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Abstract In this paper, an arbitrary Lagrangian–Eulerian local discontinuous Galerkin
(ALE-LDG) method for Hamilton–Jacobi equations will be developed, analyzed and numer-
ically tested. This method is based on the time-dependent approximation space defined on the
moving mesh. A priori error estimates will be stated with respect to the L∞ (

0, T ;L2 (�)
)
-

norm. In particular, the optimal (k + 1) convergence in one dimension and the suboptimal
(k + 1

2 ) convergence in two dimensions will be proven for the semi-discrete method, when
a local Lax–Friedrichs flux and piecewise polynomials of degree k on the reference cell
are used. Furthermore, the validity of the geometric conservation law will be proven for
the fully-discrete method. Also, the link between the piecewise constant ALE-LDG method
and the monotone scheme, which converges to the unique viscosity solution, will be shown.
The capability of the method will be demonstrated by a variety of one and two dimensional
numerical examples with convex and noneconvex Hamiltonian.
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1 Introduction

This paper deals with the development and analysis of amovingmesh discontinuousGalerkin
(DG) method to solve time-dependent Hamilton–Jacobi equations

∂t u + H (∇u, x) = 0, in � × (0, T ) , x ∈ �, (1.1)

augmented with suitable initial data u(x, 0) = u0(x) and boundary conditions. The domain
� ∈ R

d is bounded. The relevant solution for the problem (1.1) is the viscosity solution
introduced by Crandall and Lions [9]. In the same paper it was proven that there exists a
unique bounded and continuous viscosity solution for the problem (1.1). Nevertheless, it
should be noted that the derivatives of the unique viscosity solution can be discontinuous,
regardless of the smoothness of the initial condition.

The equations of motion in many physical models are related to the Hamilton–Jacobi
equations. For instance Hamilton–Jacobi equations with viscosity terms occur in front prop-
agation problems, which are applied in models for crystal growth or flame propagation (cf.
Sethian [27]). In some situations, it is advantageous to solve numerically motion related
equations by an arbitrary Lagrangian–Eulerian (ALE) approach. Especially, in the context of
moving boundaries problems with incompressible flows the ALE approach has some advan-
tages (cf. Calderer and Masud [4]). The ALE approach was rigorously described by Donea
et al. [11]. It allows to move the mesh along specific mesh generating points like in the
Lagrangian approach or to fix the mesh like in the Eulerian approach. The implementation
and mathematical description of the ALE approach be ensured by a mapping which connects
the physical domain with a suitable reference configuration. Themapping provides a descrip-
tion of the grid velocity field. It should be noted that the mapping may produce a geometric
error, when the numerical method was chosen unsuitable. To overcome this issue, the ALE
method should satisfy the geometric conservation law (GCL). Guillard and Farhat analyzed
in [13] the significance of the GCL and the destabilizing effect of the geometric error.

Otherwise, the Runge–Kutta (RK) DG approach enables the development of high order
methods with certain desirable computational properties like parallelization capability or the
ability to handle a complex mesh topology (cf. Cockburn and Shu [8]). Nevertheless, the
development of discontinuous Galerkin methods for solving the Hamilton–Jacobi equations
is delicate, since the Hamilton–Jacobi equations in general are not in the divergence form. In
order to overcome this issue the close relation between the Hamilton–Jacobi equations (1.1)
and conservation laws is often used to develop high order numerical methods for solving
the problem (1.1). The essentially non-oscillatory (ENO) and weighted essentially non-
oscillatory (WENO) schemes by Jiang, Peng, Osher and Shu [14,25] or the DG method
by Hu, Lepsky, Li and Shu [15,16,18,19] are examples of high order methods which are
adapted from numerical schemes for conservation laws. The DG method of Hu et al. was
extended to a moving mesh method by Mackenzie and Nicola [23]. However, the system of
conservation laws which arises from the problem (1.1) is in general weakly hyperbolic. This
structure could force the convergence to a physically not relevant solution. Therefore, from
this point of view, a method for directly solving the Hamilton–Jacobi equations is desirable.

In the following a few DG methods for solving directly the Hamilton–Jacobi equations
are mentioned. Cheng and Shu developed in [5] a DG method. The method is stabilized by
a certain numerical flux, which is motivated by the discretization and stabilization of a DG
method for conservation laws with a source term. However, the numerical flux is not enough
to ensure the convergence to the viscosity solution. Thus, an additional entropy correction
procedure is adopted in the method. Cheng and Shu’s approach was combined with the
central DG approach for conservation laws to develop a central DG method for solving the
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Hamilton–Jacobi equations by Li and Yakovlev [20]. A limiter has been developed to ensure
that the method can handle problems with a nonconvex Hamiltonian. Another approach has
been introduced by Yan and Osher [29]. They replaced the Hamiltonian by a numerical
flux which is evaluated in the interior of each cell. The arguments of the numerical flux
function are calculated by upwind schemes. The solutions of these upwind schemes are
approximating the partial derivatives of the numerical solution. This approach is similar to
the local Discontinuous Galerkin approach developed by Cockburn and Shu [7] for solving
systems of convection–diffusion equations, since the PDE is locally dissected. For this reason,
Yan and Osher’s method is called local DG (LDG) for solving directly the Hamilton–Jacobi
equations. All these DG methods were tested by numerical experiments. These experiments
demonstrate the stability and the optimal accuracy of the methods. In addition, the stability
and a suboptimal error estimate with respect to the L2-norm were proven for the central DG
method in [20] when a linear Hamiltonian is investigated. Likewise, for the semi-discrete
formulations of Cheng and Shu’s DG method as well as Yan and Osher’s LDG method the
optimal error estimate in theL2-normwas proven byXiong et al. [28]. “In this context the term
optimal error estimate” has to be understood with respect to the approximation properties of
the test function space.” There are also DGmethods for solving directly the Hamilton–Jacobi
equations in the context of front propagation problems in the literature. For instance, Barth
and Sethian developed in [1] a Petrov–Galerkin DG method on triangular meshes with an
adaptive mesh refinement technique and Bokanowski, Cheng and Shu developed an explicit
RK-DG method in [3] for these kind of problems.

The aim of this paper is to combine the ALE and the DG approach to develop an ALE–
DG method for directly solving the Hamilton–Jacobi equations. It should be mentioned that
there are already ALE–DG methods with different strategies to describe the ALE kinematic
in the literature, for example, in the context of problems with compressible viscous flows,
these kind of methods were developed by Lomtev et al. [22], Nguyen [24] or Persson et
al. [26]. In [17] Klingenberg, Schnücke and Xia developed an ALE–DG method for one
dimensional conservation laws. In the same paper, the ALE kinematic is described by local
affine linear mappings which ensure the satisfaction of the GCL for any time discretization
method higher or equal to first order. In the present paper, in the one dimensional case, the
ALE approach, developed in [17], is combined with Yan and Osher’s LDG approach [29]
and a newALEmethod for directly solving the Hamilton–Jacobi equations is developed. The
new ALE method is called ALE-LDG method. The ALE-LDG method has a local structure
like the DGmethods for static meshes andwewill prove that the method satisfies the GCL for
any time discretization method higher or equal to first order. A two dimensional extension of
the method is designed for triangular meshes, since each triangle element can be mapped by
a local affine linear mapping to a time-independent reference triangle element. This allows
the same description of the ALE kinematic as in the one dimensional case. In particular, it
follows that the GCL is satisfied for any time discretization method higher or equal to second
order. Furthermore, a priori error estimates with respect to the L∞ (

0, T ;L2 (�)
)
-norm will

be proven for the one and two dimensional semi-discrete methods. Also it will be shown that
the first order piecewise constant ALE-LDGmethod is a monotone scheme. The last point is
important, since in [10] Crandall and Lions proved that monotone schemes for the problem
(1.1) converge to the unique viscosity solution. In numerical experiments it will be observed
that our one and two dimensional ALE-LDGmethods are stable and optimally accurate with
respect to the approximation properties of the test function spaces for the methods.

This paper is organized as follows: In Sect. 2, the ALE kinematic, the semi-discrete
one and two dimensional ALE-LDG methods and some auxiliary lemmas are presented. In
particular, the GCL is discussed and it is shown that the fully-discrete piecewise constant
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ALE-LDG method is a monotone scheme. Afterward, in Sect. 3, an optimal a priori error
estimates for the semi-discrete one dimensional ALE-LDG method and an suboptimal a
priori error estimates for the semi-discrete two dimensional ALE-LDG method are proven
with respect to the L∞ (

0, T ;L2 (�)
)
-norm. Section 4 contains numerical results for a variety

of problems to demonstrate the accuracy and capabilities of the ALE-LDGmethods. Finally,
some concluding remarks are given in Sect. 5.

1.1 Constants and Notation

In the present paper, vectors, vector valued functions andmatrices are denoted by bold letters.
Scalar quantities are denoted by regular letters. The set K (t) denotes a time-dependent
interval in one dimension and a time-dependent simplex cell with the edges eν

K (t), ν =
1, 2, 3, in two dimensions. Volume integrals with respect to K (t) and surface integrals with
respect to the edges eν

K (t), ν = 1, 2, 3, are denoted by the bracket notation. Hence, for all

v,w ∈ L2 (K (t)) ∩ L2 (∂K (t)) and ν = 1, 2, 3 the notations (v,w)K (t) := ∫
K (t) vw dx,

〈v,w〉eν
K (t)

:= ∫
eν
K (t)

vw d� and 〈v,w〉∂K (t) := ∑3
ν=1 〈v,w〉eν

K (t)
are applied. Furthermore, to

avoid confusion with different constants,C denotes a positive constant, which is independent
of the mesh size and the numerical solution for the problem (1.1). Note, that the constant
may depend on the exact solution of the problem (1.1) and may have a different value in each
occurrence.

2 The ALE-LDG Method

In this section, we introduce the ALE-LDGmethod for directly solving the Hamilton–Jacobi
equations, state some auxiliary lemmaswhichwill be used to prove the a priori error estimates
in the upcoming sections, discuss the GCL for the method and show that the forward Euler
piecewise constant ALE-LDG method is a monotone scheme which converges to the unique
viscosity solution according to Crandall and Lions [10].

2.1 Preliminaries

We assume that at any time level tn , n = 0, . . . , L , regular families of triangular meshes Tn
with the same mesh topology are given. We say that the triangular mesh Tn at time level tn
and the triangular mesh Tn+1 at time level tn+1 have the same mesh topology, if they have the
same numbers of vertices and triangles and the same connectivity. Henceforth for each time
level tn the vectors vn1 , vn2 , vn3 denote the vertices of the cell K

n ∈ Tn . We connect the vertices
of two arbitrary cells Kn ∈ Tn and Kn+1 ∈ Tn+1 for all t ∈ [tn, tn+1

]
and � = 1, 2, 3 by

time-dependent straight lines

v� (t) := vn� + ωKn ,� (t − tn) , ωKn ,� := 1

�t

(
vn+1
� − vn�

)
. (2.1)

In Fig. 1 the connection of two cells at different time levels is illustrated. The straight lines
(2.1) provide for any t ∈ [tn, tn+1

]
time-dependent cells

K (t) := int (conv {v1 (t) , v2 (t) , v3 (t)}) , ∂K (t) :=
3⋃

ν=1

eν
K (t), (2.2)
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Fig. 1 The vertices of a triangle
at the current time level move to
the vertices of a triangle at the
next time level

x

t

y

where eν
K (t), ν = 1, 2, 3, are the edges of the time-dependent cell K (t). Note that in this

context int (·) and conv (·) denote the interior and the convex hull of a set. The family of
all sets containing the cells (2.2) is denoted by T(t) for any t ∈ [

tn, tn+1
]
. Furthermore,

for any cell K (t) ∈ T(t), the diameter is denoted by hK (t) and the radius of the largest
ball, contained in K (t), is denoted by ρK (t). The meshsize of the tessellations is given by
h (t) := max

K (t)∈T(t)

hK (t). In order to state a priori error estimates for the ALE-LDG method,

we define a global length
h := max

t∈[0,T ]h (t) (2.3)

and assume that there exists a constant κ , independent of h, such that for all t ∈ [0, T ]

h ≤ κh (t) . (2.4)

Additionally, we assume that T(t) is a regular triangulation of the domain �, which satisfies
the properties:

(A1) For all t ∈ [0, T ] holds: The family T(t) covers exactly �, such that � =⋃
Kn∈T(t)

K (t).
(A2) There are constants σ > 0 and τ > 0, independent of the mesh parameter, such that

for all t ∈ [0, T ] holds:

hK (t)

ρK (t)
≤ σ and

h (t)

hK (t)
≤ τ, ∀K (t) ∈ T(t).

In addition, we define for any cell K (t) ∈ T(t) the matrix

AK (t) := (v2 (t) − v1 (t) , v3 (t) − v1 (t)) , JK (t) := det
(
AK (t)

)
(2.5)

and assume that JK (t) > 0. It should be noted that the boundary faces of the mesh are not
changing in time for the compactly supported problem and could move with the periodic
speed for the periodic boundary problem.

Next, we define for any cell K (t) ∈ T(t) the following time-dependent affine linear
mapping

χK (t) : K → K (t), ξ �→ χK (t) (ξ , t) := AK (t)ξ + v1 (t) , (2.6)

where K is the reference cell given by.

