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Abstract We develop and analyze Pk Lagrange finite element methods for a quad-curl
problem on planar domains that is based on the Hodge decomposition of divergence-free
vector fields. Numerical results that illustrate the performance of the finite element methods
are also presented.
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1 Introduction

Let � ⊂ R
2 be a bounded polygonal domain. The energy space for the quad-curl problem

to be considered in this paper is

E = {v ∈ [L2(�)]2 : curl v ∈ H1
0 (�), div v = 0 and n × v = 0 on ∂�}, (1.1)

with the norm ‖ · ‖E given by

‖v‖2
E

= ‖v‖2L2(�) + |curl v|2H1(�)
. (1.2)
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Here and below we will follow standard notation for differential operators, function spaces
and norms that can be found for example in [1,13,16,21,25].

We will consider the following problem: Find u ∈ E such that
(
curl (curl u), curl (curl v)

) + β(curl u, curl v) + γ (u, v) = ( f , v) ∀ v ∈ E, (1.3)

where (·, ·) denotes the inner product for L2(�) (or [L2(�)]2), β and γ are nonnegative
constants (γ > 0 if� is not simply connected), and f ∈ [L2(�)]2. Since the divergence-free
condition is included in the definition ofE, the problem (1.3) provides an elliptic formulation
for the quad-curl problem.

Remark 1.1 In two dimensions the curl of the vector field v = [v1, v2]t is the scalar function
curl v = (∂v2/∂x1) − (∂v1/∂x2), and the curl of a scalar function φ is the vector field
curl φ = [∂φ/∂x2, −∂φ/∂x1]t . An alternative notation for curl φ is rot φ.

The quad-curl problem is related to theMaxwell transmission eigenvalue problem (cf. [14,
26] ) and mathematical models for magnetohydrodynamics with hyperresistivity (cf. [7,15]).
Finite element methods for the quad-curl problem (based on a non-elliptic formulation)
were recently developed in [23,29,31] using a nonconforming finite element method, a
discontinuous Galerkin method and a mixed finite element method. In this paper we will
use a Hodge decomposition approach to reduce (1.3) to second order elliptic boundary value
problems that can be solved by simple H1 conforming finite element methods.

We note that the Hodge decomposition approach to time harmonic Maxwell equations on
planar domains was investigated in [9] for the perfectly conducting boundary condition and
extended to general boundary conditions in [11] with applications tometamaterials. Adaptive
and multigrid methods for these problems based on the Hodge decomposition approach were
developed in [10,12,17]. Applications of the Hodge decomposition to other electromagnetic
problems can also be found in [2,3,5].

The rest of the paper is organized as follows. We recall the Hodge decomposition for
divergence-free vector fields in Sect. 2, where the well-posedness of (1.3) is also addressed.
The reduction of (1.3) to second order elliptic boundary value problems is established in
Sect. 3. Based on this reduction, we develop Pk finite element methods for (1.3) in Sect. 4,
followed by a convergence analysis in Sect. 5. Numerical results are presented in Sect. 6, and
we end with some concluding remarks in Sect. 7.

2 Hodge Decomposition for H(div 0;�)

The space H(div 0;�) of divergence-free vector fields is the orthogonal complement of
grad H1

0 (�), i.e.,

H(div 0;�) = {v ∈ [L2(�)]2 : (v, grad η) = 0 ∀ η ∈ H1
0 (�)},

and L0
2(�) = {v ∈ L2(�) : (1, v) = 0} is the zero-mean subspace of L2(�). Given any

v ∈ H(div 0;�), we have a unique decomposition (cf. [9,21]):

v = curlψ +
m∑

j=1

d j grad ϕ j , (2.1)

where ψ ∈ H1(�) ∩ L0
2(�), the non-negative integer m is the Betti number for � (m = 0

if � is simply connected, cf. Fig. 1), d j (1 ≤ j ≤ m) are real numbers, and the harmonic
functions ϕ1, . . . , ϕm are defined as follows.
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m = 0 m = 1 m = 2
Fig. 1 Betti numbers

Let the outer boundary of� be denoted by
0 and them components of the inner boundary
be denoted by 
1, . . . , 
m . Then the harmonic functions ϕ j are determined by

( grad ϕ j , grad v) = 0 ∀ v ∈ H1
0 (�), (2.2a)

ϕ j
∣
∣

0

= 0, (2.2b)

ϕ j
∣∣

k

=
{
1 j = k

0 j �= k
for 1 ≤ k ≤ m. (2.2c)

Remark 2.1 Note that grad ϕ j belongs to E for 1 ≤ j ≤ m (cf. [9, Corollary 2.5]) and

(curlψ, grad ϕ j ) = 0 ∀ ψ ∈ H1(�) (2.3)

(cf. [9, Lemma 2.4]).

2.1 Properties of the Space E

Let v ∈ E be represented by (2.1). We have

(curlψ, curl ρ) = (v, curl ρ) ∀ ρ ∈ H1(�)

by (2.3). Since E is a subspace of H0(curl ;�), we also have (cf. [21, Theorems 2.2.11 and
2.2.12])

(v, curl ρ) = (curl v, ρ) ∀ ρ ∈ H1(�).

It follows that the function ψ ∈ H1(�) ∩ L0
2(�) satisfies

(curlψ, curl ρ) = (curl v, ρ) ∀ ρ ∈ H1(�). (2.4)

Remark 2.2 Since curl φ = [∂φ/∂x2, −∂φ/∂x1]t , we have

(curl φ, curl ρ) = ( grad φ, grad ρ) ∀ φ, ρ ∈ H1(�)

and ‖curl ρ‖L2(�) = |ρ|H1(�) for all ρ ∈ H1(�).

