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Abstract The commonly used one step methods and linear multi-step methods all have a
global error that is of the same order as the local truncation error (as defined in [1,6,8,13,15]).
In fact, this is true of the entire class of general linear methods. In practice, this means that
the order of the method is typically defined solely by order conditions which are derived
by studying the local truncation error. In this work we investigate the interplay between
the local truncation error and the global error, and develop a methodology which defines
the construction of explicit error inhibiting block one-step methods (alternatively written as
explicit general linear methods [2]). These error inhibiting schemes are constructed so that
the accumulation of the local truncation error over time is controlled, which results in a global
error that is one order higher than the local truncation error. In this work, we delineate how
to carefully choose the coefficient matrices so that the growth of the local truncation error is
inhibited. We then use this theoretical understanding to construct several methods that have
higher order global error than local truncation error, and demonstrate their enhanced order
of accuracy on test cases. These methods demonstrate that the error inhibiting concept is
realizable. Future work will further develop new error inhibiting methods and will analyze
the computational efficiency and linear stability properties of these methods.
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1 Introduction

When solving an ordinary differential equation (ODE) of the form

ut = F(t, u) , t ≥ 0

u(t = 0) = u0 (1)

One can evolve the solution forward in time using the first order forward Euler method

vn+1 = vn + �t F(tn, vn) .

To obtain a more accurate solution, one can use methods with multiple steps:

vn+1 =
s∑

j=1

a j vn+1− j + �t
s∑

j=0

b j F(tn+1− j , vn+1− j ), (2)

known as linear multistep methods [3]. Alternatively, one can use multiple stages, such as
Runge–Kutta methods [3]:

yi = F

⎛

⎝vn +
m∑

j=1

ai j y
( j), tn + �t

m∑

j=1

ai j

⎞

⎠ for j = 1, ...,m

vn+1 = vn + �t
m∑

j=1

b j y j .

The class of general linear methods described in [2,9] combines the use of multiple steps
and stages, constructing methods of the form:

yi =
s∑

j=1

Ũi jvn + �t
m∑

j=1

Ãi j f (y j )

vin+1 =
s∑

j=1

Ṽi jv
i
n + �t

m∑

j=1

B̃i j f (y j ) . (3)

The inclusion of multiple derivatives, such as Taylor series methods [3],

vn+1 = vn + �t F(tn, vn) + �t2

2
F ′(tn, vn) + �t3

3! F ′′(vn),

is another possibility, and multiple stages and derivatives have also been developed and used
successfully [4,10,11,17,18].

For time-dependent problems the global error, which is the difference between the numer-
ical and exact solution at any given time tn = n�t :

En = vn − u(tn),

depends on the local truncation error which, roughly speaking, is the accuracy over one time
step. In our case we define the local truncation error as the error of the method over one
time-step, normalized by �t . For example, the local truncation error for Euler’s method is
(following [1,6,8,13,15])

τ = u(tn+1) − u(tn) − �t F(tn, u(tn))

�t
≈ O(�t).
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(To avoid confusion it is important to note that sometimes the truncation error is defined a
little differently than we define it above and is not normalized by �t).

A well known theoretical result, known as the Lax-Richtmeyer equivalence theorem (see
e.g. [6,12,13]) states that if the numerical scheme is stable then the global error is at least
of the same order as the local truncation error. In all the schemes for numerically solving
ordinary differential equations (ODEs) that we are familiar with from the literature, the global
errors are indeed of the same order as their local truncation errors.1 This is common to other
fields in numerical mathematics, such as for finite difference schemes for partial differential
equations (PDEs), see e.g. [6,13]. It was recently demonstrated, however, that finite difference
schemes for PDEs can be constructed such that their convergence rates, or the order of their
global errors, are higher than the order of the truncation errors [5]. In this work we adopt and
adapt the ideas presented in [5] to show that it is possible to construct numerical methods for
ODEs where the the global error is one order higher than the local truncation error. As we
discuss below, these schemes achieve this higher order by inhibiting the lowest order term in
the local error from accumulating over time, and so we name them Error Inhibiting Schemes.

Following an idea in [14], an interestingpaper byShampine andWatt in 1969 [16] describes
a class of implicit one-step methods that obtain a block of s new step values at each step.
These methods take s initial step values and generate the next s step values, and so on, all
in one step. These methods are in fact explicit block one-step methods, and can be written
as general linear methods of the form (3) above. Inspired by this form, we construct explicit
block one-step methods which are in the form (3), but where the matrix Ũ is an identity
matrix, and the matrix Ã is all zeros; these are known as Type 3 methods in [2]. The major
feature of our methods is that in addition to satisfying the appropriate order conditions listed
in [2], they have a special structure that mitigates the accumulation of the truncation error,
so we obtain a global error that is one order higher than predicted by the order conditions in
[2], which describe the local truncation error.

In Sect. 2 we motivate our approach by describing how typical multistep methods can be
written and analyzed as block one-step methods: these methods obtain a block of s new step
values at each step. We show how this form allows us to precisely describe the growth of the
error over the time-evolution. In Sect. 3 we then exploit this understanding to develop explicit
error inhibiting block one-step methods that produce higher order global errors than possible
for typical multistep methods. In Sect. 4 we present some methods developed according to
the theory in Sect. 3 and we test these methods on several numerical examples to demonstrate
that the order of convergence is indeed one order higher than the local truncation error. We
also show that, in contrast to our error inhibiting Type 3 method, a typical Type 3 method
developed by Butcher in [2] does not satisfy the critical condition for a method to be error
inhibiting and therefore produces a global error that is of the same order as the local truncation
error. Finally, we present our conclusions in Sect. 5, and suggest that further investigation of
error inhibiting methods shall include the analysis of their linear stability properties, storage
implications, and computational efficiency.

2 Motivation

In this section we present the analysis of explicit multistep methods in a block one-step form
for a simple linear problem. In this familiar setting we define the local truncation error, the

1 In the case where the truncation error is defined without the �t normalization the global error is one order
lower than the truncation error.
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global error, and the solution operator that connects them. We also discuss the stability of a
method of this form.We limit our analysis to the linear case so that we can clearly observe the
process by which the solution operator interacts with the local truncation error, and results in
a global error that is of the same order as the local truncation error. Although we are dealing
for the moment with standard multistep methods, this will set the stage for the construction
and analysis of error inhibiting block one-step methods.

