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Abstract We propose in this paper a time second order mass conservative algorithm for
solving advection–diffusion equations.A conservative interpolation and a continuous discrete
flux are coupled to the characteristic finite difference method, which enables using large
time step size in computation. The advection–diffusion equations are first transformed to the
characteristic form, for which the integration over the irregular tracking cells at previous time
level is proposed to be computed using conservative interpolation. In order to get second order
in time solution,we treat the diffusion termsby taking the average along the characteristics and
use high order accurate discrete flux that are continuous at tracking cell boundaries to obtain
mass conservative solution. We demonstrate the second order temporal and spatial accuracy,
aswell asmass conservation property by comparing resultswith exact solutions.Comparisons
with standard characteristic finite difference methods show the excellent performance of our
method that it can get much more stable and accurate solutions and avoid non-physical
numerical oscillation.

Keywords Second order in time · Mass conservation · Characteristic method · Advection–
diffusion equations · Two-dimensional

1 Introduction

Advection–diffusion equations arise in the mathematical modelling of numerous areas of
science and technology, such as atmospheric computation, oil reservoir simulation, ground-
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water modelling, financial modelling (see, for instance, [1–3,15,20]). Accurate numerical
computation of the advection–diffusion problems is a challenging task, especially for the
problems that advection is dominating over diffusion, and for the problems where advec-
tive stirring sharpens concentration gradients. The conventional numerical methods often
encounter problems of non-physical oscillations and excessive numerical diffusions at steep
fronts, while at the same time, these methods can not ensure mass conservation, which is
required in various mathematical modelling applications. Ideally we would like to develop
the efficient and high accuracy numerical approach that can solve advection and diffusion
simultaneously and can preserve the mass conservation.

To overcome the difficulties in solving the advection–diffusion problems, elaborate numer-
ical schemes based on the idea of characteristics have been proposed to achieve stable
computation. The characteristic technique is natural from the physical point of view, as
the solution procedure effectively solves the problem along the streamline of flow and gets
accurate approximation, and it is attractive from the computational point of view, since it
enables using large time steps and thus can significantly reduce computational costs. Many
efforts have been devoted to the development of the characteristic methods. Douglas and
Russell proposed a modified method of characteristics (MMOC) for solving one dimensional
advection–diffusion problems in [9]. Further developments of the methods were carried out
to solve high-dimensional advection–diffusion problems in [4,8,11], which are of first order
accurate in time, and a second order in time scheme is proposed by Rui and Tabata [18].
Moreover, Liang et al. [14] developed a second order characteristic finite element scheme
for nonlinear problems. However, all these schemes can not ensure conservation of mass in
computation. For one-dimensional convection–diffusion problems, Celia et al. [6] proposed
the Eulerian–Lagrangian localized adjoint method (ELLAM), which provides a consistent
framework for conserving global mass. Further study of the ELLAM has been successfully
taken for high-dimensional problems by Binning and Celia [5], Healy and Russell [12], and
Liang et al. [13]. Rui [17,19] proposed a conservative characteristic finite volume element
method, and proposed a conservative characteristic finite element scheme. These conserva-
tive methods in [5,6,12,13,17,19] preserve mass balance identity well, but are all first order
accuracy in time. On another aspect of the problem, a number of mass conserving semi-
Lagrangian schemes were developed for advection only problems by conservative remapping
technique, which are mathematically based by using a piecewise parabolic method (PPM)
[7] that applies a preserve parabola interpolation at previous time level to achieve local mass
conservation. The methods were further discussed for high dimensional transport problems
without diffusion [16,21–23]. But there has been no work on such method dealing with
combined advection–diffusion problems in high dimensions, where there will be difficul-
ties in achieving approximation for diffusion terms that can satisfy mass conservation while
maintaining a high accuracy in time.

In this work, we propose a time second-order mass conservation characteristic finite dif-
ference method (T2-MC-C-FDM) for two dimensional advection–diffusion problems. The
proposed method combines the characteristic technique with mass-preserving interpolations,
and provides the advantages of both techniques. It enables using large time step sizes to
get high accurate solutions, while achieves the conservations of variables. The advection–
diffusion governing equations are first transferred to a locally conservative formula by using
the characteristic approach. In order to get mass-preserving results, we treat the advective
integrals over the tracking cells at the previous time level by combining two 1D conserva-
tive interpolations on Eulerian–Lagrangian mesh. For getting high order accuracy in time,
a second order scheme by averaging along the characteristics is proposed for the time dis-
cretization of the diffusion terms, which leads to high accurate characteristic solutions. And
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we propose to compute the diffusion fluxes by high order discrete schemes that provide
continuity at the edges of irregular tracking cells at previous time level to maintain mass con-
servation. The developed method is mass preserving and has second order accuracy in time,
whilst permitting the use of large time steps, and is therefore highly suitable for large scale
problems. Numerical test of Gaussian hump moving in solid body rotation first demonstrates
that the proposedmethod has second order accuracy both in time and space, and preserves the
mass exactly. The experiments of a square wave moving test, a Gaussian humpmoving test in
vortex shear and a moving steep front test further validate the mass conservation advantage
of our T2-MC-C-FDM over standard characteristic methods, and show the good stability of
the new developed method.

