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Abstract In this article, a special point is found for the interpolation approximation of the
linear combination ofmulti-term fractional derivatives. The derived numerical differentiation
formula can achieve at least second order accuracy. Then the formula is used to numerically
solve the time multi-term and distributed-order fractional sub-diffusion equations. Several
unconditionally stable and convergent difference schemes are presented. The stability and
convergence of the difference schemes are discussed. Some numerical examples are provided
to show the efficiency of the proposed difference schemes.
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Distributed-order equation · Difference scheme · Stability · Convergence

1 Introduction

In recent years, the fractional calculus has been greatly developed and many related books
appeared, such as [1–4] and so on. The definitions of fractional derivatives are diverse, among
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which the Riemann–Liouville fractional derivative and the Caputo fractional derivative are
most favorable ones. The time-fractional derivatives are usually defined in the Caputo sense,
while the space-fractional derivatives are often described in the Riemann–Liouville sense.
These two fractional derivatives are closely connected with some initial values. The Riesz
fractional derivative which is commonly employed to define the space-fractional derivative,
can also be regarded as that in the Riemann–Liouville sense. Many processes in physics,
finance, engineering, chemistry, acoustics etc. can be modelled by the fractional differential
equation (FDE). The analytical solutions of most fractional differential equations (FDEs)
are not explicit, therefore, some effective numerical techniques for solving FDEs become
necessary and important.

Fractional derivatives, which have been used to describe various materials and processes
with memory and hereditary properties, are nonlocal with long memory and weak singular
kernels. It brings a surprising challenge in both the theory research and numerical approx-
imation. Particularly for the time-fractional problems, all the information on the previous
time levels is required when the time-fractional derivative is considered on the current time
level. Therefore, to develop the effective numerical differentiation formula to approximate
the fractional derivative is fundamental in designing the numerical algorithms for solving
FDEs. The direct numerical approximation for the one-term fractional derivative has been
well studied in literatures. One of the typical approximation formulae is termed as “G–L
approximation”, which is arising from the equivalence of the Riemann–Liouville fractional
derivative and the Grünwald–Letnikov derivative for a wide class of functions. This approx-
imation formula was considered as early as in 1970s in the book [1] by Oldham and Spanier.
TheG–L approximation and the computation of coefficientswere further discussed byLubich
in [5] and in the book [2] by Podlubny. Then many scholars have made a series of work along
this routine. The applications of the G–L approximation for the time-fractional derivatives
have been widely studied. Here we only mention a few part of works. Chen et al. [6] pro-
posed an implicit difference scheme for a fractional partial differential equation (FPDE)
describing sub-diffusion using the first-order G–L approximation formula. A variable-order
anomalous subdiffusion equationwas further numerically considered still using the first-order
G–L approximation formula in [7]. Gao et al. [8] constructed an effective difference scheme
with the second-order accuracy in time for solving the time-fractional sub-diffusion equation
based on certain super-convergence of the first-order G–L approximation formula. Ding and
Li [9] gave a mixed spline method for reaction-subdiffusion equations based on the G–L
approximation for the involved time-fractional derivatives. Yuste and Acedo [10] presented
an explicit difference method for fractional diffusion equations with the G–L approxima-
tion for the time-fractional Riemann–Liouville derivatives. The G–L approximation formula
is also utilized to approximate the space-fractional derivative. Meerschaert and Tadjeran
[11] investigated finite difference approximations for fractional advection-dispersion flow
equations. Using the first-order G–L approximation formula to approximate the α-th order
(1 < α � 2) Riemann–Liouville space-fractional derivative, the derived difference scheme
was unstable, thus, a shifted first-order G–L approximation formula was developed in [11].
To improve the numerical accuracy, Tian et al. [12] presented some weighted and shifted
G–L approximation formulae for the Riemann–Liouville fractional derivative and illustrated
applications in solving space-fractional diffusion equations in one and two dimensions.

It is worth mentioning that the standard G–L approximation coincides with the first-order
Lubich’smethod [5]. Some higher-order approximationswith the similar form to the standard
G–L approximation were also developed by Lubich in [5].

The other class of the approximation formulae for fractional derivatives is based on the
interpolation approximation. One of the well known formulae is called the L1 formula, which
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is derived from a piecewise linear interpolation approximation for the function f in the α-th
order (0 < α � 1) Caputo fractional derivative C

0 D
α
t f (t). The exact numerical accuracy

of this formula is proved to be (2 − α)-th order for the function f ∈ C2([0, t]) [13,14].
This formula has been widely used to construct the numerical method for solving the time-
fractional differential equation. Langlands and Henry [15] presented an implicit difference
method for the fractional diffusion equation by the mean of the L1 formula. Sun and Wu
[13] developed implicit difference schemes for solving time-fractional diffusion-wave equa-
tions based on the L1 formula for approximating the time-fractional derivatives. Lin and Xu
[14] considered a numerical method for the time-fractional diffusion equation with a finite
difference discretization in time based on the L1 formula and Legendre spectral methods
in space. Brunner et al. [16] applied the L1 formula for time-fractional derivatives and the
adaptive spatial basis selection approach for the space derivative to carry out some numerical
simulations for 2D fractional subdiffusion problems. By the same numerical approximation
for the time-fractional derivative, Pang and Sun [17] proposed high order finite difference
methods in space for solving time-space fractional diffusion equations. With the purpose of
improving the numerical accuracy to approximate the Caputo fractional derivative, Gao et al.
[18] gave a new numerical differentiation formula, called L1-2 formula, based on the piece-
wise quadratic interpolation approximation for the function f in the α-th order (0 < α � 1)
Caputo fractional derivative C

0 D
α
t f (t), except on the first small interval. The applications of

the L1-2 formula into solving the time-fractional differential equation were also illustrated. It
seems to be a challenge to strictly prove the stability and convergence of the proposed schemes
until now. Alikhanov [19] derived a new numerical differentiation formula, called the L2-1σ

formula, to approximate the Caputo fractional derivative at a special point. And the time
second-order difference schemes for fractional diffusion equations and for the time-space
fractional differential equation based on the L2-1σ formula were developed and analyzed in
[19] and [20], respectively. The modified L1 methods were developed and used to obtain the
Crank–Nicolson method for the time-fractional subdiffusion equation in [21].

All the above mentioned work is devoted to the numerical approximation of the one-term
fractional derivative. However, the multi-term FDE has been proved to be valuable models
for describing many processes in practice, such as the oxygen delivery through a capillary to
tissues [22], viscoelastic damping [23], the underlyingprocesseswith loss [24], the anomalous
diffusion in highly heterogeneous aquifers and complex viscoelastic materials [25] and in
rheology [26]. In particular, the multi-term time-fractional diffusion-wave equations can
successfully describe the power-law frequency dependence in a continuous time random
walk model [27].

To find accurate and efficient numerical algorithms for multi-term FDEs becomes an
active research undertaking recently. Some research work on this subject has been made, for
example, the iterative method [22,28], a Haar wavelet collocation method in [23], a method
of separating variables [29], the Galerkin finite element method [25] and the method using
generalized triangular function operational matrices [30]. It is well known that the finite dif-
ference method is simple and easy to be implemented. Some of the existing finite difference
methods for solving multi-term FDEs can be found. In [27], the multi-term time-fractional
differential equation was firstly written as an equivalent system of single-term equations and
then, two fractional predictor-correctormethodswere used to solve the equivalent system.Ren
and Sun [31] investigated the finite difference method for solving multi-term time-fractional
sub-diffusion equations, where each time-fractional derivative was discretized using the L1
formula. By a similar technique, Ye et al. [32] handled the time-fractional derivatives in the
reduced multi-term problem from the time-distributed order differential equation. Alikhanov
[33] studied numerical solutions of the multi-term variable-distributed order diffusion equa-
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tion with the help of L1 formula for the approximation of time-fractional derivatives. Wang
and Vong [34] explored the finite difference approximation for a two-term time-fractional
sub-diffusion equation with a weighted and shifted G–L approximation formula for the
involved time-fractional derivatives. The smooth extension of solutions to the half-line in
time was required. Gao et al. [35–38] discussed the finite difference method for solving time-
distributed diffusion equations using the G–L or weighted and shifted G–L approximation
for time-fractional derivatives. The smooth extension of solutions was also essential.

It is noted that the direct numerical treatment of the multi-term fractional derivative has
not gained a great development until now. The existing main approaches to the multi-term
fractional derivative are direct applications of the techniques which are used to handle the
single-term fractional derivative, mainly including the L1 approximation [31–33] and the G–
L approximation [34–38]. The disadvantage of the former approach lies in the lower order of
numerical accuracy, while the latter one requires the continuous zero-extension of solutions
when t < 0.