K :=
{
ξ := (ξ1, ξ2)

T ∈ R
2 : ξ1, ξ2 ≥ 0 and ξ1 + ξ2 ≤ 1

}
.
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The mapping provides the local representation of the grid velocity field for the ALE-LDG
method, since the grid velocity field is in a point x = χK (t) (ξ , t) defined by

ω (x, t) := ∂t
(
χK (t) (ξ , t)

) = WK (t) (x − v1 (t)) + ωKn ,1, (2.7)

where WK (t) := ( d
dt AK (t)

) (
AK (t)

)−1. It should be noted that the Eq. (2.7) yields for all
x ∈ K (t)

∇ · ω (x, t) = tr
[
WK (t)

]
, (2.8)

where tr
[
WK (t)

]
denotes the trace of the matrix WK (t). Moreover, the mapping supplies the

following finite element approximation space

Vh,d(t) :=
{
v ∈ L2 (�) : v

∣
∣∗
K (t) ∈ Pk (K) ∀K (t) ∈ T(t)

}
, (2.9)

where the index d ∈ {1, 2} denotes the spatial dimension, Pk (K) denotes the space of
polynomials in K of degree at most k and

v|∗K (t) (ξ) := v
(
χK (t) (ξ , t)

)
, ∀ξ ∈ K. (2.10)

Henceforth, we omit the label |K (t) in (2.10), if it is clear which cell K (t) ∈ T(t) is under
consideration. The spaceVh,d(t) is finite dimensional, since Pk (K) has the dimension (k+d)!

d!k! .
In general the functions from the space Vh,d(t) are discontinuous along the interface of two
adjacent cells.Certainly, the functions could exist twodifferent traces on any interior interface,
since the functions are polynomials in the interior of the cells and the cells have Lipschitz
boundaries. Therefore, we define for a function v ∈ Vh,d(t), an arbitrary cell K (t) ∈ T(t)

and all ν = 1, 2, 3 the following limits

vintK (t) (x) := lim
ε→0+ v

(
x − εnν

K (t)

)
, vextK (t) (x) := lim

ε→0+ v
(

x + εnν
K (t)

)
, ∀x ∈ eν

K (t),

where the vector nν
K (t) is the outward normal of the cell K (t) with respect to the edge eν

K (t).
Accordingly, the cell average and jump of v along the edge eν

K (t) are defined by

{{v}} := 1

2

(
vintK (t) + vextK (t)

)
, [[v]] := vextK (t) − vintK (t) .

In the following, we present some auxiliary lemmas which are related to the space (2.9).
This requires the introduction of a broken L2

(
∂T(t)

)
-norm given by

‖v‖L2(∂T(t)) :=
⎛

⎝
∑

K (t)∈T(t)

3∑

ν=1

‖v‖2
L2
(
eν
K (t)

)

⎞

⎠

1
2

, (2.11)

where v ∈ L2 (∂K (t)) for all K (t) ∈ T(t). This notation allows to state the following lemma.
The proof of the lemma ensues by a result from approximation theory (c.f. Ciarlet [6, pp. 140–
141, Theorem 3.2.6.]). Hence, it is skipped in this paper.

Lemma 2.1 Suppose d ∈ {1, 2}. Then, for all v ∈ Vh,d(t), there exists a constant C, inde-
pendent of v and h, such that

h
1
2 ‖v‖L(∂T(t)) + h ‖∇v‖[L2(�)]d + h

d
2 ‖v‖L∞(�) ≤ C ‖v‖L2(�) . (2.12)

Furthermore, the test functions provide the following ALE transport equation.

123



912 J Sci Comput (2017) 73:906–942

Lemma 2.2 Let d ∈ {1, 2} and u : � × [0, T ] → R be a sufficiently smooth function in any
cell K (t) ∈ T(t). Then for all v ∈ Vh,d(t) holds the transport equation

d

dt
(u, v)K (t) = (∂t u, v)K (t) + (∇ · (ωu) , v)K (t) . (2.13)

Proof In the following, the functions u∗ and v∗ are defined by (2.10). It is (u∗, ∂tv∗)K = 0,
for all functions v ∈ Vh,d(t), since the test functions are time-independent polynomials on
the reference cell. Furthermore, the chain rule formula supplies ∂t u∗ = ∂t u+ω ·∇u. Hence,
the integration by substitution formula provides for all functions v ∈ Vh,d(t)

d

dt
(u, v)K (t) = (

∂t u
∗, v∗ JK (t)

)
K +

(
u∗ d

dt
JK (t), v

∗
)

K

= (
∂t u, v∗ JK (t)

)
K + (ω · ∇u, v∗ JK (t)

)
K +

(
u∗ d

dt
JK (t), v

∗
)

K
. (2.14)

Next, by Jacobi’s formula (cf. Bellman [2]) and (2.8) follows

d

dt
JK (t) = tr

[(
d

dt
AK (t)

)
adj
(
AK (t)

)
]

= (∇ · ω) JK (t), (2.15)

where adj
(
AK (t)

)
denotes the adjoint matrix of AK (t). Finally, we obtain the transport Eq.

(2.13) by (2.14), (2.15) and the integration by substitution formula. ��
It should be noted that the equality (2.14) does not hold, if the test function v is a polynomial
with time-dependent coefficients on the reference cell.

Next, for d ∈ {1, 2} and a cell K (t) ∈ T(t), we define the L2-projection Ph (u) of a
function u ∈ L2 (�) into the test function space Vh,d (t) by

(ψh, v)K (t) = 0, ∀v ∈ Vh,d (t) , ψh := u − Ph (u) . (2.16)

The L2-projection satisfies the following interpolation inequalities. A proof of these inequal-
ities can be found in Ciarlet [6, pp. 124–125, Theorem 3.1.6.]).

Lemma 2.3 Let d ∈ {1, 2} and u ∈ Hk+1 (�). Then there exists a constant C, such that

h
1
2 ‖ψh‖L2(∂T(t)) + h

d
2 ‖ψh‖L∞(�) + h ‖∇ψh‖[L2(�)]d + ‖ψh‖L2(�) ≤ Chk+1, (2.17)

where the constant C depends on u, but it is independent of h.

2.2 Notes About the One Dimensional Setup

In the one dimensional case,we assume that at any time level tn , n = 1, . . . , L , the distribution

of the mesh generating points

{
xn
j− 1

2

}N

j=1
is given. We connect these points for all j =

1, . . . , N by time-dependent straight lines

x j− 1
2
(t) := xn

j− 1
2

+ ωn
j− 1

2
(t − tn) , ωn

j− 1
2

:=
xn+1
j− 1

2
− xn

j− 1
2

�t
. (2.18)

Note that for any time point t the points x 1
2
(t) and xN+ 1

2
(t) are not changing in time for the

compactly supported problem and could move with the same speed d
dt x 1

2
(t) = d

dt xN+ 1
2
(t)
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for the periodic boundary problem. The straight lines (2.18) provide for any t ∈ [tn, tn+1
]

and all j = 1, . . . , N the cells

K j (t) :=
(
x j− 1

2
(t) , x j+ 1

2
(t)
)

, h j (t) := x j+ 1
2
(t) − x j− 1

2
(t), h (t) := max

1≤ j≤N
h j (t) .

(2.19)
Like in the two dimensional case, a time-dependent affine linear mapping to a reference cell
can be defined for any cell (2.19). The mapping allows to characterize the local grid velocity
field and to define a finite element space in the samemanner as in (2.7) and (2.9). In particular,
the grid velocity is for all t ∈ [tn, tn+1

]
and x ∈ K j (t) given by

ω (x, t) =
(

ωn
j+ 1

2
− ωn

j− 1
2

)( x − x j− 1
2
(t)

h j (t)

)

+ ωn
j− 1

2
. (2.20)

Moreover, Lemmas 2.1 and 2.2 hold also for the one dimensional test function space Vh,1 (t).
Nevertheless, for a function v ∈ Vh,1(t), the left as well as right limit, the cell average and
the jump in an interface point are denoted by

v±
j− 1

2
:= lim

ε→0+ v
(
x j− 1

2
(t) ± ε

)
,

{{v}} j− 1
2

:= 1

2

(
v+
j− 1

2
+ v−

j− 1
2

)
and [[v]] j− 1

2
:= v+

j− 1
2

− v−
j− 1

2
.

In addition, in one dimension, surface integrals reduce to pointwise evaluations. Thus, the
broken L2

(
∂T(t)

)
-norm is defined by

‖v‖L2(∂T(t)) :=
⎛

⎝
N∑

j=1

∣∣∣∣v
+
j− 1

2

∣∣∣∣

2

+
∣∣∣∣v

−
j− 1

2

∣∣∣∣

2
⎞

⎠

1
2

.

In order to prove that the a priori error in the L∞ (
0, T ;L2 (�)

)
-norm for the one dimen-

sional ALE-LDG method behaves as O
(
hk+1

)
, we apply for any cell K j (t), j = 1, . . . , N ,

the Gauss–Radau projections besides the L2-projection. For k ≥ 1, we define the Gauss–
Radau projections P±

h (u) of a function u ∈ L2 (�) into Vh,1(t) by
(
P±
h (u) , v

)
K j (t)

= (u, v)K j (t) , ∀v ∈ Vh,1(t) with v|∗K j (t) ∈ P
k−1( [0, 1]

)
, (2.21a)

and

P+
h (u)

(
x+
j− 1

2
(t)

)
:= u

(
x+
j− 1

2
(t)

)
, P−

h (u)

(
x−
j+ 1

2
(t)

)
:= u

(
x−
j+ 1

2
(t)

)
, (2.21b)

where the function v|∗K j (t)
is defined by (2.10). Next, we combine the L2-projection with the

Gauss–Radau projections and define the Q-projection Qh (u) of a function u ∈ L2 (�) into
the test function space Vh,1(t) by

Qh (u) :=

⎧
⎪⎨

⎪⎩

Ph (u) , if ∂pH (∂xu, x) − ω (x, t) changes the sign in K j (t) ,

P−
h (u) , if ∂pH (∂xu, x) − ω (x, t) > 0 in K j (t) ,

P+
h (u) , if ∂pH (∂xu, x) − ω (x, t) < 0 in K j (t) ,

(2.22)

where the function H(∂xu, x) is the Hamiltonian in (1.1). It should be noted that Lemma 2.3
holds for the Q-projection, too. Moreover, in order to evaluate the time derivative of the
Q-projection, we apply the following lemma, which was proven by Klingenberg et al. [17].
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Lemma 2.4 Let u : � × [0, T ] → R be a sufficiently smooth function. Then holds

∂t
(
Qh
(
u
))+ ω∂x

(
Qh
(
u
)) = Qh (∂t u) + Qh (ω∂xu) . (2.23)

2.3 The One-Dimensional Semi-discrete Method

In the following, we derive the one-dimensional semi-discrete ALE-LDG method for an
arbitrary t ∈ [

tn, tn+1
]
a cell K j (t). We would like to approximate the solution u of the

problem (1.1) by a function

uh (x, t) =
k∑

�=0

u j
� (t) φ

j
� (x, t) , for all t ∈ [tn, tn+1

]
and x ∈ K j (t) , (2.24)

where
{
φ
j
0 (x, t) , . . . , φ

j
k (x, t)

}
is a basis of the space Vh,1 (t) in the cell K j (t). The coeffi-

cients u j
0 (t) , . . . , u j

k (t) in (2.24) will be the unknowns of the method. In order to determine
these coefficients, we plug (2.24) in the PDE (1.1), multiply the equation by a test function
v ∈ Vh,1(t) and apply the transport Eq. (2.13) as well as the integration by parts formula.
This results in the equation

0 = d

dt
(uh, v)K j (t) + (ωuh, ∂xv)K j (t) + (H (∂xuh, x) , v)K j (t)

− ωn
j+ 1

2
u−
h, j+ 1

2
v−
j+ 1

2
+ ωn

j− 1
2
u+
h, j− 1

2
v+
j− 1

2
. (2.25)

The function uh is in general discontinuous along the interface of two adjacent cells and thus
∂xuh is merely defined in the interior of the cells. Therefore, we replace the integral with the
Hamiltonian and the terms in cell boundary points by

(
Ĝ (ω, p1, p2, x) , v

)
K j (t)

− ωn
j+ 1

2
{{uh}} j+ 1

2
v−
j+ 1

2
+ ωn

j− 1
2
{{uh}} j− 1

2
v+
j− 1

2
,

where Ĝ (ω, p1, p2, x) is a local Lax–Friedrichs flux given by

Ĝ (ω, p1, p2, x) := H

(
p1 + p2

2
, x

)
− λ j

2
(p2 − p1) , (2.26)

λ j := max
{∣∣∂pH (p, x) − ω (x, t)

∣∣ : p ∈ Dj and x ∈ K j (t)
}

(2.27)

with Dj := [min (p1, p2) ,max (p1, p2)]|K j (t). The variables p1 and p2 in (2.26) are used
to approximate ∂xuh . We obtain these variables by solving two auxiliary equations. Finally,
the semi-discrete method can be written as:

Problem (The 1D semi-discrete ALE-LDG method) Find functions uh, p1, p2 ∈ Vh,1(t),
such that for all v, v1, v2 ∈ Vh,1(t) and j = 1, . . . , N holds

0 = d

dt
(uh, v)K j (t) + (ωuh, ∂xv)K j (t) + (Ĝ (ω, p1, p2, x) , v

)
K j (t)

− ωn
j+ 1

2
{{uh}} j+ 1

2
v−
j+ 1

2
+ ωn

j− 1
2
{{uh}} j− 1

2
v+
j− 1

2
, (2.28a)

0 = (p1, v1)K j (t) + (uh, ∂xv1)K j (t) − u−
h, j+ 1

2
v−
1, j+ 1

2
+ u−

h, j− 1
2
v+
1, j− 1

2
, (2.28b)

0 = (p2, v2)K j (t) + (uh, ∂xv2)K j (t) − u+
h, j+ 1

2
v−
2, j+ 1

2
+ u+

h, j− 1
2
v+
2, j− 1

2
. (2.28c)
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Note that the functionsuh , p1 and p2 are time-dependent, since in each cell K j (t) theALE-
LDG solution uh is given by (2.24) and the functions p1, p2 approximate ∂xuh . Moreover, it
should be noted that the Eq. (2.28a) is for all v ∈ Vh,1(t) and all j = 1, . . . , N equivalent to

0 = (∂t uh, v)K j (t) + (∂x (ωuhv) , 1)K j (t) + (Ĝ (ω, p1, p2, x) , v
)
K j (t)

− ωn
j+ 1

2
{{uh}} j+ 1

2
v−
j+ 1

2
+ ωn

j− 1
2
{{uh}} j− 1

2
v+
j− 1

2
. (2.29)

The equivalence follows from the transport Eq. (2.13).