We can deduce properties of v from the following results (cf. [22, Sect. 5.1] and [18,
Sect. 2.5]) for elliptic boundary value problems on polygonal domains, where ω is the largest
interior angle at the corners of �.
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Lemma 2.3 Let μ ∈ H1
0 (�) satisfy

( gradμ, grad η) + β(μ, η) = (g, η) ∀ η ∈ H1
0 (�),

where g ∈ H1(�). Then we have μ ∈ H1+(π/ω)−ε(�) for any ε > 0 and

‖μ‖H1+(π/ω)−ε (�) ≤ Cε‖g‖H1(�).

Lemma 2.4 Let λ ∈ H1(�) satisfy

( grad λ, gradψ) + (λ, 1)(ψ, 1) = (g, ψ) ∀ ψ ∈ H1(�),

where g ∈ H1(�). Then we have λ ∈ H1+(π/ω)−ε(�) for any ε > 0 and

‖λ‖H1+(π/ω)−ε (�) ≤ Cε‖g‖H1(�).

Sinceψ belongs to H1(�)∩L0
2(�) and curl v belongs to H1

0 (�), we can apply Lemma 2.4
to (2.4) and conclude that ψ belongs to H1+(π/ω)−ε(�) for any ε > 0. Note that (2.2a),
(2.2b), (2.2c) can be transformed to a problem of the form in Lemma 2.3 where β = 0 and
g ∈ C∞(�̄). Hence we can apply Lemma 2.3 to conclude that ϕ j belongs to H1+(π/ω)−ε(�)

for 1 ≤ j ≤ m and any ε > 0. Then (2.1) implies that v belongs to [H (π/ω)−ε(�)]2 and we
have established the following result.

Theorem 2.5 The space E is a subspace of [H (π/ω)−ε(�)]2 for any ε > 0, where ω is the
largest angle at the corners of �.

Remark 2.6 If� is a smooth domain, then we can apply the elliptic regularity theory for such
domains [27] to conclude thatψ belongs to H3(�) and ϕ j belongs toC∞(�̄) for 1 ≤ j ≤ m.
It follows that E is a subspace of [H2(�)]2.
2.2 Well-Posedness of (1.3)

Since E is compactly embedded in [L2(�)]2 by Theorem 2.5 and the Rellich–Kondrachov
Theorem [1], we can establish the well-posedness of (1.3) by the Fredholm theory [30]. It
suffices to show that if v ∈ E satisfies

(
curl (curl v), curl (curlw)

) + β(curl v, curlw) + γ (v,w) = 0 ∀ w ∈ E, (2.5)

then v = 0.
This is obvious if γ > 0. In the case where γ = 0 and � is simply connected, we deduce

from (2.5) that

curl (curl v) = 0

and hence curl v = 0 (because curl v ∈ H1
0 (�)). It then follows from (2.4) that ψ = 0 and

hence v = 0 by (2.1).

3 Reduction to Second Order Elliptic Boundary Value Problems

According to (2.1), we can write

u = curl φ +
m∑

j=1

c j grad ϕ j , (3.1)
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where φ ∈ H1(�) ∩ L0
2(�) and c1, . . . , cm are real numbers. The idea of the Hodge decom-

position approach is to find φ and c1, . . . , cm , and then recover u by (3.1).
Belowwe will find problems that determine the function φ and the coefficients c1, . . . , cm

in the decomposition (3.1).

3.1 A Problem for φ

It follows from (2.4) and (3.1) that

(curl φ, curlψ) = (ξ, ψ) ∀ ψ ∈ H1(�), (3.2)

where ξ = curl u ∈ H1
0 (�). Note that n × u = 0 on ∂� implies (1, ξ) = 0 and hence the

singular Neumann boundary value problem (3.2) has a unique solution φ ∈ H1(�)∩ L0
2(�).

An equivalent formulation that avoids the zero-mean constraint is to find φ ∈ H1(�) such
that

(curl φ, curlψ) + (φ, 1)(ψ, 1) = (ξ, ψ) ∀ ψ ∈ H1(�). (3.3)

It only remains to find a problem that determines ξ .

3.2 A Problem for ξ

We begin with a lemma.

Lemma 3.1 The function ξ = curl u ∈ H1
0 (�) ∩ L0

2(�) satisfies
(
curl ξ, curl (curl ζ )

) + β(ξ, curl ζ ) + γ (u, ζ ) = (Q f , ζ ) ∀ ζ ∈ [C∞
c (�)]2, (3.4)

where Q is the orthogonal projection from [L2(�)]2 onto H(div 0;�).

Proof Since ζ − Qζ belongs to grad (H1
0 (�)), we have curl Qζ = curl ζ ∈ H1

0 (�), n ×
Qζ = n × ζ = 0 on ∂� (cf. [9, Corollary 2.5]) and hence Qζ ∈ E. Therefore (3.4) follows
from (1.3):

(
curl ξ, curl (curl ζ )

) + β(ξ, curl ζ ) + γ (u, ζ )

= (
curl (curl u), curl (curl ζ )

) + β(curl u, curl ζ ) + γ (u, ζ )

= (
curl (curl u), curl (curl Qζ )

) + β(curl u, curl Qζ ) + γ (u, Qζ )

= (Q f , ζ )


�
It follows from (3.4) that

curl (−�ξ) = −β curl ξ − γ u + Q f (3.5)

in the sense of distributions.
We will exploit (3.5) through the following lemma due to Nečas [8,20,28].

Lemma 3.2 If τ , ∂τ/∂x1 and ∂τ/∂x2 belong to H−1(�) , then τ belongs to L2(�).

Since −�ξ belongs to H−1(�) = [H1
0 (�)]′ and the right-hand side of (3.5) belongs to

[L2(�)]2, we can apply Lemma 3.2 to conclude that −�ξ belongs to L2(�). Then (3.5)
implies

− �ξ ∈ H1(�). (3.6)
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Let ρ ∈ H1(�)∩L0
2(�) be defined by the following consistent singular Neumann bound-

ary value problem

(curl ρ, curlψ) = −γ (u, curlψ) + (Q f , curlψ) (3.7)

= −γ (ξ, ψ) + ( f , curlψ) ∀ ψ ∈ H1(�).

