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Abstract A block-centered finite difference method is introduced to solve an initial and
boundary value problem for a nonlinear parabolic equation to model the slightly com-
pressible flow in porous media, in which the velocity–pressure relation is described by
Darcy–Forchheimer’s Law. The method can be thought as the lowest order Raviart–Thomas
mixed element method with proper quadrature formulation. By using the method the veloc-
ity and pressure can be approximated simultaneously. We established the second-order error
estimates for pressure and velocity in proper discrete norms on non-uniform rectangular
grid. No time-step restriction is needed for the error estimates. The numerical experiments
using the scheme show that the convergence rates of the method are in agreement with the
theoretical analysis.

Keywords Block-centered finite difference · Darcy–Forchheimer flow · Compressible ·
Error estimate · Numerical experiment

Mathematics Subject Classification 65M06 · 65M12 · 65M15

1 Introduction

Darcy’s flow in porous media is of great interest in many fields such as oil recovery and
groundwater pollution contamination. Darcy’s law describes the linear relationship between
the velocity of creep flow and the gradient of pressure. The relationship is valid by experiment

B Hongxing Rui
hxrui@sdu.edu.cn

Hao Pan
pan_hao2003@163.com

1 School of Mathematics, Shandong University, Jinan 250100, China

2 School of Information Science and Engineering, Shandong Agricultural University, Taian 271018,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0406-y&domain=pdf


J Sci Comput (2017) 73:70–92 71

under the condition that the creeping velocity is low and the porosity and permeability is small
enough [1]. A theoretical derivation of Darcy’s law can be found in [2,3].

In some cases, for example when the velocity is higher, a nonlinear relationship between
the velocity and the pressure gradient is developed, suggested by Forchheimer [1], by adding
a second order term to reach a modified equation. The Darcy–Forchheimer equation (or
Forchheimer’s law) is described as follows,

μK−1u + βρ|u|u + ∇(p − ρgh) = 0. (1)

A theoretical derivation of it can be found in [4].
Forchheimer’s law mainly describes the inertial effects for high speed flow. The most

important feature of Forchheimer’s law is that it combines the monotonicity of the nonlinear
term and the non-degenerate of the Darcy’s part. There are several papers to analyze the
analytical solution for the Forchheimer flow problem, see, for example, [5–7].

There are some papers consider the numerical methods for Forchheimer flow in porous
media. Mixed element methods for generalized Forchheimer equation were first studied
by Douglas et al. [8], then a mixed element method for general nonlinear elliptic problem
was studied by Park [9]. Amixed element method with piecewise constant approximation for
velocity andnonconformingpiecewise linear approximation for pressure, called primalmixed
element [10], was considered in [11,12]. And a mixed element method with Raviart-Thomas
element was considered in [13]. Mixed element methods for time-dependent compressible
Forchheimer flow was considered by [14]. And a numerical well model with cell-centered
finite difference and finite element method for non-Darcy flow was considered in [15]. In
[14] only the semi-discrete mixed element method is considered. And since they used the
inversive assumption, the lowest-order Raviart–Thomas mixed element is not included in
their error estimates.

A series of work about generalized Forchheimer flow can be found in [16–18], in which
both expanded mixed element form and the nonlinear degenerate parabolic form are used
to discrete the model problem. Numerical analysis is based on the monotone properties
possessed by Forchheimer operator, [19–21].

Block-centered finite difference methods can be thought as the lowest order Raviart-
Thomas mixed element method with proper quadrature formulation and has been used
widely in reservoir numerical simulation. By using it both the velocity and pressure can
be approximated with second-order accuracy for linear elliptic problem with diagonal diffu-
sion coefficient was considered, see [22]. Then in [23,24] cell-centered finite differences for
linear elliptic problem with tensor diffusion coefficients were considered. Another advan-
tage of block-centered, or cell-centered, finite difference method is that it transfers the saddle
point system of the mixed element method into symmetric positive definite system, which
has been used in many papers, see, for example, [25,26].

Recently we introduced and analyzed a blocked-centered finite difference method for the
incompressible Forchheimer equationwith constant coefficients [27] and variable coefficients
[28]. We demonstrate that the proposed scheme is second-order accuracy both for velocity
and pressure in some discrete norms. A two-grid finite difference method for the the problem
is also considered [29].

In this paper we present a blocked-centered finite difference method for the slightly com-
pressible Forchheimer flow problem in porous media. The problem is a kind of nonlinear
parabolic problems where the diffusion coefficient depends on the pressure and the absolute
value of the vector-valued velocity. It is an extension of our work in [27], where just the
nonlinear elliptic Forchheimer problem with constant coefficients was considered. In the
scheme, the pressure, the velocity in x-direction and the velocity in y-direction are defined
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on staggered grids. One key problem to present the scheme is to give a proper approximation
to the nonlinear diffusion coefficient, which depend on the pressure and the absolute function
of the velocity. The approximation should have the second-order accuracy and reserve the
monotonicity of the operator, see Lemma 6 below.We demonstrate that the proposed scheme
has these two properties on non-uniform rectangular grid.

Usually for a priori error estimate of numerical solution of nonlinear time-dependent
problem, one may employ the inductive assumption and inverse inequality to bound the
numerical solution. This may result in a time-step restriction, see, for example, [30–34].
Li and Sun [35,36] developed a technique to remove the time-step restriction for a priori
estimate. In this paper no time-step restriction is needed for the second-order error estimates.
Here our technique is different from Li and Sun [35,36], we used the monotonicity of the
nonlinear operator.

Some numerical examples are carried out using the presented scheme. The numerical
results show that the convergence rates of our method are in agreement with the theoretical
analysis.

The paper is organized as follows. In Sect. 2 we give the problem and some notations.
In Sect. 3 we present the block-centered finite difference scheme. In Sect. 4 we give the
corresponding numerical analysis. In Sect. 5 some numerical experiments are carried out.

Throughout the paper we use C , with or without subscript, to denote a positive constant,
which can have different values in different appearances.

2 The Problem and Some Notations

In this section we present a slightly compressible flow model in porous media, in which the
velocity–pressure relation is described by the Darcy–Forchheimer’s law.