2.4 The Two-Dimensional Semi-discrete Method

In this section, we derive the two-dimensional semi-discrete ALE-LDG method for the time
interval

[
tn, tn+1

]
and the cell K (t) ∈ T(t). The description of the two dimensional semi-

discrete ALE-LDGmethod follows similar to the description of the one dimensional method.
However, the two dimensional ALE-LDG method is a system of five equations, since a two
dimensional Hamiltonian depends onmore variables than its one dimensional analogue. First
of all, in each cell K (t) ∈ T(t), we approximate the solution of the problem (1.1) by the two
dimensional analogue of the function (2.24). In order to determine the unknowns, we proceed
as in the one dimensional case. We plug the approximation in the PDE (1.1), multiply the
equation by a test function v ∈ Vh,2(t) and apply the transport Eq. (2.13) as well as the
integration by parts formula. Then we obtain a two dimensional analogue of the Eq. (2.25)
and replace the integral with the Hamiltonian as well as the terms in the surface integrals
by (

Ĝ (ω, p1, p2, q1, q2, x) , v
)
K (t) − 〈ω{{uh}}, vintK (t)nK (t)

〉
∂K (t) ,

where nK (t) = (
nK (t),x , nK (t),y

)T denotes the outward unit normal along the cell bound-
ary ∂K (t) and the two dimensional local Lax–Friedrichs flux is for all x ∈ K (t) given
by

Ĝ (ω, p1, p2, q1, q2, x) := H

(
p1 + p2

2
,
q1 + q2

2
, x
)

− λK (t)

2
(p2 − p1) − μK (t)

2
(q2 − q1) , (2.30)

where

λK (t) := max
{∣∣∂pH (p, q, x) − ω1(x, t)

∣∣ : p ∈ DK (t), q ∈ EK (t), x ∈ K (t)
}

(2.31)

and

μK (t) := max
{∣∣∂q H (p, q, x) − ω2 (x, t)

∣∣ : p ∈ DK (t), q ∈ EK (t), x ∈ K (t)
}

(2.32)

with

DK (t) := [min (p1, p2) ,max (p1, p2)]
∣∣
K (t), EK (t) := [min (q1, q2) ,max (q1, q2)]

∣∣
K (t).

The variables p1 as well as p2 in (2.30) are used to approximate ∂xuh and the variables q1 as
well as q2 are used to approximate ∂yuh . We obtain these variables by solving four additional
equations. Finally, the semi-discrete ALE-LDG method in two dimensions can be written
as:

123



916 J Sci Comput (2017) 73:906–942

Problem (The 2D semi-discrete ALE-LDG method) Seek functions uh, p1, p2, q1, q2 ∈
Vh,2(t), such that for all v, v1, v2, w1, w2 ∈ Vh,2(t) and all cells K (t) ∈ T(t) holds

0 = d

dt
(uh, v)K (t) + (ωuh,∇v)K (t) + (Ĝ (ω, p1, p2, q1, q2, x) , v

)
K (t)

− 〈
ω{{uh}}, vintK (t)nK (t)

〉
∂K (t) , (2.33a)

0 = (p1, v1)K (t) + (uh, ∂xv1)K (t) −
〈
u−,x
h , v

intK (t)
1 nK (t),x

〉

∂K (t)
, (2.33b)

0 = (p2, v2)K (t) + (uh, ∂xv2)K (t) −
〈
u+,x
h , v

intK (t)
2 nK (t),x

〉

∂K (t)
, (2.33c)

0 = (q1, w1)K (t) + (uh, ∂yw1
)
K (t) −

〈
u−,y
h , w

intK (t)
1 nK (t),y

〉

∂K (t)
, (2.33d)

0 = (q2, w2)K (t) + (uh, ∂yw2
)
K (t) −

〈
u+,y
h , w

intK (t)
2 nK (t),y

〉

∂K (t)
. (2.33e)

The functions u+,i
h and u−,i

h , i = x, y, are given by

u+,i
h :=

{
u
extK (t)
h , if nK (t),i > 0,

u
intK (t)
h , else,

and u−,i
h :=

{
u
intK (t)
h , if nK (t),i > 0,

u
extK (t)
h , else,

where for i = x, y the vector nK (t),i denotes the i-component of the outward unit normal
nK (t)

Note that the functions uh , p1, p2, q1 and q2 are time-dependent, since in each cell K (t)
theALE-LDGsolution uh is given by the two dimensional analogue of the function (2.24), the
functions p1, p2 approximate ∂xuh and the functions q1, q2 approximate ∂yuh . Furthermore,
note that by the transport Eq. (2.13) for all v ∈ Vh,2(t) and all cells K (t) ∈ T(t) follows that
the Eq. (2.33a) is equivalent to

0 = (∂t uh, v)K (t) + (∇ · (ωuhv) , 1)K (t) + (Ĝ (ω, p1, p2, q1, q2, x) , v
)
K (t)

− 〈
ω{{uh}}, vintK (t)nK (t)

〉
∂K (t) . (2.34)

Finally, some important connections to other numerical methods should be mentioned.

Remark 2.1 (i) The ALE-LDG methods (2.28) and (2.33) coincide with Yan and Osher’s
LDG methods in [29], when a static mesh is used.

(ii) The one dimensional ALE-LDG method (2.28) is equivalent to the ALE–DG method
for conservation laws in [17], when a linear Hamiltonian with constant coefficients is
investigated.

(iii) When we plug the function (2.24) in the PDE (1.1), multiply the equation by a test
function v ∈ Vh,1(t) and apply the transport Eq. (2.13), it follows

0 = d

dt
(uh, v)K j (t) + (ωuh, ∂xv)K j (t) + (H (∂xuh, x) − ω∂xuh, v)K j (t) .

Next, we replace the function H (p, x)−ω∂x p by the numerical flux F̂ = Ĝ−ω
p1+p2

2 .
Note that the numerical flux F̂ is consistent with H (p, x) − ω∂x p. Hence, the one
dimensional ALE-LDG method (2.28) can also be applied with the equation

0 = d

dt
(uh, v)K j (t) − ((∂xω) uh, v)K j (t) + (F̂ (ω, p1, p2, x) , v

)
K j (t)

, (2.35)
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instead of (2.28a). TheALEmethodwith (2.35) satisfies the same a priori error estimates
as the ALE-LDG method (2.28). This can be proven by the same analysis as in Sect. 3.
Numerically, the ALE method with (2.35) produces similar results as the ALE-LDG
method (2.28). Nevertheless, to short this paper a discussion of the ALE method with
(2.35) will be skipped. Similarly, a two dimensional analogue of the Eq. (2.35) can be
used to replace the Eq. (2.33a) in the two dimensional ALE-LDG method (2.33).

2.5 The GCL for the ALE-LDG Method

The ALE mapping (2.6) can be the source of geometric errors in the moving mesh method.
In order to control these geometric errors, the method should satisfy the GCL. The term GCL
was introduced by Lombard and Thomas [21]. A moving mesh method respects the GCL,
if it provides for constant initial data the right solution at the upcoming time level. In the
context of conservation laws is the GCL satisfied, if the method preserves constant states.
In other words, a moving mesh method for conservation laws satisfies the GCL, if for all
n = 0, . . . , L − 1 holds:

uh(x, tn) = 1, for all x ∈ � ⇒ uh(x, tn+1) = 1, for all x ∈ �.

If the initial value problem (1.1) is investigated with the special Hamiltonian H = H (p, q),
p, q ∈ R, and constant initial data u0 ∈ R, the unique viscous solution will be the function
u = u0 − H (0) t . This observation motivates the following definition.

Definition 2.1 A moving mesh method for the Hamilton–Jacobi equations (1.1) with the
Hamiltonian H = H (p, q) satisfies the GCL, if for all n = 0, . . . , L − 1 holds:

uh(x, tn) = 1, for all x ∈ � ⇒ uh(x, tn+1) = 1 − H (0) t, for all x ∈ �.

In the following, we analyze the ALE-LDGmethod with respect to the GCL. Therefore, in
order to find a criteria for the accomplishment of the GCL, we assume that uh = 1−H (0) t is
the approximate solution given by the ALE-LDGmethod. Then by the Eqs. (2.33b), (2.33c),
(2.33d) and (2.33e) follows p1 = 0, p2 = 0, q1 = 0 and q2 = 0. Thus, (2.33a) and the
integration by parts formula provide for all v ∈ Vh,2(t) and all cells K (t) ∈ T(t)

d

dt
(uh, v)K (t) − (∇ · (ωuh) , v)K (t) + (H (0) , v)K (t) = 0. (2.36)

Next, we obtain by the substitution formula
(
d

dt
JK (t) − (∇ · ω) JK (t)

) (
u∗
h, v

∗)
K = 0, (2.37)

since JK (t) and ∇ · ω are independent of spatial variables by (2.5) and (2.8). Thus, uh =
1 − H (0) t can only be the solution of the semi-discrete ALE-LDG method, if the ordinary
differential equation (ODE) (2.37) is satisfied. Hence, the semi-discrete ALE-LDG method
satisfies the GCL, if the ODE (2.37) is satisfied. Since uh = 1 − H (0) t is constant in
space, it holds the equation u∗

h = uh . Moreover, the test functions v∗ are time-independent
polynomials on the reference cell K and it follows (∇ · ω) JK (t) ∈ P1

([
tn, tn+1

])
by (2.8).

Hence, the ODE in (2.37) can be solved exactly by any second order time discretization
method. Therefore, we proved the following result for the two dimensional fully discrete
ALE-LDG method.

Proposition 2.5 Consider the problem (1.1)with the Hamiltonian H = H (p, q), p, q ∈ R.
Then the ODE (2.37) is satisfied for any time discretization method which is higher or equal
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to second order. Thus, the two dimensional fully discrete ALE-LDG method (2.33) satisfies
the geometric conservation when these kind of time discretization methods are applied.

For the one dimensional ALE-LDG method, we obtain by (2.20) the ODE
(
d

dt
JK (t) −

(
ωn

j+ 1
2

− ωn
j− 1

2

))
(
u∗
h, v

∗)
(0,1) = 0. (2.38)

Furthermore, it holds JK (t) = h j (t) in the one dimensional case. Hence, we proved the
following result.

Proposition 2.6 Consider the problem (1.1) with the Hamiltonian H = H (p), p ∈ R.
Then the ODE (2.38) is satisfied for any time discretization method, which is higher or equal
to first order. Thus, the two dimensional fully discrete ALE-LDG method (2.28) satisfies
the geometric conservation when these kind of time discretization methods are applied. In
particular, the method satisfies the geometric conservation law for any high order single step
method in which the stage order is equal or higher than first order.

2.6 The Forward Euler Piecewise Constant ALE-LDG Method

In this section, we consider the two dimensional forward Euler ALE-LDG method for the
Hamiltonian H = H (p, q), p, q ∈ R. The one dimensional method can be analyzed by
similar arguments.

In the following, we consider an arbitrary cell K (t) ∈ T(t). The outward unit normals
of K (t) along the edges eν

K (t), ν = 1, 2, 3, are denoted by nν
K (t) = (nν

K (t),x , n
ν
K (t),y)

T ,
ν = 1, 2, 3. The neighboring cells along the edges eν

K (t), ν = 1, 2, 3, are denoted by Kν (t).

The Lebesgue measure of the cell K (t) is |K (t)| = 1
2 JK (t). In addition, the lengths of the

edges are denoted by �ν
K (t), ν = 1, 2, 3. Let unKn be the piecewise constant approximation

for the solution u of the problem (1.1) at time level tn in an arbitrary cell Kn ∈ Tn . Then the
Eqs. (2.33b) as well as (2.33c) provide

pn1 + pn2 = 1

|Kn |
3∑

ν=1

(
unKn + unKn

ν

)
nν
Kn ,x�

ν
Kn , (2.39)

pn2 − pn1 = 1

|Kn |
3∑

ν=1

(
unKn

ν
− unKn

) ∣∣nν
Kn ,x

∣∣ �ν
Kn (2.40)

and by the Eqs. (2.33d) as well as (2.33e) follows

qn1 + qn2 = 1

|Kn |
3∑

ν=1

(
unKn + unKn

ν

)
nν
Kn ,y�

ν
Kn , (2.41)

qn2 − qn1 = 1

|Kn |
3∑

ν=1

(
unKn

ν
− unKn

) ∣∣∣nν
Kn ,y

∣∣∣ �ν
Kn . (2.42)

Next, we obtain by (2.15) and the second order accurate midpoint quadrature method
∣∣Kn+1

∣∣ un+1
Kn+1 − ∣∣Kn

∣∣ unKn

= ∣∣Kn+1
∣∣
(
un+1
Kn+1 − unKn

)
+ 1

2

(∫ tn+1

tn

d

dt
JK (t) dt

)
unKn
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= ∣
∣Kn+1

∣
∣
(
un+1
Kn+1 − unKn

)
+ �t

(
∇ · ω

(
x, tn+ 1

2

)) ∣∣
∣Kn+ 1

2

∣
∣
∣ unKn , (2.43)

where tn+ 1
2

:= 1
2 (tn + tn+1) and

∣
∣
∣Kn+ 1

2

∣
∣
∣ := ∣

∣K
( 1
2 (tn + tn+1)

)∣∣. The second order accurate

midpoint quadrature method is also used to evaluate the surface integrals
〈
ωn, nν

Kn

〉
eν
Kn
, ν =

1, 2, 3, since the grid velocity field is linear in the spatial variables. Hence, we obtain for all
ν = 1, 2, 3 〈

ωn, nν
Kn

〉
eν
Kn

= ω
(
vnν , tn

) · nν
Kn�

ν
Kn , (2.44)

where vnν is the midpoint of the edge eν
K (t). Next, by (2.39), (2.40), (2.41), (2.42), (2.43) and

(2.44) the forward Euler piecewise constant ALE-LDG method can be written as

un+1
Kn+1 = H

(
unKn , unKn

1
, unKn

2
, unKn

3

)
, (2.45)

where for all a0, a1, a2, a3 ∈ R

H (a0, a1, a2, a3) :=
(

1 − �t
∣∣Kn+1

∣∣

(
∇ · ω

(
x, tn+ 1

2

)) ∣∣∣Kn+ 1
2

∣∣∣

)

a0

− �t
|Kn |
∣∣Kn+1

∣∣ H

(
1

2 |Kn |
3∑

ν=1

(a0 + aν ) n
ν
Kn ,x�

ν
Kn ,

1

2 |Kn |
3∑

ν=1

(a0 + aν ) n
ν
Kn ,y�

ν
Kn

)

+ 1

2

�t
∣∣Kn+1

∣∣

3∑

ν=1

(
λKn

∣∣nν
Kn ,x

∣∣+ μKn

∣∣∣nν
Kn ,y

∣∣∣
)

�ν
Kn (aν − a0)

+ 1

2

�t
∣∣Kn+1

∣∣

3∑

ν=1

ω
(
vnν , tn

) · nν
Kn �

ν
Kn (a0 + aν )

with

λKn = max
{∣∣∂pH (p, q, x) − ω1(x, t)

∣∣ : p ∈ DKn , q ∈ EKn , x ∈ Kn}

and

μKn := max
{∣∣∂q H (p, q, x) − ω2(x, t)

∣∣ : p ∈ DKn , q ∈ EKn , x ∈ Kn} .