Since the relations (3.5)–(3.7) imply −�ξ + βξ ∈ H1(�) and

(curl (−�ξ + βξ), curlψ) = (curl ρ, curlψ) ∀ ψ ∈ H1(�),

we have

−�ξ + βξ = ρ + c

for some constant c, and hence

(curl ξ, curl η) + β(ξ, η) = (ρ, η) ∀ η ∈ H1
0 (�) ∩ L0

2(�). (3.8)

Below we will show that the function ξ ∈ H1(�) ∩ L0
2(�) is determined by (3.7) and

(3.8).

3.2.1 The Case Where γ = 0

When γ is 0 (and � is simply connected), the two equations (3.7) and (3.8) are decoupled.
We can first solve (3.7) for ρ and then solve (3.8) for ξ .

In this case (3.7) becomes a consistent singular Neumann boundary value problem: Find
ρ ∈ H1(�) ∩ L0

2(�) such that

(curl ρ, curlψ) = ( f , curlψ) ∀ ψ ∈ H1(�). (3.9)

An equivalent formulation without the zero-mean constraint is to find ρ ∈ H1(�) such that

(curl ρ, curlψ) + (ρ, 1)(ψ, 1) = ( f , curlψ) ∀ ψ ∈ H1(�). (3.10)

Once we have found ρ ∈ H1(�) ∩ L0
2(�), ξ ∈ H1

0 (�) ∩ L0
2(�) is determined by the

well-posed (nonstandard) elliptic boundary value problem (3.8). We can also determine ξ

through standard boundary value problems that do not involve the zero-mean constraint.

Lemma 3.3 The solution ξ of (3.8) is given by

ξ = ξ0 − (1, ξ0)

(1, ξ1)
ξ1, (3.11)

where ξ0, ξ1 ∈ H1
0 (�) satisfy

(curl ξ0, curl η) + β(ξ0, η) = (ρ, η) ∀ η ∈ H1
0 (�), (3.12)

(curl ξ1, curl η) + β(ξ1, η) = (1, η) ∀ η ∈ H1
0 (�). (3.13)

Proof First we note that (3.12) and (3.13) are standard elliptic boundary value problems and
that (3.13) implies (1, ξ1) > 0.

By construction, the function ξ belongs to H1
0 (�) ∩ L0

2(�) and

(curl ξ, curl η) + β(ξ, η) = (ρ, η) − (1, ξ0)

(1, ξ1)
(1, η) ∀ η ∈ H1

0 (�),

which implies (3.8). 
�

123



J Sci Comput (2017) 73:495–513 501

3.2.2 The Case Where γ > 0

When γ is positive, the problems (3.7) and (3.8) are coupled and we can reformulate them
as the following problem:

Find (ζ, ξ) ∈ [H1(�) ∩ L0
2(�)] × [H1

0 (�) ∩ L0
2(�)] such that

(curl ζ, curlψ) + γ
1
2 (ψ, ξ) = γ − 1

2 ( f , curlψ) ∀ ψ ∈ H1(�) ∩ L0
2(�),

(3.14a)

−γ
1
2 (ζ, η) + (curl ξ, curl η) + β(ξ, η) = 0 ∀ η ∈ H1

0 (�) ∩ L0
2(�), (3.14b)

where ζ = γ − 1
2 ρ.

We can also write (3.14a), (3.14b) concisely as

A
(
(ζ, ξ), (ψ, η)

) = γ − 1
2 ( f , curlψ) ∀ ψ ∈ H1(�) ∩ L0

2(�), η ∈ H1
0 (�) ∩ L0

2(�),

(3.15)

where the bilinear form A(·, ·) on H1(�) × H1
0 (�) is defined by

A
(
(ζ, ξ), (ψ, η)

) = (curl ζ, curlψ) + γ
1
2 (ψ, ξ) − γ

1
2 (ζ, η) + (curl ξ, curl η) + β(ξ, η).

(3.16)

The bilinear form A(·, ·) is clearly bounded on H1(�) × H1
0 (�), and it follows from the

identity

A
(
(ψ, η), (ψ, η)

) = (curlψ, curlψ) + (curl η, curl η) + β(η, η) (3.17)

and standard Poincaré-Friedrichs inequalities [27] that A(·, ·) is coercive on [H1(�) ∩
L0
2(�)]×H1

0 (�). Therefore the problem (3.14a), (3.14b) is well-posed by the Lax–Milgram
theorem [24].

We can also determine (ζ, ξ) through problems that do not involve the zero-mean con-
straint.

Lemma 3.4 The solution (ζ, ξ) of (3.14a), (3.14b) is given by

(ζ, ξ) = (ζ0, ξ0) − (1, ξ0)

(1, ξ1)
(ζ1, ξ1), (3.18)

where (ζ0, ξ0), (ζ1, ξ1) ∈ H1(�) × H1
0 (�) are defined by

A
(
(ζ0, ξ0), (ψ, η)

) + (ζ0, 1)(ψ, 1) = γ − 1
2 ( f , curlψ) ∀ (ψ, η) ∈ H1(�) × H1

0 (�),

(3.19)

A
(
(ζ1, ξ1), (ψ, η)

) + (ζ1, 1)(ψ, 1) = (1, η) ∀ (ψ, η) ∈ H1(�) × H1
0 (�). (3.20)

Proof First we note that (3.17) implies

A
(
ψ, η), (ψ, η)

) + (ψ, 1)(ψ, 1)

= (curlψ, curlψ) + (ψ, 1)(ψ, 1) + (curl η, curl η) + β(η, η) (3.21)

and hence, by standard Poincaré-Friedrichs inequalities, the problems (3.19) and (3.20) are
well-posed. Moreover (3.20) and (3.21) imply that (1, ξ1) > 0.
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By construction, we have (1, ξ) = 0 and