Firstly, the equation for mass conservation is as follows

∂(φρ)

∂t
+ ∇ · (ρu) = ρq, (2)

where φ is the porosity of the media, q is the source term and u, ρ are the velocity and
density of the fluid. This model can be simplified under the circumstance that the fluid is
slightly compressible [1,37,38]. Set CF be the coefficient of compressibility CF = 1

ρ
∂ρ
∂p ,

then

ρ = ρ0 exp (CF (p − p0)), (3)

and we have

φ
∂ρ

∂p

∂p

∂t
+ ∂ρ

∂p
∇ p · u + ρ∇ · u = ρq. (4)

The term ∂ρ
∂p∇ p · u is effectively quadratic in the velocity, which in almost all of the domain

can be neglected [38–40]. Thus we arrive the following equation,

φcF
∂p

∂t
+ ∇ · u = q. (5)

Combining the mass conservation equation (5) with the velocity–pressure equation (1)
we obtain the model describing the slightly compressible flow in porous media, in which the
velocity–pressure relation obeys the Forchheimer’s law.
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a) μK−1u + βρ(p)|u|u + ∇ p = ∇(ρ(p)gH), z ∈ Ω × J,

(b) φCF
∂p

∂t
+ ∇ · u = f, z ∈ Ω × J,

(c) u · n = fN , z ∈ ∂Ω × J.
(d) p|t=0 = p0, z ∈ Ω.

(6)

Here p represents the pressure while u the velocity of the fluid. Ω is a porous media
domain and J = (0, T ) is the time interval. For simplicity we consider the problem in two
dimensional space. n represents the unit exterior normal vector to the boundary of Ω , | · |
denotes the Euclidean norm, |u|2 = u ·u. ρ,μ and β are scalar functions which represent the
density of the fluid, its viscosity and the Forchheimer number, respectively. For compressible
fluid, ρ depends on the pressure p, ρ = ρ(p). φ represents the porosity. K is the permeability
tensor function. For simplicity we suppose that K = k̄I where k̄ is a positive constant and I
represents the unit matrix. f ∈ L2(Ω), a scalar function, represents the source and sink of
the systems. ρ(p)g∇H ∈ (L2(Ω))d , a vector function, is the gradient of the depth function
H ∈ H1(Ω). fN ∈ L2(∂Ω), a scalar function, represents the Neumann boundary condition,
or the flux through the boundary.

A more general compressible Forchheimer flow model was considered in [8] where the
dependence of ρ on pressure p does not be described explicitly.

For simplicity of constructing the block-centered finite difference scheme we consider
the problem in a two dimensional rectangular domain, Ω = (0, Lx ) × (0, Ly). We use the
notation (x, y) to denote the coordinate of a point in the domain and denote the velocity by
u = (ux , uy).We suppose that the depth function H is a constant, then∇H = 0. Furthermore
we suppose that the problem is with homogeneous boundary condition, fN = 0.

With the above assumptions the problem (6) can be re-written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a)

(
μ

k̄
+ βρ(p)|u|

)

u + ∇ p = 0, z ∈ Ω × J,

(b) φCF
∂p

∂t
+ ∇ · u = f, z ∈ Ω × J,

(c) u · n = 0, z ∈ ∂Ω × J.
(d) p|t=0 = p0, z ∈ Ω.

(7)

We will derive the block-centered finite difference method for the model problem (7).
Let N > 0 be a positive integer. Set

Δt = T/N ; tn = nΔt for n ≤ T/N .

The domain Ω = (0, Lx ) × (0, Ly) is partitioned by δx × δy , where

δx : 0 = x 1
2

< x3/2 < · · · < xNx− 1
2

< xNx+ 1
2

= Lx ,

δy : 0 = y 1
2

< y3/2 < · · · < yNy− 1
2

< yNy+ 1
2

= Ly .

For i = 1, . . . , Nx and j = 1, . . . , Ny , define

xi =
xi− 1

2
+ xi+ 1

2

2
,

hi = xi+ 1
2

− xi− 1
2
, h = max

i
hi ,
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ci,j+ 1
2•

•

• •

ci,j− 1
2

ci,j
ci+ 1

2 ,j
ci− 1

2 ,j

→Ωi,j ← Ωi+ 1
2 ,j

↓
Ωi,j+ 1

2

ΩL,B
i,j ΩR,B

i,j

ΩL,T
i,j ΩR,T

i,j

Fig. 1 A example of mesh partition

hi+ 1
2

= hi+1 + hi
2

= xi+1 − xi ,

y j =
y j− 1

2
+ y j+ 1

2

2
,

k j = y j+ 1
2

− y j− 1
2
, k = max

j
k j ,

k j+ 1
2

= k j+1 + k j
2

= y j+1 − y j ,

Ωi, j = (xi− 1
2
, xi+ 1

2
) × (y j− 1

2
, y j+ 1

2
),

Ωi+ 1
2 , j = (xi , xi+1) × (y j− 1

2
, y j+ 1

2
),

Ωi, j+ 1
2

= (xi− 1
2
, xi+ 1

2
) × (y j , y j+1).

We divide each Ωi, j into 4 parts,

Ω
L ,T
i, j = (xi−1/2, xi ) × (y j , y j+1/2), Ω

R,T
i, j = (xi , xi+1/2) × (y j , y j+1/2),

Ω
L ,B
i, j = (xi−1/2, xi ) × (y j−1/2, y j ) Ω

R,B
i, j = (xi , xi+1/2) × (y j−1/2, y j ).

Here the superscript ‘L’, ‘R’, ‘T’ and ‘B’ means ‘Left’, ‘Right’, ‘Top’ and ‘Bottom’, respec-
tively. It is clear that

Ωi, j = Ω
L ,T
i, j ∪ Ω

L ,B
i, j ∪ Ω

R,T
i, j ∪ Ω

R,B
i, j ,

Ωi+1/2, j = Ω
R,T
i, j ∪ Ω

R,B
i, j ∪ Ω

L ,T
i+1, j ∪ Ω

L ,B
i+1, j ,

Ωi, j+1/2 = Ω
L ,T
i, j ∪ Ω

R,T
i, j ∪ Ω

L ,B
i, j+1 ∪ Ω

R,B
i, j+1.