It should be noted that the functionH (a0, a1, a2, a3) is increasing in all its arguments, if the
following CFL condition is satisfied

�t
∣∣Kn+1

∣∣

(

c0
∣∣∣Kn+ 1

2

∣∣∣+
3∑

ν=1

(λKn + μKn ) �ν
Kn

)

≤ 1,

where c0 := max
{|∇ · ω (x, t)| : x ∈ K j (t), t ∈ [tn, tn+1

]}
. Hence, (2.45) is a monotone

scheme, if the CFL condition above is satisfied. Thus the forward Euler piecewise constant
ALE-LDGmethod converges to the unique viscous solution according to Crandall and Lions
[10].

3 A Priori Error Estimates

In this section, we prove a priori error estimates for the one and two dimensional semi-discrete
ALE-LDGmethod. It should be noted that these a priori error estimates aremerely validwhen
the initial value problem (1.1) has a smooth solution. Moreover, the a priori error will be
estimated in the sense of the global length h given by (2.3). We will proceed as follows: First
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of all, we would like to use the ALE–DG solution uh as test function in the Eqs. (2.28a) and
(2.33a). Admittedly, this is not possible, since the transport Eq. (2.13) cannot be used for
test functions with time-dependent coefficients like (2.24). Thus, the equivalent Eqs. (2.29)
and (2.34) need to be applied. Afterward, in order to compensate the nonlinear nature of the
Hamiltonian in the problem (1.1), the Taylor formula is used. Finally, we apply interpolation,
inverse and trace inequalities to estimate the remainders of the Taylor expansion. Therefore,
we need the following a priori assumptions

‖∂xu − p1‖L∞(�×(0,T )) + ‖∂xu − p2‖L∞(�×(0,T )) ≤ CH1h (3.1a)

and ∥
∥∂yu − q1

∥
∥
L∞(�×(0,T ))

+ ∥∥∂yu − q2
∥
∥
L∞(�×(0,T ))

≤ CH2h, (3.1b)

where the constants CH1 and CH2 are independent of uh and h. First of all, we would like to
mention that the a priori assumptions are merely necessary when a nonlinear Hamiltonian is
investigated in the problem (1.1). Furthermore, the assumptions (3.1a) and (3.1b)make sense,
since p1, p2 approximate ∂xuh and q1, q2 approximate ∂yuh . It should be noted that these
a priori assumptions are slightly different from the a priori assumption which was applied
by Xiong et al. [28] to prove a priori error estimates for Yan and Osher’s LDG method.
Nevertheless, the a priori assumptions above supply

∥∥∥∥∂xu − p1 + p2
2

∥∥∥∥
L∞(�×(0,T ))

+
∥∥∥∥∂yu − q1 + q2

2

∥∥∥∥
L∞(�×(0,T ))

≤ Ch. (3.2)

The inequality (3.2) corresponds to the a priori assumption in [28]. Furthermore, we assume
that the Hamiltonian in the problem (1.1) and the grid velocity field given by (2.7) and (2.20)
are sufficiently smooth and have bounded derivatives. These assumptions and the mean value
theorem provide the upcoming lemma.

Lemma 3.1 Suppose u ∈ W1,∞ (
0, T ;H2 (�)

)
, the Hamiltonian H ∈ C2

(
R
2 × �

)
as

well as the grid velocity field ω = (ω1, ω2)
T are bounded and have bounded derivatives.

Furthermore, suppose K (t) ∈ T(t) is an arbitrary cell and βK (t) is either (2.31) or (2.32).
Then there exists constants C�

1 , C
�
2 and C�

3 independent of h and uh, such that for σ = p,
τ = 1, βK (t) = λK (t) or σ = q, τ = 2, βK (t) = μK (t)

∂σ H (∇u, x) − ωτ (x, t) − βK (t) ≤ C�
1h, for all x ∈ K (t), (3.3)

if ∂σ H (∇u, x) − ωτ (x, t) > 0 in the cell K (t),

∂σ H (∇u, x) − ωτ (x, t) + βK (t) ≤ C�
2h, for all x ∈ K (t), (3.4)

if ∂σ H (∇u, x) − ωτ (x, t) < 0 in the cell K (t),

|∂σ H (∇u, x) − ωτ (x, t)| + βK (t) ≤ C�
3h, for all x ∈ K (t), (3.5)

if ∂σ H (∇u, x) − ωτ (x, t) changes the sign in the cell K (t). In addition, there exists a
constant C�

4 , such that for ν = 1, 2, 3 holds
∣∣βK (t) − βKν (t)

∣∣ ≤ C�
4h, (3.6)

where Kν(t), ν = 1, 2, 3, are the adjacent cells of K (t).

Proof Wemerely prove the estimates for the function ∂pH (p, q, x)−ω1 (x, t). The estimates
for the function ∂q H (p, q, x) − ω2 (x, t) can be proven similar.
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Henceforth, K (t) ∈ T(t) is an arbitrary cell. First of all, it should be noted that there exists
at least one point ( p̂, q̂, x̂) ∈ DK (t) × EK (t) × K (t) with

λK (t) = ∣
∣∂pH( p̂, q̂, x̂) − ω1(x̂, t)

∣
∣ , (3.7)

since the function
∣
∣∂pH (p, q, x) − ω1 (x, t)

∣
∣ is continuous in the domain DK (t) × EK (t) ×

K (t).
Afterward, we run a case analysis started with the case: ∂pH(∇u, x) − ω1 (x, t) > 0, for

all x ∈ K (t). It follows by the reverse triangle inequality and (3.7)

∂pH (∇u, x) − ω1 (x, t) − λK (t)

≤
∣
∣
∣
∣∂pH (∇u, x) − ∂pH

(
p1 + p2

2
,
q1 + q2

2
, x
)∣∣
∣
∣

+
∣
∣
∣
∣∂pH

(
p1 + p2

2
,
q1 + q2

2
, x
)

− ∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̂
)∣∣
∣
∣

+
∣
∣
∣
∣∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̂
)

− ∂pH
(
p̂, q̂, x̂

)
∣
∣
∣
∣

+ ∣∣ω1 (x, t) − ω1
(
x̂, t
)∣∣ . (3.8)

The mean value theorem and the a priori assumptions (3.1a), (3.1b) as well as (3.2) provide
that the right hand side of (3.8) behaves as O (h), since the Hamiltonian H ∈ C2

(
R
2 × �

)

and the grid velocity field ω = (ω1, ω2)
T are bounded and have bounded derivatives. This

proves the inequality (3.3).
Next, we consider the case: ∂pH(∇u, x) − ω1 (x, t) < 0, for all x ∈ K (t). We obtain by

the reverse triangle inequality and (3.7)

∂pH(∇u, x) − ω1 (x, t) + λK (t)

≤
∣∣∣∣∂pH (∇u, x) − ∂pH

(
p1 + p2

2
,
p1 + p2

2
, x
)∣∣∣∣

+
∣∣∣∣∂pH

(
p1 + p2

2
,
p1 + p2

2
, x
)

− ∂pH

(
p1 + p2

2
,
p1 + p2

2
, x̂
)∣∣∣∣

+
∣∣∣∣∂pH

(
p1 + p2

2
,
p1 + p2

2
, x̂
)

− ∂pH
(
p̂, q̂, x

)
∣∣∣∣

+ ∣∣ω1 (x, t) − ω1
(
x̂, t
)∣∣ . (3.9)

By the same arguments as in the previous case, follows that the right hand side of (3.9)
behaves as O (h). Hence, we obtain the inequality (3.4).

Finally, we consider the case: ∂pH(∇u, x) − ω1 (x, t) changes the sign in the cell K (t).
Then, there exists at least one point x̃ ∈ K (t), such that ∂pH(∇u, x̂) − ω1

(
x̂, t
) = 0.

Therefore, we obtain by the Taylor formula and the mean value theorem for all x ∈ K (t)
∣∣∂pH(∇u, x) − ω1 (x, t)

∣∣ ≤ Ch.

Moreover, by the reverse triangle inequality and (3.7) follows

λK (t) ≤
∣∣∣∣∂pH

(
p̂, q̂ x̂

)− ∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̂
)∣∣∣∣

+
∣∣∣∣∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̂
)

− ∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̃
)∣∣∣∣
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+
∣
∣
∣
∣∂pH

(
p1 + p2

2
,
q1 + q2

2
, x̃
)

− ∂pH (∇u, x̃)

∣
∣
∣
∣ . (3.10)

The inequality (3.10) yields (3.5), since the right hand side of the inequality (3.10) behaves
as O (h). This follows by the same arguments as in the previous cases.

It left to prove the inequality (3.6). In the following, for all ν = 1, 2, 3 the edge shared
by the cell K (t) and its adjacent cell Kν(t) is denoted by eν

K (t). First of all, it should be

noted that there exists points ( p̂, q̂, x̂) ∈ DK (t) × EK (t) × K (t) and ( p̂ν, q̂ν, x̂ν) ∈ DKν (t) ×
EKν (t) × Kν (t) such that for ν = 1, 2, 3

λK (t) = ∣
∣∂pH( p̂, q̂, x̂) − ω1(x̂, t)

∣
∣ and λKν (t) = ∣

∣∂pH( p̂ν, q̂ν, x̂ν) − ω1(x̂ν, t)
∣
∣ ,
(3.11)

since the function
∣
∣∂pH (p, q, x) − ω1 (x, t)

∣
∣ is continuous. Thus, we obtain by the reverse

triangle inequality and the Eq. (3.11) for any point xν
K (t) ∈ eν

K (t), ν = 1, 2, 3, the estimate
∣
∣λK (t) − λKν (t)

∣
∣

≤
∣
∣
∣
∣
∣
∂pH

(
p̂, q̂, x̂

)− ∂pH

((
p1 + p2

2

)

K (t)
,

(
q1 + q2

2

)

K (t)
, x̂

)∣∣
∣
∣
∣

+
∣∣∣∣∣
∂pH

((
p1 + p2

2

)

K (t)
,

(
q1 + q2

2

)

K (t)
, x̂

)

− ∂pH
(∇u, x̂

)
∣∣∣∣∣

+
∣∣∣∣∣
∂pH

(∇u, x̂ν

)− ∂pH

((
p1 + p2

2

)

Kν (t)
,

(
q1 + q2

2

)

Kν (t)
, x̂ν

)∣∣∣∣∣

+
∣∣∣∣∣
∂pH

((
p1 + p2

2

)

Kν (t)
,

(
q1 + q2

2

)

Kν (t)
, x̂ν

)

− ∂pH
(
p̂ν, q̂ν, x̂ν

)
∣∣∣∣∣

+
∣∣∣∂pH

(∇u, x̂
)− ∂pH

(
∇u, xν

K (t)

)∣∣∣+
∣∣∣∂pH

(
∇u, xν

K (t)

)
− ∂pH

(∇u, x̂ν

)∣∣∣

+
∣∣∣ω1

(
x̂, t
)− ω1

(
xν
K (t), t

)∣∣∣+
∣∣∣ω1

(
xν
K (t), t

)
− ω1

(
x̂ν, t

)∣∣∣ . (3.12)

The right hand side of the inequality (3.12) behaves as O (h). This follows by the same
arguments as in the previous case analysis. Hence, it follows

∣∣λK (t) − λKν (t)
∣∣ ≤ Ch. This

completes the proof of Lemma 3.1. ��
The next estimates give information about the relationship between the quantities ∂xuh ,

p1, p2 and ∂yuh , q1, q2.

