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Abstract Based on the same hybridization framework of Don et al. (SIAM J Sci Com-
put 38:A691–A711 2016), an improved hybrid scheme employing the nonlinear 5th-order
characteristic-wise WENO-Z5 finite difference scheme for capturing high gradients and
discontinuities in an essentially non-oscillatory manner and the linear 5th-order conserva-
tive compact upwind (CUW5) scheme for resolving the fine scale structures in the smooth
regions of the solution in an efficient and accurate manner is developed. By replacing the
6th-order non-dissipative compact central scheme (CCD6) with the CUW5 scheme, which
has a build-in dissipation, there is no need to employ an extra high order smoothing procedure
to mitigate any numerical oscillations that might appear in an hybrid scheme. The high order
multi-resolution algorithm of Harten is employed to detect the smoothness of the solution.
To handle the problems with extreme conditions, such as high pressure and density ratios
and near vacuum states, and detonation diffraction problems, we design a positivity- and
bound-preserving limiter by extending the one developed in Hu et al. (J Comput Phys 242,
2013) for solving the high Mach number jet flows, detonation diffraction problems and det-
onation passing multiple obstacles problems. Extensive one- and two-dimensional shocked
flow problems demonstrate that the new hybrid scheme is less dispersive and less dissipative,
and allows a potential speedup up to a factor of more than one and half times faster than the
WENO-Z5 scheme.
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1 Introduction

Characteristic-wise Weighted Essentially Non-Oscillatory (WENO) conservative finite dif-
ference scheme as a class of high order/high resolution nonlinear scheme for simulating flows
with both shock waves and small scale structures was initially developed in [12] (for details
and history of WENO scheme, see [17] and references contained therein). The key idea is
that the use of a dynamic set of substencils where a nonlinear convex combination of lower
order (local) polynomials adapts either to a higher order (global) polynomial approximation
at smooth stencils, or to a local polynomial approximation that avoids interpolation across
discontinuities. However, there are certain disadvantages of usingWENO scheme for solving
hyperbolic conservation laws for certain class of problems. For example, it is computationally
expensive than other low order nonlinear shock capturing schemes (like TVD). Moreover,
it is, in general, too dissipative for certain class of problems (for example, compressible
turbulence) than the linear schemes at a given order and resolution.

High order linear schemes which have superior dispersion and dissipation properties and
computationally efficient, are widely used in the direct numerical simulations. Some often
used high order linear schemes are the central finite difference scheme (CFD) [4] that has a
strongdispersive error, the bandwidth optimizedfinite difference scheme (BFD) that increases
the resolution at a cost of a reduced order of accuracy, and the compact finite difference
(Compact) scheme that requires solving a system of banded matrix equation [1,13,15]. High
order Compact schemes are a class of spectral-like scheme which are sufficiently accurate
to resolve both small and large scale structures presented at direct numerical simulation of
highly complex flows. In practice, there are two types of Compact scheme, the compact
central finite difference (CCD) scheme and the compact upwind finite difference (CUW)
scheme. As we know, the CCD scheme has no numerical dissipations. However, a small
amount of numerical dissipation for a numerical scheme is often necessary in order to damp
out oscillations issuing from initial and boundary conditions, as well as from aliasing error.
The class of upwind scheme,which havemore numerical dissipation, sometime also have less
accuracy but can get a better numerical resolution, have beenwidely used in the computational
fluid dynamics. For this purpose, the compact type upwind schemes have been developed
in [1,18,26], which drop the restriction of symmetric coefficients, thus allowing the scheme
to be upwind even with a centered stencil. However, when applied the Compact scheme to
simulate the shocked flows, known as the Gibbs phenomenon generated, that causes loss of
accuracy and numerical instability.

A natural remedy to alleviate the corresponding disadvantage of the high order WENO
and linear schemes is to avoid using the WENO scheme and to use high order linear scheme
in smooth regions of the solution wherever and whenever possible in practice. In the last two
decades, the hybrid compact-WENO scheme has been employed in many different research
areas. In [1], a class of upwind-biased Compact schemes is proposed in a general form,
suitable for the time accurate direct numerical simulation of fluid convection problems and
coupled with ENO scheme for the shock-turbulence interaction problems. The conservative
hybrid compact-WENO schemes for shock-turbulence interaction is constructed by Piroz-
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zoli in [15] which demonstrated better resolution properties than standard WENO schemes
and hybrid compact-ENO schemes [1] as well, at a lower computational cost. Ren et al.
developed a class of characteristic-wise hybrid compact-WENO scheme for solving hyper-
bolic conservation laws [16]. In [1,15,16], they used a low order smooth indicator as the
criterion between the switch of the Compact and WENO schemes, this is not good enough
especially for the complex flow filed which contain discontinuous and high frequency waves
(such as shock-density problem). The characteristic-wise hybrid compact-WENO scheme
in [16] results in a block-tridiagonal matrix which is computationally expensive, but not a
tridiagonal system which can be solved efficiently. In our previous work [5,14], a hybrid
compact-WENO scheme, based on the 5th-order characteristic-wise WENO scheme and the
high resolution spectral-like 6th-order compact central finite difference scheme (we refer to
it as the Hybrid-CCD6 scheme for simplicity) was developed for the hyperbolic conserva-
tion laws and detonation wave simulations respectively. The smoothness of the solution is
measured by the high order multi-resolution (MR) analysis [8] which can differentiate a high
frequency wave from a high gradient/shock at each grid points. An 8th-order finite difference
filtering [19] is also applied to stabilize the Hybrid-CCD6 scheme.

Furthermore, under certain extreme conditions, such as a strong shock with a very large
density and/or pressure jump ratio and/or a near vacuum state with a very low density and/or
pressure, the WENO scheme or Hybrid scheme still generates (despite small) numerical
oscillations which cause the negative pressure and/or density when solving the Euler equa-
tions. In order to guarantee the positivity of these important physical quantities (density and
pressure), Zhang et al. [22] designed an elaborate positivity-preserving high order WENO
finite difference schemes. General equations of state and source terms are also considered
in [24]. In [9], Hu et al. simply weighted the high-order WENO flux with the positively-
preserving first-order Lax–Friedrichs flux at a location where the density and/or pressure is
less than some critical positive value, to ensure the positivity-preserving property for general
high-order conservative schemes. In [7], Guo et al. designed a positivity-preserving hybrid
compact-WENO finite volume scheme following the ideas in [22,23].

In this paper,we aim to the conjugation of high order conservative compact upwind scheme
and the WENO-Z scheme for numerical simulations of compressible Euler equations. The
5th-order characteristic-wise WENO-Z5 finite difference scheme [2,3] and 5th-order CUW
scheme [15] are employed to resolve solutions in the non-smooth parts and the smooth parts
of the solution respectively. A high order MR analysis is performed at the beginning of
Runge–Kutta step to measure the smoothness of solutions at a given grid point to maintain
the high order/resolution nature of the hybrid scheme. Furthermore, a positivity- and bound-
preserving limiter is also designed for the new hybrid scheme to simulate the problems
with extreme conditions. We refer to the new hybrid scheme with a positivity- and bound-
preserving limiter as the Hybrid-CUW5 scheme. Different from the Hybrid-CCD6 scheme,
the Hybrid-CUW5 scheme limit the numerical oscillations by the compact upwind scheme
due to its own dissipation and at the same time get a better resolution properties. Moreover,
it is difficult to design a positivity-preserving limiter for the Hybrid-CCD6 scheme, which
computes the derivative of the numerical flux using the CCD scheme directly in the smooth
regions.