The following Fig. 1 is a description of the dividing.
For a function θ(x, y, t), let θnl,m denote θ(xl , ym, tn) where l may take values i, i + 1

2

for non-negative integers i , and m may take values j, j + 1
2 for non-negative integers j . For

discrete functions with values at proper discrete points, define
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[dtθ ]nl,m = θnl,m − θn−1
l,m

Δt
,

[dxθ ]i+ 1
2 , j = θi+1, j − θi, j

hi+ 1
2

, [dyθ ]i, j+ 1
2

= θi, j+1 − θi, j

k j+ 1
2

,

[Dxθ ]i, j =
θi+ 1

2 , j − θi− 1
2 , j

hi
, [Dyθ ]i, j =

θi, j+ 1
2

− θi, j− 1
2

k j
,

where for simplicity we omit the subscript n.
Also define the discrete inner products and norms and semi-norms as follows,

(θ, τ )M = (θ, τ )Mx ,My =
Nx∑

i=1

Ny∑

j=1

hi k jθi, jτi, j ,

(θ, τ )x = (θ, τ )Tx ,My =
Nx∑

i=2

Ny∑

j=1

hi− 1
2
k jθi− 1

2 , jτi− 1
2 , j ,

(θ, τ )y = (θ, τ )Mx ,Ty =
Nx∑

i=1

Ny∑

j=2

hi k j− 1
2
θi, j− 1

2
τi, j− 1

2
,

‖θ‖2M = (θ, θ)Mx ,My , ‖θ‖2x = (θ, θ)x , ‖θ‖2y = (θ, θ)y .

3 A Block-Centered Finite Difference Method

In this section we present a block-centered finite difference method for the slightly com-
pressible Forchheimer model.

For simplicity we use the following notation,

α = φCF , a1 = μ

k̄
, a2 = a2(p) = βρ(p), a(p, w) = a1 + a2(p)w. (8)

Then the problem (7) can be written as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) (a1 + a2(p)|u|)u + ∇ p = 0, in Ω × J,

(ii) α
∂p

∂t
+ ∇ · u = f, (z, t) ∈ Ω × J,

(iii) u · n = 0, (z, t) ∈ ∂Ω × J.
(iv) p|t=0 = p0, z ∈ Ω.

(9)

Here ∂Ω is the boundary of Ω , and n denotes the outward unit normal to ∂Ω .
For slightly compressible flow in porous media μ, k̄, φ and CF are positive and bounded

up and below, and β is non-negative. So a1 and α are positive and bounded up and below, and
a2 is non-negative and bounded. For numerical analysis we make the following assumptions
on the coefficients and analytical solution.

Assumption 1 a1, a2 and α are continuous functions, and there exist positive constants a
and ā such that,

0 < a ≤ a1, α ≤ ā, a2(p) ≥ 0.
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Assumption 2 The analytical solution (u, p) has the following regularity.

p ∈ L∞(0, T ;W 3,∞(Ω)) ∩ W 1,∞(0, T ;W 2,∞(Ω)) ∩ W 2,∞(0, T ; L∞(Ω));
u ∈ (

W 1,∞(0, T ;W 1,∞(Ω)) ∩ L∞(0, T ;W 3,∞(Ω))
)2 ;

Assumption 3 a2(p) ∈ L∞(0, T ;W 2,∞(Ω)) ∩ W 1,∞(0, T ;W 1,∞(Ω)).

The regularity analysis for the solution (u, p) of problem (7), or equivalently (9), can
be found in articles and books such as [41–46]. For the regularity in Assumption 2 to hold
some constraints on the initial value p0, the right-hand term f and the coefficients should be
needed, see the references mentioned above.

For the definition of the scheme we define some interpolation operators. For a discrete
function {qi, j } with value on nodal points {(xi , y j )}, define a piecewise-constant function
Πhqh on Ω such that,

Πhq(x, y) = qi, j , (x, y) ∈ Ωi, j , (10)

and a piecewise constant function Ihq on Ωi, j such that

Ihq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Īhqi+ 1
4 , j+ 1

4
, (x, y) ∈ Ω

R,T
i, j ,

Īhqi+ 1
4 , j− 1

4
, (x, y) ∈ Ω

R,B
i, j ,

Īhqi− 1
4 , j+ 1

4
, (x, y) ∈ Ω

L ,T
i, j ,

Īhqi− 1
4 , j− 1

4
, (x, y) ∈ Ω

L ,B
i, j .

(11)

Here the discrete interpolant function { Īhq}with values at {(xi ± hi
4

, y j ± k j
4

)} is as follows
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Īhqi+ 1
4 , j± 1

4
= 1

4hi+ 1
2

(hi+1qi, j + hiqi+1, j ) + 1

4k j± 1
2

(k j±1qi, j + k jqi, j±1),

Īhqi− 1
4 , j± 1

4
= 1

4hi− 1
2

(hi−1qi, j + hiqi−1, j ) + 1

4k j± 1
2

(k j±1qi, j + k jqi, j±1).

For a pair of discrete functions {V x
i+ 1

2 , j
} and {V y

i, j+ 1
2
} define the interpolant operator Π2

as follows.

Π2V = (Πx V
x ,ΠyV

y) (12)

where

Πx V
x (x, y) = V x

i+ 1
2 , j

, (x, y) ∈ Ωi+ 1
2 , j , (13)

ΠyV
y(x, y) = V y

i, j+ 1
2
, (x, y) ∈ Ωi, j+ 1

2
. (14)

Let |(U, V )| be the norm function for a vector (U, V ). Direct calculation shows that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Ω R,T
i, j |−1

∫

Ω
R,T
i, j

|(Πx V
x ,ΠyV

y)|dxdy = |(V x
i+ 1

2 , j
, V y

i, j+ 1
2
)|,

|Ω R,B
i, j |−1

∫

Ω
R,B
i, j

|(Πx V
x ,ΠyV

y)|dxdy = |(V x
i+ 1

2 , j
, V y

i, j− 1
2
)|,

|ΩL ,T
i+1, j |−1

∫

Ω
L ,T
i+1, j

|(Πx V
x ,ΠyV

y)|dxdy = |(V x
i+ 1

2 , j
, V y

i+1, j+ 1
2
)|,

|ΩL ,B
i+1, j |−1

∫

Ω
L ,B
i+1, j

|(Πx V
x ,ΠyV

y)|dxdy = |(V x
i+ 1

2 , j
, V y

i+1, j− 1
2
)|.