Lemma 3.2 Let u ∈ W1,∞ (
0, T ;Hk+1 (�)

)
be the exact solutionof the initial value problem

(1.1). Suppose, for any t ∈ [0, T ], there exists a partition of the domain�with the properties
(A1) as well as (A2) and the condition (2.4) is satisfied for the global length h given by (2.3).
Let uh be the solution of the semi-discrete ALE-LDG method (2.33) with the test function
space (2.9) given by piecewise polynomials. Then there exists a constant C, independent of
uh and h, such that

‖∂xuh − p1‖L2(�) + ‖∂xuh − p2‖L2(�) ≤ C
(
hk + h−1 ‖ϕh‖L2(�)

)
, (3.13)

∥∥∂yuh − q1
∥∥
L2(�)

+ ∥∥∂yuh − q2
∥∥
L2(�)

≤ C
(
hk + h−1 ‖ϕh‖L2(�)

)
, (3.14)

where ϕh := uh − Ph (u) and Ph (u) is the L2-projection of the given function u.
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Proof The integration by parts formula and the Eq. (2.33b) provide for any cell K (t) ∈ T(t)

and all v ∈ Vh,2(t)

(∂xuh − p1, v)K (t) =
〈
u
intK (t)
h − u−,x

h , vintK (t)nK (t),x

〉

∂K (t)
. (3.15)

We would like to sum the Eq. (3.15) over all cells K (t) ∈ T(t). In the course of this, the
surface integrals along the edges of the cells need to be analyzed carefully. Therefore, first,
we investigate merely the cells Kν (t), ν = 1, 2, 3, which share the edges eν

K (t), ν = 1, 2, 3,
with K (t) and analyze the Eq. (3.15) summed over these cells. The outward normals of
the cell K (t) along the edges eν

K (t) are denoted by nν
K (t) = (nν

K (t),x , n
ν
K (t),y)

T . Then the
outward normals of the cells Kν (t) along the edges eν

K (t) satisfy nν
Kν (t) = −nν

K (t). Hence,
for ν = 1, 2, 3 and i = x, y follows

u−,i
h = u

intK (t)
h = u

extKν (t)
h , u+,i

h = u
extK (t)
h = u

intKν (t)
h , if nν

K (t),i > 0, (3.16a)

u−,i
h = u

extK (t)
h = u

intKν (t)
h , u+,i

h = u
intK (t)
h = u

extKν (t)
h , if nν

K (t),i < 0. (3.16b)

Therefore, we obtain for all v ∈ Vh,2(t) and ν = 1, 2, 3

(∂xuh−p1, v)K (t) + (∂xuh − p1, v)Kν (t) = R
(
uh, v, eν,c

K (t), e
ν,c
Kν (t)

)
+ S

(
uh, v, nν

K (t),x

)
,

(3.17)

R
(
uh, v, eν,c

K (t), e
ν,c
Kν (t)

)
:=

〈
u
intK (t)
h − u−,x

h , vintK (t)nK (t),x

〉

eν,c
K (t)

+
〈
u
intK (t)
h − u−,x

h , vintK (t)nKν (t),x

〉

eν,c
Kν (t)

, (3.18)

where eν,c
K (t) = ∂K (t) \eν

K (t), e
ν,c
Kν (t) := ∂K (t) \eν

K (t) and

S
(
uh, v, nν

K (t),x

)
:=
⎧
⎨

⎩

〈
[[uh]], vintKν (t)nν

K (t),x

〉

e(t)
, if nν

K (t),x > 0,

−
〈
[[uh]], vintK (t)nν

K (t),x

〉

e(t)
, if nν

K (t),x < 0.
(3.19)

Hence, the surface integrals at the cell interfaces can be summarized in the shape of (3.19),
when the Eq. (3.15) is summed over all cells K (t) ∈ T(t). Furthermore, the surface integrals
at the boundary faces canceled out, since the problem (1.1) is considered with periodic
boundary conditions. Therefore, since the function u is sufficiently smooth, we obtain for all
v ∈ Vh,2(t) the inequality

∑

K (t)∈T(t)

(∂xuh − p1, v)K (t)

≤
∑

K (t)∈T(t)

3∑

ν=1

〈|[[uh]]| ,
∣∣vintK (t)

∣∣+ ∣∣vextK (t)
∣∣〉
eν
K (t)

≤
∑

K (t)∈T(t)

3∑

ν=1

〈|[[ψh]]| + |[[ϕh]]| ,
∣∣vintK (t)

∣∣+ ∣∣vextK (t)
∣∣〉
eν
K (t)

(3.20)

when the Eq. (3.15) is summarized over all cells K (t) ∈ T(t) and the notation

ψh := u − Ph (u) , ϕh := uh − Ph (u) (3.21)
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is used. Next, we plug the test function v = ∂xuh − p1 into the inequality (3.20) and apply
the Cauchy–Schwarz inequality, Young’s inequality, the inverse inequalities (2.12) and the
interpolation inequalities (2.17). This results in

‖∂xuh − p1‖2L2(�)

≤
(
‖ψh‖L2(∂T(t)) + ‖ϕh‖L2(∂T(t))

)
‖∂xu − p1‖L2(∂T(t))

≤ Ch−1
(
hk+1 + ‖ϕh‖L2(�)

)
‖∂xuh − p1‖L2(�) . (3.22)

Finally, it should be noted that we obtain similar estimates as (3.22) for the quantities
‖∂xuh − p2‖2L2(�)

,
∥
∥∂yuh − q1

∥
∥2
L2(�)

and
∥
∥∂yuh − q2

∥
∥2
L2(�)

when we apply the same anal-
ysis as above with the Eqs. (2.33c), (2.33d) and (2.33e). These estimates supply the desired
estimates (3.13) and (3.14). ��

The inequalities (3.13) and (3.14) yield for all t ∈ [0, T ]
∥
∥
∥
∥∂xuh − p1 + p2

2

∥
∥
∥
∥
L2(�)

+
∥
∥
∥
∥∂yuh − q1 + q2

2

∥
∥
∥
∥
L2(�)

≤ C
(
hk + h−1 ‖ϕh‖L2(�)

)
. (3.23)

Moreover, it should be noted that the bounds and inequalities in Lemmas 3.1 and 3.2 hold
also in one dimension. In particular, Lemma 3.2 can be applied with theQ-projection instead
of the L2-projection. Thus, there is no harm to apply these results in the proof of the a priori
error estimates for the one dimensional ALE-LDG method.

3.1 An Optimal Error Estimate for the One Dimensional Method

In this section we prove the following a priori error estimate.

Theorem 3.3 Let u ∈ W1,∞ (
0, T ;Hk+2 (�)

)
be the exact solution of the initial value

problem (1.1), the Hamiltonian H ∈ C2 (R × �) and the grid velocity ω given by (2.20)
be bounded and have bounded derivatives. Furthermore, for any time level t ∈ [0, T ],
there exists a regular partition of the domain �, which covers the whole domain �, and the
condition (2.4) is satisfied for the global length h given by (2.3). Let uh be the solution of the
semi-discrete ALE-LDG method (2.28) with the test function space (2.9) given by piecewise
polynomials of degree k ≥ 2 and the initial data Qh (u0). Then there exists a constant C
independent of uh and h, such that

‖u − uh‖L∞(0,T ;L2(�)) ≤ Chk+1.

Proof First of all, we define the quantities

ψh := u − Qh (u) , ϕh := uh − Qh (u) , ηh := ∂xuh − p1 + p2
2

. (3.24)

Then the error function eh := u − uh and the quantity ∂xu − p1+p2
2 can be written as

eh = ψh − ϕh and ∂xu − p1 + p2
2

= ∂x (ψh − ϕh) + ηh .

The solution u of the initial value problem (1.1) is assumed to be smooth. Hence, the inte-
gration by parts formula provides for all v ∈ Vh,1 (t) and j = 1, . . . , N

0 = (∂xu, v)K j (t) + (u, ∂xv)K j (t) − u−
j+ 1

2
v−
j+ 1

2
+ u+

j− 1
2
v+
j− 1

2
. (3.25)
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Next, for all j = 1, . . . , N , we subtract the equation (2.28b) or (2.28c) from the Eq. (3.25)
and plug the test function v = ϕh in the result. This yields the error equations

0 = (∂xu − p1, ϕh)K j (t) − ψ−
h, j+ 1

2
ϕ−
h, j+ 1

2
+ ψ−

h, j− 1
2
ϕ+
h, j− 1

2

+ 1

2

((
ϕ−
h, j+ 1

2

)2

−
(

ϕ−
h, j− 1

2

)2
)

+ 1

2

(
[[ϕh]] j− 1

2

)2
, (3.26a)

0 = (∂xu − p2, ϕh)K j (t) − ψ+
h, j+ 1

2
ϕ−
h, j+ 1

2
+ ψ+

h, j− 1
2
ϕ+
h, j− 1

2

+ 1

2

((
ϕ+
h, j+ 1

2

)2

−
(

ϕ+
h, j− 1

2

)2
)

− 1

2

(
[[ϕh]] j+ 1

2

)2
, (3.26b)

where we used that (ψh, ∂xϕh)K (t) = 0 by (2.16) as well as (2.21a) and we used that
u−
j− 1

2
= u+

j− 1
2
for all j = 1, . . . , N , since the exact solution u is smooth.

Moreover, we obtain the error equation

0 =
(

∂xu − p1 + p2
2

, ϕh

)

K j (t)
− {{ψh}} j+ 1

2
ϕ−
h, j+ 1

2
+ {{ψh}} j− 1

2
ϕ+
h, j− 1

2

+ ϕ+
h, j+ 1

2
ϕ−
h, j+ 1

2
− ϕ+

h, j− 1
2
ϕ−
h, j− 1

2
(3.26c)

by summarizing the Eqs. (3.26a) and (3.26b) multiplied with 1
2 .

Before the Eq. (3.26) can be used to state the next error equation, we need to make some
preparations. First of all, we define the quantities

ω j := ω
(
x j (t) , t

)
, x j (t) := 1

2

(
x j+ 1

2
(t) + x j− 1

2
(t)
)

.

Then we obtain by the mean value theorem for all t ∈ [0, T ] and j = 1, . . . , N

max
x∈K j (t)

∣∣ω (x, t) − ω j (t)
∣∣ ≤ max

t∈[0,T ] ‖∂xω‖L∞(�) h, (3.27)

since the grid velocity is assumed to be bounded and has bounded derivatives. The integration
by parts formula and Lemma 2.4 provide

(∂tψh, ϕh)K j (t) + (∂x (ωψhϕh) , 1)K j (t)

= (∂t uh − Qh (∂t uh) , ϕh)K j (t) + (ω∂xuh − Qh (ω∂xuh) , ϕh)K j (t)

+ ((∂xω)ψh, ϕh)K j (t) + ((ω − ω j
)
ψh, ∂xϕh

)
K j (t)

, (3.28)

since
(
ω jψh, ∂xϕh

)
K j (t)

= 0 by (2.16) and (2.21a). Next, the transport Eq. (2.13) supplies

(∂tϕh, ϕh)K j (t) +
(
∂x
(
ωϕ2

h

)
, 1
)
K j (t)

= 1

2

d

dt
(ϕh, ϕh)K j (t) +

1

2

(
∂x
(
ωϕ2

h

)
, 1
)
K j (t)

. (3.29)

The Taylor formula yields

H

(
p1 + p2

2
, x

)
= H (∂xu, x) − ∂pH (∂xu, x)

(
∂xu − p1 + p2

2

)

+ 1

2
∂2pH (�, x)

(
∂xu − p1 + p2

2

)2

, (3.30)
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where � is a value between ∂xu and p1+p2
2 . Furthermore, since the solution u of the initial

value problem (1.1) is assumed to be smooth, for all v ∈ Vh,1 (t) and j = 1, . . . , N holds

0 = (∂t u, v)K j (t) + (∂x (ωuhv) , 1)K j (t) + (H (∂xu) , v)K j (t)

− ωn
j+ 1

2
u−
j+ 1

2
v−
j+ 1

2
+ ωn

j− 1
2
u+
j− 1

2
v+
j− 1

2
. (3.31)

First of all, we subtract the Eq. (2.29) from Eq. (3.31), plug the test function v = ϕh in the
result and subtract the Eq. (3.26c) multiplied by ω j . Then, we apply the Eqs. (3.28), (3.29)
and (3.30) and obtain the error equation

1

2

d

dt
(ϕh, ϕh)K j (t) = a1, j

(
ω,ω j , u, uh

)+ a2, j
(
ω,ω j , u, uh

)

+ a3, j (u, uh, p1, p2) + a4, j
(
ω j , u, uh, p1, p2

)
(3.32)

where

a1, j
(
ω,ω j , u, uh

) := (∂t uh − Qh (∂t uh) , ϕh)K j (t)

+ (ω∂xuh − Qh (ω∂xuh) , ϕh)K j (t)

+ ((∂xω) ψh, ϕh)K j (t) + ((ω − ω j
)
ψh, ∂xϕh

)
K j (t)

, (3.33a)

a2, j
(
ω,ω j , u, uh

) := −
(

ωn
j+ 1

2
− ω j

)
{{ψh}} j+ 1

2
ϕ−
h, j+ 1

2

+
(

ωn
j− 1

2
− ω j

)
{{ψh}} j− 1

2
ϕ+
h, j− 1

2

+
(

ωn
j+ 1

2
− ω j

)
ϕ+
h, j+ 1

2
ϕ−
h, j+ 1

2

−
(

ωn
j− 1

2
− ω j

)
ϕ+
h, j− 1

2
ϕ−
h, j− 1

2
, (3.33b)

a3, j (u, uh, p1, p2) := −1

2

(

∂2pH (�, x)

(
∂xu − p1 + p2

2

)2

, ϕh

)

K j (t)

, (3.33c)

a4, j
(
ω j , u, uh, p1, p2

) :=
((

∂pH (∂xu, x) − ω j
) (

∂xu − p1 + p2
2

)
, ϕh

)

K j (t)

+ 1

2

(
λ j (p2 − p1) , ϕh

)
K j (t)

. (3.33d)

In the following, we will prove that the quantities (3.33) summed from j = 1 to N behave
as O

(
hk+1

)
.