The paper is organized as follows. In Sect. 2, we briefly review the conservative WENO-
Z5 finite difference scheme, conservative CUW scheme and positivity-preserving limiter
for the Euler equations, then we extend the positivity-preserving limiter to the detonation
equations. In Sect. 3, the efficiency and accuracy of the Hybrid-CUW5 scheme are verified by
comparing with theWENO-Z5 and Hybrid-CCD6 schemes in simulating numerous one- and
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two-dimensional shocked flow problems with original and extreme conditions. Concluding
remarks are given in Sect. 4.

2 Numerical Schemes

Thenonlinear systemof hyperbolic conservation laws of one-dimensional compressibleEuler
equation can be written compactly as

Qt + ∇ · F(Q) = 0, (1)

with

Q =
⎡
⎣

ρ

ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + P
(E + P)u

⎤
⎦ , (2)

are vectors of the conservative variables and flux, where ρ is density, P is pressure, u is the
velocity. The total energy E is given by,

E = P

γ − 1
+ 1

2
ρu2, (3)

where γ is the ratio of idea gas.

2.1 WENO-Z5 Finite Difference Scheme

Below is the brief description of the WENO-Z5 finite difference scheme for solving a non-
linear scalar hyperbolic equation in one dimension. Readers are referred to the literature [17]
for discussion on other variants of high order WENO finite difference schemes.

Consider an equidistant grid defined by the points xi = i�x, i = 0, . . . , N , which are
called cell centers, with cell boundaries given by xi+ 1

2
= xi + �x

2 , where �x is the uniform
grid spacing (see Fig. 1). The semi-discretized form of Eq. (1) is transformed into the system
of ordinary differential equations and solved by the method of lines

dQi (t)

dt
= − ∂ f

∂x

∣∣∣∣
x=xi

, i = 0, . . . , N , (4)

where Qi (t) is a numerical approximation to the point value Q(xi , t).

xi xi+1 xi+xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1 ω1

ω0

ω2

Fig. 1 The computational uniformly spaced grid xi and the 5-points stencil S5, composed of three 3-points
substencils {S0, S1, S2}, used for the fifth-order WENO reconstruction step
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To form the flux difference across the uniformly spaced cells and to obtain high-order
numerical flux consistent with the hyperbolic conservation laws, a conservative finite differ-
ence formulation is required at the cell boundaries. By defining a numerical flux function
h(x) implicitly, one has

f (x) = 1

�x

∫ x+ �x
2

x− �x
2

h(ξ)dξ, (5)

such that the spatial derivative in Eq. (4) is approximated by a conservative finite difference
formula at xi ,

dQi (t)

dt
= − 1

�x

(
hi+ 1

2
− hi− 1

2

)
, (6)

where hi± 1
2

= h(xi± 1
2
). High order polynomial interpolations to hi± 1

2
are computed by

using the point values f j = f (x j ), j = i − 2, . . . , i + 2.
The heart of the WENO methodology is the polynomial reconstruction procedure as

discussed here. As shown in the Fig. 1, the 5-points global stencil S5 = (xi−2, . . . , xi+2)

is subdivided into three 3-points substencils Sk, k = 0, 1, 2. The fifth degree polynomial
approximation f̂i+ 1

2
= hi+ 1

2
+ O(�x5) is built through the convex combination of three

second degree interpolation polynomials in substencils Sk , (k = 0, 1, 2) at the cell boundaries
xi+ 1

2
,

f̂i+ 1
2

=
2∑

k=0

ωk f̂
k
(
xi+ 1

2

)
, (7)

where ωk are the normalized nonlinear weights and

f̂ k(xi+ 1
2
) =

2∑
j=0

ck j fi−k+ j , i = 0, . . . , N , (8)

with Lagrangian interpolation coefficients ck j [12].
The regularity of the interpolation polynomial approximation f̂ k(x) of the substencil Sk

at xi is measured by the local lower order smoothness indicators βk , which are given by

βk =
2∑

l=1

�x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl
f̂ k(x)

)2

dx, k = 0, 1, 2. (9)

The explicit expression of the smoothness indicators βk can be found in [12].
In the WENO-Z5 scheme [2,3], the nonlinear weights ωk are defined as

αk = dk

(
1 +

(
τ5

βk + ε

)p)
, ωk = αk∑2

l=0 αl
, k = 0, 1, 2, (10)

where τ5 = |β2 − β0|, which has a leading truncation error of order O(�x5). The coefficients{
d0 = 3

10 , d1 = 3
5 , d2 = 1

10

}
are the ideal weights that, when the solution is sufficiently

smooth, one has {ωk ≈ dk, k = 0, 1, 2} and the WENO-Z5 scheme essentially becomes the
optimal fifth order central upwind scheme. The machine ε (ε = 10−16 in this study) is used
to avoid the division by zero in the denominator and power parameter p (p = 2 in this study)
is chosen to increase the difference of scales of distinct weights at the non-smooth stencils
of the solution [6].
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2.2 Conservative Compact Upwind Finite Difference Schemes

In this subsection, we briefly review the 5th-order compact upwind finite difference (CUW5)
scheme introduced in [15] which is nearly optimal for its resolution properties among the
family of compact schemes they developed.

For the 6th-order compact central finite difference (CCD6) scheme, the derivative of flux
(Eq. 4) is computed at the cell center xi directly as

1

3
f ′
i−1 + f ′

i + 1

3
f ′
i+1 = 1

36�x
(− fi−2 − 28 fi−1 + 28 fi+1 + fi+2). (11)

Readers are referred to [14] for more detailed discussion of its compact matrix representation
and the boundary treatment at the ghost points. To mitigate any numerical oscillations that
might appear in an Hybrid-CCD6 scheme for the non-dissipative property of CCD6 scheme,
we propose to apply high order finite difference filtering

q̂i =
n∑

j=−n

α j qi+ j , (12)

where q is the given function and q̂ is the filtered function. α j are the filtering weights of
order n (in this study we use n = 8) which satisfy the symmetry property α− j = α j , ensuring
no dispersion. One can see [4,19] for detailed discussion of the filter.

In this study, we will employ the 5th-order compact upwind (CUW5) scheme. In contrary
to the CCD6 scheme, the numerical flux is computed at the cell boundaries xi+ 1

2
as

3 f̂i− 1
2

+ 6 f̂i+ 1
2

+ f̂i+ 3
2

= 1

3
( fi−1 + 19 fi + 10 fi+1). (13)

It can be written compactly as

Af̂ = Bf + b, (14)

where A and B are the tridiagonal matrices,

A =

⎛
⎜⎜⎜⎜⎜⎝

6 1
3 6 1

. . .
. . .

. . .

3 6 1
3 6

⎞
⎟⎟⎟⎟⎟⎠

, B = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

19 10
1 19 10

1 19 10
. . .

. . .
. . .