(15)
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For w = p, Ih p, define an interpolant Q̄(a2(w), u) on Ωi, j as follows.

Q̄(a2(w), u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2(wi+ 1
4 , j+ 1

4
)|(ux

i+ 1
2 , j

, uy
i, j+ 1

2
)|, (x, y) ∈ Ω

R,T
i, j ,

a2(wi+ 1
4 , j− 1

4
)|(ux

i+ 1
2 , j

, uy
i, j− 1

2
)|, (x, y) ∈ Ω

R,B
i, j ,

a2(wi− 1
4 , j+ 1

4
)|(ux

i− 1
2 , j

, uy
i, j+ 1

2
)|, (x, y) ∈ Ω

L ,T
i, j ,

a2(wi− 1
4 , j− 1

4
)|(ux

i− 1
2 , j

, uy
i, j− 1

2
)|, (x, y) ∈ Ω

L ,B
i, j .

(16)

Here it is remarkable that {Ih pi, j 
= pi, j }, then Q̄(a2(p), u) 
= Q̄(a2(Ih p), u). Then define
two square root averages as follows.

[Q(a2(w), u)]i+ 1
2 , j = 1

|Ωi+ 1
2 , j |

∫

Ω
i+ 1

2 , j

Q̄(a2(w), u)dxdy, w = p, Ih p, (17)

[Q(a2(w), u)]i, j+ 1
2

= 1

|Ωi, j+ 1
2
|
∫

Ω
i, j+ 1

2

Q̄(a2(w), u)dxdy, w = p, Ih p. (18)

Using the above notations the block-centered finite difference approximations {Ux
i+ 1

2 , j
},

{U y
i, j+ 1

2
} and {Pi, j } to {ux (xi+ 1

2 , j )}, {uy(xi, j+ 1
2
)} and {p(xi, j )}, respectively, are chosen so

that

α[dt P]ni, j + [DxU
x ]ni, j + [DyU

y]ni, j = f ni, j , (19)
(

a1 + [Q(a2(Ih P),U )]n
i+ 1

2 , j

)

Ux,n
i+ 1

2 , j
= −[dx P]n

i+ 1
2 , j

, (20)

(

a1 + [Q(a2(Ih P),U )]n
i, j+ 1

2

)

U y,n
i, j+ 1

2
= −[dy P]n

i, j+ 1
2
, (21)

with boundary condition

Ux,n
1
2 , j

= 0, Ux,n
Nx+ 1

2 , j
= 0, j = 0, . . . , Ny, (22)

U y,n
i, 12

= 0, U y,n
i,Ny+ 1

2
= 0, i = 0, . . . , Nx . (23)

Remark 3.1 One reason to define the interpolation operators Ih , Π2 and Q is to ensure the
monotonity of the discrete nonlinear operator, see Lemma 6, which is necessary in conver-
gence analysis. There are other possible definitions which can be used in real computation.
Up to now we just proved the convergence with the presented interpolation.

Remark 3.2 The scheme is given suppose that the coefficients are continuous. It is clear that
it can be used to solve the problem with piecewise continuous problem, provided that the
coefficients are continuous in each cell.

The more complicated problem with tensor permeability are under consideration with the
methods of [23,24].

Remark 3.3 Similar to [28] we know the approximate solution {Pn
i, j }, {Ux,n

i+ 1
2 , j

} and {U y,n
i, j+ 1

2
}

exist uniquely.
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4 Error Estimates

In this section we verify that if the analytical solution u and p are sufficiently smooth, (Ux ,
U y , P) is a second-order approximation to (ux ,uy , p).

For this purpose we present some lemmas. Set

εx
i+ 1

2 , j
(p) = 1

2hi+ 1
2

∫ xi+1

x
i+ 1

2

(
h2i+1

4
− (x − xi+1)

2

)
∂3 p

∂x3
(x, y j , t)dx

− 1

2hi+ 1
2

∫ xi

x
i+ 1

2

(
h2i
4

− (x − xi )
2

)
∂3 p

∂x3
(x, y j , t)dx . (24)

ε
y
i, j+ 1

2
(p) = 1

2k j+ 1
2

∫ y j+1

y
j+ 1

2

(
k2j+1

4
− (y − y j+1)

2

)
∂3 p

∂x3
(xi , y, t)dx

− 1

2

∫ y j

y
j+ 1

2

(
k2j
4

− (y − y j )
2

)
∂3 p

∂x3
(xi , y, t)dx . (25)

The first lemma can be found in [47].

Lemma 1 If p ∈ W 3,∞(Ω), then there holds
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂pi+ 1
2 , j

∂x
= [dx p]i+ 1

2 , j − 1

8

[

dx

(

h2
∂2 p

∂x2

)]

i+ 1
2 , j

+ εx
i+ 1

2 , j
(p),

∂pi, j+ 1
2

∂y
= [dy p]i, j+ 1

2
− 1

8

[

dy

(

k2
∂2 p

∂y2

)]

i, j+ 1
2

+ ε
y
i, j+ 1

2
(p),

(26)

with the approximation properties εx
i+ 1

2 , j
(p) = O(h2) and ε

y
i, j+ 1

2
(p) = O(k2).