The paper is structured as follows. Section 2 gives the description of the time second
order mass conservation characteristic finite difference method (T2-MC-C-FDM) for 2D
advection–diffusion problems. Numerical experiments are given in Sect. 3. Conclusions of
this study are summarized in Sect. 4.

2 A Mass Preserving Time Second Order Characteristic Finite Difference
Scheme

Let Ω be a bounded 2D domain with boundary ∂Ω = Γin + Γout , where Γin and Γout are
the inflow and outflow boundaries, respectively. T is a positive constant, and (0, T ] is the
time period. We now consider the following two dimensional advection–diffusion problem:

∂c

∂t
+ ∇ · (uc) − ∇ · (K∇c) = f (x, y, t), (x, y, t) ∈ Ω × (0, T ], (1)

c(x, y, t) = gin(x, y, t), (x, y, t) ∈ Γin × (0, T ], (2)

K
∂c

∂ν
= 0, (x, y, t) ∈ Γout × (0, T ], (3)

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω, (4)

where x = (x, y) is the location in space; u = (ux (x, y, t), uy(x, y, t)) is the velocity of
the field; K = diag(Kx , Ky) is the diffusion tensor with Kx > 0 and Ky > 0; f (x, y, t) is
the given source term; gin(x, y, t) and c0(x, y) are the given inflow boundary condition and
initial distribution, respectively; and ν is the unit outer normal to the boundary ∂Ω .

Divide the two dimensional domain Ω = [ax , bx ] × [ay, by] into I × J regular Eulerian
cells Ωi, j , with the definition

Ωi, j = {(x, y), x ∈ [xi−1/2, xi+1/2], y ∈ [y j−1/2, y j+1/2]}, (5)

where xi+1/2 = ax + (i − 1)hx , y j+1/2 = ay + ( j − 1)hy , hx = (bx − ax )/I , and
hy = (by − ay)/J .

Let Δt denotes a time step and Nt = T/Δt be the total time step number, and tn = nΔt .
During each time interval t ∈ (tn, tn+1], consider the problem (1)–(4) with cn be the value
at tn . Denote the characteristic direction by τ , and the characteristic line X (τ ; x, tn+1) of (1)
along the velocity u from any point (x, tn+1) at time level tn+1 is defined by

dX
(
τ ; x, tn+1

)

dτ
= u

(
X
(
τ ; x, tn+1) , τ

)
, τ ∈ [tn, tn+1], (6)

X
(
tn+1; x, tn+1) = x. (7)
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Denote the intersection of the characteristic line with time level t = tn by x̄n =
X (tn; x, tn+1).

For each Ωi, j , let Ωi, j (t) be the corresponding characteristic cell

Ωi, j (t) = {
x̄ ∈ Ω : x̄ = X

(
t; x, tn+1) , x ∈ Ωi, j , t ∈ [

tn, tn+1]} , (8)

and

Ω̄i, j
(
tn
) = {

x̄ ∈ Ω : x̄ = X
(
tn; x, tn+1) , x ∈ Ωi, j

}
. (9)

Define a space-time volume Rn+1
i, j by

Rn+1
i, j = {

(x, t) ; x ∈ Ωi, j (t), t ∈ [
tn, tn+1]} . (10)

Integrating the governing equation (1) over Rn+1
i, j leads to

∫ tn+1

tn

∫

Ωi, j (t)

(
∂c

∂t
+ ∇ · (uc)

)
dxdt −

∫ tn+1

tn

∫

Ωi, j (t)
∇ · (K∇c)dxdt

=
∫ tn+1

tn

∫

Ωi, j (t)
f (x, t)dxdt. (11)

By applying the Leibniz rule for the differentiation of an integral in the plane [10], we have

d

dt

(∫

Ωi, j (t)
c(x, t)dx

)

=
∫

Ωi, j (t)

(
∂c

∂t
+ ∇ · (uc)