1 19 10
1 19

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which can be numerically solved very efficiently. The vectors f̂ and f are

f̂ =
(
f̂−1/2, f̂1/2, . . . , f̂N−1/2, f̂N+1/2

)T

, f = ( f−1, f0, . . . , fN−1, fN )T .

The vector b is

b =
(
1

3
f−2 − 3 f̂−3/2, 0, . . . , 0,

10

3
fN+1 − f̂N+3/2

)T

,

where f−2 = f0 − 2�x and fN+1 = fN + �x are the ghost points. The numerical flux at
two boundary points f̂−3/2 and f̂N+3/2 are reconstructed by the WENO-Z5 scheme. Then
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Fig. 2 Dispersion and dissipation properties of the UW5, CCD6 and CUW5 schemes

we can obtain the spatial derivative in Eq. (4) by

∂ f

∂x

∣∣∣∣
x=xi

= 1

�x

(
f̂i+ 1

2
− f̂i− 1

2

)
. (15)

Figure 2 shows the spectral analysis [11,15] of the CUW5 scheme, the CCD6 scheme
and the explicit 5th-order upwind (UW5) scheme. It is clear that the CUW5 scheme yields
a much better resolution than both the UW5 and CCD6 schemes. While the dissipation error
is confined to the high wavenumbers ω > 2.5, the CUW5 scheme is much more dissipative
than the other two schemes. The stronger dissipation allows the damping of the high modes
which are often associated with the numerical errors, such as the aliasing error, rounding
error, truncation error and nonlinear error, to remove numerical oscillations and to enhance
the stability of the scheme in solving a nonlinear system of PDE. For nonlinear PDEs such as
the Euler equations, a suitable small amount of numerical dissipation is necessary tomaintain
the stability of the numerical scheme.

2.3 Positivity-Preserving Limiter for Euler Equations

We briefly introduce a positivity-preserving limiter constructed by Hu et al. [9] which simply
weighted the high-order flux with the first-order Lax–Friedrichs flux at a location where
the density and/or pressure is less than some critical positive value, to ensure the positivity-
preserving property for general high order conservative schemes.

Firstly, we denote the momentum ρu = m. We also note that the density and pressure
have the following relations with the conservative variables Q

ρ(Q) = ρ, P(Q) = (γ − 1)

(
E − 1

2

m2

ρ

)
, (16)

through simple derivation and the Jensen’s inequality, for 0 ≤ θ ≤ 1, ρ(Q) and P(Q) have

ρ[(1 − θ)Q1 + θQ2] = (1 − θ)ρ(Q1) + θρ(Q2), (17)

P[(1 − θ)Q1 + θQ2] ≥ (1 − θ)P(Q1) + θ P(Q2), if ρ(Q1), ρ(Q2) > 0. (18)
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Next, the convex set of admissible states is defined by

GE =
{
Q = (ρ,m, E)T | ρ > 0 and P = (γ − 1)

(
E − 1

2

m2

ρ

)
> 0

}
.

A general explicit conservative scheme with the first order stable Euler forward time
integration from t = n�t to t = (n + 1)�t , with a time step size �t , can be written as

Qn+1
i = Qn

i + λ(̂Fi−1/2 − F̂i+1/2), (19)

and

λ = �t

�x
= CFL

α
, (20)

where c = √
γ P/ρ is the sound speed, α = (‖u‖ + c)max is the spectral radius of the

Jacobian of the flux F, and CFL is the stable CFL number.
The positivity-preserving property for Eq. (19) refers to the fact that if Qn

i ∈ GE then
Qn+1

i ∈ GE . Since Eq. (19) can be rewritten as a convex combination

Qn+1
i = 1

2
(Qn

i + 2λF̂i−1/2) + 1

2
(Qn

i − 2λF̂i+1/2) = 1

2
Q−

i + 1

2
Q+

i , (21)

then a sufficient condition for positivity-preserving scheme is that Q±
i ∈ GE .

If the first order Lax–Friedrichs flux is used as the discretization of the finite difference
numerical flux,

F̂i+1/2 = F̂LF
i+1/2 = 1

2

[
Fn
i + Fn

i+1 − α(Qn
i+1 − Qn

i )
]
, (22)

in Eq. (21), then Q±
i ∈ GE under the CFL condition CFL ≤ 1

2 [9].
The key idea of the positivity-preserving limiter is to weight the high order flux with the

first order Lax–Friedrichs flux at the locations where the density (pressure) is less than a user
defined critical positive value ε, so that, in the worst case scenario, the final flux F̂ becomes
the first order Lax–Friedrichs flux when ρ < ερ (P < εP ), and mimics a weighted high and
low order fluxes, otherwise.

Positivity-Preserving Limiter

1. Initialize θ+ = θ− = 1.
2. If �(Q+

i ) < ε�, set θ+ =
(
�(QLF,+

i ) − ε�

)
/
(
�(QLF,+

i ) − �(Q+
i )
)
.

3. If �(Q−
i+1) < ε�, set θ− =

(
�(QLF,−

i+1 ) − ε�

)
/
(
�(QLF,−

i+1 ) − �(Q−
i+1)

)
.

4. Set θ∗ = min(θ+, θ−) and F̂∗
i+1/2 = (1 − θ∗)̂FLF

i+1/2 + θ∗F̂i+1/2.

� is either density ρ or pressure P . ε� = min(εmin,�min), where εmin (εmin = 10−13 is
used in this study) is an user defined minimum value and �min is an user defined minimum
density or pressure, which is often taken from the initial condition. F̂∗

i+1/2 is the limited flux,
0 ≤ θ± ≤ 1 are the limiting factors corresponding to the two neighboring cells, which share
the same flux F̂i+1/2.

After applying the positivity-preserving flux limiter, Eq. (21) becomes

Qn+1
i = 1

2

(
Qn

i + 2λF̂∗
i−1/2

)
+ 1

2

(
Qn

i − 2λF̂∗
i+1/2

)
= 1

2
Q∗,−

i + 1

2
Q∗,+

i , (23)

which can be proven that Q∗,±
i ∈ GE through the properties of Eqs. (17) and (18). Hence,

we have Qn+1
i ∈ GE and refer to [9] for details.
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Remark 1 In practice, the density is positive-preserved first to obtain the limited F̂∗
i+1/2.

Then the pressure is positivity-preserved afterward to update the limited flux F̂∗
i+1/2.

Also note that the limiter can be applied at each stage of the 3rd-order TVD Runge–Kutta
method, which is a convex combination of Euler-forward time steps.

2.4 Positivity-/Bound-Preserving Limiter for Detonation Equations

The one-dimensional one-step reaction of the idea gas detonation equation is given by

Qt + ∇ · F(Q) = S, (24)

with

Q =

⎡
⎢⎢⎣

ρ

ρu
E

ρ f1

⎤
⎥⎥⎦ ,F =

⎡
⎢⎢⎣

ρu
ρu2 + P
(E + P)u

ρ f1u

⎤
⎥⎥⎦ ,S =

⎡
⎢⎢⎣

0
0
0

ω(T, f1)

⎤
⎥⎥⎦ , (25)

are vectors of the conservative variables, flux and the source term respectively, where 0 ≤
f1 ≤ 1 is the reactant mass fraction. The total specific energy E is given by

E = P

γ − 1
+ 1

2
ρu2 + ρ f1q0, (26)

where q0 is the heat-release parameter. The source term ω(T, f1) due to the Arrhenius rate
law is

ω(T, f1) = −Kρ f1e
−Ea/T , (27)

where T = P/(ρR) is the temperature, R is the specific gas constant (with a suitable
normalization, R = 1 in this study), Ea is the activation-energy parameter, and K is a
pre-exponential factor that sets the spatial and temporal scales.