The major contribution of this work concentrates on the derivation of a higher accurate
interpolation approximation for a linear combination of the multi-term fractional derivatives
in the Caputo sense, whose orders belong to the interval [0, 1]. To the authors’ knowledge,
this higher accurate interpolation approximation for the multi-term fractional derivatives has
not been covered in the published literatures. Then some temporal second-order difference
schemes for solving time multi-term and distributed-order fractional sub-diffusion equations
are proposed based on the presented higher accurate interpolation approximation.

The outline of this work is as follows. Section2 is devoted to the derivation of a higher
accurate interpolation approximation for the linear combination of multi-term fractional
derivatives. A special point is found to be a unique root of a nonlinear equation, which can
be obtained by the Newton iterative method. An effective numerical differentiation formula
to approximate the linear combination of multi-term fractional derivatives at this point is
established and its numerical accuracy is analyzed. In the following two sections, applica-
tions of this numerical differentiation formula into solving the multi-term time-fractional
sub-diffusion equation and the time distributed-order sub-diffusion equation are illustrated,
respectively. Some effective difference schemes are developed and the unique solvability,
unconditional stability and convergence are also discussed. In Sect. 5, several numerical
experiments are carried out to investigate the computational efficiency of the proposed numer-
ical algorithms. The last section contains some concluding remarks on this work.

2 The Higher Accurate Interpolation Approximation for the Linear
Combination of Multi-term Fractional Derivatives

Consider
m∑

r=0

λr
C
0 D

αr
t f (t), (2.1)

where λ0, λ1, . . . , λm are some positive constants, 0 � αm < αm−1 < · · · < α0 � 1 and at
least one of αi ’s belongs to (0, 1), C0 D

α
t f (t) is the Caputo fractional derivative defined by

C
0 D

α
t f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (t) − f (0), α = 0,

1

�(1 − α)

∫ t

0
f ′(s)(t − s)−αds, α ∈ (0, 1),

f ′(t), α = 1.
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Form = 0,Alikhanov [19] has found a special point for the interpolation approximation of
theCaputo fractional derivative based on thework [18] and derived a numerical differentiation
formula to approximate the Caputo fractional derivative at this point with the numerical
accuracy of order 3−α0 uniformly. It is pertinent to ask what about for a linear combination
(2.1) of the multi-term fractional derivatives? Is there a point at which one can achieve a
higher accurate interpolation approximation for (2.1)? It is precisely the starting point of our
present work.

To this end, some preparation work is firstly done.

2.1 Some Interpolation Polynomials

Let τ be the step size. Denote tn = nτ, n = 0, 1, 2, . . . .
Suppose f ∈ C3[0, tn]. Let L2,k(s) be a quadratic polynomial on [tk−1, tk+1] satisfying
L2,k(tk−1) = f (tk−1), L2,k(tk) = f (tk), L2,k(tk+1) = f (tk+1), 1 � k � n − 1.

Denote

tk− 1
2

=
(
k − 1

2

)
τ, δt f

(
tk− 1

2

)
= f (tk) − f (tk−1)

τ
.

Then

f (s) − L2,k(s) = 1

6
f ′′′(ηk)(s − tk−1)(s − tk)(s − tk+1),

s ∈ [tk−1, tk+1], ηk ∈ (tk−1, tk+1);

L ′
2,k(s) = δt f

(
tk− 1

2

) tk+ 1
2

− s

τ
+ δt f

(
tk+ 1

2

) s − tk− 1
2

τ
, s∈[tk−1, tk+1]. (2.2)

Let L1,n(s) be a linear polynomial on [tn−1, tn] satisfying
L1,n(tn−1) = f (tn−1), L1,n(tn) = f (tn).

Then

f (s) − L1,n(s) = 1

2
f ′′(ξn)(s − tn−1)(s − tn), s ∈ [tn−1, tn], ξn ∈ (tn−1, tn);

L ′
1,n(s) = δt f (tn− 1

2
), s ∈ [tn−1, tn]

and

f ′(s) − L ′
1,n(s)

= f ′(s) − δt f
(
tn− 1

2

)

= [ f ′(s) − f ′ (tn− 1
2

) ]+ [ f ′ (tn− 1
2

)
− δt f

(
tn− 1

2

) ]

= [ f ′′ (tn− 1
2

) (
s − tn− 1

2

)
+ 1

2
f ′′′ (η̂n

) (
s − tn− 1

2

)2 ]− 1

24
τ 2 f ′′′ (η̃n) ,

s ∈ [tn−1, tn], η̂n, η̃n ∈ (tn−1, tn). (2.3)

With the recalling of the above interpolation polynomials, we now turn to the derivation
of a higher accurate interpolation approximation for (2.1).
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2.2 The Higher Accurate Interpolation Approximation

Denote

F(σ ) =
m∑

r=0

λr

�(3 − αr )
σ 1−αr

[
σ −

(
1 − αr

2

) ]
τ 2−αr , σ � 0.

Let

a = min
0�r�m

{
1 − αr

2

}
, b = max

0�r�m

{
1 − αr

2

}
.

It is easy to know that

a = 1 − 1

2
max

0�r�m
{αr } = 1 − α0

2
� 1

2
, b = 1 − 1

2
min

0�r�m
{αr } = 1 − αm

2
� 1.

Lemma 2.1 The equation F(σ ) = 0 has a unique positive root σ ∗ ∈ [a, b].
Proof If m = 0, it is apparent that the equation F(σ ) = 0 has a unique root σ ∗ = 1 − α0

2 .

Now, we suppose m � 1. If 0 � σ � a, then F(σ ) � F(a) < 0. If σ � b, then
F(σ ) � F(b) > 0. When σ ∈ [a, b], we have

F ′(σ ) =
m∑

r=0

λr

�(2 − αr )
σ−αr [σ − 1

2
(1 − αr )]τ 2−αr > 0.

Thus, the equation F(σ ) = 0 has a unique positive root σ ∗ ∈ [a, b]. ��
Lemma 2.2 For m � 1, the Newton iteration sequence {σk}∞k=0, generated by

{
σk+1 = σk − F(σk )

F ′(σk ) , k = 0, 1, 2, . . . ,
σ0 = b,

(2.4)

is monotonically decreasing and convergent to σ ∗.

Proof In viewof the proof for the above lemma,we have F(a) < 0, F(b) > 0 and F ′(σ ) > 0
when σ ∈ [a, b]. In addition, when σ ∈ [a, b], we have

F ′′(σ ) =
m∑

r=0

λr

�(1 − αr )
σ−αr−1

(
σ + 1

2
αr

)
τ 2−αr > 0.

Noticing

F(σ0)F
′′(σ0) > 0,

then the Newton iteration sequence {σk}∞k=0 generated by (2.4) is monotonically decreasing
and convergent to σ ∗ [39]. ��

From now on, for simplicity in writing, we denote σ = σ ∗, which means that this σ ∈
[ 12 , 1) satisfying F(σ ) = 0.

Denote tn−1+σ = (n − 1 + σ)τ and consider C0 D
α
t f (tn−1+σ ) for any α ∈ [0, 1].

If n = 1, then

C
0 D

α
t f (tn−1+σ ) = 1

�(1 − α)

∫ tσ

t0
f ′(s)(tσ − s)−αds.
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If n � 2, then

C
0 D

α
t f (tn−1+σ ) = 1

�(1 − α)

[ n−1∑

k=1

∫ tk

tk−1

f ′(s)(tn−1+σ − s)−αds

+
∫ tn−1+σ

tn−1

f ′(s)(tn−1+σ − s)−αds

]
.

For the case with α = 0 or α = 1, the above two equalities can be understood in the limit
sense.

The next theorem will give a numerical differentiation formula to approximate (2.1) at
the point t = tn−1+σ and reveal its numerical accuracy.

Theorem 2.1 Suppose f ∈ C3([t0, tn]). Let

D f (tn−1+σ ) ≡
m∑

r=0

λr
C
0 D

αr
t f (tn−1+σ )

=
m∑

r=0

λr

�(1 − αr )

[ n−1∑

k=1

∫ tk

tk−1

f ′(s)(tn−1+σ − s)−αr ds

+
∫ tn−1+σ

tn−1

f ′(s)(tn−1+σ − s)−αr ds

]

and

D f (tn−1+σ ) ≡
m∑

r=0

λr

�(1 − αr )

[ n−1∑

k=1

∫ tk

tk−1

L ′
2,k(s)(tn−1+σ − s)−αr ds

+
∫ tn−1+σ

tn−1

L ′
1,n(s)(tn−1+σ − s)−αr ds

]
.

