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1 Introduction

The obstacle problem is a classic motivating example in themathematical study of variational
inequalities and free boundary problems with broad applications, e.g., in fluid filtration in
porousmedia, constrained heating, elasto-plasticity, optimal control, or financialmathematics
[2,7,10,22]. The classical formulation ismotivated by the equilibriumposition of amembrane
(described by the graph of u : Ω ⊂ R

n → R), with fixed values f imposed on the boundary
∂Ω and constrained to lie (almost everywhere) above an obstacle function, ϕ : Ω → R:

min
u∈H1(Ω)

∫
Ω

√
1 + |∇u|2 s.t. u ≥ ϕ a.e. in Ω and u = f on ∂Ω. (1.1)

For small deflections, the above integral (1.1) is typically linearized into theDirichlet integral:

min
u∈H1(Ω)

∫
Ω

|∇u|2 s.t. u ≥ ϕ a.e. in Ω and u = f on ∂Ω. (1.2)

Within the Sobolev space H1(Ω), the admissible functions for either obstacle problem, (1.1)
or (1.2), define the closed convex set U = U (Ω, φ, f ):

U = {u ∈ H1(Ω), u ≥ ϕ a.e. in Ω, u|∂Ω = f } (1.3)

Standard arguments from variational analysis can be used to show that a unique minimizer
of (1.2) exists for sufficiently regular data (Ω, φ, f ); see, for example, [2,10,22]. The non-
coercivity of the nonlinear problem (1.1) can be handled using the methods in [7].

In practice, numerical methods are required to solve the obstacle problem. Lions and
Mercier [16] illustrated a splitting algorithm on the obstacle problem. Finite element meth-
ods were used to solve the obstacle problem as a free boundary problem [5,11,15]. Iteration
methods based on penalty and projected gradients are known approaches [6,23]. In [12,13],
the obstacle constraint is incorporated into the objective using a Lagrange multiplier. Multi-
grid and multilevel methods have been employed to speed up computation: The obstacle
problems described by variational inequalities can be solved using the iterative scheme pro-
posed in [14],where at each step the system is solved by amultigrid algorithm; [28] discretizes
the problem into a continuous piecewise linear finite element space and turn the problem into
a quadratic programming problem with inequality constraints, which is then solved with
multilevel projection (MP).

In [17], the authors propose a modified level set method to solve the obstacle problem
and turn the problem into a nonsmooth minimization problem. Twomethods are presented to
solve the minimization problem: a proximal bundle method is employed for solving a general
nonsmooth minimization problem; a gradient method is proposed to solve the regularized
problems.

Most recently, in [26], the authors proposed an efficient numerical scheme for solving the
(linearized) obstacle problem (and generalizations) based on a reformulation of the obstacle
in terms of an L1-like penalty on the variational problem, in lieu of the obstacle constraint:

min
u∈H1(Ω)

∫
Ω

|∇u|2 + μ(ϕ − u)+ s.t. u|∂Ω = f, (1.4)

where (·)+ = max(·, 0). It was shown that for sufficiently large but finite μ, the minimizer
of the unconstrained problem (1.4) is also the minimizer of the original, constrained prob-
lem (1.2).

The functionals and constraints in (1.1), (1.2), and (1.4) are all closed and convex, which
makes the problems accessible to convex optimization techniques. There is a huge corpus of
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algorithms that apply to such convex optimization problems. Recently, primal-dual splitting
algorithms have gained particular attention, most notably so in the context of TV and L1-type
problems in imaging; see, e.g., [8,9,29,30]. Zosso and Bustin [31] have applied the theory
to the particular case of the Beltrami functional [24], used as an interesting regularizer in
imaging problems that interpolates between the classical H1 and TV regularizers, and which
is a generalization of the surface area functional. Zosso and Osting [32] use the method for
efficient minimization of a minimal surface-based graph partitioning problem.

In this paper, we develop a primal-dual hybrid gradient method to efficiently solve con-
strained and L1-penalty formulations of the linear and non-linear obstacle problems, (1.1)
and (1.2). We comment that the original constrained problem is algorithmically related to
the L1-based problem for finite μ, and strictly identical for the particular choice μ = ∞.
Our results achieve state-of-the-art precision in much shorter time; the speed up is 1–2 orders
of magnitude with respect to the method in [26], and even larger compared to older meth-
ods [16,17,27]. This is demonstrated for a variety of one- and two-dimensional problems,
including the extension to elasto-plastic problems with double obstacles and potential term.

It is important to note that our fast algorithm is derived from a primal-dual reformulation of
the original convex optimization problems in a very disciplined way. The primal-dual hybrid
gradients method employed here enjoys straightforward convergence guarantees. Moreover,
in the particular case of the linear obstacle problem, the dual variable update is particularly
simple, and the dual variable can be eliminated altogether, resulting in a single primal variable
update scheme that greatly improves over standard explicit gradient descent inmultiple ways.
Namely, the resulting scheme is fast because previous iterates keep being taken into account,
which has highly interesting interpretations in terms of “momentummethod”, and can also be
reformulated as a dampedwave equation.We illustrate this nature on a very simple yet striking
toy example. More general advantages of our method are the avoidance of matrix/operator
inversion (all update steps are explicit), and the fact that the contact/coincidence set (the free
boundary) is handled implicitly, with no explicit tracking being necessary.

Outline

The remainder of the paper is organized as follows: Sect. 2 gives a formulation of the
discretized obstacle problemand its different flavors. Section 3 describes the proposed primal-
dual algorithms. In Sect. 4, we compare the resulting primal-dual algorithms to some more
classical ones. Section 5 presents the results of the primal-dual algorithm on a variety of
numerical experiments. We conclude in Sect. 6 with a discussion.

2 Discretized Obstacle Problem

In this section, we introduce a discretized obstacle problem and discuss some of its properties.
To this end, we introduce the following notation.

Let X denote the set of Cartesian grid points of the discretization of the D-dimensional
domain Ω ⊂ R

D .