For the detonation equations, besides the positivity-preserving flux limiter, we shall focus
here on the development of the bound-preserving flux limiter for the detonation equations
due to the source term S and the need to limit the mass fraction 0 ≤ f1 ≤ 1.

Firstly, we define the operators (ρ f1) and (ρ − ρ f1) as

(ρ f1)(Q) = ρ f1, (ρ − ρ f1)(Q) = ρ − ρ f1,

and the set of admissible states as

GD = {Q = (ρ,m, E, ρ f1)
T |ρ > 0, 0 ≤ f1 ≤ 1,

P = (γ − 1)

(
E − m2

2ρ
− ρ f1q0

)
> 0},

in which GD is a convex set.
Follow the similar procedure in Eq. (19), the conservative finite difference scheme for Eq.

(25) can be written as

Qn+1
i = Qn

i + λ(̂Fi−1/2 − F̂i+1/2) + �tS = 1

2
F̃ + 1

2
S̃, (28)

with

F̃ = Qn
i + 2λ(̂Fi−1/2 − F̂i+1/2),

S̃ = Qn
i + 2�tS. (29)

Obviously, if F̃ ∈ GD and S̃ ∈ GD , we can obtain Qn+1
i ∈ GD .
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Lemma 2 If Qn
i ∈ GD and the first-order Lax–Friedrichs flux (Eq. 22) is used in Eq. (28),

then Qn+1
i ∈ GD under the conditions of the time step �t = CFL

α/�x+K and CFL ≤ 1
4 .

Proof Assuming ρ > 0, one has

0 ≤ f1 ≤ 1 ⇐⇒ ρ f1 ≥ 0 and ρ − ρ f1 ≥ 0. (30)

Hence, we only need to prove that F̃ ∈ GD and S̃ ∈ GD .
For F̃, we have

F̃ = Qn
i + 2λ

(
F̂LF
i−1/2 − F̂LF

i+1/2

)

= 1

2

(
Qn

i + 4λF̂LF
i−1/2

)
+ 1

2

(
Qn

i − 4λF̂LF
i+1/2

)

= 1

2

(
Q−

i + Q+
i

)
.

By defining α = (‖u‖ + c)max , Q
−
i can be reformulated as

Q−
i = Qn

i + 4λF̂LF
i−1/2 = Qn

i + 2λ[Fn
i−1 + Fn

i + α(Qn
i−1 − Qn

i )]
= (1 − 4CFL)Qn

i + 2CFL

(
Qn

i−1 + 1

α
Fn
i−1

)
+ 2CFL

(
Qn

i + 1

α
Fn
i

)
.

If CFL ≤ 1
4 , Q

−
i is the convex combination of the three vectors Qn

i , Q
n
i−1 + 1

α
Fn
i−1 and

Qn
i + 1

α
Fn
i . We only need to show that Qn

i + 1
α
Fn
i ∈ GD .

Due toQn ∈ GD , dropping the subscripts and superscripts, we can prove ρ(Q± 1
α
F) > 0,

(ρ f1)(Q ± 1
α
F) ≥ 0 and (ρ − ρ f1)(Q ± 1

α
F) ≥ 0. For P(Q ± 1

α
F), we use the following

procedure

P

(
Q ± 1

α
F
)

= P

[(
(1 ± u

α
)ρ, (1 ± u

α
)m ± 1

α
P, (1 ± u

α
)E ± u

α
P, (1 ± u

α
)ρ f1

)T
]

=
(
1 − P

ρ

γ − 1

2(α ± u)2

)(
1 ± u

α

)
P,

therefore,

P

(
Q ± 1

α
F
)

> 0 ⇐⇒ P

ρ

γ − 1

2(α ± u)2
< 1 ⇐⇒

√
γ
P

ρ
<

√
2γ

γ − 1
(α ± u).

Since α = (‖u‖ + c)max and c =
√

γ P
ρ
, we have P(Q± 1

α
F) > 0. Using the relation of Eq.

(30), we obtain Q−
i ∈ GD . By the similar procedure, Q+

i ∈ GD can be proved. Therefore,
F̃ ∈ GD is satified.

For S̃, ρ(̃S) > 0, (ρ f1)(̃S) ≥ 0 and (ρ − ρ f1)(̃S) ≥ 0 under the condition �t ≤ 1
2K .

Here, we check that P (̃S) > 0,

P (̃S) = (γ − 1)

[
E − 1

2

m2

ρ
− ρ f1(1 − 2�t K e−Ea/T )q0

]

= P + 2(γ − 1)�t K e−Ea/T ρ f1q0 > 0,

because of Qn ∈ GD . Again, using the relation of Eq. (30), we have S̃ ∈ GD .
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With the Lemma 2, the bound-preserving flux limiter is same to the positivity-preserving
flux limiter when applied to � = ρ f1 and � = ρ − ρ f1 and ε� = 0. 
�
2.5 Positivity-Preserving Hybrid-CUW5 Scheme

Now, together with all the numerical algorithms (the CUW5 scheme,WENO-Z5 scheme and
positivity- and bound-preserving limiter), we have all the tools to build the positivity- and
bound-preserving Hybrid-CUW5 scheme. For the detailed framework of the hybrid scheme,
see [4,5,14] and references therein.
Algorithm 1 (Positivity- and bound-preserving Hybrid-CUW5 scheme):

1. Perform the multi-resolution analysis [4] (6th order used in this study) on one or more
suitable variable(s) (Typically, density ρ) once at the beginning of the Runge-Kutta
method.

2. Set a MR flag, based on the MR coefficients di , at a grid point xi as

Flagi =
{
1, |di | > εMR (non-smooth stencil),
0, otherwise (smooth stencil),

(31)

where εMR is a user tunable parameter.
3. Create a buffer zone around each grid point xi such that all the grid points inside the buffer

zone are flagged as non-smooth stencils. If, for example, a grid point xi is flagged as a
non-smooth stencil, then its neighboring grid points {xi−m, . . . , xi , . . . , xi+m} will also
be designated as non-smooth stencils that is, {Flag j = 1, j = i −m, . . . , i, . . . , i +m}.
(Typically, m = r .)

4. Construct the numerical fluxes F̂i+1/2 at each cell boundary by

• (Non-smooth WENO subdomain): the WENO-Z5 scheme.
• (Smooth Compact subdomain): the CUW5 scheme.

5. Modify the numerical fluxes F̂i+1/2 by the positivity-preserving flux limiter. In case of
detonation equations, the bound-preserving limiter will be applied after the positivity-
preserving limiter.

6. Compute the derivative of numerical flux and update the resulting ODEs after spatial
discretization by 3rd-order TVD Runge-Kutta method.

Remark 3 The global Lax–Friedrichs flux splitting is used in theWENO-Z5 scheme in order
to be consistentwith the numerical fluxused in theCUW5scheme.Also, it is easy to extend the
Hybrid-CUW5 scheme to a multi-dimensional problem through a dimension-in-dimension
procedure.