In order to illustrate the main idea we start with a linear ordinary differential equation
(ODE)

ut = f (t) u , t ≥ 0

u(t = 0) = u0 (4)

where f (t) < M , ∀t ≥ 0 and f (t) is analytic.
An s-step explicit multistep method applied to (4) takes the form

vn+s =
s−1∑

j=0

a j vn+ j + �t
s−1∑

j=0

b j F(tn+ j , vn+ j ) =
s−1∑

j=0

a j vn+ j + �t
s−1∑

j=0

b j f (tn+ j ) vn+ j

(5)
where the time domain is discretized by the sequence tn = n �t , and vn denotes the numerical
approximation of u(tn). The method (5) is defined by its coefficients {a j }s−1

j=0 and {b j }s−1
j=0,

which are constant values.
Following [6] we rewrite the method (5) in its block form. To do this, we first introduce

the exact solution vector
Un = (u(tn+s−1), . . . , u(tn))

T (6)

and similarly, the numerical solution vector is

Vn = (vn+s−1, . . . , vn)
T . (7)

Now (5) can be written in block form so that it looks like a one step scheme

Vn+1 = QnVn (8)

where

Qn =

⎛

⎜⎜⎜⎝

as−1 + �tbs−1 f (tn+s−1) as−2 + �tbs−2 f (tn+s−2) . . . a0 + �tb0 f (tn)
I

. . .

I 0

⎞

⎟⎟⎟⎠ ,

(9)
this matrix (or its transpose) is often called the companion matrix.

From repeated applications of Eq. (8) we observe that the numerical solution vector Vn at
any time tn can be related to Vν for any previous time tν

Vn = S�t (tn, tν) Vν , ν ≤ n (10)

where S�t is the discrete solution operator. This operator can be expressed explicitly by

S�t (tn, tν) = Qn−1 . . . Qν+1Qν , S�t (tn, tn) = I. (11)

For simplicity we can define this by

n−1∏

μ=ν

Qμ ≡ Qn−1 . . . Qν+1Qν ,

n−1∏

μ=n

Qμ ≡ I. (12)

123



J Sci Comput (2017) 73:691–711 695

Note that if each matrix Qμ is independent of μ (in other words, in the constant coefficient
case where f is independent of t), we simply have a product of matrices Q, and the discrete
solution operator becomes

S�t (tn, tν) = Qn−ν . (13)

The behavior of a method depends in large part on the accuracy of its solution operator.
We begin by defining the local truncation error as the error of the method over one time-step,
normalized by �t :

Definition 1 The local truncation error τ n is given by [1,6,8,13,15]

�t τ n = Un+1 − QnUn (14)

Note that in the case of the standard multistep method, where Qn is given by the matrix
(9), the truncation error has only one non-zero element:

τ n = (τn, 0, . . . , 0)
T . (15)

The error that we are most interested in is the difference between the exact solution vector
and the numerical solution vector at time tn ,

En = Un − Vn , (16)

known as the global error. At the initial time, we have the error E0 which is based on the
starting values a method of this sort requires: the values v j , j = 0, . . . , s − 1 that are
prescribed or somehow computed. Typically, v0 is the initial condition defined in (1) and v j ,
j = 1, . . . , s − 1 are computed to sufficient accuracy using some other numerical scheme.
Thus, the value of E0 is assumed to be as small as needed.

The evolution of the global error (16) depends on the local truncation error defined by
(14) and the discrete solution operator given in (8):

En+1 = QnEn + �t τ n . (17)

Unraveling this equality all the way back to E0 gives

En = S�t (tn, 0) E0 + �t
n−1∑

ν=0

S�t (tn, tν+1) τ ν , (18)

or, equivalently

En =
n−1∏

μ=0

QμE0 + �t
n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Qμ

⎞

⎠ τ ν . (19)

(This formula is obtained from the discrete version of Duhamel’s principle, see Lemma
5.1.1 in [6]).

It is clear from (18) that the behavior of the discrete solution operator S�t (tn, tν+1) must
be controlled for this error to converge. This property defines the stability of the method.
Also here we use the stability definition presented in [6], namely:

Definition 2 The scheme (8) is called stable if there are constants αs and Ks , independent
of �t , such that for all 0 < �t ≤ �t0

‖S�t (tn, tν)‖ ≤ Kse
αs (tn−tν ) (20)
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If the scheme is stable, we can use (20) and (18) to bound the growth of the error:

‖En‖ ≤ Ks

[
eαs tn ‖E0‖ + max

0≤ν≤n−1
‖τ ν‖ φ∗

h (αs, tn)

]
. (21)

where

φ∗
�t (αs, tn) = �t

n−1∑

ν=0

eαs (tn−tν+1) ≈
∫ tn

0
eαs (tn−ζ )dζ =

{
eαs tn−1

αs
αs 
= 0

tn αs = 0
. (22)

Equation (21) means that stability implies convergence:2 if the scheme is stable than the
global error is controlled by the local truncation error for any given final time. In the formula
above it is clear that the global error must have order at least as high as the local truncation
error, but the possibility of having a higher order global error is left open.

The first Dahlquist barrier [3,7] states that any explicit s step linear multistep method can
be of order p no higher than s. It is the common experience that methods have global error
of the same order as the local truncation error. These two together greatly limit the accuracy
of the methods we can derive.

Remark 1 In an Adams–Bashforth scheme the entry in the first row and first column in
the term S�t (tn, tν) = ∏n−1

μ=ν Qμ is equal to 1 + O(�t). Therefore the error, due to the
accumulation of the contributions from the truncation errors, becomes:

en+s = �t
n−1∑

ν=0

(1 + O(�t)) τν (23)

which is approximately the average value of τν over ν = 0, .., n − 1. This suggests that we
may need to look outside the family of linear multistep methods to attain a higher order
global error.

The analysis in this section suggests that if the operator Qn is properly constructed, the
growth of the global error described in Eq. (19) may be controlled through the properties of
the operator Qn and its relationship with the local truncation error τ n . However, as implied
by the example of the Adams-Bashforth scheme above, we need to construct methods where
the operator Qn is not limited by the structure in this section. In the next section we present
the construction of block one-step methods that are error inhibiting. The class of methods
described by this block one-step structure is very broad: while all classical multistep methods
can be written in this block form, not every such block one-step method can be written as
a classical multistep method. Thus, we rely on the discussion in this section with one main
change: the structure of the operator Qn .