)
dx, (12)

substituting (12) into the first term of (11) yields

∫

Ωi, j

c
(
x, tn+1) dx −

∫

Ω̄i, j (tn)
c
(
x, tn

)
dx −

∫ tn+1

tn

∫

∂Ωi, j (t)
K∇c · �ndsdt

=
∫ tn+1

tn

∫

Ωi, j (t)
f (x, t)dxdt, (13)

which leads to the local conservation formula for the 2D advection–diffusion equation (1)
(∫

Ωi, j

c
(
x, tn+1) dx −

∫

Ω̄i, j (tn)
c
(
x, tn

)
dx

)

−
∫ tn+1

tn

⎡

⎣
∫ X

(
t;x

i+ 1
2 ,j− 1

2
,tn+1

)

X

(
t;x

i− 1
2 ,j− 1

2
,tn+1

) K∇c · nds +
∫ X

(
t;x

i+ 1
2 ,j+ 1

2
,tn+1

)

X

(
t;x

i+ 1
2 ,j− 1

2
,tn+1

) K∇c · nds

+
∫ X

(
t;x

i− 1
2 ,j+ 1

2
,tn+1

)

X

(
t;x

i+ 1
2 ,j+ 1

2
,tn+1

) K∇c · nds +
∫ X

(
t;x

i− 1
2 ,j− 1

2
,tn+1

)

X

(
t;x

i− 1
2 ,j+ 1

2
,tn+1

) K∇c · nds
⎤

⎦ dt

=
∫ tn+1

tn

∫

Ωi, j (t)
f (x, t)dxdt,

(14)

where �n is the outward-pointing unit normal vector on the cell boundary of Ωi, j (t).
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Fig. 1 Eulerian mesh-grids and the tracking Lagrangian mesh-grids in 2D. The continuous thin black lines
indicate Eulerian cells; the dashed thin black lines are the centered Eulerian lines xi and y j ; the dashed thick
black lines indicate the tracking Lagrangian cells; and the intersections of Lagrangian linesLxi with centered
Eulerian lines y j are shown by open squares

To get the full discrete scheme, let Ci, j be the approximation to the average value of the
solution c over cell Ωi, j at time t ,

Ci, j ≈ 1

hxhy

∫

Ωi, j

c(x, t)dx, ∀n ≥ 0, i = 1, . . . , I, j = 1, . . . , J. (15)

Then we use the unknown Cn+1
i, j at time t = tn+1 level to approximate the first term in

Eq. (14) as
∫

Ωi, j

c
(
x, tn+1) dx = hxhyC

n+1
i, j . (16)

For the approximation of the second term of the integral of c(x, tn) over Lagrangian
cell Ω̄i, j (tn) at time level tn in (14), i.e., the mass of c over Ω̄i, j (tn), standard interpola-
tion methods like bi-linear interpolation or bi-parabolic interpolation can not ensure mass
conservation. To preserve mass, we propose to utilize two 1D conservative interpolations.

Referring to Fig. 1, we denote the Lagrangian line {x̄i+1/2, j+1/2; j = 0, 1, 2, . . . , J } by
Lxi+1/2, and define the Lagrangian line {x̄i+1/2, j+1/2; i = 0, 1, 2, . . . , I } by Ly j+1/2. Let
the intersection point of Lxi+1/2 with the line y j be denoted by Pi+1/2, j (x̃i+1/2, j , y j ), and
the middle point of x̄i−1/2, j+1/2 and x̄i+1/2, j+1/2 be denoted by Qi, j+1/2(x̃i, j+1/2, ỹi, j+1/2).
Let Ω̂i, j be the volume bounded in the x-direction by y j−1/2 and y j+1/2, and bounded within
Lagrangian lines of Lxi−1/2 and Lxi+1/2 (EFGH in Fig. 1).
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The advective integral over Ω̄i, j (tn) is then evaluated through the following two steps.
Step 1. We first consider a mass conservative computation along the Eulerian x-direction
for a single y j strip, ∀ j = 1, . . . , J , i.e., the domain between the lines y j−1/2 and y j+1/2.
Define a second order preserving interpolation distribution [F xCn]p, j as

[F xCn]p, j (x) = Cn
p− 1

2 , j
+

x − xp− 1
2

hx

(

ΔCn
p, j + Cn

6,p, j

x p+ 1
2

− x

hx

)

, p = 1, . . . , I,

(17)

which satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[F xCn]p, j
(
xp− 1