3 Numerical Results and Discussion

In this section, some numerical results are presented to validate the accuracy and efficiency
of the Hybrid-CUW5 scheme. Similar results of the WENO-Z5 and Hybrid-CCD6 schemes
are observed, if there is any, and hence, they are omitted in this paper. We first validate
the Hybrid-CUW5 scheme by solving the one-dimensional scalar linear wave equation and
show that the expected order of accuracy is achieved. Next, we apply the Hybrid-CUW5
scheme to one-dimensional Mach 3 shock-density/entropy problems and two-dimensional
shock-turbulence problem,Mach 10 doubleMach reflection problem and compare the results
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Table 1 The accuracy test

Method N L2 error L2 order L∞ error L∞ order

WENO-Z5 15 2.11E−4 2.92E−4

30 6.65E−6 5.00 9.39E−6 4.96

60 2.09E−7 4.99 2.96E−7 4.99

120 6.54E−9 5.00 9.25E−9 5.00

240 2.05E−10 5.00 2.89E−10 5.00

Hybrid-CUW5 15 3.70E−5 5.18E−5

30 9.19E−7 5.33 1.30E−6 5.32

60 2.52E−8 5.19 3.55E−8 5.19

120 7.32E−10 5.11 1.03E−9 5.11

240 2.20E−11 5.06 3.17E−11 5.02

L2 and L∞ errors and numerical orders of accuracy for the WENO-Z5 and Hybrid-CUW5 schemes

with those computed by the pure WENO-Z5 scheme and Hybrid-CCD6 scheme. The one-
dimensional Riemann problems and several extreme condition problems are also simulated
for demonstrating the performance of the Hybrid-CUW5 scheme. Finally, we show the
behaviors of the positivity- and bound-preserving limiter of the Hybrid-CUW5 scheme by
simulating the Mach 2000 jet problem, detonation shock diffraction problems with 90◦, and
180◦ diffraction angles and multiple obstacles problem, which can not be solved by the pure
WENO-Z5 scheme and Hybrid-CCD6 scheme.

3.1 One-Dimensional Problems

3.1.1 Accuracy Test of the Hybrid-CUW5 Scheme

Consider the one-dimensional scalar linear wave equation,

Qt + Qx = 0, x ∈ [0, 2],
Q(x, t = 0) = 1 + 0.1sin(πx),

which have the exact solution Q(x, t) = 1 + 0.1sin(π(x − t)). The final time is t = 2. The
L2 and L∞ errors of the WENO-Z5 scheme and the Hybrid-CUW5 scheme along with the
rate of convergence are shown in Table 1. From the table, we can observe that the WENO-Z5
scheme and the Hybrid-CUW5 scheme converge at a rate of 5th-order which agrees well
with the analytical analysis. As expected, the errors computed by the Hybrid-CUW5 method
are about ten times smaller than those computed by the WENO-Z5 schemes.

3.1.2 One-Dimensional Riemann Initial Value Problems

The classical Riemann initial value problems (123, Sod and Lax problems) are often used
to demonstrate the singularities (contact wave, rarefaction wave and shock wave) capturing
capability of a nonlinear shock capturing scheme. The corresponding density profiles and
WENO flags computed by the Hybrid-CUW5 scheme using N = 200 are shown in Fig. 3,
which are in a good agreement with the exact solutions. See [2] for the description of each
problem.
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Fig. 3 (Color online) The density profiles and WENO flags of the one-dimensional 123, Sod, and Lax
problems with N = 200

3.1.3 Mach 3 Shock-Density Wave Interaction

In order to investigate the abilities of theHybrid-CUW5scheme in solving theEuler equations
in a strong nonlinear regime that generates both large fine scale structures and localized
shocklets, we solve the one-dimensional Mach 3 shock-density wave interaction problem
[12] with an enlarged domain until the final time t = 5. The initial condition is

(ρ, u, P) =
{(

27
7 , 4

√
35
9 , 31

3

)
, −5 ≤ x < x0,

(1 + ε sin(kx), 0, 1), x0 ≤ x ≤ 15,

where x ∈ [−5, 15], ε = 0.2, x0 = −4 and k = 5.
In this case, we use εMR = 4 × 10−3 and N = 800 uniformly spaced grid points. Since

there is no exact solution for this problem, the numerical solution computed by theWENO-Z5
scheme with N = 4000 grid points is used as the reference solution. In the left and middle
figures of Fig. 4, the density and WENO flag computed by the Hybrid-CUW5 scheme at
times t = 2.5 and t = 5 are shown, respectively. The results indicate that the shock and the
developing shocklets are well captured essentially non-oscillatory by the WENO-Z5 scheme
while the fine scale structures are well resolved by the CUW5 scheme. Moreover, we find
that there are some developing “shocklets” not captured by theWENO-Z5 scheme. However,
there are no oscillations generated in these positions, this is due to the inherent dissipation
mechanism of the CUW5 scheme. This phenomenon confirms the robustness of the Hybrid-
CUW5 scheme. The right figure of Fig. 4 shows that the high frequency density waves behind

x

R
ho

Fl
ag

-5 0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1.5 -1 -0.53.6

3.8

4

x

R
ho

Fl
ag

-5 0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
6 6.5 7 7.53.6

3.8

4

+

+

+

+
++
+

+

+

+
++
+

+

+

+

+
++

+

+

+

+

++
+

+

+

+

+++

+

+

+

+

++
+

+

+

+

+
++
+

+

+

+

++
+

+

+

+

+

++
+

+

+

+

+
+
+

+

+

+

+
+
+

+

+

+

+

++
+

+

+

+

+
++
+

+

+

+

+
+
+

+

+

+

+

+
+
+

+

+

x

R
ho

10 11 12
3

3.5

4

4.5

Reference
WENO-Z5
Hybrid-CCD6
Hybrid-CUW5+

Fig. 4 (Color online) (Left) The density and WENO flag of the shock-density wave interaction problem
computed by the Hybrid-CUW5 scheme at times t = 2.5 and (Middle) t = 5 and (Right) the high frequency
density waves computed by the Hybrid-CUW5 scheme, the Hybrid-CCD6 scheme and theWENO-Z5 scheme
with the resolution N = 800 in the interval [9, 12] at time t = 5
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the shock as computed by theWENO-Z5 scheme, the Hybrid-CCD6 scheme and the Hybrid-
CUW5 scheme. As shown in the figures, the hybrid schemes have an overall better resolution
than theWENO-Z5 scheme in resolving the spatially and temporally evolving high frequency
density waves generated by the strong nonlinear interaction between the main shock and a
small upstream density perturbation.