A
(
(ζ, ξ), (ψ, η)

) + (ζ, 1)(ψ, 1) = γ − 1
2 ( f , curlψ) − (1, ξ0)

(1, ξ1)
(1, η) (3.22)

for all (ψ, η) ∈ H1(�) × H1
0 (�), which implies (3.15). We can also recover the zero-mean

condition (1, ζ ) = 0 by taking (ψ, η) = (1, 0) in (3.22). 
�
3.3 A Problem for c1, . . . , cm

If � is not simply connected, then γ is positive. According to Remark 2.1, we can take
v = grad ϕi in (1.3) to obtain

γ (u, grad ϕi ) = ( f , grad ϕi ) for 1 ≤ i ≤ m.

It then follows from (2.3) and (3.1) that the coefficients c1, . . . , cm in the Hodge decompo-
sition (3.1) are determined by the m × m system

m∑

j=1

( grad ϕi , grad ϕ j )c j = 1

γ
( f , grad ϕi ) for 1 ≤ i ≤ m. (3.23)

Note that (3.23) is symmetric positive definite because of (2.2b).

3.4 Regularity of u

First we observe that ρ belongs to H1(�) by construction. Then (3.8) and Lemma 2.3 imply
that ξ ∈ H1+(π/ω)−ε(�) for any ε > 0, and (3.2) and Lemma 2.4 imply that φ belongs
to H1+(π/ω)−ε(�) for any ε > 0. Moreover the harmonic functions ϕ j (1 ≤ j ≤ m) also
belong to H1+(π/ω)−ε(�) by Lemma 2.3. It follows that u belongs to [H (π/ω)−ε(�)]2 for
any ε > 0. Thus the regularity of u is better than H1 for a convex polygon and worse than
H1 for a nonconvex polygon.

Remark 3.5 Note that the regularity of ξ = curl u is better than H1(�). But the regularity
of u is the same as the one in Theorem 2.5 for E. This is due to the presence of singularities
at the corners of � that prevents full elliptic regularity for u. In contrast, for a smooth �,
ρ ∈ H1(�) implies ξ ∈ H3(�) by (3.8), which in turn implies φ ∈ H5(�) by (3.2). Since
the harmonic functions ϕ j for 1 ≤ j ≤ m belong toC∞(�̄), u belongs to [H4(�)]2 by (3.1),
which is two orders higher than the regularity of the vector fields in E (cf. Remark 2.6).

4 Pk Finite Element Methods

The reduction in Sect. 3 leads to the following numerical procedure for (1.3).

(1) Find an approximation ξ̃ ∈ H1
0 (�) ∩ L0

2(�) for ξ numerically. In the case where γ = 0
(and� is simply connected), one canfirst solve (3.9) numerically to find an approximation
ρ̃ ∈ H1

0 (�) ∩ L0
2(�) for ρ, and then solve (3.8) (with ρ replaced by ρ̃) numerically to

find an approximation ξ̃ for ξ (cf. Sect. 3.2.1). In the case where γ > 0, we can obtain
ξ̃ by solving the coupled problem (3.14a), (3.14b) numerically (cf. Sect. 3.2.2).

(2) Solve (3.2) (with ξ replaced by ξ̃ ) numerically to find an approximation φ̃ ∈ H1(�) ∩
L0
2(�) for φ.
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(3) In the case where� is not simply connected (and γ > 0), solve numerically the boundary
value problems in (2.2a), (2.2b), (2.2c) to find approximations ϕ̃ j ∈ H1(�) for ϕ j (1 ≤
j ≤ m) and then solve (3.23) (withϕ j replaced by ϕ̃ j ) numerically to find approximations
c̃1, . . . , c̃m for c1, . . . , cm . Note that the computation of ϕ̃ j (1 ≤ j ≤ m) only involves
� and hence can be carried out in advance.

(4) The approximation ũ of u is given by

ũ = curl φ̃ +
m∑

j=1

c̃ j grad ϕ̃ j .

Therefore any numerical method that works for second order elliptic boundary value
problems can also be applied to (1.3). Here we will consider Pk Lagrange finite element
methods.

Let Th be a quasi-uniform simplicial triangulation of �. We denote by Vh(⊂ H1(�)) the
Pk (k ≥ 1) Lagrange finite element space [13,16] associated with Th and by V̊h(⊂ H1

0 (�))

the subspace of Vh whose members vanish on ∂�.

4.1 The Pk Finite Element Method for the Approximation of ξ

We consider two separate cases depending on whether γ is 0 or positive.

4.1.1 The Case Where γ = 0

Following the discussion in Sect. 3.2.1, we can first compute ρ and then ξ .
The Pk finite element method for (3.10) is to find ρh ∈ Vh such that

(curl ρh, curlψ) + (ρ, 1)(ψ, 1) = ( f , curlψ) ∀ ψ ∈ Vh . (4.1)

The Pk finite element method for (3.8) [cf. (3.11)–(3.13)] is to find

ξh = ξ0,h − (1, ξ0,h)

(1, ξ1,h)
ξ1,h, (4.2)

where ξ0,h, ξ1,h ∈ V̊h satisfy

(curl ξ0,h, curl η) + β(ξ0,h, η) = (ρh, η) ∀ η ∈ V̊h, (4.3)

(curl ξ1,h, curl η) + β(ξ1,h, η) = (1, η) ∀ η ∈ V̊h . (4.4)

4.1.2 The Case Where γ > 0

The Pk finite element method for (3.14a), (3.14b) [cf. (3.18)–(3.20)] is to find

(ζh, ξh) = (ζ0,h, ξ0,h) − (1, ξ0,h)

(1, ξ1,h)
(ζ1,h, ξ1,h), (4.5)

where (ζ0,h, ξ0,h), (ζ1,h, ξ1,h) ∈ Vh × V̊h satisfy

A
(
(ζ0,h, ξ0,h), (ψ, η)

) + (ζ0,h, 1)(ψ, 1) = γ − 1
2 ( f , curlψ) ∀ (ψ, η) ∈ Vh × V̊h,

(4.6)

A
(
(ζ1,h, ξ1,h), (ψ, η)

) + (ζ1,h, 1)(ψ, 1) = (1, η) ∀ (ψ, η) ∈ Vh × V̊h . (4.7)

Remark 4.1 The function ξh is an approximation of curl u.

