt (t)||2H2dt + C0C1C2

4
τ ||en+1

b ||2H2 ,

where we use (4.7)–(4.8) for m ≤ n and

||bn+1 − bn ||2H2 = ||
∫ tn+1

tn
bt (t)dt ||2H2 ≤ τ

∫ tn+1

tn
||bt (t)||2H2dt. (4.15)
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Combining these estimates into (4.14), we obtain

Dτ ||en+1
u ||2L2 + 1

τ
||en+1

u − enu||2L2 + μ||∇en+1
u ||2L2

≤ C2||en+1
u ||2L2 + C2(||enu||2L2 ||un+1||2W 2,4 + ||Rn+1

u ||2L2 + ||∇en+1
b ||2L2 + ||∇enb||2L2 +τ 2)

+ C2τ
2||en+1

b ||2H2 + C2τ ||∇en+1
b ||2L2

∫ tn+1

tn
||bt (t)||2H2dt + C0C1C2

2
τ ||en+1

b ||2H2 .

(4.16)

Testing (4.5) by −�en+1
b and using a similar argument for (4.13), we can get

Dτ ||∇en+1
b ||2L2 + γ ||�en+1

b ||2L2

≤ C2(||enb||2L2 + ||enu||2L2 + ||Rn+1
b ||L2 + τ 2) + γ

2
||enb||2H1

+C2C2
0

4
τ 2||enb||2H2 . (4.17)

Taking sufficiently small τ to satisfy

τ max{4C2||bt ||L2(0,T ;H2), 2C0C1C2,C2C
2
0τ } < γ,

and summing up the inequalities (4.13), (4.16), (4.17) and using discrete Gronwall’s inequal-
ity (see Lemma 5.1 in [19]), there exists some C3 > 0 and τ11 > 0 such that when τ < τ11,
there holds

||en+1
b ||2H1 + ||en+1

u ||2L2 + τ

n+1∑
k=0

||ekb||2H2 + τ

n+1∑
k=0

||∇eku||2L2 ≤ exp(2TC3)τ
2. (4.18)

Then temporal errors of the director in (4.7) hold if we choose C0 > 4 exp(TC3).
For 1 ≤ k ≤ N , by the definition ekb, we have

||DτBk ||Hi ≤ ||Dτ ekb||Hi + ||Dτbk ||Hi , i = 1, 2.

Following (2.13) and (4.18), we get

max
1≤n≤N

(||DτBn ||H1 + ||Bn ||H2 + ||∇Un ||L2
) ≤ C.

For 0 ≤ n ≤ N − 1, rewrite (3.8) as

−γ�Bn+1 = Fn,

where Fn = γ |∇Bn |2Bn − (Un · ∇)Bn+1 − DτBn+1. Then we have

||Fn ||L4 ≤ γ |||∇Bn |2Bn ||L4 + ||(Un · ∇)Bn+1||L4 + ||DτBn+1||L4

≤ C ||∇Bn ||L6 ||∇Bn ||L12 ||Bn ||L∞ + C ||Un ||L6 ||∇Bn+1||L12

+ C ||DτBn+1||H1 ≤ C,

where we use Sobolev imbedding H2(�) ⊂ W1,p(�) for any 1 ≤ p < +∞. Thus, by
classical regularity theory of elliptic problem, we have ||Bn+1||W 2,4 ≤ C , which implies
||Bn+1||W 1,∞ ≤ C if we use Sobolev imbeddingW2,4(�) ⊂ W1,∞(�). In this case, ∇Fn in
L2-norm can be bounded by
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||∇Fn ||L2 ≤ γ |||∇(∇Bn |2Bn)||L2 + ||∇((Un · ∇)Bn+1)||L2 + ||∇DτBn+1||L2

≤ C ||Bn ||3W 1,6 + C ||Bn ||H2 ||∇Bn ||L∞||Bn ||L∞ + C ||∇Un ||L2 ||∇Bn+1||L∞

+ C ||Un ||L4 ||Bn+1||W 2,4 + C ||DτBn+1||H1 ≤ C.

Thus Fn ∈ H1(�). From classical regularity theory of elliptic problem, again, we obtain

max
1≤n≤N

||Bn ||H3 ≤ C. (4.19)

The above estimate with (2.12) implies that

max
1≤n≤N

||enb||H3 ≤ C. (4.20)

Testing (4.6) by Aen+1
u , we get

1

2
Dτ ||∇en+1

u ||2L2 + 1

2τ
||∇en+1

u − ∇enu||2L2 + μ||Aen+1
u ||2L2

≤ |b(un+1,un+1, Aen+1
u ) − b(Un,Un+1, Aen+1

u )| + |(Rn+1
u , Aen+1

u )|
+ |λ(div (∇bn+1 � ∇bn+1) − div (∇Bn+1 � ∇Bn), Aen+1

u )|
= I7 + I8 + I9. (4.21)

An alternative to I7 is

I7 = |b(un+1, en+1
u , Aen+1

u ) − b(un+1 − un, en+1
u , Aen+1

u ) + b(un+1 − un,un+1, Aen+1
u )

− b(enu, e
n+1
u , Aen+1

u ) + b(enu,u
n+1, Aen+1

u )|,

which can be bounded by

I7 ≤ (||un+1||L∞ + ||un ||L∞)||∇en+1
u ||L2 ||Aen+1

u ||L2

+ ||∇un+1||L∞||un+1 − un ||L2 ||Aen+1
u ||L2

+ ||enu||L4 ||∇en+1
u ||L4 ||Aen+1

u ||L2 + ||∇un+1||L∞||enu||L2 ||Aen+1
u ||L2

≤ μ

4
||Aen+1

u ||2L2 + C4(||∇en+1
u ||2L2 + ||un+1 − un ||2L2 + ||enu||2L2)

+ C4(||enu||2L2 ||∇en+1
u ||2L2 + ||∇enu||2L2 ||en+1

u ||2L2).

From Young’s inequality, we bound I8 as

I8 ≤ μ

4
||Aen+1

u ||2L2 + C4||Rn+1
u ||2L2 .