2

)
= 〈Cn〉p− 1

2 , j ,

[F xCn]p, j
(
xp+ 1

2

)
= 〈Cn〉p+ 1

2 , j ,

∫ x
p+ 1

2
x
p− 1

2
[F xCn]p, j (x)dx = hxCn

p, j ,

(18)

where, for fixed j , ΔCn
p, j , C

n
6,p, j , 〈Cn〉p− 1

2 , j are computed as follows:

〈Cn〉p− 1
2 , j = 1

2

(
Cn

p−1, j + Cn
p, j

)
, j = 1, 2, . . . , J, (19)

ΔCn
p, j = 〈Cn〉p+ 1

2 , j − 〈Cn〉p− 1
2 , j , (20)

Cn
6,p, j = 6

(
Cn

p, j − 1

2

(
〈Cn〉p+ 1

2 , j + 〈Cn〉p− 1
2 , j

))
. (21)

[F xCn]p, j gives a mass conserved concentration distribution over Ωp, j along x-direction,
and themass over Ω̂i, j can be approximated by computing an integral from the point Pi−1/2, j

to Pi+1/2, j , as

M̂n
i, j ≈ hy

∫ x̃i+1/2, j

x̃i−1/2, j

[F xCn](x, tn)dx

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hy
∫ xl+1/2

x̃i−1/2, j
[F xCn]l, j (x)dx +

m−1∑

k=l+1
hyhxCn

k, j

+hy
∫ x̃i+1/2
xm−1/2

[F xCn]m, j (x)dx, m ≥ l + 1,

hy
∫ x̃i+1/2, j

x̃i−1/2, j
[F xCn]l, j (x)dx, m = l

≡ Ih,Ω̂i, j

(
Cn) , (22)

where m and l (m ≥ l) are the x-indices of Eulerian cells that x̃i−1/2, j and x̃i+1/2, j lie in.
Step 2. We now consider a mass conservative computation for the single Lxi Lagrangian
strip, i.e., the domain between the Lagrangian lines Lxi− 1

2
and Lxi+ 1

2
. Let Ĉn

i,q = M̂n
i,q/hy ,

then for a fixed i , we define a second order mass preserving interpolation function [F yĈn]i,q
as

[F yĈn]i,q(y) = Ĉn
i,q− 1

2
+

y − yq− 1
2

hy

(

ΔĈn
i,q + Ĉn

6,i,q

yq+ 1
2

− y

hy

)

, q = 1, . . . , J,

(23)
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which satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[F yĈn]i,q
(
yq− 1

2

)
= 〈Ĉn〉i,q− 1

2
,

[F yĈn]i,q
(
yq+ 1

2

)
= 〈Ĉn〉i,q+ 1

2
,

∫ y
q+ 1

2
y
q− 1

2
[F yĈn]i,q(y)dy = hyĈn

i,q ,

(24)

where ΔĈn
i,q , Ĉ

n
6,i,q , 〈Ĉn〉i,q− 1

2
are computed similarly as (20), (21) and (19), respectively.

[F yĈn]i,q provides a mass conserved concentration distribution over cell Ω̂i,q along y-
direction, and the mass over Ω̄i, j can then be approximated by computing an integral from
the point Qi, j− 1

2
to Qi, j+ 1

2
, as

∫ ỹi, j+1/2

ỹi, j−1/2

[F yĈn](y, tn)dy

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ yly+1/2

ỹi, j−1/2
[F yĈn]i,ly (y)dy +

my−1∑

k=ly+1
hyĈn

i,k

+ ∫ ỹi, j+1/2
ymy−1/2

[F yĈn]i,my (y)dy, my ≥ ly + 1,
∫ ỹi, j+1/2

ỹi, j−1/2
[F yĈn]i,ly (y)dy, my = ly

≡ Ih,Ω̄i, j

(
Cn) , (25)

where ly and my , (my ≥ ly) are the y-indices of Ω̂i,q that ỹi, j−1/2 and ỹi, j+1/2 lie in.
For getting second order in time accuracy, we propose to treat the diffusion terms in (14)

by taking average along the characteristics

∫ tn+1

tn

⎡

⎣
∫ X

(
t;x

i+ 1
2 ,j− 1

2
,tn+1

)

X

(
t;x

i− 1
2 ,j− 1

2
,tn+1

) K∇c · �nds +
∫ X

(
t;x

i+ 1
2 ,j+ 1

2
,tn+1

)

X

(
t;x

i+ 1
2 ,j− 1

2
,tn+1

) K∇c · �nds

+
∫ X

(
t;x

i− 1
2 ,j+ 1

2
,tn+1

)

X

(
t;x

i+ 1
2 ,j+ 1

2
,tn+1

) K∇c · �nds +
∫ X

(
t;x

i− 1
2 ,j− 1

2
,tn+1

)