3 An Error Inhibiting Methodology

In Sect. 2we rewrote explicit linearmultistepmethods in a block one-step form, and expressed
the relationship between its local and global error. We observed that the growth of the local
errors is driven by the behavior of the discrete solution operator Qn , and in particular its
interaction with the local truncation error. Using this insight we show in this section that it

2 For partial differential equations this result is known as one part of the celebrated Lax-Richtmeyer equiva-
lence theorem. See e.g. [6,12,13].
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is possible to construct such explicit block one-step methods (which are also known as Type
3 DIMSIM methods in [2]) that inhibit the growth of the truncation error so that the global
error (16) gains an order of accuracy over the local truncation error (14).

We begin in Sect. 3.1 by describing the construction and analysis of error inhibiting block
one-step schemes for the case of linear constant coefficient equations. We then show that this
approach yields methods that are also error inhibiting for variable coefficient linear equations
in Sect. 3.2 and nonlinear equations in Sect. 3.3.

3.1 Error Inhibiting Schemes for Linear Constant Coefficient Equations

Given a linear ordinary differential equation with constant coefficients:

ut = f · u , for t ≥ 0,

u(t = 0) = u0 (24)

where f ∈ R. We define a vector of length s that contains the exact solution of (24) at times
(tn + j�t/s) for j = 0, . . . , s − 1

Un = (
u(tn+(s−1)/s), . . . , u(tn+1/s), u(tn)

)T
, (25)

and the corresponding vector of numerical approximations

Vn = (
vn+(s−1)/s, . . . , vn+1/s, vn

)T
. (26)

Note that although we are assuming that the solution u at any given time is a scalar,
this entire discussion easily generalizes to the case where u is a vector, with only some
cumbersome notation needed. Thus without loss of generality we continue the discussion
with scalar notation.

Remark 2 The notation above emphasizes that this scheme uses s terms for generating the
next s terms, unlike the explicit linear multistep methods in the section above which use
s terms to generate one term. To match with the notation in Sect. 2 above, we can replace
�t ′ = s�t thus defining this scheme on integer grid points.

We define the block one-step method for the linear constant coefficient problem (24)

Vn+1 = QVn (27)

where
Q = A + �t B f (28)

and A, B ∈ Rs×s . Unlike in the case of classical multistep methods, here we do not restrict
the structure of the matrices A and B. Thus, any multistep method of the form (5) can be
written in this form (as we saw above), but not everymethod of the form (28) can bewritten as
a multistep method. In fact, this methods is a general linear method of the DIMSIM form (3)
with Ã is all zeroes, Ũ is the identity matrix, Ṽ = A, and B̃ = B. This particular formulation
is, as we mentioned above, called a Type 3 DIMSIM in Butcher’s 1993 paper [2].

At any time tn , we know that u(tn + �t) = u(tn) + O(�t), so that for the numerical
solution Vn to converge to the analytic solutionUn one of the eigenvalues of Q must be equal
to 1 + O(�t), and its eigenvector must have the form:

(1 + O(�t), . . . , 1 + O(�t))T . (29)
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The structure of the eigensystem of A, which is the leading part of Q, is critical to the stability
of the scheme and the dynamics of the error.

Suppose A is constructed such that:

(1) rank(A) = 1.
(2) Its non-zero eigenvalue is equal to one and its corresponding eigenvector is (1, . . . , 1)T

(3) A can be diagonalized.

Property (2) assures that themethodproduces the exact solution for the case f = 0.Now, since
the term �t B f is only an O(�t) perturbation to A, the matrix Q will have one eigenvalue,
z1 = 1 + O(�t) whose eigenvector has the form

ψ1 = (1 + O(�t), . . . , 1 + O(�t))T (30)

and the rest of the eigenvalues satisfy z j = O(�t) for j = 2, . . . , s.
Since the ‖Q‖ = 1 + O(�t), we can conclude that there exist constants Ks and αs such

that
‖S�t (tn, tν)‖ = ∥∥Qn−ν

∥∥ ≤ Kse
αs (tn−tν ) (31)

where αs = ‖B‖ | f |. Therefore, according to Definition 2, the scheme (27) is stable. By the
same argument used above, we can show that the global error will have order that is no less
than the order of the local truncation error.

We now turn to the task of investigating the truncation error, τ n . The definition of the
local truncation error in this case is still

�t τ n = Un+1 − QnUn

as defined in the previous section in Eq. (14).

Remark 3 Since Q = A + �t B f and ut = f u the local truncation error can be written as

�t τ n = Un+1 −
(
AUn + �t B

d Un

dt

)
.

Therefore τ n does not explicitly depend on f . This observation is valid for the variable
coefficients and the nonlinear case as well.

The definition of the error is

En = Un − Vn ,

as in Eq. (16). The evolution of the error is still described by Eq. (19)

En =
n−1∏

μ=0

QμE0 + �t
n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Qμ

⎞

⎠ τ ν ,

which in the linear constant coefficient case becomes

En = QnE0 + �t
n−1∑

ν=0

Qn−ν−1τ ν . (32)

The main difference between this case and the linear multistep method in Sect. 2 is that the
structure of Q is different, and that unlike (15), in this case all the entries in τ n are typically
non-zero.

Equation (32) indicates that there are several sources for the error at the time tn :
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(1) The initial error E0 which is the error in the initial condition V0: This error is caused
primarily by the numerical scheme used to compute the first s − 1 elements in V0.
We assume these errors can be made arbitrary small. The initial value, which is the final
element of V0, is taken from the analytic initial condition and is considered to be accurate
to machine precision.

(2) The term �t τ n−1, which is the last term in the sum in the right hand side of (32): This
term is clearly, by definition, of the size O(�t)‖τ n−1‖.

(3) The summation

�t
n−2∑

ν=0

Qn−ν−1τ ν, (33)

which are all the rest of the terms in the sum in the right hand side of (18): This is the
term we need to bound to control the growth of the truncation error.