An alternative to I9 is

I9 = λ(div (∇en+1
b � ∇bn+1), Aen+1

u ) + λ(div (∇en+1
b � ∇(bn+1 − bn)), Aen+1

u )

− λ(div (∇bn+1 � ∇(bn+1 − bn)), Aen+1
u ) + λ(div (∇en+1

b � ∇enb), Ae
n+1
u )

− λ(div (∇bn+1 � ∇enb), Ae
n+1
u )|

= I 19 + I 29 + I 39 + I 49 + I 59 .
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By Hölder’s inequality and (4.20), all terms in the right-hand side of the above inequality
can be estimated, respectively, by

I 19 ≤ C4(||en+1
b ||H2 ||bn+1||H3 + ||∇en+1

b ||L2 ||bn+1||H4)||Aen+1
u ||L2 ,

I 29 ≤ C4(||en+1
b ||H2 ||bn+1 − bn ||H3 + ||∇en+1

b ||L2 ||bn+1 − bn ||H4)||Aen+1
u ||L2 ,

I 39 ≤ C4(||bn+1||H4 ||∇bn+1 − ∇bn ||L2 + ||bn+1||H3 ||bn+1 − bn ||H2)||Aen+1
u ||L2 ,

I 49 ≤ C4(||en+1
b ||H2 ||enb||H3 + ||enb||H2 ||en+1

b ||H3)||Aen+1
u ||L2 ,

I 59 ≤ C4(||enb||H2 ||bn+1||H3 + ||∇enb||L2 ||bn+1||H4)||Aen+1
u ||L2 .

Combining these estimates into (4.21), and using Young’s inequality and the discrete Gron-
wall’s inequality, we conclude that there exists some C5 > 0 and τ12 > 0 such that when
τ < τ12, there holds

||∇en+1
u ||2L2 + τ

n+1∑
k=0

||Aeku||2L2 ≤ exp(2TC5)τ
2. (4.22)

Thus, (4.7) holds if we chooseC0 > 4max{exp(TC3), exp(TC5)}. As a direct result of (4.7),
we have

max
0≤m≤n+1

||Dτ emb ||L2 ≤ C. (4.23)

From the arguments in estimating I1 to I3, we have

||γ (|∇bn+1|2bn+1 − |∇Bn |2Bn) − Rn+1
b − ((un+1 · ∇)bn+1 − (Un · ∇)Bn+1)||L2 ≤ C.

In terms of (4.23) andH2 regularity for linear elliptic problem, it can be shown ||en+1
b ||H2 ≤

C1. Thus, we complete the proof of

max
0≤m≤n+1

||emb ||H2 ≤ C1, max
0≤m≤n+1

||Bm ||H2 = max
0≤m≤n+1

||bm − emb ||H2 ≤ C. (4.24)

Other estimates in (4.8) and (4.9) are from (4.7) by a simple calculation. �

For 0 ≤ n ≤ N − 1, in order to estimate ||en+1
p ||L2 by the inf-sup condition, we need

to estimate ||Dτ en+1
u ||L2 . Testing (4.6) by τDτ en+1

u and using a similar proof for (4.21), we
can easily obtain

τ

N−1∑
n=0

||Dτ en+1
u ||2L2 ≤ Cτ 2. (4.25)

As a direct consequence of (4.7) and inf-sup condition, we immediately obtain

τ

N−1∑
n=0

||en+1
p ||2L2 ≤ Cτ 2. (4.26)

Other regularities of Bn and (Un, Pn) are derived in next lemma.
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Lemma 4.2 Under the assumptions in Lemma 4.1, we have

max
1≤m≤N

(
τ

m∑
k=1

||DτBk ||2H2

)
≤ C, (4.27)

max
1≤m≤N

(
||∇DτUm ||L2 + τ

m∑
k=1

||ADτUk ||2L2

)
≤ C, (4.28)

max
0≤m≤N

(
||AUm ||L2 + ||Pm ||H1 + τ

m∑
k=0

||AUk ||2L4

)
≤ C. (4.29)

Proof Following (2.13) and (4.8), we get

max
1≤m≤N

(
τ

m∑
k=0

||DτBk ||2H2

)
≤ C.

This completes the proof of (4.27). The proof of (4.28) can be easily completed by using
(2.16) and (4.9). From (4.19), we have

||div (∇Bn+1 � ∇Bn)||L2 ≤ C ||∇2Bn+1||L2 ||∇Bn ||L∞ + C ||∇2Bn ||L2 ||∇Bn+1||L∞

≤ C ||Bn+1||H3 ||Bn ||H3 ≤ C,

and

||div (∇Bn+1 � ∇Bn)||L4 ≤ C ||div (∇Bn+1 � ∇Bn)||L2

+ C ||div (∇Bn+1 � ∇Bn)||1/2
L2 ||∇(div (∇Bn+1 � ∇Bn))||1/2

L2

≤ C + ||∇(div (∇Bn+1 � ∇Bn))||1/2
L2 ≤ C

+ ||Bn+1||H3 ||Bn+1||H3 ≤ C,

By using f ∈ L∞(0, T ;H) ∩ L2(0, T ;L4(�)), we derive

max
1≤m≤N

(
||AUm ||L2 + τ

m∑
k=0

||AUk ||2L4

)
≤ C

from the regularity result for steady Navier–Stokes equations. For 0 ≤ n ≤ N − 1, the
estimate for Pn+1 is derived from (3.9) by

||∇Pn+1||L2 ≤ C ||AUn+1||L2 + C ||DτUn+1||L2 + C ||AUn ||L2 ||∇Un+1||L2

+ C ||div (∇Bn+1 � ∇Bn)||L2 + C ||fn+1||L2 ≤ C.

Observing ||p||L2 ≤ C ||∇ p||L2 for any p ∈ M , we complete the proof of this lemma. �

5 Spatial Error Analysis

In this section, for 1 ≤ n ≤ N , we begin to estimate spatial errors enuh, e
n
bh and enph under

the regularities of Un,Bn and Pn derived in Lemma 4.2. In order to derive the spatial error
estimates, we need to introduce the following projection (Rh, Qh) : V × M −→ Vh × Mh

defined by
Bh(Rhw, Qhr;wh, rh) = B(w, r;wh, rh) (5.1)
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for each (w, r) ∈ V × M and all (wh, rh) ∈ Vh × Mh . According to Theorem 4.1 in [4], it
is easy to check that (Rhw, Qhr) is well defined. By the definition of Bh and B, there holds

Bh(Rhw, Qhr;wh, rh) = Bh(w, r;wh, rh) − αG(r, rh). (5.2)

For 1 ≤ n ≤ N , by a classical argument as in [17] the following approximation properties
hold:

||Un − RhUn ||L2 + h||∇Un − ∇RhUn ||L2 ≤ Ch2||AUn ||L2 , (5.3)

||DτUn − Rh DτUn ||L2 ≤ Ch2||ADτUn ||L2 , (5.4)

||DτUn − Rh DτUn ||L2 ≤ Ch||DτUn ||H1 , (5.5)

||Pn − Qh P
n ||L2 ≤ Ch||Pn||H1 . (5.6)

For given 1 ≤ n ≤ N and Un−1 ∈ V, define n
hB

n ∈ Xh by

γ (∇(n
hB

n − Bn),∇wh) + γ (n
hB

n − Bn,wh) + bh(Un−1,n
hB

n − Bn,wh) = 0,

∀ wh ∈ Xh .