X

(
t;x

i− 1
2 ,j+ 1

2
,tn+1

) K∇c · �nds
⎤

⎦ dt

≈ Δt

2

⎛

⎝
∫ x

i+ 1
2 ,j− 1

2

x
i− 1

2 ,j− 1
2

K
∂cn+1

∂ �n ds +
∫ x̄

i+ 1
2 , j− 1

2

x̄
i− 1

2 , j− 1
2

K
∂cn

∂ �n ds

+
∫ x

i+ 1
2 ,j+ 1

2

x
i+ 1

2 ,j− 1
2

K
∂cn+1

∂ �n ds +
∫ x̄

i+ 1
2 , j+ 1

2

x̄
i+ 1

2 , j− 1
2

K
∂cn

∂ �n ds

+
∫ x

i− 1
2 ,j+ 1

2

x
i+ 1

2 ,j+ 1
2

K
∂cn+1

∂ �n ds +
∫ x̄

i− 1
2 , j+ 1

2

x̄
i+ 1

2 , j+ 1
2

K
∂cn

∂ �n ds

+
∫ x

i− 1
2 ,j− 1

2

x
i− 1

2 ,j+ 1
2

K
∂cn+1

∂ �n ds +
∫ x̄

i− 1
2 , j− 1

2

x̄
i− 1

2 , j+ 1
2

K
∂cn

∂ �n ds

⎞

⎠ . (26)
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Referring to Fig. 1, the right side of (26) is more clear using the symbols in the figure and be
written as

Δt

2

(∫

AB
K

∂cn+1

∂ �n ds +
∫

Ā B̄
K

∂cn

∂ �n ds

+
∫

BC
K

∂cn+1

∂ �n ds +
∫

B̄C̄
K

∂cn

∂ �n ds

+
∫

CD
K

∂cn+1

∂ �n ds +
∫

C̄ D̄
K

∂cn

∂ �n ds

+
∫

DA
K

∂cn+1

∂ �n ds +
∫

D̄ Ā
K

∂cn

∂ �n ds

)
. (27)

For the diffusion related terms at time level tn+1, we approximate ∂c
∂x by δx c and ∂c

∂y by
δyc, which leads to the following second order approximation (Refer to Fig. 1)

∫

AB
K

∂cn+1

∂ �n ds ≈ −
(
Khx

∂c

∂y

)n+1

i, j− 1
2

≈ −Ki, j− 1
2
hxδyC

n+1
i, j− 1

2
, (28)

∫

CD
K

∂cn+1

∂ �n ds ≈
(
Khx

∂c

∂y

)n+1

i, j+ 1
2

≈ Ki, j+ 1
2
hxδyC

n+1
i, j+ 1

2
, (29)

∫

BC
K

∂cn+1

∂ �n ds ≈
(
Khy

∂c

∂x

)n+1

i+ 1
2 , j

≈ Ki+ 1
2 , j hyδxC

n+1
i+ 1

2 , j
, (30)

∫

DA
K

∂cn+1

∂ �n ds ≈ −
(
Khy

∂c

∂x

)n+1

i− 1
2 , j

≈ −Ki− 1
2 , j hyδxC

n+1
i− 1

2 , j
. (31)

The computation of diffusion related terms at time level tn is a difficult task since the
cell boundaries are not align with the regular Eulerian mesh. In order to get the accurate
approximation and preserve mass, we require that the discrete flux to ∂cn

∂ �n keeps continuous
at cell boundaries and has high order accuracy. Thus we propose to approximate the scalar
field of cn by the piecewise biparabolic function, from which we get the diffusion flux that is
continuous at the tracking cell boundaries at time level tn . Based on the average values Ci, j

(15), we define the piecewise biparabolic function on Ωi, j as

[BCn]i, j (x, y) =
9∑

k=1

NkCi, j,k,

∀n ≥ 0, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , 9, (32)

where

Ci, j,1 = Ci−1, j−1, Ci, j,2 = Ci+1, j−1, Ci, j,3 = Ci+1, j+1,

Ci, j,4 = Ci−1, j+1, Ci, j,5 = Ci−1, j , Ci, j,6 = Ci, j−1,

Ci, j,7 = Ci+1, j , Ci, j,8 = Ci, j+1, Ci, j,9 = Ci, j , (33)
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and the elements of the piecewise function here are the local 2D second order polynomials
with