The terms in the sum (33) are all comprised of the discrete solution operator Qmultiplying
the local truncation error. This leads us to the major observation that is the key to constructing
error inhibiting methods: if the local truncation error lives in the subspace of eigenvectors
that correspond to the eigenvalues of O(�t), then the growth of the truncation error
will be inhibited, and the global error will be one order higher than the local truncation
error.

Recall that Q has one dominant eigenvalue that has the form 1+O(�t) and all the others
are O(�t). Correspondingly, two subspaces can be defined

	1 = span {ψ1} and 	c
1 = span {ψ2, ..., ψs}

whereψ j is the eigenvector associated with each eigenvalue z j . Asψ j can be normalized, we
assume that ‖ψ j‖ = O(1). It should be noted that while	1 and	c

1 are linearly independent,
they are not orthogonal subspaces. Furthermore, since the matrix A is diagonalizable by
construction, its eigenvectors spanRs . Since τ ν ∈ Rs , it can be written as

τ ν = γ1ψ1 +
s∑

j=2

γ jψ j (34)

where γ1ψ1 ∈ 	1 and
∑s

j=2 γ jψ j ∈ 	c
1 .

Of course, the truncation error τ ν is determined by the entries of Q. To ensure that the
local truncation error is mostly in the space 	c

1 of eigenvectors which correspond to the
eigenvalues of size O(�t), we choose the entries of Q (i.e. the entries of A and B) such that
γ1 = O(�t), which will mean that

‖γ1ψ1‖ = O(�t) ‖τ ν‖ . (35)

Using this, we can bound product of the discrete solution operator and the truncation error,

‖Qτ ν‖ =
∥∥∥∥∥∥
γ1Qψ1 +

s∑

j=2

γ j Qψ j

∥∥∥∥∥∥
≤ ‖γ1Qψ1‖ +

∥∥∥∥∥∥

s∑

j=2

γ j Qψ j

∥∥∥∥∥∥

= ‖γ1z1ψ1‖ +
∥∥∥∥∥∥

s∑

j=2

γ j z jψ j

∥∥∥∥∥∥
≤ |z1| ‖γ1ψ1‖ + max

j=2,...s
|z j |

∥∥∥∥∥∥

s∑

j=2

γ jψ j

∥∥∥∥∥∥
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≤ |z1| ‖γ1ψ1‖ + max
j=2,...s

|z j | ‖τ ν − γ1ψ1‖
≤ (1 + O(�t)) O(�t) ‖τ ν‖ + O(�t) ‖τ ν‖ = O(�t) ‖τ ν‖

where z j are the eigenvalues of Q. Therefore we have

‖Qτ ν‖ ≤ O(�t) ‖τ ν‖ . (36)

Whenever the condition (36) is satisfied, we can show that the sum (33) above is bounded:
∥∥∥∥∥�t

n−2∑

ν=0

Qn−ν−1τ ν

∥∥∥∥∥ = �t

∥∥∥∥∥

n−2∑

ν=0

Qn−ν−1τ ν

∥∥∥∥∥ ≤ �t
n−2∑

ν=0

∥∥Qn−ν−2
∥∥ ‖Qτ ν‖

≤ �t
n−2∑

ν=0

‖Q‖n−ν−2 O(�t)‖τ ν‖

≤ �t

(
max

ν=0,...,n−2
‖τ ν‖

) n−2∑

ν=0

(1 + c�t)n−ν−2O(�t)

≤ �t

(
max

ν=0,...,n−2
‖τ ν‖

) n−2∑

ν=0

[
ec�t (1 + O(�t2)

)]n−ν−2
O(�t)

≤ �t

(
max

ν=0,...,n−2
‖τ ν‖

) n−2∑

ν=0

[
ec(tn−2−tν ) (1 + O(�t))

]
O(�t)

≤ O(�t)

(
max

ν=0,...,n−2
‖τ ν‖

)
φ∗

�t (c, T ). (37)

(Recall (22) for the definition of of φ∗
�t (c, T ).)

In the final equation, T is the final time, and the term φ∗
�t (c, T ) is therefore a constant.

Thus we have the bound
∥∥∥∥∥�t

n−2∑

ν=0

Qn−ν−1τ ν

∥∥∥∥∥ ≤ O(�t) max
ν=0,...,n−2

‖τ ν‖ . (38)

Putting this all together into (32), we obtain

‖En‖ = O(�t) max
ν=0,...,n−1

‖τ ν‖ . (39)

Thus, if the coefficients of A and B are chosen so that we can control the size of ‖Qτ ν‖ in
(36), we can obtain a scheme that inhibits the growth of the local truncation error, so that the
global error is one order more accurate than its truncation error.

3.2 Linear Variable-Coefficient Equations

In the previous section we showed how to construct an error inhibiting method by choosing
the coefficients in A and B so that the local truncation error lives (mostly) in the space that is
spanned by the eigenvectors corresponding to eigenvalues that are of O(�t). In this section
we show that under the same criteria as above, these methods are also error inhibiting when
applied to a variable coefficient linear ordinary differential equation:

ut = f (t)u , t ≥ 0

u(t = 0) = u0 (40)
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where f (t) assumed to be analytic or as smooth as needed, and bounded. In this case the
scheme is given by a time-dependent evolution operator Qn which may change each time-
step:

Vn+1 = QnVn (41)

where

Qn = A + �t B

⎛

⎜⎜⎜⎝

f
(
tn+(s−1)/s

)

f
(
tn+(s−2)/s

)

. . .

f (tn)

⎞

⎟⎟⎟⎠ (42)

and thematrices A and B are the same as described above for the constant coefficient scheme.
Since f (t) is an analytic function, Qn can be written as

Qn = A+�t B f (tn)+�t2B f ′(tn)

⎛

⎜⎜⎜⎝

((s − 1)/s)
((s − 2)/s)

. . .