123



504 J Sci Comput (2017) 73:495–513

4.2 The Pk Finite Element Method for the Approximation of φ

The finite element method for (3.3) is to find φh ∈ Vh ∩ L0
2(�) such that

(curl φ, curlψ) + (φ, 1)(ψ, 1) = (ξh, ψ) ∀ ψ ∈ Vh . (4.8)

4.3 The Approximation of u

We take

uh = curl φh +
m∑

j=1

c j,hϕ j,h (4.9)

to be the approximation of u, where c1,h, . . . , cm,h are determined by

m∑

j=1

( grad ϕi,h, grad ϕ j,h)c j,h = γ −1( f , grad ϕi,h) for 1 ≤ i ≤ m, (4.10)

and the discrete harmonic functions ϕ1,h, . . . , ϕm,h are determined by (cf. (2.2a), (2.2b),
(2.2c))

( grad ϕ j,h, grad v) = 0 ∀ v ∈ V̊h, (4.11a)

ϕ j,h
∣∣

0

= 0, (4.11b)

ϕ j,h
∣∣

k

=
{
1 j = k

0 j �= k
for 1 ≤ k ≤ m. (4.11c)

For a simply connected �, the approximation for u is simplified to uh = curl φh .

5 Convergence Analysis

Since the error analysis for the discrete harmonic functionsϕ1,h, . . . , ϕm,h and the coefficients
c1,h, . . . , cm,h has already been carried out in [9], we only need to focus on the error analysis
for ξh and φh .

We will use the following standard polynomial approximation result [13,16,19].

Lemma 5.1 Given any δ > 0, there exists a positive constant C independent of h such that

inf
ψ∈Vh

‖λ − ψ‖H1(�) ≤ Chmin(δ,k)‖λ‖H1+δ(�) ∀ λ ∈ H1+δ(�),

inf
η∈V̊h

‖μ − ψ‖H1(�) ≤ Chmin(δ,k)‖μ‖H1+δ(�) ∀ μ ∈ H1+δ(�) ∩ H1
0 (�).

From here on we will use C (with or without subscript) to denote a generic positive
constant that is independent of h. The error estimates below will depend on ω, the largest
interior angle at the corners of �.

5.1 Error Analysis for ξ h

Our goal is to establish the following result.
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Lemma 5.2 For any ε > 0, there exists a positive constant Cε independent of h such that

|ξ − ξh |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.1)

We will consider the two cases γ = 0 and γ > 0 separately.

5.1.1 The Case Where γ = 0

We first estimate the error for ρh in the norm of [H1(�)]′ by a duality argument.

Lemma 5.3 For any ε > 0, there exists a positive constant Cε independent of h such that

|(ρ − ρh, χ)| ≤ Cεh
min((π/ω)−ε,k)‖χ‖H1(�) ∀ χ ∈ H1(�). (5.2)

Proof In view of (3.10), (4.1) and the fact that ρ, ρh ∈ L0
2(�), we have

‖curl ρ‖L2(�) ≤ ‖ f ‖L2(�), ‖curl ρh‖L2(�) ≤ ‖ f ‖L2(�), (5.3)

and a Galerkin orthogonality relation
(
curl (ρ − ρh), curlψ) = 0 ∀ ψ ∈ Vh . (5.4)

Let χ ∈ H1(�) be arbitrary and λ ∈ H1(�) be defined by

(curlψ, curl λ) + (ψ, 1)(λ, 1) = (ψ, χ) ∀ ψ ∈ H1(�). (5.5)

Then we have

(ρ − ρh, χ) = (
curl (ρ − ρh), curl λ

) = (
curl (ρ − ρh), curl (λ − ψ)

) ∀ ψ ∈ Vh

by (5.4), (5.5) and the fact that ρ, ρh ∈ L0
2(�), which implies

|(ρ − ρh, χ)| ≤ ‖curl (ρ − ρh)‖L2(�) inf
ψ∈Vh

|λ − ψ |H1(�). (5.6)

According to Lemma 2.4 and (5.5), we have λ ∈ H1+(π/ω)−ε(�) for any ε > 0 and also
‖λ‖H1+(π/ω)−ε (�) ≤ Cε‖χ‖H1(�). Lemma 5.1 then implies

inf
ψ∈Vh

|λ − ψ |H1(�) ≤ Chmin((π/ω)−ε,k)‖λ‖H1+(π/ω)−ε (�) ≤ Cεh
min((π/ω)−ε,k)‖χ‖H1(�).

(5.7)

The estimate (5.2) follows from (5.3), (5.6) and (5.7). 
�
Next we estimate |ξ − ξh |H1(�).