N1 = 1

4
ξη(ξ − 1)(η − 1), N2 = 1

4
ξη(ξ + 1)(η − 1),

N3 = 1

4
ξη(ξ + 1)(η + 1), N4 = 1

4
ξη(ξ − 1)(η + 1),

N5 = 1

2
ξ(ξ − 1)(1 − η2), N6 = 1

2
η(η − 1)(1 − ξ2),

N7 = 1

2
ξ(ξ + 1)(1 − η2), N8 = 1

2
η(η + 1)(1 − ξ2),

N9 = (1 − ξ2)(1 − η2), (34)

where

ξ = x − xi
hx

, η = y − y j
hy

. (35)

We take
∫
Ā B̄ K ∂cn

∂ �n ds for example. Assume that Ā B̄ is divided into several small parts, which
are defined by intersections of Ā B̄ with the Eulerian grid lines. The integral over Ā B̄, i.e.,
the integral of the piecewise function, can be understood as a sum of the elementary integrals
over these small parts in different grid cells,

∫

Ā B̄
K

∂cn

∂ �n ds =
∑

v

Iv. (36)

Here Iv is an elementary integral over the small parts v. Since we already have the piecewise
function [BCn] on each Ωi, j , the integral can be obtained by

∫

Ā B̄
K

∂cn

∂ �n ds =
∑

v

∫

v

K
∂[BCn]

∂ �n ds ≡ Ih,∂Ω̄i, j,B

(
Cn) . (37)

More specifically, as shown in Fig. 1, Ā B̄ is divided into two parts by the grid lines, which are
denoted as v1 and v2, respectively. Based on (32), we have the piecewise biparabolic function
on Ωi−2, j−2 and Ωi−1, j−2, therefore, the approximation of the integrals Iv1 and Iv2 can be
evaluated, and the summation of Iv1 and Iv2 gives

∫
Ā B̄ , which is denoted by Ih,∂Ω̄i, j,B

(Cn).

Approximation of integrals
∫
B̄C̄ ,

∫
C̄ D̄ and

∫
D̄ Ā can be similarly obtained, and we denote them

as Ih,∂Ω̄i, j,R
(Cn), Ih,∂Ω̄i, j,T

(Cn) and Ih,∂Ω̄i, j,L
(Cn), where the letters B, R, T, L represent the

“Bottom”, “Right”, “Top” and “Left” boundaries of ∂Ω̂i, j , respectively.
From (14) to (37), the time second order mass conservative characteristic finite difference

method (T2-MC-C-FDM) for solving the 2D advection–diffusion problem (1) is proposed
as

(
hxhyC

n+1
i, j − Ih,Ω̄i, j

(
Cn)

)

−Δt

2

(
hxhy

[
1

hx

(
Kx

i+ 1
2 , j

δxC
n+1
i+ 1

2 , j
− Kx

i− 1
2 , j

δxC
n+1
i− 1

2 , j

)

+ 1

hy

(
Ky

i, j+ 1
2
δyC

n+1
i, j+ 1

2
− Kx

i, j− 1
2
δyC

n+1
i, j− 1

2

)]
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Fig. 2 Velocity field of u = (ux , uy) = (−4y, 4x). (Test 1)

Table 1 Errors and ratios in time for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 0, Δx = 1

100 , and different Nt = 10, 20, 30, 40 and 50

Nt 10 20 30 40 50

C-FDM-LI

E∞ 9.9319e−1 8.0462e−1 6.0131e−1 4.7850e−1 4.0033e−1

Ratio – 0.3038 0.7183 0.7942 0.7993

E2 1.3409e−1 9.9103e−2 7.2996e−2 5.7153e−2 4.7508e−2

Ratio – 0.4362 0.7541 0.8505 0.8283

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7136e−3 5.5052e−3

C-FDM-QI

E∞ 9.9362e−1 8.1330e−1 6.0744e−1 4.7612e−1 3.8902e−1

Ratio – 0.2889 0.7198 0.8467 0.9055

E2 1.3534e−1 1.0161e−1 7.5682e−2 5.9463e−2 4.8770e−2

Ratio – 0.4136 0.7266 0.8384 0.8884

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7137e−3 5.5052e−3

T2-MC-C-FDM

E∞ 1.8713e−1 4.5001e−2 1.9811e−2 1.1290e−2 7.2496e−3

Ratio – 2.0560 2.0235 1.9545 1.9853

E2 2.5939e−2 6.4788e−3 2.8780e−3 1.6211e−3 1.0365e−3

Ratio – 2.0013 2.0012 1.9952 2.0044

Emass 9.7144e−18 1.7347e−17 6.9389e−18 6.9389e−18 6.9389e−18

+Ih,∂Ω̄i, j,B

(
Cn)+ Ih,∂Ω̄i, j,R

(
Cn)+ Ih,∂Ω̄i, j,T

(
Cn)+ Ih,∂Ω̄i, j,L

(
Cn)