0

⎞

⎟⎟⎟⎠+O(�t3) (43)

We can also say then that

Qn = A + �t B f (tn) + O(�t2)B f ′(tn) = Q̃n + O(�t2). (44)

Each Q̃n has the same structure as Q in the constant coefficient case. In particular

‖Q̃n‖ = (1 + O(�t)) ≤ 1 + c�t, ∀n . (45)

Furthermore, as was pointed out in Remark 3, since the local truncation error τ n does not
depend explicitly on f (t) at any time tn , we can write τ n as a linear combination of the
eigenvectors of A that correspond to the zero eigenvalues. Thus, τ n lives (mostly) in the
space that is spanned by the eigenvectors of any matrix Q̃n corresponding to eigenvalues that
are of O(�t). We can then follow the same analysis as in (35)–(36), to obtain the bound

‖Q̃n+1τ n‖ = O(�t)‖τ n‖, ∀n . (46)

In this case, Eq. (18) takes the modified form (for n ≥ 1)

En =
n−1∏

μ=0

QμE0 + �t
n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Qμ

⎞

⎠ τ ν

=
n−1∏

μ=0

QμE0 + �t
n−2∑

ν=0

n−1∏

μ=ν+1

(
Q̃μ + O(�t2)

)
τ ν + �tτ n−1

The first term is negligible because we assume that the initial error can be made arbitrarily
small, and the final term is clearly of order �tτ n−1. Using (45), (46) and the same analysis
as in (35)–(38) we have

∥∥∥∥∥∥
�t

n−2∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̃μ

⎞

⎠ τ ν

∥∥∥∥∥∥
=

∥∥∥∥∥∥
�t

n−2∑

ν=0

⎛

⎝
n−1∏

μ=ν+2

Q̃μ

⎞

⎠
(
Q̃ν+1τ ν

)
∥∥∥∥∥∥

≤ �t
n−2∑

ν=0

∥∥∥∥∥∥

n−1∏

μ=ν+2

Q̃μ

∥∥∥∥∥∥

∥∥∥Q̃ν+1τ ν

∥∥∥
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≤ �t
n−2∑

ν=0

O (1 + O(�t))n−ν−2 O(�t) ‖τ ν‖

≤ O(�t) max
ν=0,...,n−2

‖τ ν‖ .

Putting these all together we have

‖En‖ = O(�t) max
ν=0,...,n−1

‖τ ν‖ . (47)

This simple proof shows that even for the variable coefficient case, the schemes constructed
as described above have a higher order error thanwould be expected from the truncation error.
In the next subsection we extend this analysis to the general nonlinear case.

3.3 Nonlinear Equations

Finally, we analyze the behavior of methods satisfying the assumptions in Sect. 3.1 when
applied to nonlinear problems. Consider the nonlinear equation

ut = f (u(t), t) , t ≥ 0

u(t = 0) = u0 (48)

where f (u, t) assumed to be analytic in u and t . We now use the scheme

Vn+1 = AVn + �t B

⎛

⎜⎝
f
(
vn+(s−1)/s, tn+(s−1)/s

)

...

f (vn, tn)

⎞

⎟⎠ (49)

where the matrices A and B are as constructed above for the constant coefficients problem.
As defined in (14), the exact solution to (48) and the truncation error are related by

Un+1 = AUn + �t B

⎛

⎜⎝
f
(
un+(s−1)/s, tn+(s−1)/s

)

...

f (un, tn)

⎞

⎟⎠ + �tτ n . (50)

Note that by Taylor expansion

f (vν, tν) = f (uν, tν) + fu (uν, tν) (vν − uν) + r(vν − uν) ,

where fu(u, t) = ∂ f (u, t)/∂u and |r(vν − uν)| ≤ c1|vν − uν |2. Subtracting (49) from (50)
and assuming that En = Un − Vn � 1 gives

En+1=AEn−�t B

⎛

⎜⎝
fu

(
un+(s−1)/s, tn+(s−1)/s

)

. . .

fu (un, tn)

⎞

⎟⎠ En+�tτ n+�t R(En)

(51)
where ‖R(En)‖ ≤ c1‖En‖2. Equation (51) means that as long as O(E2

n) � O(τ n), the
equation for the error En can be analyzed in essentially the same way as for the linear
variable coefficient case, and the same estimates hold.

In order to evaluate the time interval in which O(E2
n) � O(τ n) we note that although

the term R(En) in (51) is not a non-homogeneous term but rather a function of En , we can
still use the approach used in [6, Theorem 5.1.2]) to prove stability for a perturbed solution
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operator. As in [6, Theorem 5.1.2]), we use the discrete version of Duhamel’s principle to
obtain

En =
n−1∏

μ=0

Q̂μE0 + �t
n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̂μ

⎞

⎠ τ ν + �t
n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̂μ

⎞

⎠ R(Eν)

(52)

where

Q̂n = A − �t B

⎛

⎜⎝
fu

(
un+(s−1)/s, tn+(s−1)/s

)

. . .

fu (un, tn)

⎞

⎟⎠ . (53)

Taking the norm of (52) and using the triangle inequality we obtain

‖En‖ ≤
∥∥∥∥∥∥

n−1∏

μ=0

Q̂μE0

∥∥∥∥∥∥
+

∥∥∥∥∥∥
�t

n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̂μ

⎞

⎠ τ ν

∥∥∥∥∥∥
+

∥∥∥∥∥∥
�t

n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̂μ

⎞

⎠ R(Eν)

∥∥∥∥∥∥
.

(54)

As in the linear case we assume that the initial error, E0 is arbitrary small, so the first
term is negligible. If Q̂ν+1 is constructed such that ‖Q̂ν+1τ ν‖ = �t O(τ ν) then using the
same analysis as in variable coefficient case the second term in (54) is less or equal to
�tc0φ∗

h (c, tn)maxν=0,...,n−1 ‖τ ν‖. As to the third term, the same arguments can be used to
show that it is bounded by

∥∥∥∥∥∥
�t

n−1∑

ν=0

⎛

⎝
n−1∏

μ=ν+1

Q̂μ

⎞

⎠ R(Eν)

∥∥∥∥∥∥
≤ c1φ

∗
h (c, tn) ‖En‖2 , (55)

so that (54) (with the substitution of (55) for the final term) can be re-arranged to obtain

‖En‖
(
1 − c1φ

∗
h (c, tn) ‖En‖

) ≤ �tc0φ
∗
h (c, tn) max

ν=0,...,n−1
‖τ ν‖ . (56)

If c1φ∗
h (c, tn) ‖En‖ < 1/2, we obtain

‖En‖ ≤ 2�tc0φ
∗
h (c, tn) max

ν=0,...,n−1
‖τ ν‖ (57)

This estimate holds as long as

c1φ
∗
h (c, tn) ‖En‖ ≤ 2�tc0c1

(
φ∗
h (c, tn)

)2 max
ν=0,...,n−1

‖τ ν‖ ≤ 1

2
, (58)

which is satisfied for all times tn such that �tφ∗
h (c, tn) = O(1).