Let ξ̃0,h ∈ V̊h be defined by

(curl ξ̃0,h, curl η) + β(ξ̃0,h, η) = (ρ, η) ∀ η ∈ V̊h . (5.8)

On one hand we have
(
curl (ξ̃0,h − ξ0,h), curl η

) + β
(
ξ̃0,h − ξ0,h, η

) = (ρ − ρh, η) ∀ η ∈ V̊h

by comparing (4.3) and (5.8). It follows that

|ξ̃0,h − ξ0,h |2H1(�)
≤ (ρ − ρh, ξ̃0,h − ξ0,h),

which together with (5.2) and a standard Poncaré-Friedrichs inequality implies

|ξ̃0,h − ξ0,h |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.9)
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On the other hand ξ̃0,h is the Galerkin finite element approximation of ξ0 (cf. (3.12) and
(5.8)). Therefore we have

|ξ0 − ξ̃0,h |H1(�) ≤ C inf
η∈V̊h

|ξ0 − η|H1(�) (5.10)

by Céa’s lemma [13,16].
According toLemma2.3 and (3.12),wehave ξ0 ∈ H1+(π/ω)−ε(�) and‖ξ0‖H1+(π/ω)−ε (�) ≤

Cε‖ρ‖H1(�). It then follows from Lemma 5.1 that

inf
η∈V̊h

|ξ0 − η|H1(�) ≤ Chmin((π/ω)−ε,k)‖ξ0‖H1+(π/ω)−ε (�) ≤ Cεh
min((π/ω)−ε,k). (5.11)

Putting (5.9)–(5.11) together we obtain

|ξ0 − ξ0,h |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.12)

Similarly, since ξ1,h is the Galerkin finite element approximation of ξ1 (cf. (3.13) and
(4.4)), we have

|ξ1 − ξ1,h |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.13)

The estimate (5.1) follows from (3.11), (4.2), (5.12) and (5.13).

5.1.2 The Case Where γ > 0

The error analysis follows the ideas in Sect. 5.1.1 within the setting of the coupled problem
(3.14a), (3.14b).

First we use a duality argument to estimate the error for ζ0,h in the norm of [H1(�)]′. In
view of (3.19), (3.21) and (4.6), we have

‖ζ0‖H1(�) + |ξ0|H1(�) ≤ C‖ f ‖L2(�), ‖ζ0,h‖H1(�) + |ξ0,h |H1(�) ≤ C‖ f ‖L2(�),

(5.14)

and the Galerkin orthogonality relation

A
(
(ζ0 − ζ0,h, ξ0 − ξ0,h), (ψ, η)

) + (ζ0 − ζ0,h, 1)(ψ, 1) = 0 ∀ (ψ, η) ∈ Vh × V̊h .

(5.15)

Let χ ∈ H1(�) be arbitrary and (λ, μ) ∈ H1(�) × H1
0 (�) be defined by

A
(
(ψ, η), (λ, μ)

) + (ψ, 1)(λ, 1) = (ψ, χ) ∀ (ψ, η) ∈ H1(�) × H1
0 (�). (5.16)

Then the function ζ0 − ζ0,h ∈ H1(�) satisfies, by (5.15) and (5.16),

(ζ0 − ζ0,h, χ) = A
(
(ζ0 − ζ0,h, ξ0 − ξ0,h), (λ, μ)

)
+ (ζ − ζ0,h, 1)(λ, 1)

= A
(
(ζ0 − ζ0,h, ξ0 − ξ0,h), (λ − ψ,μ − η)

)
+ (ζ − ζ0,h, 1)(λ − ψ, 1)

for all (ψ, η) ∈ Vh × V̊h , and hence

|(ζ0 − ζ0,h, χ)| ≤ C
(‖ζ0 − ζ0,h‖H1(�) + |ξ0 − ξ0,h |H1(�)

)
(5.17)

× inf
(ψ,η)∈Vh×V̊h

(‖λ − ψ‖H1(�) + |μ − η|H1(�)

)
.
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Observe that the well-posedness of (5.16) implies

‖λ‖H1(�) + ‖μ‖H1(�) ≤ C‖χ‖L2(�). (5.18)

It then follows from Lemmas 2.3, 2.4 and the relations (cf. (3.16) and (5.16))

(curlψ, curl λ) + (ψ, 1)(λ, 1) = γ
1
2 (ψ,μ) + (ψ, χ) ∀ ψ ∈ H1(�),

(curl η, curlμ) + β(η, μ) = −γ
1
2 (λ, η) ∀ η ∈ H1

0 (�),

that (λ, μ) ∈ H1+(π/ω)−ε(�) × H1+(π/ω)−ε(�) and, because of (5.18),

‖λ‖H1+(π/ω)−ε (�) + ‖μ‖H1+(π/ω)−ε (�) ≤ Cε‖χ‖H1(�).

Hence Lemma 5.1 implies

inf
(ψ,η)∈Vh×V̊h

(‖λ − ψ‖H1(�) + |μ − η|H1(�)

) ≤ Cεh
min((π/ω)−ε,k)‖χ‖H1(�). (5.19)

Putting (5.14), (5.17) and (5.19) together, we see that

|(ζ0 − ζ0,h, χ)| ≤ Cεh
min((π/ω)−ε,k)‖χ‖H1(�) ∀ χ ∈ H1(�). (5.20)

Next we compare the equation

(curl ξ0, curl η) + β(ξ0, η) = γ
1
2 (ζ, η) ∀ η ∈ H1

0 (�),

that is a part of (3.19) with the equation

(curl ξ0,h, curl η) + β(ξ0,h, η) = γ
1
2 (ζ0,h, η) ∀ η ∈ V̊h

that is a part of (4.6). Using (5.20) and the arguments in the derivation of(5.12), we find

|ξh − ξ0,h |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.21)

Similarly, we have

|ξ1 − ξ1,h |H1(�) ≤ Cεh
min((π/ω)−ε,k) (5.22)

by comparing (3.20) and (4.7).
The estimate (5.1) follows from (3.18), (4.5), (5.21) and (5.22).

5.2 Error Analysis for φh

The error analysis for φh is similar to the error analysis for ξh in Sect. 5.1.1.