Define

δi, j =
[
h2

8

∂2 p

∂x2
+ k2

8

∂2 p

∂y2

]

i, j
= h2i

8

∂2 pi, j
∂x2

+ k2j
8

∂2 pi, j
∂y2

, (27)

and set

ε̃x
i+ 1

2 , j
(p) = εx

i+ 1
2 , j

(p) +
[

dx

(
k2

8

∂2 p

∂y2

)]

i+ 1
2 , j

. (28)

ε̃
y
i, j+ 1

2
(p) = ε

y
i, j+ 1

2
(p) +

[

dy

(
h2

8

∂2 p

∂x2

)]

i, j+ 1
2

, (29)

Similar to Lemma 4.2 of [47] and Lemma 4.1 of [28] we have the following lemma.

Lemma 2 If p ∈ W 3,∞(Ω), then there holds
{ [(a1 + a2(p)|u|)ux ]i+ 1

2 , j = − [dx (p − δ)]i+ 1
2 , j − ε̃x

i+ 1
2 , j

(p)

[(a1 + a2(p)|u|)uy]i, j+ 1
2

= − [
dy(p − δ)

]

i, j+ 1
2

− ε̃
y
i, j+ 1

2
(p),

(30)

with the following approximate properties

ε̃x
i+ 1

2 , j
(p) = O(h2 + k2), ε̃

y
i, j+ 1

2
(p) = O(h2 + k2). (31)
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Define

δ̃i, j = a2(pi, j )

4

uxi, j u
y
i, j

|ui, j |
∂uy

i, j

∂x
h2i + a2(pi, j )

4

uxi, j u
y
i, j

|ui, j |
∂uxi, j
∂y

k2j

+ 1

8

∂a2(p)i, j
∂x

|ui, j |uxi, j h2i + 1

8

∂a2(p)i, j
∂y

|ui, j |uy
i, j k

2
j . (32)

ηi, j = δi, j + δ̃i, j . (33)

Similar to Lemma 4.2 of [27] we can prove the following lemma.

Lemma 3 If p ∈ L∞(0, T ;W 3,∞(Ω)), u ∈ (L∞(0, T ; L∞(Ω)))2 and a2(p) ∈
L∞(0, T ;W 2,∞(Ω)), then we have that

(a1 + [Q(a2(p), u)]i+ 1
2 , j )u

x
i+ 1

2 , j
= −[dx (p − η)]i+ 1

2 , j − ˜̃εx
i+ 1

2 , j
(p), (34)

(a1 + [Q(a2(p), u)]i, j+ 1
2
)uy

i, j+ 1
2

= −[dy(p − η)]i, j+ 1
2

− ˜̃ε y
i, j+ 1

2
(p), (35)

with the following approximate properties

˜̃εx
i+ 1

2 , j
(p) = O(h2 + k2), ˜̃ε y

i, j+ 1
2
(p) = O(h2 + k2). (36)

Lemma 4 Under the condition of Lemma 3, we have that

(a1 + [Q(a2(Ih p), u)]i+ 1
2 , j )u

x
i+ 1

2 , j
= −[dx (p − η)]i+ 1

2 , j − εx
i+ 1

2 , j
(p), (37)

(a1 + [Q(a2(Ih p), u)]i, j+ 1
2
)uy

i, j+ 1
2

= −[dy(p − η)]i, j+ 1
2

− ε
y
i, j+ 1

2
(p), (38)

with the following approximate properties

εx
i+ 1

2 , j
(p) = O(h2 + k2), ε

y
i, j+ 1

2
(p) = O(h2 + k2). (39)

Proof Direct calculation shows that
(
a1 + [Q(a2(Ih p), u)]i+ 1

2 , j

)
ux
i+ 1

2 , j

=
(
a1 + [Q(a2(p), u)]i+ 1

2 , j

)
ux
i+ 1

2 , j

+
(
[Q(a2(Ih p), u)]i+ 1

2 , j − [Q(a2(p), u)]i+ 1
2 , j

)
ux
i+ 1

2 , j

= −[dx (p − η)]i+ 1
2 , j − ˜̃εx

i+ 1
2 , j

(p)

+
(
[Q(a2(Ih p), u)]i+ 1

2 , j − [Q(a2(p), u)]i+ 1
2 , j

)
ux
i+ 1

2 , j

≡ −[dx (p − η)]i+ 1
2 , j − εx

i+ 1
2 , j

(p). (40)

Here the last equivalence is the definition of εx
i+ 1

2 , j
(p). By the definition of Ih p it is clear

that

Ih pi± 1
4 , j± 1

4
− pi± 1

4 , j± 1
4

= O(h2 + k2),

Noticing the symmetric structures in the definition (17) we have that

[Q(a2(Ih p), u)]i+ 1
2 , j − [Q(a2(p), u)]i+ 1

2 , j = O(h2 + k2).
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Therefore

εx
i+ 1

2 , j
(p) = ˜̃εx

i+ 1
2 , j

(p) − ([Q(a2(Ih p), u)] − [Q(a2(p), u)])i+ 1
2 , j u

x
i+ 1

2 , j

= O(h2 + k2). (41)

Similarly we can prove

ε
y
i, j+ 1

2
(p) = ˜̃ε y

i, j+ 1
2
(p) − ([Q(a2(Ih p), u)] − [Q(a2(p), u)])i, j+ 1

2
uy
i, j+ 1

2

= O(h2 + k2), (42)

and
(
a1 + [Q(a2(Ih p), u)]i, j+ 1

2

)
uy
i, j+ 1

2
= −[dy(p − η)]i, j+ 1

2
− ε

y
i, j+ 1

2
(p),

which complete the proof. �


The following two lemmas can been found in [5,6], see Lemma 2.3 of [6] and Proposition
III.6 of [5], or in [27].

Lemma 5 Let z, h ∈ Rd. The vector-valued function f : Rd → Rd is defined as f(z) = |z|z.
Then there exists a positive constant C0 such that

C0(|z| + |z + h|)|h|2 ≤ (f(z + h) − f(z)) · h. (43)

Lemma 6 For any vector-valued functions V = (V x , V y) and W = (Wx ,W y) we have
that (|V|V − |W|W, V − W) ≥ 0, and further

(a(|V|)V − a(|W|)W, V − W) ≥ a1||V − W||2. (44)

The result of the following lemma is obvious, see [27].