From the classical finite element theory for elliptic problem [5], we have

||Bn − n
hB

n ||L2 + h||Bn − n
hB

n ||H1 ≤ Ch3||Bn ||H3 , (5.7)

||DτBn − n
h DτBn ||L2 ≤ Ch2||�DτBn ||L2 , (5.8)

for m = 0, 1, 2 < p ≤ +∞, ||n
hB

n ||Wm,p ≤ C ||Bn ||Wm,p , (5.9)

for 2 ≤ p ≤ 6, ||Bn − n
hB

n ||W 1,p ≤ Ch||Bn ||W 2,p . (5.10)

Multiplying (3.8) by φh ∈ Xh and (3.9) by (vh, qh) ∈ Vh × Mh , and subtracting the
resulting equations from (3.3) and (3.4), respectively, we get

(Dτ e
n+1
bh , φh) + γ (∇en+1

bh ,∇φh) = (DτE
n+1
b , φh) − (∇En+1

b ,∇φh)

+ bh(Un
h,B

n+1
h , φh) − bh(Un,n+1

h Bn+1, φh)

+ γ (|∇Bn |2Bn − |∇Bn
h |2Bn

h, φh), (5.11)

and

(Dτ e
n+1
uh , vh) + Bh(e

n+1
uh , en+1

ph ; vh, qh)
= (DτEn+1

u , vh) + bh(Un
h,U

n+1
h , vh) − bh(Un,Un+1, vh)

+ λ(∇Bn+1 � ∇Bn − ∇Bn+1
h � ∇Bn

h,∇vh), (5.12)

where we use the definitions of n
h and (Rh, Qh).

The main results in this section are summarized in the following lemma.

Lemma 5.1 Under the assumptions in Theorem 3.1 and Lemma 4.1, for 0 ≤ n ≤ N − 1,
there exist some h2 > 0 and τ2 > 0 such that when h < h2 and τ < τ2, there hold

max
0≤m≤n+1

(
||embh ||2L2 + τ

m∑
k=0

||∇ekbh ||2L2

)
≤ C2

0

16
h4, (5.13)

max
0≤m≤n+1

(
||emuh ||2L2 + τ

m∑
k=0

||∇ekuh ||2L2

)
≤ C2

0

16
h4, (5.14)

max
0≤m≤n+1

||∇embh ||L2 ≤ C0

4
h2. (5.15)
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Proof Since e0uh = R0
hU

0 −U0
h = 0 and e0bh = 0

hB
0 − B0

h = 0, the inequalities (5.13) and
(5.15) obviously hold for m = 0. Now, we suppose that (5.13) and (5.15) hold for m ≤ n.
Then we need to show that these inequalities also hold for m ≤ n + 1. By inverse inequality
(3.10), we have

max
0≤m≤n

||embh ||W 1,∞ ≤ C0C6

4
h. (5.16)

Taking φh = en+1
bh in (5.11) leads to

1

2
Dτ ||en+1

bh ||2L2 + 1

2τ
||en+1

bh − enbh ||2L2 + γ ||∇en+1
bh ||2L2

≤ |(DτE
n+1
b , en+1

bh )| + γ |(En+1
b , en+1

bh )|
+ |bh(Un

h,B
n+1
h , en+1

bh ) − bh(Un,n+1
h Bn+1, en+1

bh )|
+ γ |(|∇Bn |2Bn − |∇Bn

h |2Bn
h, e

n+1
bh )| = J1 + J2 + J3 + J4. (5.17)

By using (5.7), (5.8) and (4.19), it is easy to bound J1 and J2, respectively, as

J1 ≤ ||en+1
bh ||2L2 + C7||DτE

n+1
b ||2L2 ≤ ||en+1

bh ||2L2 + C7h
4||DτBn+1||2H2 ,

and

J2 ≤ ||en+1
bh ||2L2 + C7||En+1

b ||2L2 ≤ ||en+1
bh ||2L2 + C7h

4.

From (3.5), (5.3), (5.9) and (5.14) for m ≤ n, J3 satisfies

J3 = |bh(En
u − enuh,

n+1
h Bn+1, en+1

bh )|
≤ (||En

u||L2 + ||enuh ||L2)||Bn+1||W 1,3 ||∇en+1
bh ||L2

≤ γ

4
||∇en+1

bh ||2L2 + C7(h
4 + ||enuh ||2L2).

We rewrite J4 according to the following equation:

|∇Bn |2Bn − |∇Bn
h |2Bn

h

= |∇Bn |2(enbh − En
b) − 2∇(enbh − En

b) · ∇Bn(enbh − En
b) + 2∇(enbh − En

b) · ∇BnBn

+ |∇(enbh − En
b)|2(enbh − En

b) − |∇(enbh − En
b)|2Bn = J 14 + · · · + J 54 .

Then from the following estimates:

γ (J 14 , en+1
bh ) ≤ γ ||∇Bn ||2L∞||enbh − En

b||L2 ||en+1
bh ||L2 ≤ C7(h

2 + ||enbh ||L2)||en+1
bh ||L2

γ (J 24 , en+1
bh ) ≤ γ ||∇Bn ||L∞||∇(enbh − En

b)||L2 ||enbh − En
b||L∞||en+1

bh ||L2

≤ C7C6C0h(h2 + ||∇enbh ||L2)||en+1
bh ||L2

γ (J 34 , en+1
bh ) ≤ γ ||∇Bn ||L∞||Bn ||L∞||∇(enbh − En

b)||L2 ||en+1
bh ||L2

≤ C7(h
2 + ||∇enbh ||L2)||en+1

bh ||L2

γ (J 44 , en+1
bh ) ≤ γ ||enbh − En

b||L∞||∇(enbh − En
b)||L2 ||∇(enbh − En

b)||L3 ||en+1
bh ||L6

≤ C7C6C0h(||∇enbh ||L2 + h2)(h−1/3||∇enbh ||L2 + h)||∇en+1
bh ||L2

≤ C7C
2
6C

2
0h

5/3(h2 + ||∇enbh ||L2)||en+1
bh ||L2
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γ (J 54 , en+1
bh ) ≤ γ ||Bn ||L∞||∇(enbh − En

b)||L2 ||∇(enbh − En
b)||L3 ||en+1

bh ||L6

≤ C7(||∇enbh ||L2 + h2)(h−1/3||∇enbh ||L2 + h)||∇en+1
bh ||L2

≤ C7C6C0h
2/3(||∇enbh ||L2 + h2)||∇en+1

bh ||L2 ,

J4 can be bounded by

J4 ≤ γ

4
||∇en+1

bh ||2L2 + C8||en+1
bh ||2L2 + (γC2

9C
2
0h

4/3 + C4
9C

4
0h

10/3)(h4 + ||∇enbh ||2L2).