Lemma 5.4 For any ε > 0, there exists a positive constant Cε independent of h such that

|φ − φh |H1(�) ≤ Cεh
min((π/ω)−ε,k). (5.23)

Proof It follows from Lemma 2.4 and (3.3) that φ ∈ H1+(π/ω)−ε(�) for any ε > 0 and
‖φ‖H1+(π/ω)−ε (�) ≤ Cε‖ξ‖H1(�).

Let the function φ̃h ∈ Vh be defined by

(curl φ̃h, curlψ) + (φ̃h, 1)(ψ, 1) = (ξ, ψ) ∀ ψ ∈ Vh . (5.24)

On one hand we have, by comparing (3.3) and (5.24),

|φ̃h − φh |H1(�) ≤ C‖ξ − ξh‖L2(�). (5.25)
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On the other hand φ̃h ∈ Vh is the Galerkin Pk finite element approximation of φ, and the
orthogonality relation

(
curl (φ − φ̃h), curlψ

) = 0 ∀ ψ ∈ Vh

together with Lemma 5.1 implies that

|φ − φ̃h |H1(�) ≤ inf
ψ∈Vh

|φ − ψ |H1(�)

≤ Chmin((π/ω)−ε,k)‖φ‖H1+(π/ω)−ε (�) ≤ Cεh
min((π/ω)−ε,k)‖ξ‖H1(�). (5.26)

The estimate (5.23) follows from (5.25), (5.26) and the estimate in Lemma 5.2 for ξ −ξh ∈
H1
0 (�). 
�

5.3 Error Analysis for ϕh, j and ch, j

The following result can be found in [9, Lemmas 4.6 and 4.7].

Lemma 5.5 In the case where � is not simply connected, we have

|ϕ j − ϕ j,h |H1(�) + |c j − c j,h | ≤ Chπ/ω for 1 ≤ j ≤ m.

5.4 Convergence Results

In view of Lemmas 5.2, 5.4, 5.5, (3.1) and (4.9), we immediately have the following result.

Theorem 5.6 The approximations ξh and uh obtained by the Pk finite elementmethod satisfy

‖u − uh‖L2(�) + |curl u − ξh |H1(�) ≤ Cεh
min((π/ω)−ε,k), (5.27)

for any ε > 0, where ω is the largest angle at the corners of �.

Remark 5.7 In the case where (π/ω) is not an integer, a more detailed analysis that takes
into account the nature of the singularities at the corners of � (cf. [6]) shows that the ε in
(5.27) can be removed.

6 Numerical Results

In this section we report the results of numerical experiments for three different domains: the
unit square, a nonconvex but simply connected domain and a domain whose Betti number is
1. We use quasi-uniform meshes in all the experiments.

Experiment 6.1 In the first experiment the domain � is the unit square (0, 1) × (0, 1). We
take β = γ = 0 and the exact solution to be u = curl φ where

φ(x) = sin3(πx1) sin
3(πx2).

We solve (1.3) by the P1 and P2 finite element methods. The results are presented in Tables 1
and 2. They agree with Theorem 5.6 with ω = π/2.

Experiment 6.2 Thedomain� for the second experiment is also the unit square (0, 1)×(0, 1).
We take β = γ = 0 and

f =
[

(x21 + 1) sin x1 + x1x32 + 2

(x22 + 1) cos x1 + x31 x
2
2 − 1

]

.
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Table 1 Results for the P1 finite
element method for
Experiment 6.1

h ‖u − uh‖L2(�) Order |curl u − ξh |H1(�) Order

1/10 3.58137 × 10−1 – 3.48606 × 101 –

1/20 1.68292 × 10−1 1.064 1.74349 × 101 1.001

1/40 8.25728 × 10−2 1.019 8.72558 × 100 0.999

1/80 4.10892 × 10−2 1.004 4.36509 × 100 0.999

1/160 2.05210 × 10−2 1.001 2.18300 × 100 1.000

Table 2 Results for the P2 finite
element method for
Experiment 6.1

h ‖u − uh‖L2(�) Order |curl u − ξh |H1(�) Order

1/10 3.09934 × 10−2 – 3.74032 × 100 –

1/20 7.85594 × 10−3 1.980 9.52019 × 10−1 1.974

1/40 1.97684 × 10−3 1.991 2.39679 × 10−1 1.990

1/80 4.95696 × 10−4 1.996 6.00980 × 10−2 1.996

1/160 1.24101 × 10−4 1.998 1.50448 × 10−2 1.998

Table 3 Results for the P1 finite
element method for
Experiment 6.2

h
‖uh,i−uh,i+1‖L2(�)

‖uh,i+1‖L2(�)
Order

|ξi,h−ξh,i+1|H1(�)
|ξh,i+1|H1(�)

Order

1/20 6.51821 × 10−2 – 1.83399 × 10−1 –

1/40 3.06374 × 10−2 1.064 9.16403 × 10−2 1.001

1/80 1.50366 × 10−2 1.019 4.62392 × 10−2 0.987

1/160 7.48116 × 10−3 1.005 2.30384 × 10−2 1.005

Table 4 Results for the P2 finite
element method for
Experiment 6.2

h
‖uh,i−uh,i+1‖L2(�)

‖uh,i+1‖L2(�)
Order

|ξi,h−ξh,i+1|H1(�)
|ξh,i+1|H1(�)

Order

1/20 5.73968 × 10−3 – 1.68212 × 10−2 –

1/40 1.47911 × 10−3 1.956 4.72439 × 10−3 1.832

1/80 3.73962 × 10−4 1.983 1.29630 × 10−3 1.866

1/160 9.39210 × 10−5 1.993 3.50361 × 10−4 1.887

We solve (1.3) by the P1 and P2 finite element methods and report the results in Tables 3
and 4. Since the exact solution is not known, the relative errors are estimated by comparing
the numerical solutions on consecutive refinement levels. The results agree with Theorem 5.6
with ω = π/2.