2.1 Inner Products and Norms

For functions f, g : X → R, we define the L2 inner product

〈 f, g〉L2(X) :=
∑
x∈X

f (x)g(x) (2.1)
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and the induced L2-norm

‖ f ‖L2(X) := 〈 f, f 〉
1
2
L2(X)

=
√∑

x∈X
f (x)2 (2.2)

Similarly, for vectors v,w : X → R
D , we define the L2 inner product

〈v,w〉L2(X)D :=
∑
x∈X

D∑
d=1

vd(x) · wd(x) (2.3)

and obtain the induced L2-norm

‖v‖L2(X)D := 〈v, v〉
1
2
L2(X)D

=
√√√√∑

x∈X

D∑
d=1

vd(x)2, (2.4)

where vd(x) denotes the d-th component of the vector at location x . For a vector v : X → R
D ,

the magnitude |v| : X → R is defined as follows:

|v|(x) :=
√√√√ D∑

d=1

vd(x)2, x ∈ X. (2.5)

The magnitude operator, | · | : L2(X)D → L2(X), thus maps vector-valued functions to
scalar-valued functions. It is easy to see that ‖v‖L2(X)D = ‖|v|‖L2(X). Finally, for the obstacle
penalty, we need the single sided L1-penalty of a function f : X → R:

‖ f ‖+ :=
∑
x∈X

max( f (x), 0). (2.6)

A corresponding negative-sided penalty can be obtained directly as

‖ f ‖− := ‖ − f ‖+. (2.7)

It is easy to verify that ‖ f ‖+, ‖ f ‖− ≥ 0, and ‖ f ‖+ + ‖ f ‖− = ‖ f ‖1.
2.2 Finite Difference Operators

For functions f : X → R, we denote by ∇X : L2(X) → L2(X)D a suitable discretization
of the continuous gradient by finite differences, subject to desired boundary constraints.
Using the discrete gradient, for vectors v : X → R

D we define the discretized divergence
divX : L2(X)D → L2(X), such that the two operators satisfy the usual negative adjoint
property:

〈∇X f, v〉L2(X)D = −〈 f, divXv〉L2(X), f : X → R, v : X → R
D . (2.8)

For functions f : X → R, the composition of divergence and gradient yields the discrete
Laplacian operator ΔX : L2(X) → L2(X):

ΔX f := (divX ◦ ∇X ) f. (2.9)

For example, we consider the standard forward differences stencil for the gradient; then the
adjoint relation leads to backward differences in the divergence and the resulting discretized
Laplacian corresponds to the commonly used 2D + 1 point centered differences stencil.
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2.3 Surface Area and Dirichlet Energy

Basedon theprecedingdefinitions,wedefine the following two functionals:Let S : L2(X)D →
R be defined as

S[s] :=
∑
x∈X

√
1 + |s|(x)2. (2.10)

For a Monge surface, discretized by the graph of u : X → R, the discrete surface area is then
measured by S[∇Xu]. Similarly, let D : L2(X)D → R be defined as

D[s] := 1

2
‖s‖2L2(X)D

. (2.11)

We then call D[∇Xu] the discrete Dirichlet energy of u.
For slowly varying functions u, i.e., such that ∀x ∈ X : |∇Xu|(x) 
 1, the Dirichlet

energy is an approximation to the surface area,

S[∇Xu] ≈ |X | + D[∇Xu],
where |X | denotes the number of sampling points in X , i.e., the area of the discretized domain
Ω . Note that both the surface area and the Dirichlet energy functional are proper, closed, and
convex.

2.4 Convex Conjugates

We recall the definition of the convex conjugate (a.k.a. Legendre–Fenchel transform) f ∗ of
a function f :

f ∗(p) = sup
s

〈s, p〉 − f (s). (2.12)

The biconjugate, f ∗∗ := ( f ∗)∗, is the largest closed convex function with f ∗∗ ≤ f . As
a result, f ≡ f ∗∗ iff f is closed convex (Fenchel–Moreau–Rockafellar Theorem) [21,
Theorem 5].

Using Definitions 2.4 and 2.11, we can determine the respective convex conjugate func-
tionals, D∗, S∗ : L2(X)D → R of the Dirichlet energy and surface area as follows:

D∗[p] := sup
s∈L2(X)D

〈s, p〉L2(X)D − D[s] = 1

2
‖p‖2L2(X)D

, (2.13a)

and

S∗[p] := sup
s∈L2(X)D

〈s, p〉L2(X)D − S[s] (2.13b)

=
⎧⎨
⎩

− ∑
x∈X

√
1 − |p|(x)2 if ∀x ∈ X : |p|(x) ≤ 1,

∞ otherwise.

Thanks to the Fenchel–Moreau theorem we know that the biconjugate functionals, S∗∗ and
D∗∗, are identical to the original functionals, thus

S[∇Xu] = sup
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p] (2.14a)

D[∇Xu] = sup
p∈L2(X)D

〈∇Xu, p〉L2(X)D − D∗[p]. (2.14b)
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2.5 Discretized Obstacle Problem

Having defined the discretized surface area and Dirichlet energy functionals, we next define
the discretized optimization problem.

Given a discretization X and appropriate finite difference operators for gradient, diver-
gence, and Laplacian, we declare a subset ∂X ⊂ X to be boundary points. Let ϕ : X → R be
an obstacle, and f : ∂X → R the prescribed boundary values, compatible with the obstacle,
i.e., ∀x ∈ ∂X : ϕ(x) ≤ f (x). Consider further the setU f of square integrable functions who
satisfy the boundary constraints,

U f := {u ∈ L2(X) | u(x) = f (x) ∀x ∈ ∂X}, (2.15)

and the subset U f,ϕ thereof additionally satisfying the obstacle constraint,

U f,ϕ := {u ∈ L2(X) | u(x) = f (x) ∀x ∈ ∂X and u(x) ≥ ϕ(x) ∀x ∈ X}. (2.16)

Both these sets can be shown to be closed convex. We are interested in solving the following
four (primal) problems:

Constrained Obstacle Problem

min
u∈U f,ϕ

S[∇Xu] (P1)

Constrained Linearized Obstacle Problem

min
u∈U f,ϕ

D[∇Xu] (P2)

L1-Penalty Obstacle Problem

min
u∈U f

S[∇Xu] + μ‖ϕ − u‖+ (P3)

Linearized L1-Penalty Obstacle Problem

min
u∈U f

D[∇Xu] + μ‖ϕ − u‖+ (P4)

Due to the convexity of functionals and admissible sets it follows that if the admissible
sets are non-empty, there exists a solution. The following Lemma shows that the solution to
(P2) and (P4) is unique.