3.1.4 Mach 3 Shock-Entropy Wave Interaction

The goal of the hybrid scheme is to take advantage of the superior properties of the CUW5
scheme in capturing small scale smooth structures in the smooth stencils. To show this, we
will employ the Hybrid-CUW5 scheme to solve a right moving Mach 3 shock interacting
with a small amplitude sinusoidal perturbation of the entropy in the pre-shock region. The
initial condition is

(ρ, u, P) =
{(

27
7 , 4

√
35
9 , 31

3

)
, x ≤ x0,

(exp(−ε sin(k(x + x0)), 0, 1), x > x0,

where x ∈ [−10, 10], ε = 0.01, x0 = −9.5 and k = 13.
The numerical solution computed by theWENO-JS9 scheme with N = 10240 grid points

is used as the reference solution in this example. Since the amplitude of perturbation is small
(ε = 0.01), the solution of the Euler equations is dominated by those in the weak nonlinear
regime. The entropy consists of a small amplitude high frequency wave train traveling to
the left of the main shock wave. In the left figure of Fig. 5, we show the entropy and the
WENO flag at time t = 5. The high and low frequency entropy waves behind and in front of
the main shock, respectively, are well resolved by the CUW5 scheme. The multi-resolution
tolerance used here is εMR = 4×10−3. In the middle and right figures of Fig. 5, the close-up
view of entropy as computed by the WENO-Z5 scheme and the two hybrid schemes with a
resolution (N = 1500) are shown. It is clear from the evolution of the small amplitude high
frequency entropy waves behind the main shock that the hybrid schemes have much reduced
dissipation and dispersion errors at this resolution. In contrary, the high frequency entropy
waves is being severely dampened by the numerical dissipation of the WENO-Z5 scheme.
We can also find that the dissipation and dispersion errors of the Hybrid-CUW5 scheme is
slightly better than the Hybrid-CCD6 scheme.

In Table 2, we show the CPU timing of and speedup, for the shock-density and shock-
entropy problems at the final time t = 5. As expected, the hybrid schemes are faster than the
pureWENO-Z5 scheme in these two examples. Furthermore, a factor of almost two have been
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Fig. 5 (Color online) (Left) The entropy andWENOflag computed by theHybrid-CUW5 scheme and (Middle
and Right) Close-up view of entropy computed by the WENO-CUW5 scheme, the Hybrid-CCD6 scheme and
the WENO-Z5 scheme with the resolution N = 1500 for the shock-entropy wave interaction problem at time
t = 5
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Table 2 The CPU timing of and speedup (sp) among the WENO-Z5 scheme and the hybrid schemes for the
shock-density problem and shock-entropy problem

N WENO-Z5 Hybrid-CCD6 sp Hybrid-CUW5 sp

Ex. 3.1.3 800 2.06 0.71 2.90 1.10 1.87

Ex. 3.1.4 1500 6.70 1.37 4.89 2.91 2.30

observed in the speedup of the Hybrid-CUW5 scheme over the WENO-Z5 scheme under
the same resolution. And as expected, it is about two times slower than the Hybrid-CCD6
scheme. It is because the CUW5 scheme must reconstruct the numerical fluxes in both the
“+” and “−” directions while the CCD6 scheme compute the derivative of flux directly.

3.1.5 One-Dimensional Extreme Condition Problems

In this section, we consider several extreme condition problems, including the one-
dimensional shock-tube problems involving strong shocks and near vacuum states, the double
rarefaction problem, Sedov blast-wave problem [25], two blast-waves interaction problem,
and LeBlanc problem [9]. Here, the results computed by the Hybrid-CUW5 scheme are
plotted in Fig. 6, and compared to the exact or published results in [9,25]. We note that, the
positivity-preserving limiter in the Hybrid-CUW5 scheme are not switched on in any of these
problems.

3.2 Two-Dimensional Problems

3.2.1 Accuracy Test of the Hybrid-CUW5 Scheme

Weuse the following two-dimensional problem [10] to test the accuracy of theHybrid-CUW5
scheme. The mean flow is ρ = 1, P = 1, and (u, v) = (1, 1) (diagonal flow). We add to
this mean flow an isentropic vortex, that mean perturbations in (u, v) and the temperature
T = P/ρ, no perturbation in the entropy S = P/ργ :

(δu, δv) = ε

2π
e0.5(1−r2)(−ȳ, x̄)

δT = − (γ − 1)ε2

8γπ2 e1−r2 , δS = 0,

where (x̄, ȳ) = (x−5, y−5), r2 = x̄2+ ȳ2, and the vortex strength ε = 5. The computational
domain is (x, y) ∈ [0, 10] × [0, 10]. The exact solution of this example is just the passive
convection of the vortex with the mean velocity, so the exact boundary condition is imposed
on the x and y directions respectively. The final time is t = 2.

The L2 and L∞ errors of the WENO-Z5 scheme and the Hybrid-CUW5 scheme along
with the rate of convergence are shown in Table 3. It is observed that the Hybrid-CUW5
scheme can converge to the optimal 5th-order faster than WENO-Z5 scheme, and the errors
computed by the Hybrid-CUW5 method are smaller than those computed by the WENO-Z5
schemes.
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Fig. 6 The density of the one-dimensional Riemann IVP with extreme condition

Table 3 The accuracy test of 2D scheme

Method Nx × Ny L2 error L2 order L∞ error L∞ order

WENO-Z5 10 × 10 4.39E−2 2.28E−1

20 × 20 5.55E−3 2.98 4.25E−2 2.42

40 × 40 4.39E−4 3.66 7.49E−3 2.50

80 × 80 3.70E−5 3.57 5.00E−4 3.90

160 × 160 1.28E−6 4.85 1.45E−5 5.11

320 × 320 2.81E−8 5.51 7.14E−7 4.34

Hybrid-CUW5 10 × 10 4.20E−2 2.17E−1

20 × 20 3.64E−3 2.35 3.10E−2 2.81

40 × 40 7.33E−5 5.63 3.80E−4 6.35

80 × 80 2.41E−6 4.93 1.37E−5 4.79

160 × 160 7.95E−8 4.92 1.02E−6 3.75

320 × 320 2.14E−9 5.22 1.30E−8 6.29

L2 and L∞ errors and numerical orders of accuracy for the WENO-Z5 and Hybrid-CUW5 schemes
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Fig. 7 (Color online) (Left) The density and (Right) velocity of the shock-turbulence test computed by the
Hybrid-CUW5 scheme with Nx × Ny = 120 × 80 and the WENO-Z5 scheme with Nx × Ny = 960 × 640
at time t = 0.2

3.2.2 Two-Dimensional Shock–Turbulence Problem

In this example,we test the performanceof theHybrid-CUW5schemeon the two-dimensional
shock–turbulence problem with the initial condition

(ρ, u, v, P) =
{
Q1, x ≥ −1,
Q2, x < −1,

with

Q1 =

⎡
⎢⎢⎣

1
−√

γ sin(θ)cos(xkcos(θ) + yksin(θ))√
γ cos(θ)cos(xkcos(θ) + yksin(θ))

1

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎢⎢⎣

(γ+1)M2

2+(γ−1)M2

2
√

γ (M2−1)
M(γ+1)

0

1 + 2γ (M2−1)
γ+1

⎤
⎥⎥⎥⎥⎦

,

where k = 2π , θ = π/6 and Mach number M = 8. The computational domain is (x, y) ∈
[−1.5, 1.5] × [−1, 1], with the fixed border in x-direction and periodic boundary condition
in y-direction. The final time is t = 0.2. εMR = 1.0 × 10−2 is used in this example.