Then, we have

|Df (tn−1+σ ) − D f (tn−1+σ )| � M
m∑

r=0

λr

�(2 − αr )
·
(1 − αr

12
+ σ

6

)
σ−αr τ 3−αr , (2.5)

where M = max
t0�s�tn

| f ′′′(s)|.

Proof It is easy to know that

Df (tn−1+σ ) − D f (tn−1+σ )

=
m∑

r=0

λr

�(1 − αr )

n−1∑

k=1

∫ tk

tk−1

[
f ′(s) − L ′

2,k(s)
]
(tn−1+σ − s)−αr ds

+
m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

[
f ′(s) − L ′

1,n(s)
]
(tn−1+σ − s)−αr ds. (2.6)
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Since

A ≡
n−1∑

k=1

∫ tk

tk−1

[
f ′(s) − L ′

2,k(s)
]
(tn−1+σ − s)−αr ds

=
n−1∑

k=1

{
[ f (s) − L2,k(s)](tn−1+σ − s)−αr

∣∣tk
s=tk−1

−
∫ tk

tk−1

[
f (s) − L2,k(s)

]
αr (tn−1+σ − s)−αr−1ds

}

= −
n−1∑

k=1

∫ tk

tk−1

[
f (s) − L2,k(s)

]
αr (tn−1+σ − s)−αr−1ds

and using (2.2), we get | f (s) − L2,k(s)| � 1
12Mτ 3 for s ∈ [tk−1, tk+1] and hence

|A| �
n−1∑

k=1

∫ tk

tk−1

| f (s) − L2,k(s)|αr (tn−1+σ − s)−αr−1ds

� 1

12
Mτ 3

n−1∑

k=1

∫ tk

tk−1

αr (tn−1+σ − s)−αr−1ds

= 1

12
Mτ 3

∫ tn−1

t0
αr (tn−1+σ − s)−αr−1ds

= 1

12
Mτ 3

[
(tn−1+σ − tn−1)

−αr − (tn−1+σ − t0)
−αr
]

� 1

12
Mτ 3 · (στ)−αr

= 1

12
Mσ−αr τ 3−αr . (2.7)

For the second term on the right hand of (2.6), according to (2.3), we have

B ≡
m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

[
f ′(s) − L ′

1,n(s)
]
(tn−1+σ − s)−αr ds

=
m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

[
f ′′ (tn− 1

2

) (
s − tn− 1

2

)
+ 1

2
f ′′′(η̂n)

(
s − tn− 1

2

)2

− 1

24
τ 2 f ′′′(η̃n)

]
(tn−1+σ − s)−αr ds

= f ′′ (tn− 1
2

) m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

(
s − tn− 1

2

)
(tn−1+σ − s)−αr ds

+
m∑

r=0

λr

�(1−αr )

∫ tn−1+σ

tn−1

[
1

2
f ′′′ (η̂n

) (
s−tn− 1

2

)2− 1

24
τ 2 f ′′′ (η̃n)

]
(tn−1+σ −s)−αr ds.

123



J Sci Comput (2017) 73:93–121 101

Noticing F(σ ) = 0, we know that

m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

(s − tn− 1
2
)(tn−1+σ − s)−αr ds

=
m∑

r=0

λr

�(1 − αr )

∫ στ

0

[(
σ − 1

2

)
τ − ξ

]
ξ−αr dξ

=
m∑

r=0

λr

�(3 − αr )
σ 1−αr

[
σ −

(
1 − αr

2

) ]
τ 2−αr

= F(σ )

= 0.

Therefore,

B =
m∑

r=0

λr

�(1 − αr )

∫ tn−1+σ

tn−1

[
1

2
f ′′′ (η̂n

) (
s − tn− 1

2

)2 − 1

24
τ 2 f ′′′(η̃n)

]

× (tn−1+σ − s)−αr ds.

Consequently,

|B| � 1

6
M

m∑

r=0

λr

�(1 − αr )
· σ 1−αr

1 − αr
τ 3−αr . (2.8)

Substituting (2.7) and (2.8) into (2.6), we get

|Df (tn−1+σ ) − D f (tn−1+σ )| � M
m∑

r=0

λr

�(1 − αr )
·
(

1

12
+ 1

6
· σ

1 − αr

)
σ−αr τ 3−αr .

This completes the proof of the theorem. ��
2.3 Properties of Coefficients in the Numerical Differentiation Formula

In this subsection, we will rewrite the derived numerical differentiation formula more explic-
itly and discuss some useful properties of coefficients in this formula. To this end, for
α ∈ [0, 1], denote
a(α)
0 = σ 1−α, a(α)

l = (l + σ)1−α − (l − 1 + σ)1−α, l � 1,

b(α)
l = 1

2 − α

[
(l + σ)2−α − (l − 1 + σ)2−α

]− 1

2

[
(l + σ)1−α + (l − 1 + σ)1−α

]
, l � 1.

When n = 1, denote

c(n,α)
0 = a(α)

0 ;
When n � 2, denote

c(n,α)
k =

⎧
⎪⎨

⎪⎩

a(α)
0 + b(α)

1 , k = 0,

a(α)
k + b(α)

k+1 − b(α)
k , 1 � k � n − 2,

a(α)
k − b(α)

k , k = n − 1.
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In particular, when α = 1, c(n,α)
0 = 1, c(n,α)

k = 0, 1 � k � n − 1; When α = 0,

c(n,α)
0 = σ, c(n,α)

k = 1, 1 � k � n − 1.
Now the derived numerical differentiation formula can be written explicitly as follows:

D f (tn−1+σ ) =
n−1∑

k=0

( m∑

r=0

λr
τ−αr

�(2 − αr )
c(n,αr )
k

)[
f (tn−k) − f (tn−k−1)

]
. (2.9)

Denote

ĉ(n)
k =

m∑

r=0

λr
τ−αr

�(2 − αr )
c(n,αr )
k , k = 0, 1, . . . , n − 1.

The next two lemmas will state some properties of the coefficients {ĉ(n)
k }.

Lemma 2.3 Given any non-negative integer m and positive constants λ0, λ1, . . . , λm, for
any αi ∈ [0, 1], i = 0, 1, . . . ,m, where at least one of αi ’s belongs to (0, 1), it holds

ĉ(n)
1 > ĉ(n)

2 > · · · > ĉ(n)
n−2 > ĉ(n)

n−1 >

m∑

r=0

λr
τ−αr

�(2 − αr )
· 1 − αr

2
(n − 1 + σ)−αr . (2.10)

Proof If m = 0, the conclusion has been obtained in [19]. Now, we suppose m � 1. For any
αr ∈ (0, 1), we have [19]

c(n,αr )
1 > c(n,αr )

2 > · · · > c(n,αr )
n−2 > c(n,αr )

n−1 >
1 − αr

2
(n − 1 + σ)−αr . (2.11)

In particular, if αr = 0, we have

c(n,αr )
1 = c(n,αr )

2 = · · · = c(n,αr )
n−1 = 1 >

1 − 0

2
(n − 1 + σ)−0; (2.12)

If αr = 1, we have

c(n,αr )
1 = c(n,αr )

2 = · · · = c(n,αr )
n−1 = 0 � 1 − 1

2
(n − 1 + σ)−1; (2.13)

Combining with (2.11)–(2.13) and noticing that at least one of αi ’s belongs to (0, 1), we
can get the required conclusion (2.10). ��

Lemma 2.4 Given any non-negative integer m and positive constants λ0, λ1, . . . , λm, for
any αi ∈ [0, 1], i = 0, 1, . . . ,m, where at least one of αi ’s belongs to (0, 1), then there
exists a number τ0 > 0, such that

(2σ − 1)ĉ(n)
0 − σ ĉ(n)

1 > 0 (2.14)

when τ � τ0, n = 2, 3, . . . and hence

ĉ(n)
0 > ĉ(n)

1 . (2.15)
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Proof If m = 0, the proof can be found in [19]. Now, we suppose m � 1 and hence
σ ∈ ( 12 , 1). When n � 3, for each αr ∈ [0, 1], we have

(2σ − 1)c(n,αr )
0 − σc(n,αr )

1

= (2σ − 1)
(
a(αr )
0 + b(αr )

1

)
− σ

(
a(αr )
1 + b(αr )

2 − b(αr )
1

)

= − sr (2 + σ) − σ

2
(2 + σ)1−αr + (4σ 2 + 3σ − 1)sr − 4σ 2 + σ

2σ
(1 + σ)1−αr

− 3σ − 1

2
(sr − 1)σ 1−αr ,

where sr = σ
1−αr /2

, r = 0, 1, . . . ,m.