Lemma 1 Provided the graph X is connected, the boundary points ∂X �= ∅, and the admis-
sible sets are non-empty, the solutions to (P2) and (P4) are unique.

Proof We prove the result for (P4); the result for (P2) is similar.
Let u, v ∈ U f be optimal solutions and α ∈ [0, 1]. Denote the objective by

J (u) = 〈u,−ΔXu〉 + μ‖φ − u‖+.

By the convexity of J , any convex combination of the u and v must have the same value, so

J (αu + (1 − α)v) = α J (u) + (1 − α)J (v).
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Writing out the definition of J and rearranging, this is equivalent to

α(1 − α)〈−ΔX (u − v), u − v〉
= μ (‖φ − αu − (1 − α)v‖+ − α‖φ − u‖+ − (1 − α)‖φ − v‖+)

≤ 0.

Here we have used the convexity of ‖ · ‖+. But, 〈−ΔX ·, ·〉 is a positive semi-definite form,
and since X is assumed to be connected, has only the constant function in the kernel. This
implies that u − v = α1 where α ∈ R and 1 : V → R is the constant function. Since,
u, v ∈ U f , i.e., satisfy the same boundary conditions, we conclude that u = v, as desired.

In [26, Theorem 3.1] it is shown that for anyμ ≥ −Δφ, the minimizers of the constrained
and L1-penalty linearized obstacle problems, the continuum version of (P2) and (P4), are
the same. Below, in Theorem 1, we give the analogous result for the discrete problems,
(P2) and (P4). The proof is largely the same, except for one small but interesting point. In
the continuum, one has that for any f ∈ H1, 〈∇ f+,∇ f−〉 = 0, where f+ = max( f, 0),
f− = min( f, 0), and f = f+ + f−. In our discrete setting we have the following result.

Lemma 2 For any f ∈ L2(X), 〈∇X f+,∇X f−〉L2(X)D ≥ 0.

Proof Denoting the adjacent vertices of x ∈ X by N (x), we compute

〈∇X f+,∇X f−〉L2(X)D = −〈ΔX f+, f−〉L2(X) = −
∑
x∈X

(ΔX f+)(x) f−(x)

= −
∑
x∈X

( ∑
y∈N (x)

f+(y) − f+(x)
)
f−(x)

=
∑
x∈X

| f−(x)|
∑

y∈N (x)

| f+(y)|

≥ 0.

Theorem 1 Let u and uμ denote the minimizers of (P2) and (P4) respectively. For any
μ ≥ max{−ΔXφ(x) : x ∈ X}, we have that uμ = u.

Proof Considerw := uμ+(φ−uμ)+. Abbreviate 〈·, ·〉 = 〈·, ·〉L2(X)D and ‖·‖ = ‖·‖L2(X)D .
Evaluating the objective of (P4) at the admissible w ∈ U f,φ , we obtain

D[∇Xw] + μ‖φ − w‖+ = D[∇Xw] = D[∇Xuμ] + 〈∇Xuμ,∇X (φ − uμ)+〉
+ 1

2
〈∇X (φ − uμ)+,∇X (φ − uμ)+〉

= D[∇Xuμ] + 〈−ΔXφ, (φ − uμ)+〉L2(X)

− 1

2
‖∇X (φ − uμ)+‖2 − 〈∇X (φ − uμ)+,∇X (φ − uμ)−〉

Now assuming μ ≥ max{−ΔXφ(x) : x ∈ X} and using Lemma 2, we obtain

D[∇Xw] + μ‖φ − w‖+ ≤ D[∇Xuμ] + μ‖φ − uμ‖+.

Since uμ is the unique minimizer of D[∇X ·]+μ‖φ−·‖+ overU f , we conclude thatw = uμ

which implies that uμ ≥ φ, i.e., uμ ∈ U f,φ . Additionally, we have that

D[∇Xuμ] = D[∇Xuμ] + μ‖φ − uμ‖+ ≤ D[∇Xu] + μ‖φ − u‖+ = D[∇Xu].
Since u is the unique minimizer of D[∇X ·] overU f,φ and uμ is admissible, we conclude that
u = uμ, as desired.
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2.6 Saddle Point Formulation

Thanks to the identity of a closed convex functional with its biconjugate, we can substitute the
functionals S[∇Xu] and D[∇Xu] by the definition of their respective biconjugates (2.14a) and
(2.14b). We thus obtain the four primal-dual saddle point problems, respectively equivalent
to the primal problems (P1)–(P4):

Constrained Obstacle Problem

min
u∈U f,ϕ

max
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p] (PD1)

Constrained Linearized Obstacle Problem

min
u∈U f,ϕ

max
p∈L2(X)D

〈∇Xu, p〉L2(X)D − D∗[p] (PD2)

L1-Penalty Obstacle Problem

min
u∈U f

max
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p] + μ‖ϕ − u‖+ (PD3)

Linearized L1-Penalty Obstacle Problem

min
u∈U f

max
p∈L2(X)D

〈∇Xu, p〉L2(X)D − D∗[p] + μ‖ϕ − u‖+ (PD4)

For discussing algorithms for the preceding problems (PD1)–(PD4), it is convenient to
summarize these saddle point problems in the following form:

min
u∈U max

p∈W ∗ 〈∇Xu, p〉L2(X)D − F∗[p] + G[u], (2.17)

where we identify the admissible sets,U andW ∗, and the functionals, F∗ and G, as follows:

U :=
{
U f,ϕ for (PD1), (PD2)

U f for (PD3), (PD4)
(2.18a)

W ∗ :=
{
L2(X)D ∩ {p | |p|(x) ≤ 1} for (PD1), (PD3)

L2(X)D for (PD2), (PD4)
(2.18b)

F∗[p] :=
{
S∗[p] for (PD1), (PD3)

D∗[p] for (PD2), (PD4)
(2.18c)

G[u] :=
{
0 for (PD1), (PD2)

μ‖ϕ − u‖+ for (PD3), (PD4).
(2.18d)
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3 Algorithms

3.1 Primal-Dual Hybrid Gradients Scheme

To solve the general saddle point problem (2.17) efficiently, we propose an adaptation of the
primal-dual hybrid gradients algorithm [8,29,30,32]. For (2.17), the structure of the PDHG
algorithm is as follows:

pn+1 = argminp∈W ∗ −〈∇X ū
n, p〉L2(X)D + F∗[p] + 1

2r1
‖p − pn‖2L2(X)D

(3.1a)

un+1 = argminu∈U −〈u, divX p
n+1〉L2(X) + G[u] + 1

2r2
‖u − un‖2L2(X)

(3.1b)

ūn+1 = 2un+1 − un . (3.1c)

The first two steps are the proximal update of the dual and primal variable, respectively. The
third, extra-gradient step is an overrelaxation of the primal update in order to overcome the
stepsize shortening typical of first order methods; it is a prediction of the primal variable
update used in the dual variable update. Note the appearance of ū instead of u in the dual
variable update 3.1a.

In general, O(1/n) (where n is the number of iterations) convergence has been shown for
fixed r1, r2 satisfying

r1r2‖∇X‖2 ≤ 1, (3.2)

where ‖∇X‖ is the operator norm/induced norm of the discretized gradient operator; equiv-
alently, ‖∇X‖2 = ‖ΔX‖ is the induced norm of the composition ΔX = divX ◦ ∇X .

In the following subsections, we show how the respective minimization sub-problems
(3.1a) and (3.1b) can be solved efficiently for each specific configuration in (2.18) corre-
sponding to (PD1)–(PD4).

3.2 Dual Variable Update

We first address the update of the dual variable p. This step is unaffected by the choice
of constrained or L1-penalty formulation, but differs between the non-linear, S[∇Xu], and
linearized, D[∇Xu], case.

3.2.1 Linear Cases, (PD2) and (PD4)

In the linearized cases (PD2) and (PD4), where F∗ = D∗, the minimization problem of the
dual variable update (3.1a) is given by

pn+1 = argminp∈L2(X)D −〈∇X ū
n, p〉L2(X)D + 1

2
‖p‖2L2(X)D

+ 1

2r1
‖p− pn‖2L2(X)D

. (3.3)

The minimizer of this quadratic function is immediately found as

pn+1 = pn + r1∇X ūn

1 + r1
. (3.4)
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3.2.2 Non-Linear Cases (PD1) and (PD3)

In the nonlinear cases (PD1) and (PD3), where F∗ = S∗, by rationalizing the numerator of
the dual, the minimization problem of the dual variable update (3.1a) can be rewritten as

pn+1 = argmin
p∈L2(X)D

|p|(x)≤1

− 〈∇X ū
n, p〉L2(X)D +

∑
x∈X

|p|(x)2 − 1√
1 − |p|(x)2 + 1

2r1
‖p − pn‖2L2(X)D

. (3.5)

We propose to solve this in an iteratively reweighted least squares (IRLS) approach as
follows. We observe that the objective in (3.5) without the square-root in the denominator is
quadratic in p. We fix the current estimate of p in the square-root to obtain a weighted least
squares problem, this weight is then updated, and the process is repeated until convergence:

ψ0 = pn (3.6a)

ψ t+1 = argmin
ψ∈L2(X)D

|ψ |(x)≤1

− 〈∇X ū
n, ψ〉L2(X)D +

∑
x∈X

|ψ |(x)2 − 1√
1 − |ψ t |(x)2 + 1

2r1
‖ψ − pn‖2L2(X)D

(3.6b)

pn+1 = lim
t→∞ ψ t (3.6c)

Our focus is on the solution of the fixed-point minimization step (3.6b). Indeed, it can be
shown (see [32, Lemma 4.3]) that for small enough r1, the solution to (3.6b) is given by

ψ t+1(x) = εt (x)

εt (x) + 2r1

[
pn(x) + r1(∇X ū

n)(x)
]
, x ∈ X, (3.7)

where εt (x) := √
1 − |ψ t |(x)2. Further, for suitably chosen r1, the iterative scheme (3.6)

converges to the desired fixed point (see [32, Lemma 4.4]).

3.3 Primal Variable Update

We now consider the update problem (3.1b) of the primal variable. Here, the choice of
non-linear versus linearized cost functional is irrelevant; instead, we distinguish the original
constraint formulations (PD1) and (PD2) from the relaxed L1-penalty formulations (PD3)
and (PD4).

3.3.1 Constrained Formulation (PD1) and (PD2)

The constrained primal variable iteration (3.1b) reads

un+1 = argminu∈U f,ϕ
−〈u, divX p

n+1〉L2(X) + 1

2r2
‖u − un‖2L2(X)

. (3.8)

Based on the projection theorem and variational inequalities [6], and in the tradition
of the Arrow–Hurwitz–Uzawa algorithm [1] and the first recent proposition of the PDHG
algorithm [29], this update is approximated by seeking a minimizer in the relaxed set L2(X)

and projecting onto the admissible setU f,ϕ . This approximation to the iteration can bewritten
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un+1 = PU f,ϕ

[
argminu∈L2(X) −〈u, divX p

n+1〉L2(X) + 1

2r2
‖u − un‖2L2(X)

]
(3.9)

= PU f,ϕ [u
],
with

u
 := un + r2divX p
n+1 (3.10)

and where the projection PU f,ϕ : L2(X) → U f,ϕ is simply defined as

PU f,ϕ [u
] := argminu∈U f,ϕ
‖u − u
‖L2(X). (3.11)

Therefore, more explicitly for x ∈ X , the update of the primal variable in the constrained
setting (PD1), (PD2), is:

un+1(x) :=

⎧⎪⎨
⎪⎩

f (x) if x ∈ ∂X,

ϕ(x) if x /∈ ∂X and u
(x) < ϕ(x),

u
(x) otherwise.