For sufficiently small h such that (γC2
9C

2
0h

4/3 +C4
9C

4
0h

10/3) < γ/4. Then combining these
estimates into (5.17) leads to

Dτ ||en+1
bh ||2L2 + 1

τ
||en+1

bh − enbh ||2L2 + γ ||∇en+1
bh ||2L2

≤ C10(h
4 + h4||DτBn+1||2H2 + ||enuh ||2L2) + C11||en+1

bh ||2L2 + γ

2
||∇enbh ||2L2 . (5.18)

Taking vh = en+1
uh and qh = en+1

ph in (5.12) leads to

1

2
Dτ ||en+1

uh ||2L2 + 1

2τ
||en+1

uh − enuh ||2L2 + μ||∇en+1
uh ||2L2 + α||(I − 1)e

n+1
ph ||2L2

≤ |(DτEn+1
u , en+1

uh )| + |bh(Un
h,U

n+1
h , en+1

uh ) − bh(Un,Un+1, en+1
uh )|

+ λ|(∇Bn+1 � ∇Bn − ∇Bn+1
h � ∇Bn

h,∇en+1
uh )|. = J5 + J6 + J7. (5.19)

From (5.4) and (4.28), J5 is bounded by

J5 ≤ ||en+1
uh ||2L2 + C12||DτEn+1

u ||2L2 ≤ ||en+1
uh ||2L2 + C12h

4||ADτUn+1||2L2 .

An alternative to J6 is

J6 = |bh(En
u − enuh,E

n+1
u , en+1

uh ) − bh(Un, en+1
uh ,En+1

u )

+ bh(En
u − enuh,U

n+1, en+1
uh )|.

Then we have

J6 ≤ ||En
u − enuh ||L2 ||∇En+1

u ||L3 ||en+1
uh ||L6 + ||AUn ||L2 ||En+1

u ||L2 ||∇en+1
uh ||L2

+ ||En
u − enuh ||L2 ||∇Un+1||L3 ||en+1

uh ||L6 ≤ μ

4
||∇en+1

uh ||2L2 + C12(h
4 + ||enuh ||2L2).

Observing the following identity

∇Bn+1 � ∇Bn − ∇Bn+1
h � ∇Bn

h

= ∇(en+1
bh − En+1

b ) � ∇Bn − ∇en+1
bh � ∇(enbh − En

b)

+ ∇En+1
b � ∇(enbh − En

b) + ∇Bn+1 � ∇(enbh − En
b)

= J 17 + J 27 + J 37 + J 47 ,

and using the following estimates:

λ(J 17 ,∇en+1
uh ) ≤ λ||∇Bn ||L∞||∇(en+1

bh − En+1
b )||L2 ||∇en+1

uh ||L2

≤ C12(h
2 + ||∇en+1

bh ||L2)||∇en+1
uh ||L2

λ(J 27 ,∇en+1
uh ) ≤ λ||∇en+1

bh ||L∞||∇(enbh − En
b)||L2 ||∇en+1

uh ||L2

≤ C12h
−2||en+1

bh ||L2 ||∇(enbh − En
b)||L2 ||∇en+1

uh ||L2
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≤ C0C6C12

4
||en+1

bh ||L2 ||∇en+1
uh ||L2

λ(J 37 ,∇en+1
uh ) ≤ λ(||∇En+1

b ||L4 ||∇En
b||L4 + ||∇En+1

b ||L2 ||∇enbh ||L∞)||∇en+1
uh ||L2

≤ C12(||∇En+1
b ||L4 ||∇En

b||L4 + C2
6h

−2||∇En+1
b ||L2 ||enbh ||L2)||∇en+1

uh ||L2

≤ C12C
2
6 (h

2 + ||enbh ||L2)||∇en+1
uh ||L2

λ(J 47 ,∇en+1
uh ) ≤ λ||∇Bn+1||L∞||∇(enbh − En

b)||L2 ||∇en+1
uh ||L2

≤ C12(h
2 + ||∇enbh ||L2)||∇en+1

uh ||L2 ,

we estimate J7 as

J7 ≤ μ

4
||∇en+1

uh ||2L2 + C12(h
4 + ||∇enbh ||2L2 + ||∇en+1

bh ||2L2 + ||enbh ||L2)

+ C13C
2
0C

2
6 ||en+1

bh ||2L2 .

Combining these estimates into (5.19) leads to

Dτ ||en+1
uh ||2L2 + 1

τ
||en+1

uh − enuh ||2L2 + μ||∇en+1
uh ||2L2

≤ C12(||en+1
uh ||2L2 + h4 + h4||ADτUn+1||2L2 + ||enuh ||2L2)

+ C12(||∇enbh ||2L2 + ||∇en+1
bh ||2L2 + ||enbh ||L2) + C13C

2
0C

2
6 ||en+1

bh ||2L2 . (5.20)

To prove (5.15), we set φh = Dτ e
n+1
bh in (5.11) to get

1

2
||Dτ e

n+1
bh ||2L2 + 1

2
Dτ ||∇en+1

bh ||2L2 + 1

2τ
||∇en+1

bh − ∇enbh ||2L2

= (DτE
n+1
b , Dτ e

n+1
bh ) − γ (En+1

b , Dτ e
n+1
bh )

+ bh(Un
h,B

n+1
h , Dτ e

n+1
bh ) − bh(Un,Bn+1, Dτ e

n+1
bh )

+ γ (|∇Bn |2Bn − |∇Bn
h |2Bn

h, Dτ e
n+1
bh )

= J8 + J9 + J10 + J11. (5.21)

By the similar arguments for J1 and J2, we have

J8 ≤ 1

8
||Dτ e

n+1
bh ||2L2 + C14h

4||DτBn+1||2H2 ,

and

J9 ≤ 1

8
||Dτ e

n+1
bh ||2L2 + C14h

4.