First of all, Young’s inequality, the inverse inequalities (2.12), the interpolation estimates
(2.17) and the inequality (3.27) for the grid velocity provide

N∑

j=1

a1, j
(
ω,ω j , u, uh

) ≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
, (3.34)

since the grid velocity is assumed to be bounded with bounded derivatives and the initial
value problem (1.1) is investigated with periodic boundary conditions. In the same matter,
we obtain
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N∑

j=1

a2, j
(
ω,ω j , u, uh

) ≤ Ch
(
‖ψh‖2L2(∂T(t))

+ ‖ϕh‖2L2(∂T(t))

)

≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
(3.35)

by Young’s inequality, the inverse inequalities (2.12), the interpolation estimates (2.17) and
the inequality (3.27) for the grid velocity. Furthermore, the a priori assumption (3.2), the
Cauchy–Schwarz inequality, Young’s inequality, the inverse inequalities (2.12), (3.23) and
the interpolation inequalities (2.17) supply

N∑

j=1

a3, j (u, uh, p1, p2) ≤ C
∥
∥
∥∂2pH

∥
∥
∥
L∞(R×�)

h2
(
‖∂xψh‖2L2(�)

+ ‖∂xϕh‖2L2(�)

)

+ C
∥
∥
∥∂2pH

∥
∥
∥
L∞(R×�)

(
h2 ‖ηh‖2L2(�)

+ ‖ϕh‖2L2(�)

)

≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
, (3.36)

since the Hamiltonian is assumed to be bounded and has bounded derivatives. The quantity
(3.33d) deservesmore attention.A careful case analysis determined by the sign of the function
∂pH (∂xu, x) − ω (x, t) in the cells K j (t), j = 1, . . . , N , is necessary. The case analysis
will provide the inequality

N∑

j=1

a4, j
(
ω j , u, uh, p1, p2

) ≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
. (3.37)

In order to avoid confusion, we skip the details of the case analysis and prove the inequality
(3.37) separated from this proof at the end of this section.

Finally, we sum the Eq. (3.32) from j = 1 to N , apply (3.34), (3.35), (3.36), (3.37) and
Gronwall’s inequality. This results in the estimate

‖ϕh‖L2(�) ≤ Chk+1. (3.38)

Then, (3.38) and the interpolation inequality (2.17) yield for all t ∈ [0, T ] an L2-estimate
for the error function eh . The maximum of the L2-estimate over the interval [0, T ] supplies
the desired error estimate. This completes the proof of Theorem 3.3. ��

It remains to prove the inequality (3.37).

Lemma 3.4 Suppose the same assumptions as in Theorem 3.3. Then there exists a constant
C, independent of uh and h, such that it holds the inequality (3.37).

Proof We prove the inequality (3.37) in two steps. In the first step, we run a case analysis
determined by the sign of the function ∂pH (∂xu, x) − ω (x, t) and different families of

consecutive cells
{
K j (t)

} j2
j= j1

with 1 ≤ j1 ≤ j2 ≤ N . The case analysis provides estimates
for the quantity (3.33d) summed over the consecutive cells. In the final step, we apply these
estimates to estimate the quantity (3.33d) summed over all cells.
Case 1We consider an arbitrary family of consecutive cells

{
K j (t)

} j2
j= j1

with 1 ≤ j1 ≤ j2 ≤
N and ∂pH(∂xu, x) − ω (x, t) changes the sign in each cell K j (t), j = j1, . . . , j2. First of

all, for any cell K j (t), j = j1, . . . , j2, we subtract the Eq. (3.26a) multiplied by
λ j
2 and the

Eq. (3.26b) multiplied by − λ j
2 from the equation (3.33d). This provides
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a4, j
(
ω j , u, uh, p1, p2

)

=
(
(
∂pH(∂xu, x) − ω j

)
(

∂xu − p1 + p2
2

)
, ϕh

)

K j (t)

− λ j

2
[[ψh]] j+ 1

2
ϕ−
h, j+ 1

2
+ λ j

2
[[ψh]] j− 1

2
ϕ+
h, j− 1

2
+ λ j

4

�
(ϕh)

2
�
j+ 1

2

− λ j

4

�
(ϕh)

2
�
j− 1

2

− λ j

4

(
[[ϕh]] j+ 1

2

)2 + λ j

4

(
[[ϕh]] j− 1

2

)2
. (3.39)

Since the quantities
∣
∣∂pH (∂xu, x) − ω (x, t)

∣
∣ and λ j are bounded by C�

3h according to the
inequality (3.5) in Lemma 3.1, it follows

∣
∣∂pH (∂xu, x) − ω j

∣
∣ ≤ ∣

∣∂pH (∂xu, x) − ω (x, t)
∣
∣+ ∣∣ω j − ω (x, t)

∣
∣ ≤ Ch

by the inequality (3.27) for the grid velocity. Therefore, Young’s inequality and a summation
from j = j1 to j2 of the Eq. (3.39) supply

j2∑

j= j1

a4, j
(
ω j , u, uh, p1, p2

) ≤ Ch2
j2∑

j= j1

(
‖∂xψh‖2L2(K j (t))

+ ‖∂xϕh‖2L2(K j (t))

)

+ C
j2∑

j= j1

(
‖ϕh‖2L2(K j (t))

+ h2 ‖ηh‖2L2(K j (t))

)

+ Ch
j2+1∑

j= j1

((
ψ+
h, j− 1

2

)2

+
(

ψ−
h, j− 1

2

)2
)

+ Ch
j2+1∑

j= j1

((
ϕ+
h, j− 1

2

)2

+
(

ϕ−
h, j− 1

2

)2
)

. (3.40)

Case 2We consider an arbitrary family of consecutive cells
{
K j (t)

} j2
j= j1

with 1 ≤ j1 ≤ j2 ≤
N and ∂pH (∂xu, x) − ω (x, t) > 0 for each cell K j (t), j = j1, . . . , j2. Then we obtain
Qh = P−

h . Thus, by (2.21b) it follows ψ−
h, j− 1

2
= 0 for all j = j1, . . . , j2. We subtract the

Eq. (3.26a) multiplied by λ j from the Eq. (3.33d) and obtain

a4, j
(
ω j , u, uh, p1, p2

) =
((

∂pH (∂xu, x) − ω j − λ j
) (

∂xu − p1 + p2
2

)
, ϕh

)

K j (t)

− λ j

2

((
ϕ−
h, j+ 1

2

)2

−
(

ϕ−
h, j− 1

2

)2
)

− λ j

2

(
[[ϕh]] j− 1

2

)2
. (3.41)

According to the inequality (3.5) in Lemma 3.1, the quantities λ j2−1 as well as λ j1+1

are bounded by C�
3, since ∂pH (∂xu, x) − ω (x, t) changes the sign in the cells K j1−1 (t)

and K j2+1 (t). Likewise, according to the inequality (3.6) in Lemma 3.1, the quantities∣∣λ j − λ j−1
∣∣ is bounded C�

4h for all j = j1, . . . , j2. Therefore, the summation by parts
formula provides

−
j2∑

j= j1

(
λ j

2

((
ϕ−
h, j+ 1

2

)2

−
(

ϕ−
h, j− 1

2

)2
))

= −1

2

(

λ j2+1

(
ϕ−
h, j2+ 1

2

)2

− λ j1−1

(
ϕ−
h, j1− 1

2

)2
)

+ 1

2

(
λ j1 − λ j1−1

) (
ϕ−
h, j1− 1

2

)2
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+ 1

2

j2∑

j= j1

(
λ j − λ j−1

)
(

ϕ−
h, j− 1

2

)2

≤ Ch
j2+1∑

j= j1

(
ϕ−
h, j− 1

2

)2

. (3.42)

Furthermore, by the inequality (3.3) in Lemma 3.1 and the inequality (3.27) for the grid
velocity follows
∣
∣∂pH (∂xu, x) − ω j − λ j

∣
∣ ≤ ∣

∣∂pH (∂xu, x) − ω (x, t) − λ j
∣
∣+ ∣∣ω j − ω (x, t)

∣
∣ ≤ Ch.

(3.43)
Next, we sum the Eq. (3.41) from j = j1 to j2 and apply Young’s inequality, the inequality
(3.3) in Lemma 3.1 and (3.42) as well as (3.43). This results in the inequality (3.40), since

−∑ j2
j= j1

λ j
2

(
[[ϕh]] j− 1

2

)2 ≤ 0.

Case 3We consider an arbitrary family of consecutive cells
{
K j (t)

} j2
j= j1

with 1 ≤ j1 ≤ j2 ≤
N and ∂pH (∂xu, x) − ω(x, t) < 0 for each cell K j (t), j = j1, . . . , j2. In this case, we
obtainQh = P+

h . Thus, by (2.21b) it followsψ+
h, j− 1

2
= 0 for all j = j1, . . . , j2. We subtract

the Eq. (3.26b) multiplied by −λ j from the Eq. (3.33d). This results in an equation of the
type (3.41). Moreover, we obtain by the inequality (3.4) in Lemma 3.1 and the inequality
(3.27) for the grid velocity
∣∣∂pH (∂xu, x) − ω j + λ j

∣∣ ≤ ∣∣∂pH (∂xu, x) − ω (x, t) + λ j
∣∣+ ∣∣ω j − ω (x, t)

∣∣ ≤ Ch.

(3.44)
Hence, (3.44) and the same arguments as in case 2) supply the inequality (3.40).

Finally, we sum the Eq. (3.33d) from j = 1 to N and apply the inverse inequalities (2.12),
the interpolation estimates (2.17) as well as the inequality (3.40). Then, since we obtained
the inequality (3.40) in the cases (1), (2), (3) and the initial value problem (1.1) is considered
with periodic boundary conditions, we obtain

N∑

j=1

a4, j
(
ω j , u, uh, p1, p2

) ≤ Ch2
(
‖∂xψh‖2L2(�)

+ ‖∂xϕh‖2L2(�)

)
+ C ‖ϕh‖2L2(�)

+ Ch2 ‖ηh‖2L2(�)
+ h

(
‖ψh‖2L2(∂T(t))

+ ‖ϕh‖2L2(∂T(t))

)

≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
. (3.45)

It should be noted, that in the Eq. (3.45) each boundary term has been counted at most twice.
This does not affect the error estimate. ��
3.2 A Suboptimal Error Estimate for the Two Dimensional Method

In this section we prove the following a priori error estimate.

Theorem 3.5 Let u ∈ W1,∞ (
0, T ;Hk+1 (�)

)
be the exact solution of the initial value

problem (1.1), the Hamiltonian H ∈ C2
(
R
2 × �

)
and the grid velocity field ω = (ω1, ω2)

T

be bounded and have bounded derivatives. Furthermore, for any t ∈ [0, T ], there exists a
partition of the domain � with the properties (A1) as well as (A2) and the condition (2.4)
is satisfied for the global length h given by (2.3). Let uh be the solution of the semi-discrete
ALE-LDG method (2.33) with the test function space (2.9) given by piecewise polynomials
of degree k ≥ 3 and the initial data Ph (u0). Then there exists a constant C independent of
uh and h, such that

‖u − uh‖L∞(0,T ;L2(�)) ≤ Chk+
1
2 .
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Proof In this proof, we apply the notation (3.21) as in the proof of the Lemma 3.2. Hence,
the error function eh := u − uh can be written as eh = ψh − ϕh . Moreover, we define

ηh := ∂xuh − p1 + p2
2

, ζh := ∂yuh − q1 + q2
2

. (3.46)

Then the quantities ∂xu − p1+p2
2 and ∂yu − q1+q2

2 can be written as

∂xu − p1 + p2
2

= ∂x (ψh − ϕh) + ηh, ∂yu − q1 + q2
2

= ∂y (ψh − ϕh) + ζh .

It is assumed that the exact solution of the initial value problem (1.1) is smooth. Thus, the
integration by parts formula provides for all v,w ∈ Vh,2(t) and all cells K (t) ∈ T(t)

0 = (∂xu, v)K (t) + (u, ∂xv)K (t) − 〈uintK (t) , vintK (t)nK (t),x
〉
∂K (t) , (3.47a)

0 = (
∂yu, w

)
K (t) + (u, ∂yw

)
K (t) − 〈uintK (t) , wintK (t)nK (t),y

〉
∂K (t) . (3.47b)

Next, we subtract the Eqs. (2.33b) or (2.33c) from the Eq. (3.47a) and the Eqs. (2.33d) or
(2.33e) from the Eq. (3.47b) and plug in the results the test function v = ϕh . This results for
all cells K (t) ∈ T(t) in the error equations

0 = (∂xu − p1, ϕh)K (t) −
〈
ψ

−,x
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)

+
〈
ϕ−
h − 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)
, (3.48a)

0 = (∂xu − p2, ϕh)K (t) −
〈
ψ

+,x
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)

+
〈
ϕ+
h − 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)
, (3.48b)

0 = (
∂yu − q1, ϕh

)
K (t) −

〈
ψ

−,y
h , ϕ

intK (t)
h nK (t),y

〉

∂K (t)

+
〈
ϕ−
h − 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),y

〉

∂K (t)
, (3.48c)

0 = (
∂yu − q2, ϕh

)
K (t) −

〈
ψ

+,y
h , ϕ

intK (t)
h nK (t),y

〉

∂K (t)

+
〈
ϕ+
h − 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),y

〉

∂K (t)
, (3.48d)

since (ψh, ∂xϕh)K (t) = 0 and
(
ψh, ∂yϕh

)
K (t) = 0 by (2.16) the exact solution u is smooth

such that uintK (t) = uextK (t) .
Henceforth, we define for s = 1, 2

ωK (t),s := ωs
(
xK (t), t

)
, xK (t) := 1

3
(v1 (t) + v2 (t) + v3 (t)) .

The mean value theorem provides for all t ∈ [0, T ] and all cells K (t) ∈ T(t)

max
x∈K (t)

∣∣ωs (x, t) − ωK (t),s
∣∣ ≤ max

t∈[0,T ] ‖∇ωs (t)‖[L∞(�)]2 h, s = 1, 2. (3.49)

Furthermore, we sum the Eqs. (3.48a) as well as (3.48b) and multiply the result by 1
2ωK (t),1.