(3.12)

3.3.2 L1-Penalty Formulations (PD3) and (PD4)

The L1-penalty method relaxes the admissible set to U f , i.e., L2(X) subject to only the
boundary values f on ∂X , and introduces the L1-like penalty term ‖ϕ − u‖+, instead. The
resulting instance of (3.1b) can be rewritten as

un+1 = argminu∈U f
μ‖ϕ − u‖+ + 1

2r2
‖u − (un + r2divX p

n+1)‖2L2(X)
. (3.13)

The minimizer can be easily found by making a change of variables, z = ϕ − u, leading to

z
 = argminz r2μ‖z‖+ + 1

2
‖ϕ − (un + r2divX p

n+1) − z‖2L2(X)

= shrink+(ϕ − (un + r2divX p
n+1), r2μ), (3.14)

where shrink+ denotes single-sided soft-thresholding (shrinkage) as follows:

shrink+(s, τ ) :=

⎧⎪⎨
⎪⎩
s if s < 0,

0 if 0 ≤ s ≤ τ,

s − τ if s > τ.

(3.15)

Let again u
 = un + r2divX pn+1. We re-substitute un+1 = ϕ − z
 and respect the boundary
conditions through projection PU f ,

un+1 = PU f [ϕ − shrink+(ϕ − u
, r2μ)]. (3.16)

This leads to the following explicit primal update for the L1-penalty based obstacle problems,
(PD3), (PD4):

un+1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x) if x ∈ ∂X,

u
(x) + r2μ if x /∈ ∂X and u
(x) < ϕ(x) − r2μ,

ϕ(x) if x /∈ ∂X and ϕ(x) − r2μ ≤ u
(x) ≤ ϕ(x),

u
(x) otherwise.

(3.17)
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Remark 1 Recall that in Theorem 1, we proved that the solutions to the constrained and L1-
penalized obstacle problems, (PD2) and (PD4), are equivalent for μ ≥ max{−ΔXϕ(x) : x ∈
X}; see also [26]. In light of this, it is interesting to compare primal iterations (3.12) and
(3.17) for the constrained and L1-penalized obstacle problems. These two algorithms only
disagree for points x /∈ ∂X with u
(x) < ϕ(x) − r2μ, i.e., when the tentative membrane
update u
 violates the obstacle constraint by an amount in excess of r2μ. This suggests that
not only do the solutions of these two problems agree for sufficiently large μ, but so do all
of the iterates in the proposed primal-dual methods.

3.4 Elimination of the Dual Variable in the Linear Case, (PD2) and (PD4)

In the updates of the primal variable, the dual variable only appears through its divergence,
divX pn+1; see (3.10) being used in (3.12) and (3.17). However, in the linear case, (PD2) and
(PD4), by applying the divergence to (3.4), it is easy to see that

divX p
n+1 = divX pn + r1ΔX ūn

1 + r1
. (3.18)

Assuming p0(x) = 0 for all x ∈ X , this recursion relation can be solved, giving

divX p
n+1 =

n∑
η=0

r1ΔX ūn−η

(1 + r1)η+1 . (3.19)

This allows rewriting the primal variable updates without the dual variable, effectively elim-
inating the dual variable from the scheme altogether. After elimination, the intermediate
primal update (3.10) is now

u
 = un + r1r2

n∑
η=0

ΔX ūn−η

(1 + r1)η+1 , (3.20)

which is then projected/shrunk according to (3.12) or (3.17) as before.

3.5 Complete Algorithms

The complete algorithms for the four different flavors of the obstacle problem (PD1)–(PD4)
are summarized in Algorithms 1–2. These algorithms have extremely simple structure and
require only low-complexity operations. In particular, no matrix inversions are required.
These algorithms converge in O(1/n) (where n is the number of iterations) for r1, r2 satis-
fying

r1r2‖ΔX‖ ≤ 1.

Remark 2 Although Algorithms 1 and 2 appear to be specifically engineered to serve a
particular purpose, it is important to note that they have been derived in a disciplined manner:
the re-formulation of the original, primal obstacle problem as a saddle-point problem and by
implementing a primal-dual hybrid gradients algorithmwith known convergence guarantees.

4 Interpretation/Comparisons for Proposed Algorithm

In this section we compare the proposed primal-dual algorithm (summarized in Algorithms 1
and 2) to two time-stepping schemes arising in classical problems.
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Algorithm 1 Non-linear obstacle problem solver (PD1) and (PD3)
Input: X , ∂X , f , ϕ, r1, r2 such that r1r2‖ΔX ‖ ≤ 1.

Initialize u0, ū0, p0 ← 0
repeat

ψ0 ← pn

repeat
εt ←

√
1 − |ψ t |2

ψ t+1 ← εt

εt+2r1
[pn + r1∇X ū

n ] � (3.7)

until convergence
pn+1 ← ψ∞
switch Problem do

case (PD1) � (3.12)
un+1 ← PU f,ϕ [un + r2divX pn+1]

end case
case (PD3) � (3.17)

un+1 ← PU f [ϕ − shrink+(ϕ − (un + r2divX pn+1), r2μ)]
end case

end switch
ūn+1 ← 2un+1 − un

until convergence: ‖un+1 − un‖∞ < ε

Output: Membrane u.

Algorithm 2 Linear obstacle problem solver (PD2) and (PD4)
Input: X , ∂X , f , ϕ, r1, r2 such that r1r2‖ΔX ‖ ≤ 1.