)

=
∫ tn+1

tn

∫

Ωi, j (t)
f (x, t)dxdt, (38)
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Table 2 Errors and ratios in time for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 10−5, Δx = 1

100 , and different Nt = 10, 20, 30, 40 and 50

Nt 10 20 30 40 50

C-FDM-LI

E∞ 9.8998e−1 8.0132e−1 5.9872e−1 4.7649e−1 3.9865e−1

Ratio – 0.3050 0.7188 0.7938 0.7992

E2 1.3377e−1 9.8821e−2 7.2785e−2 5.6989e−2 4.7371e−2

Ratio – 0.4368 0.7542 0.8504 0.8284

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7136e−3 5.5052e−3

C-FDM-QI

E∞ 9.9042e−1 8.0995e−1 6.0468e−1 4.7397e−1 3.8733e−1

Ratio – 0.2902 0.7209 0.8466 0.9047

E2 1.3501e−1 1.0131e−1 7.5450e−2 5.9279e−2 4.8619e−2

Ratio – 0.4143 0.7268 0.8385 0.8884

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7137e−3 5.5052e−3

T2-MC-C-FDM

E∞ 1.8640e−1 4.4849e−2 1.9728e−2 1.1246e−2 7.2110e−3

Ratio – 2.0553 2.0254 1.9536 1.9916

E2 2.5857e−2 6.4581e−3 2.8688e−3 1.6156e−3 1.0329e−3

Ratio – 2.0014 2.0013 1.9958 2.0046

Emass 1.0408e−17 5.2042e−17 6.9389e−18 1.0408e−17 1.3531e−16

with the initial condition

C0(xi , y j ) = c0i, j , (39)

and boundary conditions

Cn+1(x, y) = fin
(
x, y, tn+1) , (x, y) ∈ Γin,

δxC
n+1
1
2 , j

= 0,
(
x 1
2 , j , y

)
∈ Γout ,

δxC
n+1
I+ 1

2 , j
= 0,

(
xI+ 1

2 , j , y
)

∈ Γout ,

δyC
n+1
i, 12

= 0,
(
x, yi, 12

,
)

∈ Γout ,

δyC
n+1
i,J+ 1

2
= 0,

(
x, yi,J+ 1

2

)
∈ Γout ,

∀i = 1, 2, . . . , I, j = 1, 2, . . . , J, ∀n = 1, 2, . . . , Nt . (40)

Mass preserving property
We assume that the velocity field u satisfies the following condition.

Hypothesis 1 The velocity u satisfies
{
u = C0

(
W 1,∞(Ω)

)
,

u · ν = 0, on ∂Ω.
(41)
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Table 3 Errors and ratios in time for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 10−3, Δx = 1

100 , and different Nt = 10, 20, 30, 40 and 50

Nt 10 20 30 40 50

C-FDM-LI

E∞ 7.4396e−1 5.6128e−1 4.1528e−1 3.2839e−1 2.7405e−1

Ratio – 0.4065 0.7430 0.8160 0.8106

E2 1.0869e−1 7.7518e−2 5.6921e−2 4.4649e−2 3.7045e−2

Ratio – 0.4876 0.7617 0.8441 0.8366

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7137e−3 5.5053e−3

C-FDM-QI

E∞ 7.4498e−1 5.6601e−1 4.1671e−1 3.2524e−1 2.6518e−1

Ratio – 0.3964 0.7553 0.8615 0.9149

E2 1.0933e−1 7.8782e−2 5.8210e−2 4.5656e−2 3.7434e−2

Ratio – 0.4727 0.7464 0.8444 0.8899

Emass 1.8776e−2 1.1879e−2 8.5915e−3 6.7137e−3 5.5052e−3

T2-MC-C-FDM

E∞ 1.3026e−1 3.1841e−2 1.4605e−2 8.0925e−3 4.9155e−3

Ratio – 2.0325 1.9222 2.0524 2.2342

E2 1.9683e−2 4.9188e−3 2.1838e−3 1.2233e−3 7.8996e−4

Ratio – 2.0006 2.0026 2.0144 1.9599

Emass 2.3211e−15 4.2813e−15 3.9344e−15 4.2570e−15 3.9621e−15

We now examine the mass preserving property of the time and space second order mass
preserving characteristic finite difference method (T2-MC-C-FDM) (38).