In the same manner we sum the Eqs. (3.48c) as well as (3.48d) and multiply the result by
1
2ωK (t),2. This provides the additional error equations
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0 =
(

ωK (t),1

(
∂xuh − 1

2
(p1 + p2)

)
, ϕh

)

K (t)

−
〈
ωK (t),1{{ψh}}, ϕintK (t)

h nK (t),x

〉

∂K (t)

+
〈
ωK (t),1

(
{{ϕh}} − 1

2
ϕ
intK (t)
h

)
, ϕ

intK (t)
h nK (t),x

〉

∂K (t)
, (3.50a)

0 =
(

ωK (t),2

(
∂yuh − 1

2
(q1 + q2)

)
, ϕh

)

K (t)

−
〈
ωK (t),2{{ψh}}, ϕintK (t)

h nK (t),y

〉

∂K (t)

+
〈
ωK (t),2

(
{{ϕh}} − 1

2
ϕ
intK (t)
h

)
, ϕ

intK (t)
h nK (t),y

〉

∂K (t)
. (3.50b)

Before the Eq. (2.33a) can be used to state the next error equation, we need to make
some preparations. First of all, it should be noted that the function ϕh has time-dependent
coefficients on the reference cell. Nevertheless, by a simple calculation it can be shown that
∂tϕh ∈ Vh,2 (t). Hence, the transport Eq. (2.13) with the test function v = 1 and the Eq. (2.16)
provide

(∂tψh, ϕh)K (t) + (∇ · (ωψhϕh) , 1)K (t)

= d

dt
(ψh, ϕh)K (t) − (ψh, ∂tϕh)K (t) = 0. (3.51)

In addition, it follows

(∂tϕh, ϕh)K (t) + (∇ · (ω (ϕh)
2) , 1

)
K (t)

= 1

2

d

dt
(ϕh, ϕh)K (t) + 1

2

(∇ · (ω (ϕh)
2) , 1

)
K (t) (3.52)

by the transport Eq. (2.13) with the test function v = 1. Next, the Taylor formula supplies

H

(
p1 + p2

2
,
q1 + q2

2
, x
)

= H (∇u, x) − ∂pH (∇u, x)

(
∂xu − p1 + p2

2

)
− ∂q H (∇u, x)

(
∂yu − q1 + q2

2

)

+ 1

2
∂2pH (�1,�2, x)

(
∂xu − p1 + p2

2

)2

+ 1

2
∂2q H (�1,�2, x)

(
∂yu − q1 + q2

2

)2

+ ∂p∂q H (�1,�2, x)

(
∂xu − p1 + p2

2

)(
∂yu − q1 + q2

2

)
, (3.53)

where �1 is a value between ∂xu as well as p1+p2
2 and �2 is a value between ∂yu as well as

q1+q2
2 .
Moreover, since u is a smooth solution of the initial value problem (1.1), it follows for all

v ∈ Vh,2(t) and all cells K (t) ∈ T(t)

0 = (∂t u, v)K (t) + (∇ · (ωuv) , 1)K (t) + (H (∂xu, ∂yu, x
)
, v
)
K (t)

− 〈ωu, vintK (t)nK (t)
〉
∂K (t) , (3.54)
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Next, we subtract the Eq. (2.34) from the Eq. (3.54) and plug the test function v = ϕh in the
result. Then, we apply the equations (3.51) as well as (3.52) and the Taylor expansion (3.53)
to rewrite the result for all cells K (t) ∈ T(t) as follows

1

2

d

dt
(ϕh, ϕh)K (t) = b1

(
ω1, ωK (t),1, u, uh, nK (t),x

)+ b1
(
ω2, ωK (t),2, u, uh, nK (t),y

)

+ b2 (u, uh, p1, p2, q1, q2) + b3
(
ωK (t),1, u, uh, p1, p2

)

+ b4
(
ωK (t),2, u, uh, q1, q2

)
, (3.55)

where for s = 1, 2 and i = x, y

b1
(
ωs, ωK (t),s, u, uh, nK (t),i

)

:=
〈(

ωs,K (t) − ωs
) {{ψh}}, ϕintK (t)

h nK (t),i

〉

∂K (t)

−
〈(

ωs,K (t) − ωs
) {{ϕh}}, ϕintK (t)

h nK (t),i

〉

∂K (t)

+ 1

2

〈(
ωs,K (t) − ωs

)
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),i

〉

∂K (t)
, (3.56a)

b2 (u, uh, p1, p2, q1, q2)

:= −1

2

(

∂2pH (�1,�2, x)

(
∂xu − p1 + p2

2

)2

, ϕh

)

K (t)

− 1

2

(

∂2q H (�1,�2, x)

(
∂yu − q1 + q2

2

)2

, ϕh

)

K (t)

−
(

∂p∂q H (�1,�2, x)

(
∂xu − p1 + p2

2

)(
∂yu − q1 + q2

2

)
, ϕh

)

K (t)
, (3.56b)

b3
(
ωK (t),1, u, uh, p1, p2

)

:=
((

∂pH (∇u, x) − ω1,K (t)
) (

∂xu − p1 + p2
2

)
, ϕh

)

K (t)

+ 1

2

(
λK (t) (p2 − p1) , ϕh

)
, (3.56c)

b4
(
ωK (t),2, u, uh, q1, q2

)

:=
((

∂q H (∇u, x) − ω2,K (t)
) (

∂yu − q1 + q2
2

)
, ϕh

)

K (t)

+ 1

2

(
μK (t) (q2 − q1) , ϕh

)
. (3.56d)

The next steps in the proof of Theorem 3.5 are similar as in the proof of Theorem 3.3.
First, we estimate the quantities (3.56). It follows,

∑

K (t)∈T(t)

(
b1
(
ω1, ωK (t),1, u, uh, nK (t),x

)+ b1
(
ω2, ωK (t),2, u, uh, nK (t),y

))

+
∑

K (t)∈T(t)

b2 (u, uh, p1, p2, q1, q2) ≤ C
(
h2k+2 + ‖ϕh‖2L2(�)

)
(3.57)
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by the inequality (3.49) for the grid velocity and the same analysis as in the proof of Theo-
rem 3.3. Moreover, we will prove that it holds

∑

K (t)∈T(t)

(
b3
(
ωK (t),1, u, uh, p1, p2

)+ b4
(
ωK (t),1, u, uh, q1, q2

))

≤ C
(
h2k+1 + ‖ϕh‖2L2(�)

)
. (3.58)

We would like to mention that it is not straightforward to derive the estimate (3.58), since
an intensive case analysis is required. At the end of this section, we sketch the basic steps in
the proof by presenting the evaluation of the most important case. Furthermore, it should be
noted that the constants in (3.57) and (3.58) are independent of uh and h.

Next, the Eq. (3.55) is summed over all cells K (t) ∈ T(t) and the inequalities (3.57),
(3.58) and Gronwall’s inequality are applied. This provides the inequality

‖ϕh‖L2(�) ≤ Chk+1. (3.59)

The inequality (3.59) and the interpolation inequality (2.17) yield for any t ∈ [0, T ] a L2-
estimate of the error eh . Finally, we obtain the desired error estimate by taking the maximum
of the L2-estimate over all t ∈ [0, T ]. ��

In the following the basic ideas to prove the inequality (3.58) are sketched.

Lemma 3.6 Suppose the same assumptions as in Theorem 3.5. Then there exists a constant
C, independent of uh and h, such that it holds the inequality (3.58).

Proof We sketch the proof for the quantity
∑

K (t)∈T(t)
b3
(
ω1,K (t), u, uh, p1, p2

)
the quantity

∑
K (t)∈T(t)

b4
(
ω2,K (t), u, uh, q1, q2

)
can be estimated similar by applying the error Eqs.

(3.48c) and (3.48d).
The proof of the inequality follows in two steps. First, the cell interfaces need to be

analyzed carefully by a case analysis. Afterward, we apply the results of the case analysis to
estimate the Eq. (3.56c) summed over all cells K (t) ∈ T(t). The case analysis is determined
by the sign of the function ∂pH (∇u, x) − ω1 (x, t) in two adjacent cells. Seven different
cases appear, since H ∈ C2

(
R
2 × �

)
and the grid velocity is continuous in the spatial

variables. The evaluation of these cases ensues similar as in the proof of Lemma 3.4. We
multiply the error Eq. (3.48) by the parameter (2.31) and add or subtract the result from
the quantity (3.56a). In this paper, we show merely the analysis of the case: The function
∂pH (∇u, x)−ω1 (x, t) is positive in both cells. This is the most important case, since a loss
of accuracy appears in this case. All the other cases can be analyzed by similar arguments.

At first, we obtain for an arbitrary cell K (t) ∈ T(t)

b3
(
ωK (t),1, u, uh, p1, p2

)

=
((

∂pH (∇u, x) − ωK (t),1 − λK (t)
) (

∂xu − p1 + p2
2

)
, ϕh

)

K (t)

+ λK (t)

〈
ψ

−,x
h − ϕ

−,x
h + 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)
, (3.60)

where wemultiplied the Eq. (3.48a) by λK (t) and subtract the result from the quantity (3.56c).
By the inequality (3.3) in Lemma 3.1 and the inequality (3.49) for the grid velocity follows
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∣
∣∂pH (∇u, x) − ωK (t),1 − λK (t)

∣
∣ ≤ ∣

∣∂pH (∇u, x) − ω1,K (t) (x, t) − λK (t)
∣
∣

+ ∣∣ω1 (x, t) − ωK (t),1
∣
∣ ≤ Ch. (3.61)

Hence, by applying the Cauchy–Schwarz inequality and Young’s inequality, the volume
integral in (3.60) can be estimated as follows
(
(
∂pH (∇u, x) − ωK (t),1 − λK (t)

)
(

∂xu − p1 + p2
2

)
, ϕh

)

K (t)

≤ C
(
h2
(
‖∂xψh‖2L2(K (t)) + ‖∂xϕh‖2L2(K (t)) + ‖ηh‖2L2(K (t))

)
+ ‖ϕh‖2L2(K (t))

)
. (3.62)

Next, we would like to estimate the quantity (3.56a) summed over two adjacent cells.
Therefore, henceforth, K (t) ∈ T(t) is an arbitrary cell. We apply the same notation as in the
proof of Lemma 3.2 for the adjacent cells, edges and outward normals of the cell K (t) ∈ T(t).
However, in this proof, we fix the index ν ∈ {1, 2, 3} and analyze only the situation along the
edge eν

K (t) which is shared by the cell K (t) and the adjacent cell Kν (t). We start with the
analysis of the surface integrals, which appear by the Eq. (3.60), when the quantity (3.56a)
is summed over the cells K (t) and Kν (t). Then, since nν

K (t) = −nν
Kν (t) along the eν

K (t), it
follows

λK (t)

〈
ψ

−,x
h − ϕ

−,x
h + 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),x

〉

∂K (t)

+ λKν (t)

〈
ψ

−,x
h − ϕ

−,x
h + 1

2
ϕ
intKν (t)
h , ϕ

intKν (t)
h nKν (t),x

〉

∂Kν (t)

= R
(
ψh, ϕh, e

ν,c
K (t), e

ν,c
Kν (t)

)
+ S±

(
ψh, ϕh, nK (t),x

)
, (3.63)

where eν,c
K (t) := ∂K (t) \eν

K (t), e
ν,c
Kν (t) := ∂Kν (t) \eν

K (t) and

R
(
ψh, ϕh, e

ν,c
K (t), e

ν,c
Kν (t)

)

:= λK (t)

〈
ψ

−,x
h − ϕ

−,x
h + 1

2
ϕ
intK (t)
h , ϕ

intK (t)
h nK (t),x

〉

eν,c
K (t)

+ λKν (t)

〈
ψ

−,x
h − ϕ

−,x
h + 1

2
ϕ
intKν (t)
h , ϕ

intKν (t)
h nKν (t)(t),x

〉

eν,c
Kν (t)

. (3.64)

The function S±
(
ψh, ϕh, nK (t),x

)
is defined as follows: If nν

K (t),x > 0, it is by (3.16a)

S+
(
ψh, ϕh, nK (t),x

) := (
λK (t) − λKν (t)

) 〈
ψ

intK (t)
h , ϕ

intK (t)
h nν

K (t),x

〉

eν
K (t)

+ 1

2

(
λKν (t) − λK (t)

) 〈(
ϕ
intK (t)
h

)2
, nν

K (t),x

〉

eν
K (t)

− λKν (t)

〈
ψ

intK (t)
h , [[ϕh]]nν

K (t),x

〉

eν
K (t)

− 1

2
λKν (t)

〈
([[ϕh]])2 , nν

K (t),x

〉

eν
K (t)

(3.65)

and if nν
K (t),x < 0, it is by (3.16b)

S−
(
ψh, ϕh, nK (t),x

) := (
λK (t) − λKν (t)

) 〈
ψ

intKν (t)
h , ϕ

intKν (t)
h nν

K (t),x

〉

eν
K (t)
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+ 1

2

(
λKν (t) − λK (t)

)
〈(

ϕ
intKν (t)
h

)2
, nν

K (t),x

〉

eν
K (t)

− λK (t)

〈
ψ

intKν (t)
h , [[ϕh]]nν

K (t),x

〉

eν
K (t)

+ 1

2
λK (t)

〈
([[ϕh]])2 , nν

K (t),x

〉

eν
K (t)

. (3.66)

It is assumed that the Hamiltonian and the grid velocity have bounded derivatives. Thus, there
exists a constant C1, which is independent of uh and h, such that

∣
∣λK (t)

∣
∣ + ∣

∣λKν (t)
∣
∣ ≤ C1.