Initialize u0, ū0,Σ0 ← 0
repeat

Σn+1 ← Σn+ΔX ū
n

(1+r1)
� Accumulate sum in (3.20)

switch Problem do
case (PD2) � (3.12)

un+1 ← PU f,ϕ [un + r1r2Σ
n+1]

end case
case (PD4) � (3.17)

un+1 ← PU f [ϕ − shrink+(ϕ − (un + r1r2Σ
n+1), r2μ)]

end case
end switch
ūn+1 ← 2un+1 − un

until convergence: ‖un+1 − un‖∞ < ε

Output: Membrane u.

4.1 Comparison to the Forward Euler Scheme for the Discrete Heat Equation

For a comparison, recall that the forward Euler time-stepping scheme for the discrete heat
equation, can be writtten

u
 = un + r1r2ΔXu
n (4.1a)

= u0 + r1r2

n∑
η=0

ΔXu
η, (4.1b)

where r1r2 is the time step. Thus, after elimination of the dual variable, the primal-dual
method for the linear problem seems to perform something akin to an alternating sequence
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of explicit heat diffusion steps (4.1), projection/thresholding (3.12) or (3.17), and an extra
gradient step (3.1c). Unfortunately, the explicit heat diffusion (4.1) is well-known to be
severely limited by its stability criterion and therefore dreadfully slow.

Indeed, the first term, η = 0, of the summation in (3.20) is an explicit heat update step,
subject to the usual constraint on the time step, here r1r2 ≤ ρ(ΔX )−1. However, thanks to the
sum, previous iterates are taken into account (discounted by a compounding factor of 1

1+r1
),

the impact of which is essential for the efficiency and convergence of the scheme. Consider
the following two cases:

Away from the solution, subsequent heat updates point towards the same direction and the
sum lets the history of updates interfere constructively, effectively greatly increasing the time
step of the explicit heat update. Assuming ΔX ūn−η ≈ ΔXun is constant for recent iterations
(small η), and noting that

∑n
η=0

1
(1+r1)η+1 = 1

r1
, we can approximate (3.20) by

u
 ≈ un + r2ΔXu
n .

The proposed scheme is thus heat diffusion with a 1/r1-fold larger effective time-step, see
(4.1). This is more pronounced for r1 
 1, reducing the discounting on previous time steps
(i.e., increasing the memory horizon of the summation).

Close to the solution, the membrane tends to oscillate about the optimum and subsequent
heat steps have opposing signs. The summation leads to destructive interference of subsequent
updates, dampening the oscillations and effectively stabilizing the explicit heat update. In
this case, larger values of r1 reduce the memory horizon and allow the system to transition
from constructive interference to a stabilizing, destructive interference, thereby reducing
overshooting.

4.2 Comparison to a Time-Stepping Scheme for the Damped Wave Equation

Another interesting analysis of the resulting update scheme, in the linear case and away from
obstacle and boundary value projections, emerges when we rewrite it as a three-point scheme
in time.

Lemma 3 The proposed update iterations of the primal variable (ignoring projections) sat-
isfy the following three-point equality:

(
un+1 − 2un + un−1) + r1

(
un+1 − un

) = r1r2
(
2ΔXu

n − ΔXu
n−1) . (4.2)

Remark 3 The left hand terms in (4.2) are immediately identified as finite difference approx-
imations of untt ≈ (

un+1 − 2un + un−1
)
/h2 and unt ≈ (

un+1 − un
)
/h, and one clearly

recognizes elements of a damped wave equation:

untt + r1
h
unt = r1r2

h2
(
2ΔXu

n − ΔXu
n−1) (4.3)

Proof By substituting the extragradient (3.1c) into (3.18), we get:

(1 + r1)divX p
n+1 = divX p

n + r1
(
2ΔXu

n − ΔXu
n−1) .

From (3.10) and (3.12)/(3.17), but ignoring shrinkage and projections, we get

divX p
n+1 = un+1 − un

r2
.

Put together, this yields the primal update
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Fig. 1 Toy example problem: obstacle-free linearizedminimal surface problem (PD2) on 32-point 1D domain
discretization, f = 0 boundary conditions, and single peak initialization at the center. Evolution of the
membrane over iterations n. a Standard Euler explicit heat update (4.1). b Our primal-dual scheme (3.20).
Black area indicates error with respect to (trivial) solution

un+1 = un + un − un−1

1 + r1
+ r1r2

1 + r1

(
2ΔXu

n − ΔXu
n−1) . (4.4)

from which (4.2) follows by simple term rearrangements.

The three-point primal update scheme (4.4) highlights how the proposed scheme performs
explicit heat diffusion (based on the forward-projected Laplacian, in the extragradient step),
on top of which the most recent update is added. This scheme is related to the “momentum
method”—because it mimicks the motion of a system u with a certain mass (and therefore
inertia) [19]. This type of gradient descent accelerationmethod is classically used in gradient-
descent back-propagation training of neural networks [20], and has been associated with a
specific type of conjugate gradients [4]. Also, the idea of maintaining momentum by mixing
in an extrapolation of most recent updates is the essence of Nesterov’s gradient acceleration
scheme [18] and the core of the FISTA algorithm [3]. The idea is also to be compared to
gradient averaging e.g., as in stochastic gradient descent methods.

The evolution of a simple toy problem under both, standard Euler explicit heat updates
(4.1) and the proposed primal-dual scheme (3.20) is illustrated in Fig. 1. It is easy to see
how the summation in (3.20) causes the peak to decay at a faster pace after the first iterate.
As a result, the initial localized state splits into two components that propagate away from
the center and decay, illustrating the damped wave nature of the iterations. The wave is
reflected at the fixed boundaries, inverting the sign, in contrast to the explicit scheme which
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(a) (b) (c)

Fig. 2 1D obstacles ϕ1 through ϕ3 (dotted) and respective solutions to the obstacle problem (solid). a–b
Linear obstacle problem (PD2). N = 256, μ = 5, boundary conditions u(0) = u(1) = 0. c Non-linear
obstacle problem (PD1). N = 512, μ = ∞, u(0) = 5 and u(1) = 10. For all three: r1 = 0.01, r2 = 25,
ε = 10−5

remains non-negative (according to themaximum principle). Evidently, the proposed scheme
converges to the (trivial) flat solution u = 0 much faster than the explicit heat update.