The color contours of density and velocity computed by the Hybrid-CUW5 scheme with
Nx × Ny = 120 × 80 grids and a reference solution computed by the WENO-Z5 scheme
with Nx × Ny = 960 × 640 grids are shown in Fig. 7. In [15], Pirozzoli mentioned that the
reference solution consists of a set of acoustic waves moving to the left with respect to the
shock wave and a set of vorticity and entropy waves moving more slowly; the two regions
are separated by a rather sharp interface, which is clearly observed in the figure at x ≈ 0.55.
It is not difficult to find that the Hybrid-CUW5 scheme correctly capture the salient features
of the flow. In particular, the acoustic waves, which are associated with longer wavelengths,
are well captured even on the coarse mesh. In order to analyze the differences in detail, we
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Fig. 8 (Color online) (Left) The density and (Right) velocity at the line y = 0 of the shock-turbulence test
computed by the WENO-CUW5 scheme, the Hybrid-CCD6 scheme and the WENO-Z5 scheme with the
resolution Nx × Ny = 120 × 80 at time t = 0.2

draw the density and velocity at the line y = 0 computed by the WENO-Z5 scheme and two
hybrid schemes in Fig. 8. The results computed by the three schemes are very similar and
they capture the large scale structures accurately.

3.2.3 Two-Dimensional Double Mach Reflection Problem

In the two-dimensional double Mach reflection (DMR) problem [21], a Mach 10 normal
shock wave impinges onto a wedge with a given angle of inclination. By changing the frame
of reference to the surface of the wedge, we setup the computational domain as (x, y) ∈
[0, 4] × [0, 1]. The Mach 10 oblique shock makes contact with the lower domain boundary
at a 60◦ angle with the horizontal x-axis. The initial condition is

(ρ, u, v, P) =
{

(8, 8.25 cos θ,−8.25 sin θ, 116.5) , x < x0 + y/
√
3,

(1.4, 0, 0, 1) , x ≥ x0 + y/
√
3,

with x0 = 1
6 and θ = π/6. The supersonic inflow and free-stream outflow boundary con-

ditions are specified at x = 0 and x = 4, respectively. At the lower boundary y = 0,
the reflective boundary conditions are applied in the interval [x0, 4]. At the upper boundary
y = 1, the exact solution of the Mach 10 moving oblique shock is imposed.

The density contour lines computed by theHybrid-CUW5 schemewith εMR = 1.0×10−2

and resolution Nx ×Ny = 800×200 uniform cells at time t = 0.2 are shown in the left figure
of Fig. 9 which reach a good agreement with those in [21]. We demonstrate the small scale

Fig. 9 (Left) The contour lines of density and (Right) Close-up view of density of the DMR problem as
computed by the Hybrid-CUW5 scheme at time t = 0.2
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Table 4 The CPU timing of and speedup (sp) among the WENO-Z5 scheme and the hybrid schemes for the
shock-turbulence and DMR problems

Nx × Ny WENO-Z5 Hybrid-CCD6 sp Hybrid-CUW5 sp

Ex. 3.2.2 120 × 80 14.46 5.51 2.62 8.02 1.8

Ex. 3.2.3 800 × 200 1503 456 3.30 835 1.8

structures (for example, the small vortical rollups along the slip line and the large mushroom
shaped vortical rollup at the tip of the jet) around the region x ∈ [2, 2.9] behind the incident
shock in the right figure of Fig. 9.

In Table 4, we give the CPU timing of and speedup for the shock-turbulence problem and
DMR problem which are computed by the WENO-Z5 scheme, the Hybrid-CCD6 scheme
and the Hybrid-CUW5 scheme. The table shows that the hybrid schemes are more efficient
than the WENO-Z5 scheme. A factor of almost three times in speedup can be achieved with
the corresponding resolutions for the Hybrid-CCD6 scheme and about two times for the
Hybrid-CUW5 scheme.

3.2.4 Mach 2000 Jet Flows

We consider the Mach 2000 jet problem, which has been simulated in Zhang et al. [22,25]
with the high order positivity-preservingDGmethod andWENO scheme. The computation is
performed on the domain (x, y) ∈ [0, 1]×[−0.25, 0.25]. Initially, the entire domain is filled
with ambient gas with (ρ, u, v, P) = (0.5, 0, 0, 0.4127). An outflow condition is applied
at the right, upper and the lower boundaries, and an inflow condition is imposed on the left
boundary with states (ρ, u, v, P) = (0.5, 800, 0, 0.4127) if |y| < 0.05 and (ρ, u, v, P) =
(0.5, 0, 0, 0.4127) otherwise. The final time is 0.001. The resolution is Nx ×Ny = 800×400
uniform cells. Since γ = 5

3 is used, the speed of the jet is 800 which results in Mach 2100
with respect to the sound speed in the jet gas. εMR = 1.0 × 10−3 is used in the Hybrid-
CUW5 scheme. Fig. 10 shows the color contours of density and pressure in logarithmic scale
computed by the Hybrid-CUW5 scheme. One can observe that these results are in a very
good agreement with those in [22,25]. To investigate the performance of the positivity- and
bound-preserving limiter in the Hybrid-CUW5 scheme, a function PPLimiter ( f, t) is defined
as

PPLimiter ( f, t) = N

Nx × Ny
100%, (32)

Fig. 10 (Color online) Mach 2000 jet problem. (Left) The density and (Right) pressure computed by the
Hybrid-CUW5 scheme at time t = 0.001
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Fig. 11 (Color online)Mach2000 jet problem. (Left) The temporal evolutionPP limiter of density and pressure
in the Hybrid-CUW5 scheme and (Right) locations of positivity-preserving limiter used in the Hybrid-CUW5
scheme at time t = 0.001

where f could be ρ, P or f1 and N is the total number of grid points where the limiter
is activated. In Fig. 11, we plot the temporal evolution of PP limiter of physical variables
(density and pressure) and the locations (in the red boxes) where the positivity-preserving
limiter are used in the Hybrid-CUW5 scheme at time t = 0.001. Only the pressure limiter
is switched and the density is always positive in this example. Furthermore, the percentage
of limiters slightly oscillates around 0.15% after the time t = 4.0 × 10−4 as the solution
becomes self-similar without much change in the later time.

3.2.5 Detonation Diffraction Problems

Here, the detonation diffraction phenomena passing around an obstacle with angles 90◦
and 180◦ are simulated to demonstrate the performance of the Hybrid-CUW5 scheme. It
is numerically challenging especially for the high order schemes because the pressure and
density will drop very close to zero when the shock wave is diffracted around an obstacle.
The initial condition is

(ρ, u, v, P, f1) =
{

(11, 6.18, 0, 970, 1) , x < Ls,

(1, 0, 0, 55, 1) , otherwise,

where the Ls is the initial shock location. The related parameters in (25) are γ = 1.2, q0 = 50,
Ea = 50, K = 2566.4. εMR = 1.0 × 10−2 is used in the Hybrid-CUW5 scheme.

• 90◦ corner
The physical domain is set to be (x, y) = [0, 5] × [0, 5]. The initial shock location is
Ls = 0.5. The obstacle area is (x, y) ∈ [0, 1] × [0, 2]. The boundary conditions are
reflective except that at x = 0, (ρ, u, v, P, f1) = (11, 6.18, 0, 970, 1). The uniform
cells used are Nx × Ny = 400 × 400. The final time is t = 0.6. The color contours
of density and pressure computed by the Hybrid-CUW5 scheme at time t = 0.6 are
demonstrated in Fig. 12, which are comparable to those in [25]. One can find that the
density becomes very small when the flow expands around the corner and is well resolved
by the Hybrid-CUW5 scheme.