With the help of

(2 + σ)1−αr = (1 + σ)1−αr
(
1 + 1

1 + σ

)1−αr

� (1 + σ)1−αr

(
1 + 1 − αr

1 + σ

)

= (1 + σ)1−αr
σ sr + 2σ

sr (1 + σ)
,

further we have

(2σ − 1)c(n,αr )
0 − σc(n,αr )

1

� 1

2

[(
3σ 2 + 5σ + 2 − 1

σ

)
sr + 2σ 2

sr
− 5σ 2 − 7σ + 1

]
(1 + σ)−αr

− 3σ − 1

2
(sr − 1)σ 1−αr . (2.16)

Taking into account that

m∑

r=0

λr
τ−αr

�(2 − αr )
σ 1−αr (sr − 1) = 2

τ 2
F(σ ) = 0

and denoting

fσ (t) =
(
3σ 2 + 5σ + 2 − 1

σ

)
t + 2σ 2

t
− 5σ 2 − 7σ + 1, σ ∈ (1/2, 1),

from (2.16), we get

(2σ − 1)ĉ(n)
0 − σ ĉ(n)

1

=
m∑

r=0

λr
τ−αr

�(2 − αr )

[
(2σ − 1)c(n,αr )

0 − σc(n,αr )
1

]

� 1

2

m∑

r=0

λr
τ−αr

�(2 − αr )
fσ (sr )(1 + σ)−αr − 3σ − 1

2

m∑

r=0

λr
τ−αr

�(2 − αr )
σ 1−αr (sr − 1)
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= 1

2

m∑

r=0

λr
τ−αr

�(2 − αr )
fσ (sr )(1 + σ)−αr

= 1

2
λ0

τ−α0

�(2 − α0)
fσ (s0)(1 + σ)−α0 + 1

2

m∑

r=1

λr
τ−αr

�(2 − αr )
fσ (sr )(1 + σ)−αr . (2.17)

Since s0 = σ
1−α0/2

> 1 and

fσ (s0) > fσ (1) = (2σ − 1)(1 − σ)

σ
> 0,

from (2.17), it follows

(2σ − 1)ĉ(n)
0 − σ ĉ(n)

1

>
1

2
λ0

τ−α0

�(2 − α0)
(1 + σ)−α0

[
fσ (1) +

m∑

r=1

λr
τα0−αr �(2 − α0)

λ0�(2 − αr )
fσ (sr )(1 + σ)α0−αr

]

= 1

2
λ0

τ−α0

�(2 − α0)
(1 + σ)−α0

[
fσ (1) + O(τα0−α1)

]
. (2.18)

Since α0 − α1 > 0, there exists a number τ0 > 0, such that fσ (1) + O(τα0−α1) � 0
when τ � τ0. Thus, we can get the inequality (2.14) when n � 3.

If n = 2, we have

(2σ − 1)c(2,αr )
0 − σc(2,αr )

1

= (2σ − 1)
(
a(αr )
0 + b(αr )

1

)
− σ

(
a(αr )
1 − b(αr )

1

)

� (2σ − 1)
(
a(αr )
0 + b(αr )

1

)
− σ

(
a(αr )
1 + b(αr )

2 − b(αr )
1

)
. (2.19)

Then multiplying (2.19) by λr
τ−αr

�(2−αr )
and summing up for r from 0 tom, using the previous

result when n � 3, it is easy to know that (2σ − 1)ĉ(2)
0 − σ ĉ(2)

1 > 0 when τ � τ0. That is,
the inequality (2.14) is true when τ � τ0, n = 2, 3, . . . .

From (2.14), we can immediately arrive at (2.15) when τ � τ0 since σ ∈ ( 12 , 1). ��
From Theorem 2.1, one can know that the numerical accuracy of D f (tn−1+σ ) to approx-

imate the value of the linear combination (2.1) of multi-term Caputo fractional derivatives
at the point tn−1+σ is at least second order if f ∈ C3[0, tn]. In the aftermentioned part,
based on Theorem 2.1, we aim to develop some high order accurate difference schemes for
solving the multi-term time-fractional sub-diffusion equation and the time distributed-order
sub-diffusion equation, respectively.

3 Difference Schemes for the Multi-term Fractional Sub-diffusion
Equation

Consider the following problem
m∑

r=0

λr
C
0 D

αr
t u(x, t) = uxx (x, t) + f (x, t), 0 < x < L , 0 < t � T, (3.1)

u(0, t) = 0, u(L , t) = 0, 0 � t � T, (3.2)

u(x, 0) = u0(x), 0 < x < L . (3.3)
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Take two positive integers M and N . Denote h = L/M, τ = T/N , xi = ih (0 � i �
M), tn = nτ (0 � n � N ), 
h = {xi | 0 � i � M}.

Let

Vh = {v | v = (v0, v1, . . . , vM−1, vM ), v0 = 0, vM = 0
}
.

Suppose v,w ∈ Vh . Introduce the following notations

δxvi− 1
2

= 1

h
(vi − vi−1), δ2xvi = 1

h2
(vi−1 − 2vi + vi+1),

(v,w) = h
M−1∑

i=1

viwi , 〈v,w〉 = h
M∑

i=1

(
δxvi− 1

2

) (
δxwi− 1

2

)
,

‖v‖ = √(v, v), |v|1 = √〈v, v〉, ‖v‖∞ = max
1�i�M−1

|vi |.

For any v ∈ Vh, we have [40,41]

‖v‖∞ �
√
L

2
|v|1. (3.4)

Based on Lemmas 2.3 and 2.4, the following lemma is true.

Lemma 3.1 [19,40] Let V be an inner product space and (·, ·) is the inner product with the
induced norm ‖ · ‖. For v0, v1, · · · , vn ∈ V, we have

n−1∑

k=0

ĉ(n)
k

(
vn−k − vn−k−1, σvn + (1 − σ)vn−1)

� 1

2

n−1∑

k=0

ĉ(n)
k

(‖vn−k‖2 − ‖vn−k−1‖2), n = 1, 2, . . . .

Remark Lemma 3.1 is vital for the analysis of the following difference schemes.

Denote

Un
i = u(xi , tn), 0 � i � M, 0 � n � N ; f n−1+σ

i = f (xi , tn−1+σ ),

0 � i � M, 1 � n � N .

3.1 A Difference Scheme for (3.1)–(3.3)

Suppose u(x, t) ∈ C (4,3)([0, L] × [0, T ]).
Considering (3.1) at the point (xi , tn−1+σ ), we have

m∑

r=0

λr
C
0 D

αr
t u(xi , tn−1+σ )

= uxx (xi , tn−1+σ ) + f (xi , tn−1+σ ), 1 � i � M − 1, 1 � n � N . (3.5)

Using (2.9) and Theorem 2.1, we get
m∑

r=0

λr
C
0 D

αr
t u(xi , tn−1+σ )

=
m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
Un−k
i −Un−k−1

i

)+ O(τ 3−α0). (3.6)
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In addition, it holds that

uxx (xi , tn−1+σ ) = σuxx (xi , tn) + (1 − σ)uxx (xi , tn−1) + O(τ 2)

= δ2x (σU
n
i + (1 − σ)Un−1

i ) + O(τ 2 + h2). (3.7)

Substituting (3.6) and (3.7) into (3.5), we obtain

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
Un−k
i −Un−k−1

i

)

= δ2x (σU
n
i + (1 − σ)Un−1

i ) + f n−1+σ
i + Rn

i , 1 � i � M − 1, 1 � n � N (3.8)

and there exists a constant c1 such that

|Rn
i | � c1(τ

2 + h2), 1 � i � M − 1, 1 � n � N . (3.9)

Omitting the small term Rn
i in (3.8) and noticing the initial-boundary conditions

Un
0 = 0, Un

M = 0, 0 � n � N , (3.10)

U 0
i = u0(xi ), 1 � i � M − 1, (3.11)

we construct a difference scheme for (3.1)–(3.3) as follows

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
un−k
i − un−k−1

i

)

= δ2x (σu
n
i + (1 − σ)un−1

i ) + f n−1+σ
i , 1 � i � M − 1, 1 � n � N , (3.12)

un0 = 0, unM = 0, 0 � n � N , (3.13)

u0i = u0(xi ), 1 � i � M − 1. (3.14)

Denote

un = (un0, u
n
1, u

n
2, . . . , u

n
M−1, u

n
M ).