Therefore
‖En‖ = O(�t) max

ν=0,...,n−1
‖τ ν‖ .

for the nonlinear case as well.

4 Some Error Inhibiting Explicit Schemes

In the previous section we define sufficient conditions for methods of the form

Vn+1 = QVn (59)
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where

Q = A + �t B f

to be error inhibiting. These are

C1. rank(A) = 1.
C2. Its non-zero eigenvalue is equal to 1 and its corresponding eigenvector is

(1, . . . , 1)T .

C3. A can be diagonalized.
C4. The matrices A and B are constructed such that when the local truncation error is

multiplied by the discrete solution operator we have the bound:

‖Qτ ν‖ ≤ O(�t) ‖τ ν‖ .

This is accomplished by requiring the local truncation error to live in the space of the
eigenvectors of A that correspond to the zero eigenvalues.

In this section we present several schemes which were constructed using the approach pre-
sented in the previous section. To construct these schemes, we first select the coefficients in A
(an s × s matrix). C1 – C3 imply that all the rows A are identical and depends on s − 1 inde-
pendent variables, e.g. a1,1, ..., a1,s−1. Condition C2 assures consistency by ensuring that
the row sums are one. Next, we select the elements of the s × s matrix B and a1,1, ..., a1,s−1

by demanding that the order conditions are satisfied to order s, i.e. ‖τ‖ = O(�t s) and that
‖Qτ‖ = O(�t s+1). This ensures that conditionC4 is satisfied. These calculationswere done
symbolically using Mathematica©. This procedure ensures that the method has the correct
LTE, and that condition C4 is satisfied, thus establishing the error inhibiting property.

In Sect. 4.1, we present a block one-step method that evolves two steps (vn and vn+ 1
2
)

to obtain the next two steps (vn+1 and vn+ 3
2
). This method has truncation error (14) that is

second order, while its global order (16) is third order. We demonstrate that the expected
convergence rate is attained on several sample nonlinear problems. In this section we also
show that a typical Type 3 DIMSIM method (derived in [2]) that satisfies the first three
conditions above but not the fourth, has truncation error of order two, and its global error is
of the same order. This demonstrates the importance of condition C4.

Next, in Sect. 4.2 we present a block one-step method that evolves three steps vn , vn+ 1
3

andvn+ 2
3
to obtain vn+1, vn+ 4

3
and vn+ 5

3
. This method has truncation error (14) that is

third order, while its global order (16) is fourth order, as we demonstrate on several sample
problems. Finally, to show that the methods in each class are not unique, we present two
other methods of this type and show that their global error is of one order higher than the
local truncation error on a sample nonlinear system.

4.1 A Third Order Error Inhibiting Method with s = 2

In this subsection we define an explicit block one-step with s = 2 that satisfies the conditions
C1 – C4 above. This method takes the values of the solution at the times tn and tn+ 1

2
and

obtains the solution at the time-level tn+1 and tn+ 3
2
. The exact solution vector for this problem

is

Un = (
u(tn+1/2), u(tn)

)T
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and, similarly, the corresponding vector of numerical approximations is

Vn = (
vn+1/2, vn

)T
.

The scheme is given by:

Vn+1 = 1

6

(−1 7
−1 7

)
Vn + �t

24

(
55 −17
25 1

) (
f
(
vn+1/2, tn+1/2

)

f (vn, tn)

)
, (60)

and has truncation error

τ n = 23

576

(
7
1

)
d3

dt3
u(tn)�t2 + O(�t3) . (61)

The matrix A can be diagonalized as follows:

A = 1

6

(−1 7
−1 7

)
= 1

6

(
1 7
1 1

) (
1

0

) (−1 7
1 −1

)
. (62)

Observe that the leading order of the truncation error (61) is in the space of the second
eigenvector of A, the one that corresponds to the zero eigenvalue. Also, as was pointed out
in Remark 3, τ n depends only on this eigenvector of A and a multiple that is not directly
dependent on f but only on the third derivative of the solution u. This underscores the analysis
in Sects. 3.2 and 3.3 that demonstrates that the error inhibiting property carries through for
variable coefficient and nonlinear problems.

To study the behavior of the global error we use the fact shown in Sect. 3.3 that even for
a nonlinear equation it is sufficient to analyze the matrix

Q = A + �t B f (63)

where f is a constant. In this case:

Q = 1

6

(
1 + f �t

2 + f 2�t2

8 + O(�t3) 7 + 36 f �t + 228 f 2�t2 + O(�t3)
1 1

)

(
1 + f �t + f 2�t2

2 + f 3�t3

6 + O(�t4)
4 f �t
3 − f 2�t2

2 − f 3�t3

6 + O(�t4)

)

(
−1 + 71 f �t

12 + 107 f 2�t2

36 + O(�t3) 7 − 65 f k
12 − 209 f 2�t2

36 + O(�t3)

1 − 71 f �t
12 − 107 f 2�t2

36 + O(�t3) −1 + 65 f k
12 + 209 f 2�t2

36 + O(�t3)

)

(64)

Recall that, neglecting the initial error E0, we can say that the global error is (16)

En = �t
n−1∑

ν=0

Qn−ν−1τν

Putting together Eqs. (61) and (64) we see that each term Q τ ν contributes to the error in two
ways:

• The first contribution is due to the fact that τ ν is almost co-linear with the second eigen-
vector ψ2. The order of this contribution is

|z2|‖ψ2τ ν‖ = O(�t) · O(‖�tτ ν‖) = O(�t3)

where the term |z2| is the second eigenvalue which is of order O(�t).

123



706 J Sci Comput (2017) 73:691–711
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Fig. 1 Convergence plots using the scheme (60). a The errors and truncation errors versus �t , for several
values of �t , for the numerical solution of (65). b The errors versus �t for each component of the solution,
computed for several values of �t , for the numerical solution of the van der Pol equation (66)

• The second contribution to the error comes from the component of τ ν that is a multiple
γ1 of the first eigenvector ψ1,

|z1|‖γ1ψ1τ ν‖ = O(�t) · O(‖τ ν‖) = O(�t3)

the term γ1 is of O(�t) because τ ν lives mostly in the space of ψ2.