• 180◦ corner
The physical domain is set to be (x, y) ∈ [0, 6] × [0, 5]. The initial shock location is
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Fig. 12 (Color online) Detonation diffraction problems with 90◦ corner. (Left) The density and (Right)
pressure computed by the Hybrid-CUW5 scheme with the resolution Nx × Ny = 400× 400 at time t = 0.6

Fig. 13 (Color online) Detonation diffraction problems with 180◦ corner. (Left) The density and (Right)
pressure computed by the Hybrid-CUW5 scheme with the resolution Nx × Ny = 480× 400 at time t = 0.68

Ls = 1 The obstacle area is (x, y) = [0, 1.5] × [2, 2]. The boundary conditions are
reflective except that at (x = 0 and y > 2), (ρ, u, v, P, f1) = (11, 6.18, 0, 970, 1).
The uniform cells used are Nx × Ny = 480 × 400. The final time is t = 0.68. In Fig.
13, we show the color contours of density and pressure computed by the Hybrid-CUW5
scheme at time t = 0.68. The corresponding temporal evolution PP limiter of physical
variables (density, pressure andmass fraction) in theHybrid-CUW5scheme and locations
of positivity- and bound-preserving limiter used in the Hybrid-CUW5 scheme at the final
times are shown in Fig. 14. One can easily find that the positivity-preserving limiter is
used in the pressure and the bound-preserving limiter is used in the mass fraction when
f1 ≤ 1 respectively.

3.2.6 Multiple Obstacles Problems

Finally, we consider a more challenging example which is the detonation wave passing
multiple rectangular obstacles. The computational domain is (x, y) ∈ [0, 8.3]× [0, 10]. The
initial condition is
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Fig. 14 (Color online) Detonation diffraction problems with (Top) 90◦ corner and (Bottom) 180◦ corner. The
temporal evolution of PP limiter of (Left) density and pressure, (Middle) mass fraction in the Hybrid-CUW5
scheme and (Right) locations of PP limiter used in the Hybrid-CUW5 scheme at time t = 0.68

Fig. 15 (Color online) Multiple obstacles problems. (Left) Density and (Right) pressure computed by the
Hybrid-CUW5 scheme with the resolution Nx × Ny = 332 × 400 at time t = 1.4

(ρ, u, v, E, f1) =
{

(7, 0, 0, 200, 0) , x2 + y2 ≤ 0.36,
(1, 0, 0, 55, 1) , otherwise,

where the location of the first obstacle is [1.3, 3.3]×[0, 2.6] and the second one is [5.1, 8.3]×
[0, 4.3]. The terminal time is t = 1.4. The reflective boundary conditions are imposed on
surface of the obstacles. The related parameters in (25) are γ = 1.2, q0 = 50, Ea = 20,
K = 2410.2. εMR = 1.0 × 10−2 is used in the Hybrid-CUW5 scheme.

The color contours of density and pressure computed by the Hybrid-CUW5 scheme at
the final time are demonstrated in Fig. 15, which are comparable to those in [20]. The
corresponding temporal evolution of PP limiter of the physical variables (density and pressure
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Fig. 16 (Color online) Multiple obstacles problems. The temporal evolution of PP limiter of (Left) density
and pressure, (Middle) mass fraction in the Hybrid-CUW5 scheme and (Right) locations of PP limiter used in
the Hybrid-CUW5 scheme at time t = 1.4

Table 5 The CPU timing of and speedup (sp) between the WENO-Z5 scheme with the PP limiter and the
Hybrid-CUW5 scheme for the Mach 2000 problems, detonation diffraction problems and multiple obstacles
problem

Nx × Ny WENO-Z5 Hybrid-CUW5 sp

Ex. 3.2.4 800 × 400 3697 2374 1.56

Ex. 3.2.5 with 90◦ 400 × 400 10530 6247 1.69

Ex. 3.2.5 with 180◦ 480 × 400 14770 8347 1.77

Ex. 3.2.6 332 × 400 15230 10120 1.50

and mass fraction) and locations of PP limiter used in the Hybrid-CUW5 scheme at the final
time are shown in Fig. 16.

We show the CPU timing of and speedup in Table 5 for the Mach 2000 jet problem and
detonation diffraction problems and multiple obstacles problem which are computed by the
WENO-Z5 schemewith the positivity-preserving limiter and theHybrid-CUW5 scheme. The
pure WENO-Z5 and Hybrid-CCD6 schemes fail due to negative density and/or pressure, so
the corresponding computational time is not available. A factor of more than 1.5 in speedup
can be observedwith themesh resolutions for the Hybrid-CUW5 scheme over theWENO-Z5
scheme. For clarity, we refer to the WENO flags in the x- and y-directions as Flagx and
Flagy respectively and display them in Appendix A which shows that the shock locations
can be captured well by the WENO-Z5 scheme.

4 Conclusion

In this study, we construct a hybrid (Hybrid-CUW5) scheme by conjugating the 5th-order
conservative compact upwind compact finite difference (CUW5) scheme and 5th-order
improved characteristic-wise weighted essentially non-oscillatory (WENO-Z5) finite dif-
ference scheme for the compressible Euler equations. The Hybrid-CUW5 scheme employs
the nonlinear WENO-Z5 scheme to capture high gradients and discontinuities in an essen-
tially non-oscillatory manner and the linear CUW5 scheme to resolve the fine scale structures
in the smooth regions of the solution in an efficient and accurate manner. The numerical oscil-
lations generated by coupling different schemes are mitigated by the CUW5 scheme which
also show a better resolution properties than the 6th-order compact central finite difference
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scheme. Furthermore, we develop a positivity- and bound-preserving limiter for the Hybrid-
CUW5 scheme in simulating the Mach 2000 jet problem, detonation diffraction problems
and multiple obstacles problem which can not be solved by the pure WENO-Z5 scheme and
Hybrid-CCD6 scheme [5]. The corresponding results show that only few of locations need
the positivity- and bound-preserving limiter in the pressure and mass fraction. The numerous
one- and two-dimensional examples show that the Hybrid-CUW5 scheme allows a poten-
tial speedup up to a factor of more than 1.5, and less dispersive and less dissipative than
the WENO-Z5 scheme under the specific mesh resolutions. The idea of the Hybrid-CUW5
scheme can be easily extended to other high order compact upwind finite difference schemes
and similar research areas, for example, shallow water equations.
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Appendix: Two-Dimensional Flags

Here, we show the WENO flags in the x- and y-directions where the nonlinear WENO-Z5
scheme is employed for solving the PDEs instead of the compact upwind (CUW5) scheme
for examples presented at the final time (Figs. 17, 18, 19, 20, 21).

Fig. 17 The shock-turbulence problem

Fig. 18 The double Mach reflection (DMR) problem
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Fig. 19 The Mach 2000 jet problem

Fig. 20 The detonation diffraction over a backward facing step and a plate problems
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Fig. 21 The detonation diffraction over multiple square obstacles problem
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