Theorem 3.1 The difference scheme (3.12)–(3.14) is uniquely solvable.

Proof By (3.13) and (3.14), the value of u0 is determined. If {uk | 0 � k � n − 1} has
been determined, then we get a linear system of equations with respect to un . Consider the
corresponding homogeneous system:

m∑

r=0

λr
τ−αr

�(2 − αr )
c(n,αr )
0 uni = σδ2xu

n
i , 1 � i � M − 1, (3.15)

un0 = 0, unM = 0. (3.16)

Multiplying (3.15) by huni and summing up for i from 1 to M − 1, then using (3.16), we
obtain

m∑

r=0

λr
τ−αr

�(2 − αr )
c(n,αr )
0 ‖un‖2 = σh

M−1∑

i=1

(δ2xu
n
i )u

n
i = −σ |un |21.

Consequently,

‖un‖ = 0,

which gives un = 0 in view of (3.16). This completes the proof. ��
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A prior estimate on the difference scheme (3.12)–(3.14) is stated as follows.

Theorem 3.2 Let {un | 0 � n � N } be the solution of the difference scheme (3.12)–(3.14).
Then we have

|un |21 � |u0|21 + 1
m∑

r=0

λr

T αr �(1 − αr )

max
1�l�n

‖ f l−1+σ ‖2, 1 � n � N , (3.17)

where

‖ f l−1+σ ‖2 = h
M−1∑

i=1

( f l−1+σ
i )2.

Proof Making an inner product of (3.12) with −δ2x
(
σun + (1 − σ)un−1

)
on both sides, we

have
m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
un−k − un−k−1,−δ2x (σu

n + (1 − σ)un−1)
)

= −(δ2x (σun + (1 − σ)un−1), δ2x (σu
n + (1 − σ)un−1)

)

−( f n−1+σ , δ2x (σu
n + (1 − σ)un−1)

)

� − ∥∥δ2x (σun + (1 − σ)un−1)
∥∥2 + ∥∥δ2x (σun + (1 − σ)un−1)

∥∥2

+1

4

∥∥ f n−1+σ
∥∥2 , 1 � n � N . (3.18)

Using Lemma 3.1 and noticing (3.13), we know

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
un−k − un−k−1,−δ2x (σu

n + (1 − σ)un−1)
)

=
n−1∑

k=0

ĉ(n)
k

〈
un−k − un−k−1, σun + (1 − σ)un−1〉

� 1

2

n−1∑

k=0

ĉ(n)
k

(|un−k |21 − |un−k−1|21
)
. (3.19)

Substituting (3.19) into (3.18), we get

1

2

n−1∑

k=0

ĉ(n)
k

(|un−k |21 − |un−k−1|21
)

� 1

4
‖ f n−1+σ ‖2, 1 � n � N ,

or

ĉ(n)
0 |un |21 �

n−1∑

k=1

(
ĉ(n)
k−1 − ĉ(n)

k

)|un−k |21 + ĉ(n)
n−1|u0|21 + 1

2
‖ f n−1+σ ‖2, 1 � n � N .

(3.20)

Noticing

ĉ(n)
n−1 �

m∑

r=0

λr
τ−αr

�(2 − αr )
· 1 − αr

2
(n − 1 + σ)−αr � 1

2

m∑

r=0

λr

T αr �(1 − αr )
, (3.21)

123



108 J Sci Comput (2017) 73:93–121

it follows from (3.20) that

ĉ(n)
0 |un |21 �

n−1∑

k=1

(
ĉ(n)
k−1 − ĉ(n)

k

)|un−k |21

+ ĉ(n)
n−1

⎛

⎜⎜⎜⎜⎝
|u0|21 + 1

2
· 2

m∑

r=0

λr

T αr �(1 − αr )

‖ f n−1+σ ‖2

⎞

⎟⎟⎟⎟⎠
, 1 � n � N .

The induction method applied to the above inequality will produce (3.17). This completes
the proof. ��

Theorem 3.2 reveals the unconditional stability of the difference scheme (3.12)–(3.14)
with respect to the initial value and the inhomogeneous term f. The next result is about the
convergence of this scheme.

Theorem 3.3 Let {un | 0 � n � N } be the solution of the difference scheme (3.12)–(3.14)
and

eni = Un
i − uni , 0 � i � M, 0 � n � N .

Then we have

‖en‖∞ � c1L

2

√√√√√√

1
m∑

r=0

λr

T αr �(1 − αr )

(τ 2 + h2), 1 � n � N . (3.22)

Proof Subtracting (3.12)–(3.14) from (3.8), (3.10)–(3.11), respectively, we obtain the error
equations as follows

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
en−k
i − en−k−1

i

)

= δ2x (σe
n
i + (1 − σ)en−1

i ) + Rn
i , 1 � i � M − 1, 1 � n � N , (3.23)

en0 = 0, enM = 0, 0 � n � N , (3.24)

e0i = 0, 1 � i � M − 1. (3.25)

Applying (3.9) and the stability inequality (3.17), we have

|en |21 �|e0|21 + 1
m∑

r=0

λr

T αr �(1 − αr )

max
1�l�n

‖Rl‖2

� 1
m∑

r=0

λr

T αr �(1 − αr )

[
c1(τ

2 + h2)
]2
L , 1 � n � N .
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Noting (3.4), we obtain

‖en‖∞ �
√
L

2
|en |1 � c1L

2

√√√√√√

1
m∑

r=0

λr

T αr �(1 − αr )

(τ 2 + h2), 1 � n � N .

This completes the proof. ��
3.2 The Extension to the 2D Problem

The idea for solving the 1D problem (3.1)–(3.3) can be directly extended to handle the 2D
problem. Now we will briefly discuss this issue. To this end, consider the problem

m∑

r=0

λr
C
0 D

αr
t u(x, y, t) = �u(x, y, t) + f (x, y, t), (x, y) ∈ 
, 0 < t � T, (3.26)

u(x, y, t) = 0, (x, y) ∈ ∂
, 0 � t � T, (3.27)

u(x, y, 0) = u0(x, y), (x, y) ∈ 
, (3.28)

where 
 = [0, L1] × [0, L2], ∂
 is the boundary of 
, �u = uxx + uyy is the Laplacian
operator, u0(x, y) and f (x, y, t) are given functions.

The mesh partition is firstly given as {(xi , y j ) | 0 � i � M1, 0 � j � M2} with
xi = ih1, y j = jh2, where h1 = L1/M1, h2 = L2/M2 and M1, M2 are two positive
integers.

Let

ω = {(i, j) | 1 � i � M1 − 1, 1 � j � M2 − 1}, ∂ω = {(i, j) | (xi , y j ) ∈ ∂
},
ω̄ = ω ∪ ∂ω, Uh = {u | u = {ui j | (i, j) ∈ ω̄}}.

For any u ∈ Uh, define

δ2xui j = 1

h21
(ui−1, j − 2ui j + ui+1, j ), δ2yui j = 1

h22
(ui, j−1 − 2ui j + ui, j+1),

�hui j = δ2xui j + δ2yui j .

Denote

Un
i j = u(xi , y j , tn), (i, j) ∈ ω̄, 0 � n � N ; f n−1+σ

i j = f (xi , y j , tn−1+σ ),

(i, j) ∈ ω̄, 1 � n � N .

Suppose u(x, y, t) ∈ C (4,4,3)(
̄ × [0, T ]). Considering Eq. (3.26) at the point
(xi , y j , tn−1+σ ), we have

m∑

r=0

λr
C
0 D

αr
t u(xi , y j , tn−1+σ ) = �u(xi , y j , tn−1+σ ) + f n−1+σ

i j , (i, j) ∈ ω, 1 � n � N .