While each of the terms in �t Q τ ν has order O(�t2) · O(‖τ ν‖) = O(�t4), as the method
is evolved forward, the errors accumulate over time, and sum of all contributions from all
the times gives us a global error of order O(�t) · O(‖τ n‖) = O(�t3).

Example 1a To demonstrate that this method indeed performs as designed we study its
behavior on a nonlinear scalar equation of the form:

ut = −u2 = f (u) , t ≥ 0

u(t = 0) = 1 . (65)

We evolve the solution of this equation to time T = 1 using the scheme (60). The initial
steps are computed exactly. The plots of the errors and the truncation errors are presented in
Fig. 1a. Both errors are shown for the first component, vn+1/2 (denoted v(1) in the legend)
and the second component, vn (denoted v(2) in the legend). Clearly, although the truncation
error is only second order (denoted tr err v(1) and tr err v(2) in the legend), the global error
is third order, as predicted by the theory.

Example 1b It is important that the method will perform as designed on a nonlinear system
as well. To demonstrate this, we solve the van der Pol system

u(1)
t = u(2)

u(2)
t = 0.1[1 − (u(1))2]u(2) − u(1) (66)

using the same scheme (60). As this is a system, it is important that both components are
examined. Thus, the vector of the numerical solution has two components for the time level
tn , denoted by v(2), and two components for the time level tn+ 1

2
, denoted by v(1). In Fig. 1b

the convergence plot of the components of u(1) and u(2) are presented. Once again, we see
that the convergence rate is indeed third order.
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Remark 4 It is important to note that not all Type 3 DIMSIM methods are error inhibiting!
The property that the local truncation error lives in the space spanned by the eigenvectors of
A that correspond to the zero eigenvalues is needed for the error inhibiting behavior to occur,
and this property is not generally satisfied. To observe this, we study the DIMSIM scheme
of types 3 presented by Butcher in [2].

Consider the scheme
(

vn+2

vn+1

)
= 1

4

(
7 −3
7 −3

) (
vn+1

vn

)
+ �t

8

(
9 −7

−3 −3

) (
f (vn+1, tn+1)

f (vn, tn)

)
(67)

given in [2]. This scheme has truncation error

τ n = 1

48

(
23
3

)
d3

dt3
u(tn)�t2 + O(�t3) . (68)

The matrix A can be diagonalized as follows:

A = 1

4

(
7 −3
7 −3

)
=

(
1 3/7
1 1

) (
1

0

)
1

4

(
7 −3

−7 7

)
. (69)

The truncation error τ n can be written as a linear combination of the two eigenvectors of A
as follows:

τ n =
[
19

24

(
1
1

)
− 35

48

(
3/7
1

)]
d3

dt3
u(tn)�t2 + O(�t3) . (70)

Unlike the EIS scheme (60), here the first term in this expansion is of the order of O(τ n) =
O(�t2). Therefore a term of the order of �t O(τ n) = O(�t3) is accumulated at each time
step, so that the global error is second order.

We note that both this method (67) and our error inhibiting method (60) satisfy the order
conditions in Theorem 3.1 of [2] only up to second order (p = 2). However, as we see in
Fig. 2, when themethod (67) is used to simulate the solution of the problems (65) and (66) we
have second order accuracy, while the error inhibiting method (60) gave third order accuracy
(Fig. 1).

4.2 A Fourth Order Error Inhibiting Method with s = 3

In this subsection we present an error inhibiting method with s = 3 that takes the values of
the solution at the times tn , tn+ 1

3
, and tn+ 2

3
and uses these three values to obtain the solution

at the time-level tn+1, tn+ 4
3
, and tn+ 5

3
. The exact solution vector is given by

Un = (
u(tn+2/3), u(tn+1/3), u(tn)

)T
,

and the corresponding vector of numerical approximations is

Vn = (
vn+2/3, vn+1/3, vn

)T
.

Consider the error inhibiting scheme

Vn+1 = 1

768

⎛

⎝
467 −1996 2297
467 −1996 2297
467 −1996 2297

⎞

⎠ Vn

+ �t

1152

⎛

⎝
5439 −6046 3058
2399 −1694 1362
703 354 626

⎞

⎠

⎛

⎝
f
(
vn+2/3, tn+2/3

)

f
(
vn+1/3, tn+1/3

)

f (vn, tn)

⎞

⎠ , (71)
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Fig. 2 Convergence plots using Butcher’s scheme (67). a The errors and truncation errors versus �t , for
several values of �t , for the numerical solution of (65). Note that the errors for v(1) and v(2) are virtually
identical so these error lines coincide. b The errors versus �t for each component of the solution, computed
for several values of �t , for the numerical solution of the van der Pol equation (66). Note that for this problem
as well the behavior of this method on both components is virtually identical, so the error lines for each
component of the solution coincide. Both the local truncation errors and the global errors are second order:
this is not an error inhibiting scheme

which has a local truncation error of third order,

τ n = 1

373248

⎛

⎝
43699
12787
2227

⎞

⎠ d4

dt4
u(tn)�t3 + O(�t4)

≈
⎛

⎝
0.117078
0.0342587
0.00596654

⎞

⎠ d4

dt4
u(tn)�t3 + O(�t4) . (72)

However, it can be verified that for the linear case, the product

Qnτ n = O(�tτ n) = O(�t4) .

Given the analysis in Sect. 3.3 above, this result will carry over to the nonlinear case, and
thus this method will have a fourth order global error, despite the third order truncation error.

To demonstrate this result we revisit the two examples (65) and (66) in the previous
subsection and use the scheme (71) to evolve them forward in time. The results, shown in
Fig. 3, are exactly as we expect: although the truncation errors (seen for the problem (65) in
Fig. 3a) are only third order, the errors are fourth order for both problems (65) and the van
der Pol problem (66).