Furthermore, by the inequality (3.6) in Lemma 3.1 holds
∣
∣λK1(t) − λK2(t)

∣
∣ ≤ C�

4h. Therefore,
we obtain by Young’s inequality

S+
(
ψh, ϕh, nK (t),x

)+ S−
(
ψh, ϕh, nK (t),x

)

≤ C (h + 1)

〈(
ψ

intK (t)
h

)2 +
(
ψ

intKν (t)
h

)2
, 1

〉

eν
K (t)

≤ Ch

〈(
ϕ
intK (t)
h

)2 +
(
ϕ
intKν (t)
h

)2
, 1

〉

eν
K (t)

. (3.67)

It should be noted that in the other cases the surface integrals can be summarized in a
similarmatter as in theEq. (3.63). Furthermore, the estimates (3.62) and (3.67) can be derived.
Hence, when we sum the quantity (3.56a) over all cells K (t) ∈ T(t), the surface integrals
at the cell interfaces can be summarized in the shape of (3.65) and (3.66). Moreover, the
surface integrals at the boundary faces canceled out, since the problem (1.1) is investigated
with periodic boundary conditions. Thus, a summation of the quantity (3.56c) over all cells
K (t) ∈ T(t), the estimates (3.62) as well as (3.67), the inverse inequalities (2.12) and the
interpolation inequalities (2.17) provide

∑

K (t)∈T(t)

b3
(
ω1,K (t), u, uh, p1, p2

)

≤ C (h + 1)
∑

K (t)∈T(t)

3∑

ν=1

〈(
ψ

extK (t)
h

)2 +
(
ψ

intK (t)
h

)2
, 1

〉

eν
K (t)

+ Ch
∑

K (t)∈T(t)

3∑

ν=1

〈(
ϕ
extK (t)
h

)2 +
(
ϕ
intK (t)
h

)2
, 1

〉

eν
K (t)

+ Ch2
(
‖∂xψh‖2L2(�)

+ ‖∂xϕh‖2L2(�)
+ ‖ηh‖2L2(�)

)
+ C ‖ϕh‖2L2(�)

≤ C
(
h2k+1 + ‖ϕh‖2L2(�)

)
. (3.68)

Note that in the inequality (3.67) an extra h to control the loss of accuracy by the inverse
inequalities (2.12) is missing. Thus, the interpolation estimates (2.17) provide merely the
suboptimal order h2k+1 instead of the optimal order h2k+2. Furthermore, in the Eq. (3.68)
each boundary term has been counted at most twice. This does not affect the error estimate.

��
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4 Numerical Experiments

In this section, we display the performance of the ALE-LDG method for the Hamilton
Jacobi equations with convex and noneconvex Hamiltonian in one and two dimension. For
the two-dimensional problem, triangular meshes are used in our simulation. We adopt TVD
Runge–Kutta methods (c.f. Gottlieb and Shu [12]) for the time discretization, which are
convex combinations of the forward Euler method. Thus, by an adequate adjustment of the
CFL condition, the results for the forward Euler discretization can be extended to TVD
Runge–Kutta methods. We obtain the optimal order of accuracy on the moving grids as the
static gridswhen the approximation space (2.9) is defined by Pk polynomials on the reference
cell.

Example 4.1 Variable coefficient linear Hamiltonian equation

∂t u + sin(x)∂xu = 0, 0 ≤ x ≤ 2π (4.1)

with periodic boundary condition and initial condition u(x, 0) = sin(x). The exact solution
is

u(x, t) = sin
(
2 tan−1

(
e−t tan

( x
2

)))
.

In Table 1 we compare the convergence history of the ALE-LDG method by using piece-
wise P2 and P3 polynomial elements with different cell numbers N at t = 1 on the static
uniform grid and the moving grid x j+ 1

2
(tn) = x j+ 1

2
(0) + 0.4 sin(tn) sin(x j+ 1

2
(0)) respec-

tively. The moving grid starts from an uniform grid initially. And we use the notations uSh
and uM

h for the numerical solutions on the static and moving grid respectively. It can be seen
that numerically the optimal convergence order can be obtained for both grids.

Example 4.2 Nonsmooth variable coefficient linear Hamiltonian equation

∂t u + sign(cos(x))∂xu = 0, 0 ≤ x ≤ 2π (4.2)

with periodic boundary condition and initial condition u(x, 0) = sin(x).

Table 1 Errors and convergence rates at time t = 1 for the variable coefficient linear Hamiltonian equation
in Example 3.1

N u − uSh u − uSh u − uMh u − uMh

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

P2 20 2.77E−03 – 5.29E−03 – 1.45E−03 – 2.38E−03 –

40 4.12E−04 2.75 1.13E−03 2.22 2.79E−04 2.80 3.71E−04 2.68

80 5.71E−05 2.85 1.63E−04 2.79 2.79E−05 2.90 6.09E−05 2.61

160 7.59E−06 2.91 2.47E−05 2.72 3.63E−06 2.94 8.72E−06 2.81

320 9.81E−07 2.95 3.31E−06 2.90 4.65E−07 2.97 1.18E−06 2.88

P3 20 2.59E−04 – 7.33E−04 – 7.53E−05 – 2.14E−04 –

40 1.98E−05 3.71 6.90E−05 3.41 4.71E−06 4.00 1.49E−05 3.84

80 1.34E−06 3.88 4.74E−06 3.86 2.93E−07 4.01 9.68E−07 3.95

160 8.69E−08 3.95 3.22E−07 3.88 1.81E−08 4.02 6.08E−08 3.99

320 5.50E−09 3.98 2.08E−08 3.96 1.13E−09 4.00 3.84E−09 3.98
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Fig. 2 The ALE-LDG solutions uSh and uMh at time t = 1 for nonsmooth variable coefficient linear equation

in Example 3.2, with N = 80, P2 polynomial basis

Table 2 Errors and numerical orders at time t = 0.8 for Burgers’ equation in Example 3.3

N u − uSh u − uSh u − uMh u − uMh
L2 norm Order L∞ norm Order L2norm Order L∞ norm Order

P2 20 1.62E−03 – 3.12E−03 – 1.19E−03 – 2.44E−03 –

40 2.94E−04 2.46 1.00E−03 1.94 1.88E−04 2.67 7.86E−04 1.63

80 4.00E−05 2.88 1.54E−04 2.70 2.62E−05 2.84 1.16E−04 2.76

160 5.18E−06 2.95 2.20E−05 2.81 3.33E−06 2.97 1.47E−05 2.97

320 6.55E−07 2.99 2.81E−06 2.97 3.98E−07 3.07 1.74E−06 3.08

P3 20 4.68E−04 – 2.00E−03 – 1.81E−04 – 1.01E−03 –

40 1.23E−05 5.25 5.60E−05 5.15 2.31E−05 2.97 1.36E−04 2.89

80 2.11E−06 2.54 1.63E−05 1.78 1.32E−06 4.13 1.24E−05 3.45

160 1.56E−07 3.75 1.59E−06 3.36 8.48E−08 3.96 8.83E−07 3.81

320 9.96E−09 3.97 1.06E−07 3.90 5.42E−09 3.97 5.82E−08 3.92

For this example, there will be a shock forming in the derivative ∂xu at x = π
2 and a

rarefaction wave forming at x = 3π
2 . Figure 2 shows the ALE-LDG solutions uSh and uM

h at
time t = 1 with piecewise quadratic polynomial approximations. The same grids are adopted
as in the last example.Wefind that both numerical solutions converge to the viscosity solution.

Example 4.3 One-dimensional Burgers’ equation

∂t u + (∂xu + 1)2

2
= 0, 0 ≤ x ≤ 2π (4.3)

with periodic boundary condition and initial condition u(x, 0) = − cos(x).

The solution is smooth till the discontinuous derivative develops at t = 1. In Table 2, we
show the L2 and L∞ errors of uSh and uM

h on the static and moving grids at time t = 0.8
when the solution is still smooth. The moving grid is the same as in the first example. The
expected optimal order is obtained for uSh and uM

h with piecewise P2 and P3 polynomial
basis. For t = 1.6 after the singularity develops, we show the numerical solutions uSh and u

M
h

with piecewise P2 polynomial approximation in Fig. 3. The singularity is clearly resolved
for both cases.
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Fig. 3 Comparison of the exact and theALE-LDG solutions uSh and uMh at time T = 1.6 for Burgers’ equation

in Example 3.3, with N = 80, P2 polynomial basis
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Fig. 4 The ALE-LDG solutions uSh and uMh at time T = 1 for Burgers’ equation with nonsmooth initial

condition in Example 3.3, with N = 80, P2 polynomial basis

Another example is the Burgers’ equation

∂t u + (∂xu)2

2
= 0, 0 ≤ x ≤ 2π (4.4)

with nonsmooth initial condition

u(x, 0) =
{

π − x, x < π,

x − π, x ≥ π,

and periodic boundary condition. This is a benchmark problem to check the convergence of
the numerical solution to the viscosity solution. In Fig. 4 we plot the ALE-LDG solutions
uSh and uM

h with piecewise P2 polynomial approximations at time t = 1 after the shock in
derivative forms. Both numerical solutions converge to the viscosity solution.

Example 4.4 One-dimensional nonconvex Hamiltonian equation

∂t u − cos(∂xu + 1) = 0, 0 ≤ x ≤ 2π (4.5)

with periodic boundary condition and initial condition u(x, 0) = − cos(x).

This example is designed to check the convergence of the numerical solution to the vis-
cosity solution for a nonconvex Hamiltonian problem. In Fig. 5 we plot the ALE-LDG
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Fig. 5 The ALE-LDG solutions uSh and uMh at time T = 1.5
π2 for nonconvex Hamiltonian equation in Example

3.4, with N = 80, P2 polynomial basis

Table 3 Errors and numerical orders at time t = 0.8 for two-dimensional Burgers’ equation in Example 3.5

N u − uSh u − uSh u − uMh u − uMh

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

P2 10 2.84E−02 – 3.61E−02 – 2.87E−02 – 3.51E−02 –

20 5.50E−03 2.37 5.91E−03 2.61 4.14E−03 2.80 8.26E−03 2.09

40 8.40E−04 2.71 1.95E−03 1.60 6.23E−04 2.73 1.60E−03 2.37

80 1.07E−04 2.97 2.76E−04 2.82 8.08E−05 2.95 2.57E−04 2.64

160 1.30E−05 3.04 4.33E−05 2.67 1.01E−05 3.00 3.53E−05 2.86

P3 10 8.29E−03 – 1.16E−02 – 5.74E−03 – 1.23E−02 –

20 1.88E−03 2.14 4.89E−03 1.25 1.08E−03 2.40 3.59E−03 1.77

40 3.78E−05 5.64 8.47E−05 5.85 8.31E−05 3.70 4.40E−04 3.03

80 7.48E−06 2.34 3.52E−05 1.27 6.01E−06 3.79 3.86E−05 3.51

160 5.44E−07 3.78 3.70E−06 3.25 3.88E−07 3.96 2.78E−06 3.80

solutions uSh and uM
h with piecewise P2 polynomial approximations at time t = 1.5

π2

after the shock in the derivative ∂xu forms. The moving grid is defined as x j+ 1
2
(tn) =

x j+ 1
2
(0) + 0.8 sin(tn) sin(2πx j+ 1

2
(0)). It shows that both numerical solutions converge to

the viscosity solution.

Example 4.5 Two-dimensional Burgers’ equation

∂t u + (∂xu + ∂yu + 1)2

2
= 0, −2π ≤ x, y ≤ 2π (4.6)

with periodic boundary condition and initial condition u(x, 0) = − cos( x+y
2 ).

Similar as the one-dimensional Burgers’ equation, the solution is smooth till the discon-
tinuous derivative develops at t = 1. In Table 3, we show the L2 and L∞ errors of ALE-LDG
solutions uSh and uM

h on the static and moving grids at time t = 0.8. The moving grid is
defined as

⎧
⎨

⎩

x j (tn) = x j (0) + 0.4π sin
(
tn
7

)
sin
(
x j (0)
2

)
sin
(
y j (0)
2

)
,

y j (tn) = y j (0) + 0.3π sin
(
tn
7

)
sin
(
x j (0)
2

)
sin
(
y j (0)
2

)
,
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Fig. 6 The ALE-LDG solutions uSh (left) and uMh (right) and the corresponding grids at time t = 1.6 for

two-dimensional Burgers’ equation in Example 3.5, P2 polynomial basis

where (x j , y j ) are the vertices of the triangular mesh. The moving mesh starts from an
uniform criss triangular mesh with N cells in each direction. The uniform mesh is also
adopted for the numerical solution uSh . The expected optimal order is obtained for uSh and
uM
h with piecewise P2 and P3 polynomial basis. For t = 1.6 after the singularity develops

in the partial derivatives ∂xu and ∂yu, we show that the numerical solutions uSh and uM
h

with piecewise P2 polynomial approximation in Fig. 6. For both numerical solutions, the
singularity is clearly resolved.

5 Conclusions

In this paper, an ALE-LDG method for solving Hamilton–Jacobi equations with time-
dependent approximation spaces was developed. In the one dimensional case, the description
of the ALE kinematic ensues by local time-depending affine linear mappings. This approach
ensures that the ALE-LDG method satisfies the GCL for any time discretization method
higher or equal to first order. An optimal a priori error estimate was proven for the semi-
discrete ALE-LDG method. The two dimensional method is designed for moving triangular
meshes, since on these meshes the ALE kinematic can be described similar as in one dimen-
sion. Nevertheless, the two dimensional method satisfies the GCL merely for any time
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discretization method higher or equal to second order. A suboptimal a priori error estimate
was proven for the two dimensional semi-discrete ALE-LDG method. Furthermore, in both
dimensions, the forward Euler piecewise constant ALE-LDG methods can be written as a
monotone scheme.

Numerically, the one and two dimensional ALE-LDGmethodswere tested for twomoving
mesh scenarios in a variety of one and two dimensional examples. The first scenario described
the situation of static fixed mesh. In the second scenario the grid point distribution was
given by a certain formula. The methods preformed in both scenarios well. The stability,
convergence and optimal accuracy was demonstrated in all test examples.

It should be noted that in the numerical computations a specificmovingmeshmethodology
was not used and themeshmotionwas predetermined.Hence, in a futurework, amovingmesh
methodology for the methods needs to be developed. Furthermore, a detailed investigation
of problems with a nonconvex Hamiltonian and applications of the methods in the context
of front propagation problems are worthwhile.
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