(3.29)
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Using Theorem 2.1 and (2.9), we obtain

m∑

r=0

λr
C
0 D

αr
t u(xi , y j , tn−1+σ )

=
m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
Un−k
i j −Un−k−1

i j

)+ O(τ 3−α0). (3.30)

Moreover, it is easy to know that

�u(xi , y j , tn−1+σ ) = σ�u(xi , y j , tn) + (1 − σ)�u(xi , y j , tn−1) + O(τ 2)

= �h(σU
n
i j + (1 − σ)Un−1

i j ) + O(τ 2 + h21 + h22). (3.31)

Inserting (3.30) and (3.31) into (3.29) yields

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
Un−k
i j −Un−k−1

i j

)

= �h(σU
n
i j + (1 − σ)Un−1

i j ) + f n−1+σ
i j + Sni j , (i, j) ∈ ω, 1 � n � N (3.32)

and there is a positive constant c2 such that

|Sni j | � c2(τ
2 + h21 + h22), (i, j) ∈ ω, 1 � n � N . (3.33)

Omitting the small term Sni j in (3.32), replacingU
n
i j by its numerical one uni j and noticing

the exact initial-boundary value conditions (3.27)–(3.28), we can get the following difference
scheme for solving (3.26)–(3.28):

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
un−k
i j − un−k−1

i j

)

= �h(σu
n
i j + (1 − σ)un−1

i j ) + f n−1+σ
i j , (i, j) ∈ ω, 1 � n � N , (3.34)

uni j = 0, (i, j) ∈ ∂ω, 0 � n � N , (3.35)

u0i j = u0(xi , y j ), (i, j) ∈ ω. (3.36)

Using the discrete energymethod, the difference scheme (3.34)–(3.36) can be shown to be
uniquely solvable, unconditionally stable and convergent with the order of O(τ 2 +h21 +h22).

The application of the numerical differentiation formula (2.9) into solving the time
distributed-order fractional sub-diffusion equation will be illustrated in the following section.

4 Difference Schemes for the Time Distributed-Order Fractional
Sub-diffusion Equation

Consider the 1-D time distributed-order fractional sub-diffusion problem
∫ 1

0
w(α) C

0 D
α
t u(x, t)dα = uxx (x, t) + f (x, t), 0 < x < L , 0 < t � T, (4.1)

u(0, t) = 0, u(L , t) = 0, 0 � t � T, (4.2)

u(x, 0) = u0(x), 0 < x < L , (4.3)
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where

w(α) � 0,
∫ 1

0
w(α)dα = w0 > 0.

Divide the integral interval [0, 1] into 2J -subintervals with �α = 1
2J and αl = l�α, l =

0, 1, 2, . . . , 2J.
For the numerical approximation of the distributed integral, we need the following lemma.

Lemma 4.1 (The composite Simpson formula) [39] Let s(α) ∈ C4([0, 1]). Then we have
∫ 1

0
s(α)dα = �α

2J∑

l=0

dls(αl) − �α4

180
s(4)(η), η ∈ (0, 1),

where

dl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
3 , l = 0, 2J,

2
3 , l = 2, 4, . . . , 2J − 4, 2J − 2,

4
3 , l = 1, 3, . . . , 2J − 3, 2J − 1.

Using the above lemma, we have

∫ 1

0
w(α) C

0 D
α
t u(x, t)dα = �α

2J∑

r=0

drw(αr )
C
0 D

αr
t u(x, t) + O(�α4). (4.4)

Denote m = 2J, λr = drw(αr )�α.

Suppose u(x, t) ∈ C (4,3)([0, L] × [0, T ]).
Considering (4.1) at the point (xi , tn−1+σ ) and using (4.4), we have

m∑

r=0

λr
C
0 D

αr
t u(xi , tn−1+σ ) = uxx (xi , tn−1+σ ) + f (xi , tn−1+σ ) + O(�α4),

1 � i � M − 1, 1 � n � N . (4.5)

We construct the following difference scheme for (4.1)–(4.3):

m∑

r=0

λr
τ−αr

�(2 − αr )

n−1∑

k=0

c(n,αr )
k

(
un−k
i − un−k−1

i

)

= δ2x (σu
n
i + (1 − σ)un−1

i ) + f n−1+σ
i , 1 � i � M − 1, 1 � n � N , (4.6)

un0 = 0, unM = 0, 0 � n � N , (4.7)

u0i = u0(xi ), 1 � i � M − 1. (4.8)

The truncation error of (4.6) is O(�α4 + τ 2 + h2).
We can show that the difference scheme (4.6)–(4.8) is uniquely solvable, unconditionally

stable and convergent with the convergence order of O(�α4 + τ 2 + h2) in L∞ norm.

Remark The idea canbedirectly applied to handle the 2D timedistributed-order sub-diffusion
problem. We skip the details here due to the limitation of the article in length.
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5 Numerical Examples

In this section, we are devoted to some numerical illustration on the theoretical results in
the previous sections. Firstly, the higher accurate numerical differentiation formula (2.9)
to approximate the time multi-term fractional derivatives Df (t) = ∑m

r=0 λr
C
0 D

αr
t f (t) at

the special point tn−1+σ is verified. Then the applications of this numerical formula into
solving the time multi-term fractional sub-diffusion equation and the time distributed-order
sub-diffusion equation are numerically illustrated, respectively.

Example 5.1 Take T = 1,m = 2, (λ0, λ1, λ2) = (3, 2, 1), f (t) = t4. Then

Df (tn−1+σ ) =
m∑

r=0

λr
C
0 D

αr
t f (t)|t=tn−1+σ

=
m∑

r=0

λr · �(5)

�(5 − αr )
t4−αr
n−1+σ .

Denote

Emax(τ ) = max
1�n�N

|Df (tn−1+σ ) − D f (tn−1+σ )|,

where N is the temporal step number such that Nτ = T = 1 with τ the temporal step size.
Define the numerical convergence order by

Order = log2
Emax(τ )

Emax(τ/2)
.

Table1 lists the maximum numerical errors and convergence orders of the numeri-
cal differentiation formula (2.9) to approximate the time multi-term fractional derivatives∑m

r=0 λr
C
0 D

αr
t f (t) at the special point tn−1+σ (1 � n � N ). In addition, for each pair of

orders of multi-term fractional derivatives and different step sizes τ, the calculated value of
σ is also displayed in this table. From the table, one can see that the numerical convergence
orders of (2.9) can achieve O(τ 3−α0), which is in a good agreement with theoretical results.

Example 5.2 In (3.1)–(3.3), take T = 1, L = π,m = 2, f (x, t) =
[
24
∑m

r=0 λr t4−αr /�

(5 − αr ) + t4
]
sin x, u0(x) = 0.

The analytical solution of this example is given by u(x, t) = t4 sin x .
Denote

err(h, τ ) = max
0�i�M,0�n�N

|u(xi , tn) − uni |, ordert = log2
err(h, τ )

err(h, τ/2)
,

orderx = log2
err(h, τ )

err(h/2, τ )
.

With several sets of values of λ0, λ1, . . . , λm and α0, α1, . . . , αm , the difference scheme
(3.12)–(3.14) will be employed to numerically solve this example. Firstly, the numerical
accuracy of this scheme in time will be verified. Taking the sufficiently small step size h and
varying step size τ, the numerical errors and numerical convergence orders will be listed in
Table2. The computational results in Table2 confirm the second-order convergence of the
difference scheme (3.12)–(3.14) in time.

Next, the numerical accuracy of the difference scheme (3.12)–(3.14) in space for solving
this example will be examined. Numerical results of this scheme under different step sizes in
spacewill be calculated and the numerical errors, as well as the numerical convergence orders
will be recorded in Table3, from which, one can find that, the second-order convergence of
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Table 1 Numerical errors and
convergence orders of numerical
formula (2.9) to approximate the
time multi-term fractional
derivatives