Experiment 6.3 In the third experiment we solve (1.3) on the nonconvex domain (cf. Fig. 2)
whose vertices are (0, 0), (.5, 0), (.5, .7), (1, .7), (1, 1), (0, 1), (1, .75), (.25, .75), (.25,
.625) and (0, .625).
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Fig. 2 Domain for Experiment 6.3

Table 5 Results for the P1 finite
element method for
Experiment 6.3

h
‖uh,i−uh,i+1‖L2(�)

‖uh,i+1‖L2(�)
Order

|ξi,h−ξh,i+1|H1(�)
|ξh,i+1|H1(�)

Order

1/20 2.05797 × 10−1 – 2.67889 × 10−1 –

1/40 1.31128 × 10−1 0.650 1.42644 × 10−1 0.909

1/80 8.28659 × 10−2 0.662 7.38178 × 10−2 0.950

1/160 5.21382 × 10−2 0.668 3.80373 × 10−2 0.957

1/320 3.27776 × 10−2 0.670 1.97576 × 10−2 0.945

We take β = γ = 0 and use a piecewise constant vector field f defined by

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1
4 , 5

4

]t |x | < 2−1/2

[ 1
2 , 3

2

]t
2−1/2 ≤ |x | < 1

[ 1 , 2 ]t |x | ≥ 1

.

The estimated relative errors for the P1 and P2 finite element methods are displayed in
Tables 5 and 6.

For this problem the order of convergence predicted by Theorem 5.6 is 2/3 (since ω =
3π/2). This is observed in Table 6 for the P2 finite element method, and also in Table 5 for
the P1 finite element method with respect to the convergence of uh . On the other hand the
convergence observed in Table 5 for ξh is pre-asymptotic.
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Table 6 Results for the P2 finite
element method for
Experiment 6.3

h
‖uh,i−uh,i+1‖L2(�)

‖uh,i+1‖L2(�)
Order

|ξi,h−ξh,i+1|H1(�)
|ξh,i+1|H1(�)

Order

1/20 5.95103 × 10−2 – 5.65277 × 10−2 –

1/40 3.72674 × 10−2 0.675 2.09547 × 10−2 1.432

1/80 2.34229 × 10−2 0.670 1.00626 × 10−2 1.058

1/160 1.47409 × 10−2 0.668 5.86889 × 10−3 0.778

1/320 9.28116 × 10−3 0.667 3.64280 × 10−3 0.688

Table 7 Results for the P1 finite element method for Experiment 6.4

h
‖uh,i−uh,i+1‖L2(�)

‖uh,i+1‖L2(�)
Order ci,h

|ch,i−ch,i+1|
|ch,i+1| Order

|ξi,h−ξh,i+1|H1(�)
|ξh,i+1|H1(�)

Order

1/20 1.21342 × 10−1 – −0.15098 7.29352 × 10−3 – 2.81481 × 10−1 –

1/40 7.68130 × 10−2 0.660 −0.15143 3.02568 × 10−3 1.269 1.52447 × 10−1 0.885

1/80 4.85896 × 10−2 0.661 −0.15162 1.23262 × 10−3 1.296 8.43960 × 10−2 0.853

1/160 3.06974 × 10−2 0.663 −0.15170 4.96890 × 10−4 1.311 4.65719 × 10−2 0.858

Experiment 6.4 The domain for the fourth experiment is

� = (0, 1) × (0, 1) \ [1/4, 3/4] × [1/4, 3/4]
whose Betti number is 1. We take β = γ = 1 and use the same f in Experiment 6.2.

Since the domain is not simply connected, the solution u of (1.3) is given by

u = curl φ + c grad ϕ, (6.1)

where ϕ is the harmonic function that vanishes on the outer boundary of � and equals 1 on
the inner boundary of �. The approximation for u is given by

uh = curl φh + ch grad ϕh, (6.2)

where ϕh is the discrete analog of ϕ.
We solve (1.3) by the P1 finite element method and report the results in Table 7. The order

of convergence for uh is observed to be 2/3, which agrees with Theorem 5.6 with ω = 3π/2.
The convergence of ξh is pre-asymptotic.

Note that the order of convergence for ch is better than 2/3, which is due to the fact that
f is smooth (cf. [9, Remark 4.8 and Table 4.3]).

7 Concluding Remarks

We have designed and analyzed Pk Lagrange finite element methods for a quad-curl problem
that are based on the Hodge decomposition approach. For simplicity we only considered
quasi-uniform meshes and the performance of the methods suffer from the existence of
reentrant corners. But optimal convergence rates can be recovered if we would use properly
graded meshes (cf. [17] for the case of the Maxwell equations).
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Our convergence analysis does not require H2 (or higher) regularity for the exact solu-
tion that is assumed in [23,29,31]. The computational cost of our approach also compares
favorably to those for the methods in [23,29,31].

Below are some related topics that can also benefit from the Hodge decomposition
approach.

• As in the case of the Maxwell equations, the Hodge decomposition approach lends itself
naturally to the development of fast solvers for the quad-curl problem.

• The Hodge decomposition approach can also be applied to the following eigenvalue
problems on two dimensional domains. The first eigenvalue problem is to find (u, λ) ∈
E × R such that

(
curl (curl u), curl (curl v)

) = λ(u, v) ∀ v ∈ E and u �= 0.

The second eigenvalue problem is to find (u, λ) ∈ E × R such that
(
curl (curl u), curl (curl v)

) = λ(curl u, curl v) ∀ v ∈ E and u �= 0.

For both problems the Hodge decomposition approach reduces an elliptic eigenvalue
problem for vector fields to an elliptic eigenvalue problem for scalar functions that can
be solved by standard H1 conforming finite elements.

• For three dimensional domains, the Hodge decomposition approach reduces the quad-
curl problem to problems that can be solved numerically by standard H(curl), H(div) and
H1 conforming finite elements. Moreover these problems have already been analyzed
in [4].

These topics are being investigated in our ongoing projects.
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