Lemma 7 Let {V x
i+ 1

2 , j
}, {V y

i, j+ 1
2
}, {Wx

i+ 1
2 , j

}, {W y
i, j+ 1

2
} and {qxi, j }, {qy

i, j } be discrete func-

tions with W x
1
2 , j

= Wx
Nx+ 1

2 , j
= W y

i, 12
= W y

i,Ny+ 1
2

= 0. Then there hold,

(−dxq
x ,Wx )x = (qx , DxW

x )M , (−dyq
y,W y)y = (qy, DyW

y)M . (45)

Now we consider the error estimate.

Theorem 1 Suppose the coefficients μ, α, k̄ are continuous functions and are bounded up
and below. Suppose also that Assumptions 1–3 are hold. For the solution of the block-centered
finite difference scheme when the discretization parametersΔt, h and k are sufficiently small
there exists a positive constant C independent of Δt , h and k such that for m ≤ T

Δt ,

‖(P − p)m‖M ≤ C(Δt + h2 + k2)
m∑

n=1

Δt
(
‖(U − u)x,n‖2x + ‖(U − u)y,n‖2y

) 1
2 ≤ C(Δt + h2 + k2).
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Proof From Lemma 4, Eqs. (20), (21) and (9) we have that

a1[Ux − ux ]n
i+ 1

2 , j
+ [Q(a2(Ih P

n),Un)]i+ 1
2 , jU

x,n
i+ 1

2 , j

−[Q(a2(Ih p
n), un)]i+ 1

2 , j u
x,n
i+ 1

2 , j

= − [dx (P − p + η)]n
i+ 1

2 , j
+ ε

x,n
i+ 1

2 , j
(p). (46)

a1[U y − uy]n
i, j+ 1

2
+ [Q(a2(Ih P

n),Un)]i, j+ 1
2
U y,n
i, j+ 1

2

− Q(a2(Ih p
n), un)]i, j+ 1

2
uy,n
i, j+ 1

2

= − [
dy(P − p + η)

]n
i, j+ 1

2
+ ε

y,n
i, j+ 1

2
(p). (47)

Define
{
ep,ni, j = (P − p)ni, j ,
ex,n
i+ 1

2 , j
= (Ux − ux )n

i+ 1
2 , j

, ey,n
i, j+ 1

2
= (U y − uy)n

i, j+ 1
2
.

(48)

Then

a1e
x,n
i+ 1

2 , j
+ [Q(a2(Ih P),U )]n

i+ 1
2 , j

U x,n
i+ 1

2 , j
− [Q(a2(Ih p), u)]n

i+ 1
2 , j

ux,n
i+ 1

2 , j

= − [
dx (e

p + η)
]n
i+ 1

2 , j + ε
x,n
i+ 1

2 , j
(p). (49)

a1e
y,n
i, j+ 1

2
+ [Q(a2(Ih P),U )]n

i, j+ 1
2
U y,n
i, j+ 1

2
− [Q(a2(Ih p), u)]n

i, j+ 1
2
uy,n
i, j+ 1

2

= − [
dy(e

p + η)
]n
i, j+ 1

2
+ ε

y,n
i, j+ 1

2
(p). (50)

From Eq. (9) we have that

αdt p
n
i, j + [Dxu

x ]ni, j + [Dyu
y]ni, j = f ni, j + ε

1,n
i, j , (51)

where

ε
1,n
i, j = αdt p

n
i, j − α

∂pni, j
∂t

+ [Dxu
x ]ni, j − ∂ux,ni, j

∂x
+ [Dyu

y]ni, j − ∂uy,n
i, j

∂y

= O(Δt + h2 + k2). (52)

Here we have used the fact that xi is the midpoint of (xi− 1
2
, xi+ 1

2
) and y j is the midpoint of

(y j− 1
2
, y j+ 1

2
).

From (51) and (19) we have that

αdt (P − p)ni, j + [Dx (U
x − ux )]ni, j + [Dy(U

y − uy)]ni, j = −ε
1,n
i, j . (53)

Denote by

ε
2,n
i, j = dtη

n
i, j

= h2i
8
dt

(
∂2 p

∂x2

)n

i, j
+ k2j

8
dt

(
∂2 p

∂y2

)n

i, j

+ h2i
4
dt

(

a2(p)
uxuy

|u|
∂uy

∂x

)n

i, j
+ k2j

4

(

a2(p)
uxuy

|u|
∂ux

∂y

)n

i, j

+ h2i
8
dt

(
∂a2(p)

∂x
|u|ux

)n

i, j
+ k2j

8
dt

(
∂a2(p)

∂y
|u|uy

)n

i, j
. (54)
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When p and u are sufficiently smooth, it is clear that

ε
2,n
i, j = O(h2 + k2). (55)

From (53) we have that

dt (e
p + η)ni, j + [Dxe

x ]ni, j + [Dye
y]ni, j = −ε

1,n
i, j + ε

2,n
i, j . (56)

Multiplying (56) by (ep + η)ni, j hi k j and summing for i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny , we
have that

(dt (e
p + η)n, (ep + η)n)M + (Dxe

x,n, (ep + η)n)M

+ (Dye
y,n, (ep + η)n)M = (−ε1,n + ε2,n, (ep + η)n)M . (57)

By Lemma 7 we have that

(dt (e
p + η)n, (ep + η)n)M − (ex,n, dx (e

p + η)n)x − (ey,n, dy(e
p + η)n)y

= (−ε1,n + ε2,n, (ep + η)n)M . (58)

Using (49) and (50) we have that

1

2
dt‖(ep + η)n‖2M + Δt

2
‖dt (ep + η)n‖2M + a1

(
‖ex,n‖2x + ‖ey,n‖2y

)

+ ([Q(a2(Ih P
n),Un)]Ux,n − Q(a2(Ih p

n), un)]ux,n, ex,n)x
+ ([Q(a2(Ih P

n),Un)]U y,n − Q(a2(Ih p
n), un)]uy,n, ey,n

)

y

= (−ε1,n + ε2,n, (ep + η)n)M + (ex,n, εx,n(p))x + (ey,n, εy,n(p))y . (59)
1

2
dt‖(ep + η)n‖2M + Δt

2
‖dt (ep + η)n‖2M + a1

(
‖ex,n‖2x + ‖ey,n‖2y

)