∑m
r=0 λr

C
0 Dαr

t f (t)
at the point tn−1+σ

(α0, α1, α2) τ σ Emax Order

(
1
3 , 1

4 , 1
5

)
1/10 0.85395 5.505346e − 3 2.46

1/20 0.85307 1.000137e − 3 2.52

1/40 0.85221 1.741210e − 4 2.57

1/80 0.85137 2.942407e − 5 2.60

1/160 0.85055 4.867119e − 6 2.62

1/320 0.84975 7.926282e − 7 2.63

1/640 0.84898 1.276051e − 7 2.65

1/1280 0.84824 2.036788e − 8 2.66

1/2560 0.84752 3.230285e − 9 2.66

1/5120 0.84682 5.098482e − 10 –
(
1
2 , 1

3 , 1
4

)
1/10 0.78287 9.649684e − 3 2.37

1/20 0.77995 1.868012e − 3 2.42

1/40 0.77720 3.484659e − 4 2.46

1/80 0.77464 6.344467e − 5 2.48

1/160 0.77225 1.136719e − 5 2.50

1/320 0.77005 2.015187e − 6 2.51

1/640 0.76803 3.548160e − 7 2.51

1/1280 0.76617 6.220581e − 8 2.52

1/2560 0.76449 1.087844e − 8 2.52

1/5120 0.76296 1.899910e − 9 –
(
2
3 , 1

2 , 1
3

)
1/10 0.70022 1.694561e − 2 2.26

1/20 0.69665 3.535930e − 3 2.30

1/40 0.69341 7.159868e − 4 2.33

1/80 0.69049 1.424052e − 4 2.35

1/160 0.68787 2.802775e − 5 2.35

1/320 0.68552 5.484217e − 6 2.36

1/640 0.68342 1.069995e − 6 2.36

1/1280 0.68155 2.085393e − 7 2.36

1/2560 0.67988 4.064637e − 8 2.36

1/5120 0.67840 7.927868e − 9 –
(
1, 1

2 , 1
4

)
1/10 0.53299 3.383209e − 2 2.02

1/20 0.52314 8.365701e − 3 2.03

1/40 0.51617 2.051114e − 3 2.03

1/80 0.51127 5.026416e − 4 2.03

1/160 0.50786 1.235004e − 4 2.02

1/320 0.50548 3.044929e − 5 2.02

1/640 0.50383 7.531907e − 6 2.01

1/1280 0.50267 1.868175e − 6 2.01

1/2560 0.50187 4.643630e − 7 2.01

1/5120 0.50131 1.156057e − 7 –
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Table 2 Numerical errors and convergence orders of the difference scheme (3.12)–(3.14) in time for solving
Example 5.2 (M = 1000)

(α0, α1, α2) τ (λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

err(h, τ ) ordert err(h, τ ) ordert

(1/3, 1/4, 1/5) 1/10 1.479042e − 3 2.17 1.267567e − 3 2.16

1/20 3.295689e − 4 2.16 2.838095e − 4 2.15

1/40 7.393761e − 5 2.13 6.412908e − 5 2.12

1/80 1.683489e − 5 2.12 1.472249e − 5 2.11

1/160 3.866730e − 6 – 3.403196e − 6 –

(2/3, 1/2, 1/3) 1/10 2.879466e − 3 2.15 2.369906e − 3 2.15

1/20 6.488631e − 4 2.16 5.348550e − 4 2.15

1/40 1.451923e − 4 2.16 1.205479e − 4 2.14

1/80 3.252703e − 5 2.15 2.737014e − 5 2.13

1/160 7.312673e − 6 – 6.263185e − 6 –

(1, 1/2, 0) 1/10 4.524574e − 3 2.03 3.245387e − 3 2.02

1/20 1.111576e − 3 2.03 7.982872e − 4 2.04

1/40 2.730548e − 4 2.02 1.947751e − 4 2.04

1/80 6.720009e − 5 2.02 4.749008e − 5 2.04

1/160 1.656312e − 5 – 1.158024e − 5 –

Table 3 Numerical errors and convergence orders of the difference scheme (3.12)–(3.14) in space for solving
Example 5.2 (N = 2000)

(α0, α1, α2) h (λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

err(h, τ ) orderx err(h, τ ) orderx

(1/3, 1/4, 1/5) π/10 7.974960e − 4 2.00 8.490483e − 4 2.00

π/20 1.997319e − 4 2.00 2.126371e − 4 2.00

π/40 4.993950e − 5 2.00 5.316829e − 5 2.00

π/80 1.246943e − 5 – 1.327821e − 5 –

(2/3, 1/2, 1/3) π/10 5.285392e − 4 2.00 6.234601e − 4 2.00

π/20 1.323847e − 4 2.00 1.561544e − 4 2.00

π/40 3.308646e − 5 2.00 3.903278e − 5 2.00

π/80 8.245652e − 6 – 9.733923e − 6 –

(1, 1/2, 0) π/10 3.913731e − 4 2.00 6.345476e − 4 2.00

π/20 9.798202e − 5 2.00 1.589043e − 4 2.00

π/40 2.443133e − 5 2.02 3.969267e − 5 2.01

π/80 6.030962e − 6 – 9.870947e − 6 –

the difference scheme (3.12)–(3.14) in space can be achieved. The numerical results are in
accord with the expected ones.

Example 5.3 In (4.1)–(4.3), take T = 1/2, L = π, w(α) = �(5−α), u0(x) = 0, f (x, t) =
t3
[
24(t − 1)/ log t + t

]
sin x .

The analytical solution of this example is also given by u(x, t) = t4 sin x .
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Table 4 Numerical errors and
convergence orders of the
difference scheme (4.6)–(4.8) in
time for solving Example 5.3
(M = 2000, J = 100)

τ Err(h, τ, �α) Orderτ

1/20 1.486294e − 4 2.13

1/40 3.406289e − 5 2.14

1/80 7.753832e − 6 2.13

1/160 1.766640e − 6 2.13

1/320 4.044794e − 7 –

Table 5 Numerical errors and
convergence orders of the
difference scheme (4.6)–(4.8) in
space for solving Example 5.3
(N = 1000, J = 100)

h Err(h, τ, �α) Orderh

π/4 8.247207e − 5 1.98

π/8 2.091247e − 5 2.00

π/16 5.240681e − 6 2.01

π/32 1.304956e − 6 –

Denote

Err(h, τ,�α) = max
0�i�M,0�n�N

|u(xi , tn) − uni |, Orderτ = log2
Err(h, τ,�α)

Err(h, τ/2,�α)
,

Orderh = log2
Err(h, τ,�α)

Err(h/2, τ,�α)
,Order�α = log2

Err(h, τ,�α)

Err(h, τ,�α/2)
.

This example will be numerically calculated by the presented difference scheme (4.6)–
(4.8).

In the first run, with the fixed and sufficiently small step sizes h and �α and varying the
step size τ, this example is calculated and numerical errors as well as the convergence orders
are recorded in Table4. From Table4, the second-order convergence of the scheme in time
can be observed.

Now, the numerical experiments are carried out for this example with the purpose of
verifying the numerical accuracy of the difference scheme (4.6)–(4.8) in space. In Table5,
the computational results are given for different spatial step sizes when the mesh grid is fixed
to be τ = 1/2000 and �α = 1/200 for the difference scheme (4.6)–(4.8). From the results
in Table5, we can conclude that the convergence order of the difference scheme (4.6)–(4.8)
in space is two, which is in accordance with the expected results.

Moreover, we will illustrate that the difference scheme (4.6)–(4.8) is fourth-order conver-
gent in distributed order. When the step size �α is reduced by half, the numerical errors are
decreasing by a factor of 16, where the step sizes τ and h are fixed to be sufficiently small
to ensure that the dominated errors are produced from the numerical approximation of dis-
tributed integral. The results are displayed in Table6, from which, the desirable fourth-order
convergence in distributed order of this scheme can be read off evidently.

The next example is devoted to examining the efficiency of the proposed difference
schemes for solving the problem without enough smoothness of the extended solution at
the initial point if zero extension to the domain t < 0 is made. Let’s take a multi-term
fractional differential equation as example.
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Table 6 Numerical errors and convergence orders of the difference scheme (4.6)–(4.8) in distributed order
for solving Example 5.3 (N = 10, 000, M = 2000)

�α Err(h, τ, �α) Order�α

1/4 8.365652e − 7 3.99

1/8 5.252929e − 8 4.06

1/16 3.151771e − 9 –

Example 5.4 In (3.1)–(3.3), take T = 1, L = π,m = 2, f (x, t) =
[∑m

r=0 λr t1−αr E1,2−αr

(t)+exp(t)
]
sin(x), u0(x) = sin(x),where Eα,β(z) is theMittag-Leffler function defined by

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
.

The analytical solution of this example is given by u(x, t) = exp(t) sin(x).

Noticing limt→0+ ∂ku
∂tk

(x, t) �≡ 0, k = 0, 1, 2, . . . , the analytical solution can not be
continuously zero extended to the domain with t < 0, hence, the direct application of
the weighted and shifted Grünwald–Letnikov approximation in [12,34] can not produce
the ideal computational results to approximate the multi-term time-fractional derivatives in
(3.1). With the help of the close relationship between the Caputo fractional derivative and
Riemann–Liouville fractional derivative [2]

C
0 D

α
t f (t) = RL

0 Dα
t [ f (t) − f (0)], 0 < α < 1,

we can transform Eq. (3.1) into the equivalent form in the Riemann–Liouville sense as

m∑

r=0

λr
RL
0 Dαr

t [u(x, t) − u(x, 0)] = uxx (x, t) + f (x, t), 0 < x < L , 0 < t � T, (5.1)

where the α-th order Riemann–Liouville fractional derivative RL
0 Dα

t f (t) is defined by

RL
0 Dα

t f (t) = 1

�(1 − α)

d

dt

∫ t

0
(t − s)−α f (s)ds, 0 < α < 1.