An alternative to J10 is

J10 = bh(En
u − enuh, e

n
bh, Dτ e

n+1
bh ) − bh(Un, enbh, Dτ e

n+1
bh )

+ bh(En
u − enuh,

n+1
h Bn+1, Dτ e

n+1
bh ) = J 110 + J 210 + J 310,

which are estimated, respectively, by

J 110 ≤ ||En
u − enuh ||L2 ||∇enbh ||L∞||Dτ e

n+1
bh ||L2

≤ C14h
−2||En

u − enuh ||L2 ||enbh ||L2 ||Dτ e
n+1
bh ||L2

≤ C0C6C14

4
(h2 + ||enuh ||L2)||Dτ e

n+1
bh ||L2 ,
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J 210 ≤ ||Un ||L∞||∇enbh ||L2 ||Dτ e
n+1
bh ||L2 ≤ C14||∇enbh ||L2 ||Dτ e

n+1
bh ||L2 ,

J 310 ≤ ||En
u − enuh ||L2 ||∇n+1

h Bn+1||L∞||Dτ e
n+1
bh ||L2

≤ C14||En
u − enuh ||L2 ||Bn+1||H3 ||Dτ e

n+1
bh ||L2 ≤ C14(h

2 + ||enuh ||L2)||Dτ e
n+1
bh ||L2 .

Then J10 is bounded by

J10 ≤ 1

8
||Dτ e

n+1
bh ||2L2 + C14

(
h4 + ||∇enbh ||2L2 + C2

0C
2
6

16
||enuh ||2L2

)
.

To estimate J11, we rewrite it as

|∇Bn |2Bn − |∇Bn
h |2Bn

h

= |∇Bn |2(enbh − En
b) − ∇(enbh − En

b) · ∇Bnenbh + ∇(enbh − En
b) · ∇Bnn

hB
n

+ ∇(enbh − En
b) · ∇enbhe

n
bh − ∇(enbh − En

b) · ∇enbh
n
hB

n

− ∇(enbh − En
b) · ∇n

hB
nenbh + ∇(enbh − En

b) · ∇n
hB

nn
hB

n

= J 111 + · · · + J 711.

Then all terms in J11 are bounded by

γ (J 111, Dτ e
n+1
bh ) ≤ γ ||∇Bn ||2L∞||enbh − En

b||L2 ||Dτ e
n+1
bh ||L2 ≤ C14h

2||Dτ e
n+1
bh ||L2 ,

γ (J 211, Dτ e
n+1
bh ) ≤ γ ||∇Bn ||L∞||∇(enbh − En

b)||L2 ||enbh ||L∞||Dτ e
n+1
bh ||L2

≤ C0C6C14

4
h(h2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 ,

γ (J 311, Dτ e
n+1
bh ) ≤ γ ||∇Bn ||L∞||n

hB
n ||L∞||∇(enbh − En

b)||L2 ||Dτ e
n+1
bh ||L2

≤ C14(h
2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 ,

γ (J 411, Dτ e
n+1
bh ) ≤ γ ||∇enbh ||L∞||enbh ||L∞||∇(enbh − En

b)||L2 ||Dτ e
n+1
bh ||L2

≤ C2
0C

2
6C14

16
h2(h2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 ,

γ (J 511, Dτ e
n+1
bh ) ≤ γ ||∇enbh ||L∞||n

hB
n ||L∞||∇(enbh − En

b)||L2 ||Dτ e
n+1
bh ||L2

≤ C0C6C14

4
h(h2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 ,

γ (J 611, Dτ e
n+1
bh ) ≤ γ ||enbh ||L∞||∇n

hB
n ||L∞||∇(enbh − En

b)||L2 ||Dτ e
n+1
bh ||L2

≤ C0C6C14

4
h(h2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 ,

γ (J 711, Dτ e
n+1
bh ) ≤ γ ||n

hB
n ||L∞||∇n

hB
n ||L∞||∇(enbh − En

b)||L2 ||Dτ e
n+1
bh ||L2

≤ C14(h
2 + ||∇enbh ||L2)||Dτ e

n+1
bh ||L2 .

For sufficiently small h such that
C2
0C

2
6

16
h2 < 1, then J11 satisfies

J11 ≤ 1

8
||Dτ e

n+1
bh ||2L2 + C14(h

4 + ||∇enbh ||2L2).

Combining these estimates into (5.21) leads to

||Dτ e
n+1
bh ||2L2 + Dτ ||∇en+1

bh ||2L2 + τ ||∇en+1
bh − ∇enbh ||2L2

≤ C14(h
4 + h4||DτBn+1||2H2 + ||∇enbh ||2L2 + C15C

2
0C

2
6 ||enuh ||2L2). (5.22)
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Summing up three inequalities (5.18), (5.20), (5.22), for sufficiently small τ such that

τ max{C11,C13C
2
0C

2
6 ,C15C

2
0C

2
6 } < 1,

then from discrete Gronwall’s inequality we derive

||embh ||2L2 + ||emuh ||2L2 + ||∇embh ||2L2 + τ

m∑
k=0

(||∇ekbh ||2L2 + ||∇ekuh ||2L2) ≤ C16 exp(2TC17)h
4,

which proves Lemma 5.1 if we take C2
0 > 16C16 exp(TC17). �

6 Proof of Theorem 3.1

First, we show the existence and uniqueness of the solution to the finite element discrete
system (3.3)–(3.4). For 0 ≤ n ≤ N − 1, an alternative to (3.3) is

(Bn+1
h , φh) + γ τ(∇Bn+1

h ,∇φh) + τbh(Un
h,B

n+1
h , φh)

= (Bn
h, φh) + γ τ(|∇Bn

h |2Bn
h, φh), ∀ φh ∈ Xh .

Taking φh = Bn+1
h in the above equation leads to

(Bn+1
h ,Bn+1

h ) + γ τ(∇Bn+1
h ,∇Bn+1

h ) + τbh(Un
h,B

n+1
h ,Bn+1

h )

= ||Bn+1
h ||2L2 + γ τ ||∇Bn+1

h ||2L2 ≥ min{1, γ τ }||Bn+1
h ||2H1 .