+ ([Q(a2(Ih P
n),Un)]Ux,n − [Q(a2(Ih P

n), un)]ux,n, ex,n)x
+ ([Q(a2(Ih P

n),Un)]U y,n − [Q(a2(Ih P
n), un)]uy,n, ey,n

)

y

= (−ε1,n + ε2,n, (ep + η)n)M + (ex,n, εx,n(p))x + (ey,n, εy,n(p))y

− ([Q(a2(Ih P
n), un) − Q(a2(Ih p

n), un)]ux,n, ex,n)x
− ([Q(a2(Ih P

n), un) − Q(a2(Ih p
n), un)]uy,n, ey,n

)

y . (60)

The third combiningwith the forth terms on the left hand sides can be estimated as follows.

([Q(a2(Ih P
n),Un)]Ux,n − [Q(a2(Ih P

n), un)]ux,n, ex,n)x
+ ([Q(a2(Ih P

n),Un)]U y,n − [Q(a2(Ih P
n), un)]uy,n, ey,n

)

y

≡
∑

i, j

(I 1i, j + I 2i, j + I 3i, j + I 4i, j ), (61)
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where

I 1i, j =
∫

Ω
R,T
i, j

{

Q̄(a2(Ih P
n),Un)

(

Ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+U y,n

i, j+ 1
2
ey,n
i, j+ 1

2

)

− Q̄(a2(Ih P
n), un)

(

ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+ uy,n

i, j+ 1
2
ey,n
i, j+ 1

2

)}

dxdy, (62)

I 2i, j =
∫

Ω
R,B
i, j

{

Q̄(a2(Ih P
n),Un)

(

Ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+U y,n

i, j− 1
2
ey,n
i, j− 1

2

)

− Q̄(a2(Ih P
n), un)

(

ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+ uy,n

i, j− 1
2
ey,n
i, j− 1

2

)}

dxdy, (63)

I 3i, j =
∫

Ω
L ,T
i+1, j

{

Q̄(a2(Ih P
n),Un)

(

Ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+U y,n

i+1, j+ 1
2
ey,n
i+1, j+ 1

2

)

− Q̄(a2(Ih P
n), un)

(

ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+ uy,n

i+1, j+ 1
2
e−,n
i+1, j+ 1

2

)}

dxdy, (64)

I 4i, j =
∫

Ω
L ,B
i+1, j

{

Q̄(a2(Ih P
n),Un)

(

Ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+U y,n

i+1, j− 1
2
ey,n
i+1, j− 1

2

)

− Q̄(a2(Ih P
n), un)

(

ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+ uy,n

i+1, j− 1
2
ey,n
i+1, j− 1

2

)}

dxdy. (65)

From the definition of the interpolant and Lemma 6 we have that

I 1i, j = a2

(

Ih P
n
i+ 1

2 , j+ 1
4

)

∫

Ω
R,T
i, j

{

|
(

Ux,n
i+ 1

2 , j
,U y,n

i, j+ 1
2

)

|
(

Ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+U y,n

i, j+ 1
2
ey,n
i, j+ 1

2

)

−|
(

ux,n
i+ 1

2 , j
, uy,n

i, j+ 1
2

)

|
(

ux,n
i+ 1

2 , j
ex,n
i+ 1

2 , j
+ uy,n

i, j+ 1
2
ey,n
i, j+ 1

2

)}

dxdy

≥ 0. (66)

Similarly we deal with other terms I 2i, j to I 4i, j .
Then from (60) and (61) we have that

1

2
dt‖(ep + η)n‖2M + Δt

2
‖dt (ep + η)n‖2M + a1

(
‖ex,n‖2x + ‖ey,n‖2y

)

≤ (−ε1,n + ε2,n, (ep + η)n)M + (ex,n, εx,n(p))x + (ey,n, εy,n(p))y

− ([Q(a2(Ih P
n), un) − Q(a2(Ih p

n), un)]ux,n, ex,n)x
− ([Q(a2(Ih P

n), un) − Q(a2(Ih p
n), un)]uy,n, ey,n

)

y

≡
5∑

l=1

Il . (67)

By Schwarz’s inequality it is clear that

I1 + I2 + I3 ≤ ‖(ep + η)n‖2M + a1
4

(‖ex,n‖2x + ‖ey,n‖2y)
+C1(‖ε1,n + ε2,n‖2M + ‖εx,n(p)‖2x + ‖εy,n(p)‖2y). (68)
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Because we use {Pn
i, j } and {pni, j } in the definitions of {Ih Pn

i± 1
4 , j± 1

4
} and {Ih pni± 1

4 , j± 1
4
}, from

some simple calculations we can get

I4 ≤ C‖Pn − pn‖M‖ex,n‖x
≤ C(‖(ep + η)n‖M + ‖ηn‖M )‖ex,n‖x
≤ a1

4
‖ex,n‖2x + C2(‖(ep + η)n‖2M + ‖ηn‖2M ). (69)

Similarly

I5 ≤ a1
4

‖ey,n‖2y + C3(‖(ep + η)n‖2M + ‖ηn‖2M ). (70)

Combining (67) with (68), (69) and (67) we have that

1

2
dt‖(ep + η)n‖2M + Δt

2
‖dt (ep + η)n‖2M + a1

2
(‖ex,n‖2x + ‖ey,n‖2y)

≤ C4‖(ep + η)n‖2M + C4(‖ε1,n + ε2,n‖2M + ‖ηn‖2M + ‖εx,n‖2x + ‖εy,n‖2y). (71)

Summing (71) for n from 1 to m,m ≤ T
Δt , and using the estimates of ε1,n , ε2,n , εx,n(p),

εy,n(p) and ηn we have that

‖(ep + η)m‖2M +
m∑

n=1

Δt2‖(dt (ep + η)n‖2M + a1(‖ex,n‖2x + ‖ey,n‖2y)