With the weighted and shifted Grünwald–Letnikov (WSGL) approximation proposed
in [12,34] for time Riemann–Liouville fractional derivatives in (5.1) and the second-order
approximation for the spatial derivative, we can construct a difference scheme for solving
(3.1)–(3.3) as follows:

m∑

r=0

λr τ−αr

n∑

k=0

w
(αr )
k (un−k

i − u0i ) = δ2xu
n
i + f ni , 1 � i � M − 1, 1 � n � N ,(5.2)

un0 = 0, unM = 0, 0 � n � N , (5.3)

u0i = u0(xi ), 1 � i � M − 1, (5.4)

with

w
(αr )
0 = (1 + αr

2

)
g(αr )
0 , w

(αr )
k = (1 + αr

2

)
g(αr )
k − αr

2
g(αr )
k−1, k � 1
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Table 7 Numerical errors and
convergence orders of the scheme
(5.2)–(5.4) and the scheme
(5.5)–(5.7) in time with
M = 10, 000,
(α0, α1, α2) = (2/3, 1/2, 1/3)
and (λ0, λ1, λ2) = (3, 2, 1) for
solving Example 5.4 using the
WSGL approximation

τ Scheme (5.2)–(5.4) Scheme (5.5)–(5.7)
err(h, τ ) ordert err(h, τ ) ordert

1/20 6.355621e − 3 0.93 9.734196e − 4 2.00

1/40 3.339384e − 3 0.94 2.427563e − 4 2.01

1/80 1.740776e − 3 0.95 6.041727e − 5 2.01

1/160 8.996943e − 4 0.96 1.503136e − 5 2.01

1/320 4.613851e − 4 0.97 3.742744e − 6 2.00

1/640 2.354157e − 4 – 9.333562e − 7 –

and

g(αr )
0 = 1, g(αr )

k =
(
1 − αr + 1

k

)
g(αr )
k−1, k � 1.

Table7 displays the computational results when the above difference scheme (5.2)–(5.4)
is used to solve this example. Only the case with (λ0, λ1, λ2) = (3, 2, 1) and (α0, α1, α2) =
(2/3, 1/2, 1/3) is shown for simplicity. From this table, one can find that only the first
order convergence of this scheme in time is exhibited even for this example with the smooth
solution.Motivated by the idea of fractional linear multistep methods (FLMMs) [5,42], some
correction terms can be added into the scheme to take into account the asymptotic behavior
of the function u(x, t) near the origin t = 0. In view of the form of the analytical solution
in this example, one correction term can be added to modify the above scheme and get the
following improved difference scheme:

m∑

r=0

λr

[
τ−αr

n∑

k=0

w
(αr )
k (un−k

i − u0i ) + wn,αr (u
1
i − u0i )

]
= δ2xu

n
i + f ni ,

1 � i � M − 1, 1 � n � N , (5.5)

un0 = 0, unM = 0, 0 � n � N , (5.6)

u0i = u0(xi ), 1 � i � M − 1, (5.7)

where the starting weights {wn,αr } are chosen such that

RL
0 Dαr

t t |t=tn = τ−αr

n∑

k=0

w
(αr )
k tn−k + wn,αr t1, 1 � n � N .

Some simple calculations give

wn,αr = τ−αr
[ n1−αr

�(2 − αr )
−

n∑

k=0

kw(αr )
n−k

]
.

The second-order convergence of the improved scheme (5.5)–(5.7) in time can be observed
from the computational results in Table7.

The higher accurate interpolation approximation presented in this work will be directly
effective for this problem. To illustrate this point, firstly, in Table8, the computational errors
and numerical convergence orders in time are listed, from which, one can find that the
difference scheme (3.12)–(3.14) yields the numerical convergence order close to two for
solving this non-zero initial value problem.
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Table 8 Numerical errors and
convergence orders of the
difference scheme (3.12)–(3.14)
in time for solving Example 5.4
with M = 10, 000,
(α0, α1, α2) = (2/3, 1/2, 1/3)
and (λ0, λ1, λ2) = (3, 2, 1)

τ err(h, τ ) ordert

1/20 1.364270e − 4 2.09

1/40 3.193509e − 5 2.09

1/80 7.511009e − 6 2.08

1/160 1.778655e − 6 2.07

1/320 4.236703e − 7 2.08

1/640 1.005145e − 7 –

Table 9 Numerical errors and convergence orders of the difference scheme (3.12)–(3.14) in space for solving
Example 5.4 with N = 2000, (α0, α1, α2) = (2/3, 1/2, 1/3) and (λ0, λ1, λ2) = (3, 2, 1)

h err(h, τ ) orderx

π/4 1.683927e − 2 1.98

π/8 4.257759e − 3 2.00

π/16 1.067434e − 3 2.00

π/32 2.670387e − 4 –
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Fig. 1 The convergence orders of the scheme (3.34)–(3.36) obtained for Example 5.5 with (α0, α1, α2) =
( 13 , 1

4 , 1
5 ) [left in time; right in space (h1 = h2 ≡ h)]

Secondly, we aim to measure the numerical accuracy of the difference scheme (3.12)–
(3.14) in space for solving this example. Table9 collects the computational errors and
numerical accuracy using this difference scheme. The numerical results from Table9 are
consistent with the expected accuracy O(h2) for the difference scheme (3.12)–(3.14) in
space.

The last example is designed for the 2D problem (3.26)–(3.28) to test the computational
efficiency of the corresponding difference scheme.

Example 5.5 In (3.26)–(3.28), take T = 1, L1 = L2 = π,m = 2, u0(x, y) = 0 and

f (x, y, t) =
[
24
∑m

r=0
λr

�(5−αr )
t4−αr + 2t4

]
sin x sin y.
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Fig. 2 The solution surfaces at t = 1 with (α0, α1, α2) = ( 13 , 1
4 , 1

5 ) and τ = 1/40, h1 = h2 = π/40 [left
the exact solution; right the numerical solution by the scheme (3.34)–(3.36)]

The analytical solution is given by u(x, y, t) = t4 sin x sin y.
The numerical solutions with (α0, α1, α2) = ( 13 ,

1
4 ,

1
5 ) will be calculated. Figure1 gives

graphs of errors by the scheme (3.34)–(3.36) as a function of the mesh size, where the slopes
reflect the convergence orders of the scheme (3.34)–(3.36) in time and in space, respectively.
In the left panel, we choose h1 = h2 = π/500 and the slope is nearly two, which is the
numerical convergence order of the scheme (3.34)–(3.36) in time. While in the right panel,
the mesh size τ = 1/2000 is chosen and the slope is also nearly two, which is in accord with
the theoretical convergence order of the scheme (3.34)–(3.36) in space.

To further illustrate the efficiency of the proposed difference scheme (3.34)–(3.36), Fig. 2
shows the surface of solutions at t = 1 with the mesh step sizes τ = 1/40, h1 = h2 = π/40.
The good agreement of numerical solutions with the exact solutions can be clearly seen.

6 Conclusion

A special point of interpolation approximation to a linear combination of multi-term Caputo
fractional derivatives of order αr (0 < αr � 1) is given by finding the root of an equation,
which is one of the major contributions of the present work since the derived numerical
differentiation formula can achieve over second-order accuracy to approximate the value
of the multi-term Caputo fractional derivatives at this point. The strict error analysis of the
differentiation formula is given by Theorem 2.1. Compared with the previous related works,

123



120 J Sci Comput (2017) 73:93–121

where the L1 approximation or the WSGL approximation was used to discretize each term
of multi-term Caputo fractional derivatives at t = tn [40], the higher accurate interpolation
approximation developed in the present work is more meaningful because of the higher-order
numerical accuracy than the L1 approximation and no extra requirements on the extension
of the solutions to the domain outside the computational domain or some correction works
even for the smooth problems like that using WSGL approximation. Then some effective
difference schemes for solving the time multi-term fractional sub-diffusion equation and
the time distributed-order sub-diffusion equation, respectively, are developed along with the
investigation on the solvability, stability and convergence analysis. Numerical experiments
verify the efficiency of the proposed difference schemes. We can easily obtain the spatial
fourth order difference schemes for the time multi-term fractional sub-diffusion equation and
the time distributed-order sub-diffusion equation.

In the future work, the higher accurate interpolation approximation to a linear combination
of multi-term Caputo fractional derivatives of order αr (1 < αr � 2) will be taken into
account.
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