4.2.1 Other Fourth Order Error Inhibiting Methods with s = 3

The methods above are not unique, in fact other methods can be derived using this approach.
In this section we present two additional error inhibiting methods with s = 3 that have local
truncation error that is third order but demonstrate fourth order global error on a nonlinear
system.
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Fig. 3 Convergence plots using the scheme (71). a The errors and truncation errors versus �t , for several
values of �t , for the numerical solution of (65). b The errors versus �t for each component of the solution,
computed for several values of �t , for the numerical solution of the van der Pol Eq. (66). As expected, we
observe fourth order accuracy for the errors, although the truncation errors are third order

The first method is

Vn+1 = 1

1020

⎛

⎝
449 −1966 2537
449 −1966 2537
449 −1966 2537

⎞

⎠ Vn

+ �t

6120

⎛

⎝
29123 −32576 15789
12973 −9456 6779
3963 1424 2869

⎞

⎠

⎛

⎝
f
(
vn+2/3, tn+2/3

)

f
(
vn+1/3, tn+1/3

)

f (vn, tn)

⎞

⎠ , (73)

and has a local truncation error of third order,

τ n = 1

991440

⎛

⎝
115733
33623
5573

⎞

⎠ d4

dt4
u(tn)�t3 + O(�t4)

≈
⎛

⎝
0.116732
0.0339133
0.00562112

⎞

⎠ d4

dt4
u(tn)�t3 + O(�t4) . (74)

The second method is

Vn+1 =

⎛

⎜⎜⎝

− 101
96

97
24 − 191

96

− 101
96

97
24 − 191

96

− 101
96

97
24 − 191

96

⎞

⎟⎟⎠ Vn + �t

⎛

⎜⎜⎝

733
144 − 431

72
23
12

353
144 − 53

24
4
9

47
48 − 31

72 − 7
36

⎞

⎟⎟⎠

⎛

⎜⎝

f
(
vn+2/3, tn+2/3

)

f
(
vn+1/3, tn+1/3

)

f (vn, tn)

⎞

⎟⎠ . (75)

The truncation error is also third order

τ n =

⎛

⎜⎜⎝

5303
46656
1439
46656
119

46656

⎞

⎟⎟⎠
d4

dt4
u(tn)�t3 + O(�t4) (76)

=
⎛

⎝
0.113662
0.0308428
0.00255058

⎞

⎠ d4

dt4
u(tn)�t3 + O(�t4)

123



710 J Sci Comput (2017) 73:691–711

Δ t ×10-3
3 4 5 6 7 8 9 10 11

||E
||

10-14

10-13

10-12

10-11

10-10

10-9

v(3) first component, slope=3.87999
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v(1) first component, slope=3.99351
v(1) second component, slope=4.00387

(a)
Δ t ×10-3

3 4 5 6 7 8 9 10 11

||E
||

10-12

10-11

10-10

10-9

10-8

v(3) first component, slope=3.96358
v(3) second component, slope=4.00837
v(2) first component, slope=3.96163
v(2) second component, slope=4.00746
v(1) first component, slope=3.94122
v(1) second component, slope=4.00530

(b)

Fig. 4 Convergence plots van der Pol Eq. (66). The plots show the errors versus �t for each component of
the solution, computed for several values of �t for a the scheme (73) and b the scheme (75). As expected, we
observe fourth order accuracy for the errors, although the truncation errors computed above are third order

Both these methods satisfy

Qnτ n = O(�tτ n) = O(�t4)

as well. As above, this property results in an error inhibiting mechanism that produced a
global error of order four. This can be seen once again in Fig. 4, using the nonlinear problem
(66) above. The results of method (73) are on the left and of (75) are on the right.
Note: The time-step �t in the numerical tests was chosen to demonstrate the order of con-
vergence of the methods. In practice, much larger values of �t are still within the stability
regions of these methods. In [2], Butcher mentions that the method given in (67) has real axis
stability region of [− 4

3 , 0]. The popular Adams–Bashforth methods have real axis stability of
[-1,0] for p=2, [−0.54,0] for p=3, and [−0.3,0] for p=4. Our third order (s = 2) method given
by (60) has real axis stability [−0.635, 0]. The fourth order (s = 3) methods have real axis
stability domains of [−0.46,0] for the method given by Eq. (71), [−0.472,0] for the method
given by Eq. (73), and [−0.54,0] for the method given by Eq. (75), which is comparable to
that of the third order Adams Bashforth.

5 Conclusions

While it is generally assumed that the global error will be of the order of the local truncation
error, in this work we presented an approach to creating methods that have a global error
of higher order than predicted by the local truncation error. To accomplish this, we used
the block formulation of a method Vn+1 = QnVn where the discrete solution operator
Qn = A+�t BFn is comprised of matrices of coefficients A and B, and the matrix operator
Fn .

We show that if A is a diagonalizable matrix of rank one, that has only one nonzero
eigenvalue, z1 = 1, that corresponds to the eigenvector of all ones, then the error inhibiting
property will occur if the leading part of the local truncation error error for the linear constant
coefficient case (Fn = F = a constant) is spanned by the eigenvectors corresponding to the
zero eigenvalues of A (to the leading order). We show that a method that has these properties
will have a global error that has higher order than the local error, on nonlinear problems.
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After presenting the concept behind these methods we use the theoretical properties above
to develop block one-step methods that are in the family of Type 3 DIMSIM methods pre-
sented in [2]. We demonstrate in numerical examples on nonlinear problems (including a
nonlinear system) that these methods have global error that is one order higher than the local
truncation errors. We also show that this is in contrast to another Type 3 DIMSIM method
which has a matrix A that satisfies the first three properties C1–C3, but does not satisfy the
error inhibiting property C4, that the local truncation error is in the space spanned by the
eigenvectors of A that correspond to the zero eigenvalues, and indeed does not give us a
global error that is higher than the local truncation error on nonlinear test problems.

The major development in this work is the concept of an error inhibiting method and the
new approach for developing methods that are constructed to control the growth of the local
truncation error. While the newly developed methods presented in this work can be used in
place of currently standard methods (particularly in place of type 3 DIMSIM methods) to
obtain higher order accuracy, it is not yet known how they compare to other methods in terms
of other important properties. In future work we intend to the study of the computational
efficiency and storage requirements of these methods and the analysis of their linear stability
regions. We expect that this will also lead to further development of error inhibiting methods
that have other favorable properties.
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