5 Numerical Experiments

In all following problems, we assume X to be a Cartesian sampling of either an interval
in R, or of a rectangular subset of R2. The differential operators are chosen as forward
differences for the gradient, and, as a result, backward differences for the divergence and
central differences for the Laplacian.

We implemented the algorithms in MATLAB�,1 and ran our experiments on standard
computing equipment (2012 laptop with 2.80GHz Intel� CoreTM i7, with 4GB RAM).

5.1 One-Dimensional Obstacles

We consider two obstacles on [0, 1], previously considered in [23,26]:

ϕ1(x) :=

⎧⎪⎨
⎪⎩
100x2 for 0 ≤ x ≤ 0.25

100x(1 − x) for 0.25 ≤ x ≤ 0.5

ϕ1(1 − x) for 0.5 ≤ x ≤ 1,

(5.1)

and

ϕ2(x) :=

⎧⎪⎨
⎪⎩
10 sin(2πx) for 0 ≤ x ≤ 0.25

5 cos(π(4x − 1)) + 5 for 0.25 ≤ x ≤ 0.5

ϕ1(1 − x) for 0.5 ≤ x ≤ 1.

(5.2)

A third obstacle (from [26]) is given by

ϕ3(x) := 10 sin2(π(x + 1)2), x ∈ [0, 1]. (5.3)

All three problems and the obtained solutions are illustrated in Fig. 2. In the 1D case, there
is of course no difference between the solutions of the linear and the non-linear versions: the
solutions are identical to the obstacle on the contact set, and straight lines away from it.

1 Code available at http://www.math.montana.edu/dzosso/code.
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Fig. 3 Solution to the linear and nonlinear problems (PD1) and (PD2) for a 2D obstacle, ϕ4(x, y) in (5.4). a
The obstacles at 128×128. b The linear obstacle problem solution computed at medium resolution 128×128.
c 64 × 64 low-resolution solution of the linear problem. d The low-resolution non-linear obstacle problem
solution

5.2 Two-Dimensional Obstacles

We now look at example problems in 2D (from [26]). First, consider the square domain,
ϕ4 : Ω → R, with Ω = [0, 1]2, and the obstacle

ϕ4(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 for |x − 0.6| + |y − 0.6| < 0.04

4.5 for (x − 0.6)2 + (y − 0.25)2 < 0.001

4.5 for y = 0.57 and 0.075 < x < 0.13

0 otherwise.

(5.4)

We solve the linear (PD2) and non-linear (PD1) obstacle problem (with 0 boundary values
imposed) at different resolutions, as illustrated in Fig. 3. Parameter values are as follows:
μ = ∞, r1 = 0.01, r2 = 12.5, ε = 10−5.

In Table 1 we can compare to numerical experiments of previous algorithm implementa-
tions, in particular the L1-penalty method [26], and the Lions-Mercier splitting scheme [16],
equally reported in [26]. These comparisons hold only in a loose sense, because the imple-
mentation and computing infrastructure is undisclosed for [26]. Nevertheless, our method
seems to outperform by 1–2 orders of magnitude.

Next, we consider the square domain Ω = [−2, 2]2, and the radially-symmetric obstacle

ϕ5(r) :=
{√

1 − r2 for r ≤ 1,

−1 otherwise.
(5.5)
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Table 1 Running times for 2D obstacle problem ϕ4, at different resolution

Our method Tran et al. [26] Lions/Mercier [16]

Size t [s] #iter. t [s] #iter. t [s] #iter.

64 × 64 0.39 1416 20.8 315 55.1 3508

128 × 128 1.91 1562 57.7 337 193.7 3997

256 × 256 10.6 1707 222.3 469 1158.3 4383

Values of [26], [16] provided for very approximate comparison only: Figures for [16] were reported in [26],
so presumably run on the same, unspecified platform/computing infrastructure. All methods use the same
stopping criterion, namely that the �∞-norm of differences between membrane iterates must fall below a
same threshold

This obstacle has been used in [17,26], and can be traced back to at least [25], albeit with a
typo in its definition. Assuming f = 0 on a circular boundary of radius R = 2,2 the linear
obstacle problem admits the following radially-symmetric analytical solution:

u∗
5(r) =

{√
1 − r2 for r ≤ r∗,

−(r∗)2 ln(r/R)/
√
1 − (r∗)2 otherwise,

(5.6)

where r∗ = 0.6979651482 . . . satisfies (r∗)2(1 − ln(r∗/R)) = 1.
Using the values of this analytical solution as prescribed boundary values on the boundaries

of the square domain, we solve the linear obstacle problem.We set the parameters as follows:
μ = 0.1, r1 = 0.008, r2 = 15.625, ε = 10−7. Results are shown in Fig. 4. The pointwise
error is of the order of 10−5 and concentrated at the circular free boundary, mainly as a result
of discretization. This type of error is comparable to the results reported in [17] and [26].

For this obstacle problem,we can compare to numerical experiments of previous algorithm
implementations, see Table 2. In particular, we compare the runtime and number of iterations
with the levelset gradient-method [17]. Even assuming that the 2004 computing times of
[17] may be discounted by Moore’s law (by half each 18months, about a factor of 160–200
overall), we note that our method clearly outperforms by 1–2 orders of magnitude.

5.3 Generalization to a Double Obstacle with Forcing

A more general form of the obstacle problem deals with two obstacles, bounding the mem-
brane from below (ϕ) and above (ψ), and the inclusion of a force term v acting vertically
on the membrane:

min
u

∫
Ω

|∇u|2 − uv s.t. ψ ≥ u ≥ ϕ, u|∂Ω = f. (5.7)

It is cumbersome but straightforward to extend the proposed algorithms to this case: the
double obstacle results in a second shrinkage term (albeit with opposite signs), and the force
v becomes an extra term in the primal variable update, u
 = un +r2divX pn+1+v. The exact
details are left as an exercise to the reader.