Then, the existence and uniqueness of Bn+1
h for 0 ≤ n ≤ N − 1 follows from Lax–Milgram

theorem. The existence and uniqueness of the solution to (3.4) can be shown by using Lax–
Milgram theorem for Un+1

h and Theorem 4.1 in [4] for Pn+1
h . Error estimates ||bn − Bn

h ||H1

and ||un −Un
h ||L2 follow from the error splitting and (4.7), (5.3), (5.7), (5.14) and (5.15). By

inverse inequality (3.10), (4.7) and (5.3), we derive

||∇un − ∇Un
h ||L2 ≤ ||∇enu||L2 + ||∇En

u||L2 + Ch−1||enuh ||L2 ≤ C0(τ + h)

for sufficiently large C0. On the other hand, by using

||Bn
h ||L∞ ≤ ||n

hB
n ||L∞ + ||enbh ||L∞ ≤ C ||Bn ||L∞ + Ch ≤ C,

we have

||1 − |Bn
h |2||L2 = |||bn |2 − |Bn

h |2||L2 = ||bn − Bn
h ||L2 ||bn + Bn

h ||L∞ ≤ C0(τ + h2)

for sufficiently large C0. We completes the proof of Theorem 3.1 if we take τ0 = min{τ1, τ2}
and h0 = h2.

7 Numerical Results

In this section, we present the numerical results by using the linearized semi-implicit scheme
(3.5)–(3.6) to verify the optimal error estimates derived in Theorem 3.1. All programs are
implemented by the free finite element software FreeFem++ [18]. We consider the nematic
liquid crystal model in the unit circle � = {(x, y) : x2 + y2 < 1}. The initial data are taken
as

u0 = 0, f = 0, b0 = (sin(a), cos(a)), a = π(x2 + y2)2.
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Fig. 1 The FEM meshes of the
unit circle with M = 50

Table 1 Numerical errors and convergence rates at T = 1 for τ = 9/M2

τ = 9/M2 ||b(·, 1) − BJ
h ||H1 Rate ||1 − |BJ

h |2||L2 Rate

M = 50 3.34614E−01 5.78705E−01

M = 100 7.96421E−02 2.0709 1.36172E−01 2.0874

M = 150 3.20721E−02 2.2432 5.62595E−02 2.1796

Table 2 Numerical errors and convergence rates at T = 1 for τ = 1/M2

τ = 1/M2 ||b(·, 1) − BJ
h ||H1 Rate ||1 − |BJ

h |2||L2 Rate

M = 50 2.65892E−02 5.15313E−02

M = 100 6.53797E−03 2.0239 1.34739E−02 1.9353

M = 150 2.51260E−03 2.3585 6.07014E−03 1.9666

Table 3 Numerical errors and convergence rates for different τ

τ ||b(·, 0.5) − BJ
h ||H1 ||u(·, 0.5) − UJ

h ||L2 ||1 − |BJ
h |2||L2

1.00 × 10−3 8.97006E−02 2.08193E−01 1.38704E−01

5.00 × 10−4 4.30171E−02 9.69920E−02 6.54445E−02

2.50 × 10−4 2.08904E−02 4.64736E−02 3.18394E−02

1.25 × 10−4 1.01993E−02 2.25480E−02 1.58644E−02

6.25 × 10−5 4.97587E−03 1.09681E−02 8.12155E−03

Rate 1.0430 1.0616 1.0235

Parameters are set as α = λ = γ = 1 and μ = 1. We take a uniform triangular partition
with M nodes on ∂�. Then a class of uniform meshes of the unit circle is made by a mesh
generator in FreeFem++; see Fig. 1 for illustration.

Since no exact solution exists, to verify the optimal convergence rates, the reference solu-
tion is taken as the numerical solution corresponding to M = 300. The time step τ is required
to satisfy τ = O(1/M2). Therefore, from the error estimates derived in Theorem 3.1, we
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Fig. 2 H1 and L2 errors of the director

Fig. 3 Evolution of director fields: T = 0 (top left), T = 0.6 (top right), T = 1.5 (bottom left), T = 2.74375
(bottom right)

have the second-order convergence rate for the errors ||bn − Bn
h ||H1 and ||1 − |Bn

h |2||L2 . To
verify the optimal convergence rates, we use several mesh pairs M = 50, 100 and 150 with
different time step τ = 9/M2 and 1/M2. The numerical results are displayed in Tables 1
and 2, from which we can see that the numerical convergence rates for orientation of molec-
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Fig. 4 Evolution of velocity fields: T = 0.1 (top left), T = 0.6 (top right), T = 1.5 (bottom left), T = 2.74375
(bottom right)

ular coincide with the ones predicted by theoretical analysis in Theorem 3.2, although the
numerical errors with τ = 9/M2 seem not very accurate.

To confirm the temporal error is of the first-order convergence rate, we take the reference
solution corresponding to τ = 3.125 × 10−6 and M = 120. For different time step τi+1 =
0.5τi for i = 1, 2, 4with τ1 = 10−3, the numerical errors of velocity, director and pressure are
displayed in Table 3. It can be observed that the semi-implicit scheme gives the convergence
rates of the order O(τ ) on the temporal errors which coincide with the ones predicted in
Lemma 4.1.

To confirm the stability of the semi-implicit schemewithout any restriction of the time step
τ , the reference solution is taken as the numerical solution corresponding to τ = 3.125×10−6

and M = 200. We solve the semi-implicit scheme (3.3) and (3.4) with three different time
step τ = 1.25 × 10−4, 1.00 × 10−4 and 6.25 × 10−5 on gradually refined meshes with
M = 20i, i = 2, . . . , 9. The H1 errors ||b(·, 0.5) − BJ

h ||H1 and L2 errors ||1 − |BJ
h |2||L2

are displayed in Fig. 2, from which we can see that for a fixed τ , when refining the mesh
gradually, the H1 errors converge to a small constant and the proposed semi-implicit scheme
(3.3) and (3.4) is stable and convergent without any restriction of the time step.

Fix M = 100 and τ = 1/M2. The evolutions of the director fields and the velocity fields
at different times are displayed in Figs. 3 and 4, where T = 2.74375 is the stoping time of
iteration. The stopping criterion used is to require ||Un

h −Un−1
h ||L2 + ||Bn

h − Bn−1
h ||L2 to be

less than 10−6.
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8 Conclusion

In this paper, we show optimal error estimates for an linearized semi-implicit Euler finite
element scheme for the approximation of the nematic liquid crystals flows. To the best of our
knowledge, no optimal error estimates have been given in previous works. More important,
the semi-implicit scheme proposed in this paper is linear. Optimal error estimates are proved
without any restriction of time step τ by using the error splitting technique. The numerical
results show the efficiency of the scheme and confirm our theoretical analysis. In addition, the
technique presented in this paper can be applied to analyze linearized semi-implicit Galerkin
FEM for 3D nematic liquid crystal flows.
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No. LY16A010017. Jian Su was supported by National Natural Science Foundation of China with Grant No.
91330117.