≤ 2C4

m∑

n=1

Δt‖(ep + η)n‖2M + ‖(ep + η)0‖2M

+ 2C4

m∑

n=1

Δt (‖ε1,n + ε2,n‖2M + ‖ηn‖2M + ‖εx,n(p)‖2x + ‖εy,n(p)‖2y)

≤ 2C4

m∑

n=1

Δt‖(ep + η)n‖2M + C(Δt + h2 + k2). (72)

By Gronwall’s inequality when Δt is sufficiently small we have that

‖(P − p + η)m‖2M +
m∑

n=1

Δt2‖dt (P − p + η)n‖2M

+ a1

m∑

n=1

Δt (‖(U − u)x,n‖2x + ‖(U − u)y,n‖2y)

≤ C(Δt2 + h4 + k4). (73)

Combining (73) with the estimate for η results in

‖(P − p)m‖2M +
m∑

n=1

Δt (‖(U − u)x,n‖2x + ‖(U − u)y,n‖2y)

≤ C(Δt2 + h4 + k4),
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which completes the proof of the first estimate. It is well-known that

m∑

n=1

Δt (‖(U − u)x,n‖2x + ‖(U − u)y,n‖2y)
1
2

≤
(

m∑

n=1

Δt

) 1
2
(

m∑

n=1

Δt (‖(U − u)x,n‖2x + ‖(U − u)y,n‖2y)
) 1

2

≤ C(Δt + h2 + k2), (74)

which completes the proof of the second one. �


Remark 4.1 In this paper we just considered the homogeneousNeumann boundary condition
u · n = 0. For non-homogeneous boundary condition the present interpolant operators does
not have second-order accuracy near the boundary. We will improve the result next.

5 Numerical Experiment

In this section we carry out some numerical experiments using the block-centered finite
difference scheme in two dimensional region. For simplicity, the region are selected as unit
square, i.e. Ω = [0, 1] × [0, 1]. The time interval is (0, T ] = (0, 1]. The permeability,
the viscosity, density and Forchheimer number β are all constants. For simplicity, take μ =
2, k̄ = 4, ρ = 1, β = 5.We use an iterative procedure to solve the nonlinear system obtained
from the finite difference discretization.

We test Examples 1 and 2 to verify the convergence rates of the presented scheme. The
initial partition is 10 × 10 grid. And then the grid is refined 4 times. For each refining we

take
Δt

h2
to be a constant. A grid with degree of freedom is plotted in Fig. 2.
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Fig. 2 Grid with degree of freedom of first level
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Fig. 3 Convergence rates of Example 1 (The tangent of the triangle is 2)

The numerical results are listed in Figs. 3 and 4 and Tables 1 and 2. In the tables
hmax

hmin
and

kmax

kmin
are listed to show the non-uniformity of the grid, where hmax (hmin) is the maximum

(minimum) meshsize in x-direction and kmax (kmin) is the maximum (minimum) meshsize
in y-direction. The discrete l2 norms of the errors are defined as follows.

Eu,l2 = max
m≤T/Δt

(
‖(U − u)x,m‖2x + ‖(U − u)y,m‖2y

) 1
2
,

Ep,l2 = max
m≤T/Δt

‖(P − p)m‖M .

Example 1 An example with homogeneous Neumann boundary condition is as below. The
flux on the boundary condition, u · n, is computed according to the analytic solution given
as below.

{
p(x, y, t) = (x − x2)(y − y2),

u(x, y, t) = (sin π t sin πx cosπy, sin π t cosπx sin πy)T .

The numerical results are listed in Fig. 3 and Table 1.
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Fig. 4 Convergence rates of Example 2 (The tangent of the triangle is 2.)

Table 1 A priori error and convergence rates for Example 1 at t = 1

Partition Eu,l2 Rate Ep,l2 Rate hmax
hmin

kmax
kmin

10 × 10 1.6715E−2 – 6.0956E−3 – 4.8019 3.6283

20 × 20 4.2766E−3 −1.9387 1.6701E−3 −1.8678 5.4701 4.9100

40 × 40 1.0998E−3 −1.9251 4.3426E−4 −1.9433 6.2039 5.2358

80 × 80 2.8301E−4 −1.9584 1.1222E−4 −1.9522 7.2772 6.7445

Table 2 A priori error and convergence rates for Example 2 at t = 1

Partition Eu,l2 Rate Ep,l2 Rate hmax
hmin

kmax
kmin

10 × 10 1.7040E−2 – 1.1541E−2 – 1.5662 2.1596

20 × 20 4.8135E−3 −1.8238 3.0429E−3 −1.9233 1.7328 2.3355

40 × 40 1.2523E−3 −1.9425 8.0992E−4 −1.9096 2.4673 4.8795

80 × 80 3.3451E−4 −1.9045 2.1579E−4 −1.9082 3.0891 5.2573
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Fig. 5 Velocity quiver and pressure distribution for Example 3, t = 0.5

Example 2 An example with homogeneous Neumann boundary condition is as below. The
flux on the boundary condition, u · n, is computed according to the analytic solution given
as below.
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Fig. 6 Velocity quiver and pressure distribution for Example 3, t = 1.0

{
p(x, y, t) = arctan (x + y − t − 1),

u(x, y, t) = (e−t y sin πx, e−t x sin πy)T .

The numerical results are listed in Fig. 4 and Table 2.
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Example 3 An example with homogeneous Neumann boundary condition, point-source and
point-sink flux is simulated. The right hand side equals zero except at the injection and
production wells, where the injection flow rate, q

I
, and production flow rate, q

P
, at wells

are,

q
I
(x, y, t) = δ(0, 0), q

P
(x, y) = −δ(1, 1).

The numerical results are listed in Figs. 5 and 6.

From Figs. 3 and 4 and Tables 1 and 2, we can see that the block-centered finite difference
approximations for pressure and velocity have the second order accuracy in discrete L2-
norms. These results are in consistent with the error estimates in Theorem 1. Figures 5 and
6 show that the pressure approximation and velocity approximation are reasonable for the
point-source and point-sink problem.
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