As an illustration of the performance of this slightly extended algorithm, we consider an
elastic-plastic torsion problem described in [27]. LetΩ = [0, 1]2 and X a Cartesian sampling
thereof. The obstacles are constructed as

2 None of these sources explicitly specifies the boundary values other than claiming f = 0 on “some”
(undisclosed) location, clearly different from the square border ∂Ω .
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ta,linearobstacle N = 64

linear, at N = 128 error map at N = 256

Fig. 4 Radially symmetric 2D obstacle problem. a Obstacle ϕ5(x, y). b–c Low- and medium-resolution
solution and circular zero-level set (blue). d Error map of the high-resolution solution 256× 256. The error is
concentrated as peaks near the free boundary, mostly due to spatial discretization, and propagating from there
into the free membrane parts. (Color figure online)

Table 2 Running times for spherical 2D problem ϕ5, at different resolution

Our method Majava/Tai [17]

Size t [s] #iter. t [s] #iter.

64 × 64 0.55 1827 1862 1.3 · 106
128 × 128 3.4 2607 51064 9.6 · 106
256 × 256 18.0 2855 n/a n/a

Values of [17] provided for very approximate comparison only: [17] was implemented with Fortran 77 and
run on an HP9000/J5600 workstation (2 × 552MHz PA8600 CPU)

ϕ6(x, y) := −dist(x, ∂Ω), and (5.8a)

ψ6(x, y) := 0.2. (5.8b)

The boundary values are u = 0 on ∂Ω . The force v : Ω → R is defined as

v(x, y) :=

⎧⎪⎨
⎪⎩
300, if (x, y) ∈ S := {(x, y) : |x − y| ≤ 0.1 ∧ x ≤ 0.3},
−70eyg(x), if (x, y) /∈ S ∧ x ≤ 1 − y,

15eyg(x), if (x, y) /∈ S ∧ x > 1 − y,

(5.9)

where we further have
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Fig. 5 Double obstacle with force: elasto-plastic torsion problem. a Computed optimal membrane u. b
Computed contact set: free membrane (blue), contact with upper obstacle (red), and contact with lower
obstacle (green). Compare with results in [27]. (Color figure online)

g(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6x, if 0 ≤ x ≤ 1/6,
2(1 − 3x), if 1/6 < x ≤ 1/3,
6(x − 1/3), if 1/3 < x ≤ 1/2,
2(1 − 3(x − 1/3)), if 1/2 < x ≤ 2/3,
6(x − 2/3), if 2/3 < x ≤ 5/6,
2(1 − 3(x − 2/3)), if 5/6 < x ≤ 1.

(5.10)

The algorithmon a coarse grid 64×64 (as in [27]), withμ = 0.1, r1 = 0.008, r2 = 15.625,
and for a tolerance ε = 10−6, converges in 1104 iterations, requiring only 0.45 s. The
algorithm presented in [27] is reported to perform in 916.8–1275.1 s, which is more than three
orders of magnitude slower. The computed minimum-energy membrane and the associated
contact set (coincidence set) are shown in Fig. 5, and compare very well to the results in [27].

6 Conclusions and Outlook

In this paper we have proposed a primal-dual hybrid gradients based method for the efficient
solution of the obstacle problem. We consider both the non-linear and linearized versions of
the discrete obstacle problem, as well as both the original, constrained formulation and the
L1-penalty relaxation. All these problems are convex minimization problems, and we start
by reformulating them as primal-dual problems, based on the Legendre–Fenchel transform
(convex conjugate) of the surface area and the Dirichlet energy, respectively. The resulting
saddle-point problem is solved by the primal-dual hybrid gradients method, which consists
of three iterative steps: the dual and primal variable proximal updates, and an extra-gradient
step (overrelaxation) of the primal variable. The proximal updates can be solved efficiently,
and in the linear case even particularly so. Indeed, the linear case allows eliminating the dual
variable altogether, resulting in primal-variable update and extragradient scheme, only. We
demonstrate on various 1D and 2D problems that the resulting scheme outperforms current
state-of-the-art methods by 1–2 orders of magnitude.

In addition to being efficient, the proposed algorithm also benefits from a highly interesting
physical interpretation, as discussed in Sects. 3.4 and 4.2. Firstly, the elimination of the
dual variable results in a single variable scheme that is strongly reminiscent of gradient
descent, except for the fact that previous iterates remain involved. As a result, there is build-
up of a certain “momentum” that accelerates the updates beyond the limits of the usual
CFL step-size criteria, see Sect. 3.4. Indeed, away from the solution the previous iterates
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interfere constructively resulting in a greatly increased apparent time step; whereas closer to
the solution the membrane has a tendency to oscillate, and the iterates cancel out leading to
increased stability. Similarly, the scheme can be brought into a form that is highly reminiscent
of a damped wave equation (Sect. 4.2). This nature is also particularly illustrated by the toy-
example considered in Fig. 1, where the momentum splits an initial central state into two
separate parts, who then propagate away laterally and eventually dissipate.

A general advantage of the proposed primal-dual based method for the obstacle prob-
lem is the absence of matrix/operator inversions, since the proximal updates only contain
explicit operations involving adjoints, at most. Also, in analogy to [23,26] but in contrast to
e.g., [12,13], the proposed method does not need to track the contact set explicitly; indeed,
the method handles the interface between coincidence set and harmonic membrane as a
free boundary, intrinsically. Finally, it is to note that multigrid and multilevel methods that
have been employed to speed up computation in different approaches such as [28] may be
applicable to the proposed method as well, expected to result in a further speed up of the
computations.

We remark that the properties of the proposed algorithm are not specifically engineered,
but emerge from a very disciplined derivation from convex optimization, see Remark 2.More
applications of this method, including elliptic PDE problems, will be reported in [33].

Acknowledgements The authors thank W. Feldman, I. Kim, and G. Tran for helpful discussions.
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