9 Appendix

To get the regularities (2.16)–(2.17) of ut t , pt and bt t , where (u, p,b) is the solution to the
problem (1.1)–(1.5) and satisfies (2.10)–(2.14), we need to show that ||∇ut (x, t)||L2 and
||b(x, t)||H1 remain bounded as t −→ 0. In this case, a non-local compatibility condition is
needed and can be derived as follows. First, we begin to show that the problem

{
�p0 = div (f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)), in �,

∂n p0 = (μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)) · n, on ∂�,
(9.1)

exists a unique p0 ∈ H1(�) ∩ M . In fact, from f0 ∈ H,u0 ∈ D(A) and b0 ∈ H3(�), it
can be shown that div (f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)) ∈ L2(�) and μ�u0 + f0 −
(u0 · ∇)u0 − λdiv (∇b0 � ∇b0) ∈ H(div ,�). Thus, one has (μ�u0 + f0 − (u0 · ∇)u0 −
λdiv (∇b0 � ∇b0)) · n|∂� ∈ H−1/2(�). Finally, we note that the following compatibility
condition is satisfied:

∫
�

div (f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0))dx

=
∫

∂�

(μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)) · nds

due to the fact div (�u0) = 0. From these observations, it follows that the problem (9.1)
exists a unique weak solution p0 ∈ H1(�)∩ M . Moreover, the solution p0 is the limit of the
pressure p(x, t) in H1(�)∩ M as t −→ 0. To make our point precise, we give the following
lemma:

Lemma 9.1 Let the initial values u0 ∈ D(A) and b0 ∈ H3(�) with |b0| = 1 in �. Suppose
that the solution (u, p, b) to the problem (1.1)–(1.5) satisfies ||Au(x, t)− Au0(x)||L2 −→ 0
and ||b(x, t) − b0(x)||H3 −→ 0 as t −→ 0. Then the pressure p(x, t) tends to the solution
p0 to the problem (9.1) in the sense that

||∇ p(x, t) − ∇ p0(x)||L2 −→ 0 as t −→ 0.

123



1004 J Sci Comput (2018) 74:979–1008

Proof For t > 0, it follows from (1.1) and div u = 0 that the pressure p ∈ H1(�) ∩ M is
the weak solution to the problem{

�p = div (f − (u · ∇)u − λdiv (∇b � ∇b)), in �,

∂n p = (μ�u + f − (u · ∇)u − λdiv (∇b � ∇b)) · n, on ∂�.
(9.2)

From ||Au(x, t) − Au0(x)||L2 −→ 0 and ||b(x, t) − b0(x)||H3 −→ 0 as t −→ 0, we can
see that

div (f − (u · ∇)u − λdiv (∇b � ∇b))

−→ div (f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0))

in L2(�), and

(μ�u + f − (u · ∇)u − λdiv (∇b � ∇b)) · n
−→ (μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)) · n

in H−1/2(∂�) as t −→ 0. These facts imply the desired result. �
Let p0 ∈ H1(�) ∩ M be defined by the problem (9.1). Then the non-local compatibility

conditions are concluded in the following lemma.

Lemma 9.2 Under the assumptions of Lemma 9.1, if ||∇ut (x, t)||L2 and ||b(x, t)||H1 remain
bounded as t −→ 0, then there must hold

∇ p0 = (μ�u0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0)), on ∂�, (9.3)

∇(γ�b0 + (u0 · ∇)b0 + γ |∇b0|2b0) · n = 0, on ∂�. (9.4)

Proof As t −→ 0, it follows from ||Au(x, t) − Au0(x)||L2 −→ 0 and ||b(x, t) −
b0(x)||H3 −→ 0 that

ut (x, t) −→ μ�u0 − ∇ p0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0) in L2(�), (9.5)

bt (x, t) −→ γ�b0 + (u0 · ∇)b0 + γ |∇b0|2b0 in H1(�). (9.6)

If ||∇ut (x, t)||L2 and ||b(x, t)||H1 remain bounded as t −→ 0, then the convergences (9.5)
and (9.6) hold weakly in H1(�) and H2(�), respectively. Thus,

ut (x, t)|∂� −→ (μ�u0 − ∇ p0 + f0 − (u0 · ∇)u0 − λdiv (∇b0 � ∇b0))|∂�,

∇bt · n|∂� −→ ∇(γ�b0 + (u0 · ∇)b0 + γ |∇b0|2b0) · n|∂�,

hold weakly in H1/2(∂�) as t −→ 0. The facts ut |∂� = 0 and ∇bt · n|∂� = 0 for any t > 0
imply the desired non-local compatibility conditions (9.3) and (9.4). �

Under these non-local compatibility conditions, we can estimate ut (0) and bt (0) inH1(�)

as follows.

Lemma 9.3 Let f0 ∈ H and (u0, π) ∈ D(A) × H1(�) ∩ M be determined by the Stokes
problem (2.15). Under the assumptions of Lemma 9.1, there holds that ut (0) and bt (0) belong
to H1(�).

Proof Taking t = 0 at (1.1) deduces to

ut (0) − μ�u0 + (u0 · ∇)u0 + ∇ p0 + λdiv (∇b0 � ∇b0) = f0. (9.7)
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Since (u0, π) ∈ D(A) × H1(�) ∩ M is determined by the Stokes problem (2.15), then (9.7)
can be rewritten as

ut (0) + (u0 · ∇)u0 + ∇(p0 − π) + λdiv (∇b0 � ∇b0) = 0.

By using the following formula:

div (∇b � ∇b) = �b · ∇b + 1

2
∇(|∇b|2),

and applying PH to the resulting equation, we obtain

ut (0) = −PH((u0 · ∇)u0 + λ�b0 · ∇b0).

It follows from (2.2) that

||ut (0)||H1 = ||PH((u0 · ∇)u0 + λ�b0 · ∇b0)||H1

≤ C ||(u0 · ∇)u0 + λ�b0 · ∇b0||H1 .

Note u0 ∈ D(A) and b0 ∈ H3(�). Then we have

||(u0 · ∇)u0 + λ�b0 · ∇b0||L2

≤ C ||u0||L∞||∇u0||L2 + C ||∇b0||L∞||�b0||L2

≤ C ||Au0||L2 ||∇u0||L2 + C ||b0||H3 ||�b0||L2 ≤ C,

and

||∇((u0 · ∇)u0 + λ�b0 · ∇b0)||L2

≤ ||∇u0||2L4 + ||u0||L∞||∇2u0||L2 + ||∇b0||L∞||∇�b0||L2 + ||∇2b0||L2 ||�b0||L2

≤ C(||Au0||2L2 + ||b0||2H3) ≤ C.

The above two estimates imply ut (0) ∈ H1(�). Taking t = 0 in (1.2) leads to

bt (0) = γ�b0 − (u0 · ∇)b0 + γ |∇b0|2b0.
By using a similar method, we can prove

||bt (0)||L2 ≤ γ ||�b0||L2 + ||(u0 · ∇)b0||L2 + γ |||∇b0|2b0||L2

≤ γ ||�b0||L2 + ||u0||L∞||∇b0||L2 + γ ||∇b0||2L4 ≤ C,

and

||∇bt (0)||L2 ≤ γ ||∇�b0||L2 + ||∇u0||L4 ||∇b0||L4 + ||u0||L∞||∇2b0||L2

+ γ ||∇b0||L∞||∇2b0||L2 ||b0||L∞ + γ ||∇b0||3L6 ≤ C,

which imply bt (0) ∈ H1(�). �
Based on the results derived in Lemma 9.3, we can show some regularities of ut t , pt and

bt t in next theorem.

Theorem 9.1 Under the assumptions of Theorem 2.1 and Lemma 9.3, suppose ft ∈
L∞(0, T ;V′

0) ∩ L2(0, T ;H), then we have

ut ∈ L∞(0, T 
;V) ∩ L2(0, T 
;D(A)), ∇ pt ∈ L2(0, T 
;L2(�)),

ut t ∈ L∞(0, T 
;V′
0) ∩ L2(0, T 
;H), bt t ∈ L2(0, T 
;L2(�)),

where T 
 is defined in Theorem 2.1.
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Proof Differentiating (1.1) with respect to t , we get

ut t − μ�ut + (ut · ∇)u + (u · ∇)ut + ∇ pt + 2λdiv (∇bt � ∇b) = ft . (9.8)

Multiplying (9.8) by ut t and integrating over �, we have

||ut t ||2L2 + μ

2

d

dt
||∇ut ||2L2

= (ft ,ut t ) − b(ut ,u,ut t ) − b(u,ut ,ut t ) − 2λ(div (∇bt � ∇b),ut t )

≤ (||ft ||L2 + ||∇u||L∞||ut ||L2 + ||u||L∞||∇ut ||L2

+ 2λ||∇b||L∞||bt ||H2 + 2λ||∇2b||L∞||∇bt ||L2)||ut t ||L2

≤ 1

2
||ut t ||2L2 + C(||ft ||2L2 + ||u||2W 2,4 ||ut ||2L2 + ||Au||2L2 ||∇ut ||2L2

+ ||b||2H3 ||bt ||2H2 + ||b||2H4 ||bt ||2H1),

where we use div ut t = 0. It follows from (2.10)–(2.13) that ut t ∈ L2(0, T 
;H) and ut ∈
L∞(0, T 
;V) if we integrate the above inequality with respect to t from 0 to t ≤ T 
 and note
that ut (0) ∈ H1(�). By using a similar method, multiplying (9.8) by Aut and integrating
over �, we have

1

2

d

dt
||∇ut ||2L2 + μ||Aut ||2L2

= (ft , Aut ) − b(ut ,u, Aut ) − b(u,ut , Aut ) − 2λ(div (∇bt � ∇b), Aut )

≤ μ

2
||Aut ||2L2 + C

μ
(||ft ||2L2 + ||u||2W 2,4 ||ut ||2L2 + ||Au||2L2 ||∇ut ||2L2

+ ||b||2H3 ||bt ||2H2 + ||b||2H4 ||bt ||2H1),

which implies ut ∈ L2(0, T 
;D(A)). Multiplying (9.8) by v ∈ V0 leads to

(ut t , v) + μ(∇ut ,∇v) + b(ut ,u, v) + b(u,ut , v) − 2λ(∇bt � ∇b,∇v) = (ft , v).

Then it is easy to show

||ut t ||V ′
0

≤ C(||∇ut ||L2 + ||∇u||L2 ||∇ut ||L2 + ||∇b||L∞||∇bt ||L2 + ||ft ||V ′
0
),

which implies ut t ∈ L∞(0, T 
;V′
0). To estimate ∇ pt , we use (9.8) to deduce that

||∇ pt ||L2 ≤ ||ut t ||L2 + μ||�ut ||L2 + ||(ut · ∇)u||L2 + ||(u · ∇)ut ||L2

+ 2λ||div (∇bt � ∇b)||L2 + ||ft ||L2

≤ C(||ut t ||L2 + ||Aut ||L2 + |ft ||L2 + ||∇u||L∞||ut ||L2 + ||u||L∞||∇ut ||L2

+ ||∇b||L∞||bt ||H2 + ||∇2b||L∞||∇bt ||L2).

From ut t ∈ L2(0, T 
;H) and ut ∈ L2(0, T 
;D(A)) shown in the previous paragraph, it is
easily seen that ∇ pt ∈ L2(0, T 
;L2(�)) after integrating the above inequality from 0 to
t ≤ T 
 and using (2.10)–(2.13).

Differentiating (1.2) with respect to t yields

bt t − γ�bt + (ut · ∇)b + (u · ∇)bt = γ |∇b|2bt + 2γ (∇b · ∇bt )b.
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It follows from (2.4)–(2.9) that

||bt t ||L2 ≤ γ ||�bt ||L2 + ||(ut · ∇)b||L2 + ||(u · ∇)bt ||L2

+ γ |||∇b|2bt ||L2 + 2γ ||(∇b · ∇bt )b||L2

≤ C(||bt ||H2 + ||ut ||L2 ||∇b||L∞ + ||u||L∞||∇bt ||L2

+ ||∇b||2L∞||bt ||L2 + ||∇b||L∞||∇bt ||L2)

≤ C(||bt ||H2 + ||ut ||L2 ||b||H3 + ||Au||L2 ||∇bt ||L2

+ ||b||2H3 ||bt ||L2 + ||b||H3 ||∇bt ||L2),

which completes the proof of bt t ∈ L2(0, T 
;L2(�)) by using (2.10)–(2.13). �
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