Theorem 2 Under hypothesis 1, and consider the problem (1) with the following boundary
condition,

∂c

∂x

∣∣∣∣
ax

= ∂c

∂x

∣∣∣∣
bx

= 0,
∂c

∂y

∣∣∣∣
ay

= ∂c

∂x

∣∣∣∣
by

= 0, (42)

the numerical scheme (38) is globally mass conserved.

Proof Summing the Eq. (38) from i = 1 to I , and j = 1 to J , leads to

I∑

i=1

J∑

j=1

hxhyC
n+1
i, j −

I∑

i=1

J∑

j=1

Ih,Ω̄i, j
(Cn)

− Δt

2

I∑

i=1

J∑

j=1

(
hxhy

[
1

hx

(
Kx

i+ 1
2 , j

δxC
n+1
i+ 1

2 , j
− Kx

i− 1
2 , j

δxC
n+1
i− 1

2 , j

)

+ 1

hy

(
Ky

i, j+ 1
2
δyC

n+1
i, j+ 1

2
− Kx

i, j− 1
2
δyC

n+1
i, j− 1

2

)]
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Table 4 Errors and ratios in space for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 0, Δt = 1/900 and different Δx = 1

50 , 1
60 , 1

70 , 1
80 and 1

90

h 1
50

1
60

1
70

1
80

1
90

C-FDM-LI

E∞ 6.8603e−1 6.4982e−1 6.1545e−1 5.8343e−1 5.5377e−1

Ratio – 0.2974 0.3525 0.4002 0.4429

E2 7.6205e−2 7.0651e−2 6.5807e−2 6.1538e−2 5.7744e−2

Ratio – 0.4151 0.4608 0.5022 0.5403

Emass 3.3587e−4 3.3580e−4 3.3578e−4 3.3578e−4 3.3578e−4

C-FDM-QI

E∞ 2.4910e−1 1.8311e−1 1.3606e−1 1.0631e−1 8.3456e−2

Ratio – 1.6879 1.9268 1.8478 2.0548

E2 2.7489e−2 1.9695e−2 1.4707e−2 1.1370e−2 9.0464e−3

Ratio – 1.8285 1.8945 1.9272 1.9412

Emass 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4

T2-MC-C-FDM

E∞ 1.8829e−1 1.2968e−1 9.3829e−2 6.8777e−2 5.2414e−2

Ratio – 2.0453 2.0991 2.3261 2.3068

E2 2.3555e−2 1.6116e−2 1.1508e−2 8.5069e−3 6.4648e−3

Ratio – 2.0815 2.1846 2.2631 2.3307

Emass 2.5173e−12 6.7175e−14 2.5119e−15 3.7192e−15 1.7694e−15

+ Ih,∂Ω̄i, j,B
(Cn) + Ih,∂Ω̄i, j,R

(Cn) + Ih,∂Ω̄i, j,T
(Cn) + Ih,∂Ω̄i, j,L

(Cn)

)

=
∫ tn+1

tn

∫

Ω

f (x, t)dxdt. (43)

Under the Hypothesis 2, for any j = 0, 1, . . . , J , we have x̄ 1
2 , j = x 1

2 , j = ax , x̄ I+ 1
2 , j =

xI+ 1
2 , j = bx , and for any i = 0, 1, . . . , I , we have ȳi, 12

= y j, 12
= ay , ȳi,J+ 1

2
= yi,J+ 1

2
= by ,

combining (22), it leads to

I∑

i=1

M̂n
i, j =

I∑

i=1

Ih,Ω̂i, j

(
Cn) =

I∑

i=1

hyhxC
n
i, j . (44)

combining (25), it gives

J∑

j=1

Ih,Ω̄i, j

(
Cn) =

J∑

j=1

Ih,Ω̂i, j

(
Cn) =

J∑

j=1

M̂n
i, j , (45)

which yields

I∑

i=1

J∑

j=1

Ih,Ω̄i, j

(
Cn) =

J∑

j=1

I∑

i=1

hxhyC
n
i, j . (46)
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Table 5 Errors and ratios in space for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 10−5, Δt = 1/900 and different Δx = 1

50 , 1
60 , 1

70 , 1
80 and 1

90

h 1
50

1
60

1
70

1
80

1
90

C-FDM-LI

E∞ 6.8324e−1 6.4708e−1 6.1278e−1 5.8082e−1 5.5124e−1

Ratio – 0.2983 0.3533 0.4011 0.4438

E2 7.5993e−2 7.0444e−2 6.5607e−2 6.1345e−2 5.7557e−2

Ratio – 0.4158 0.4615 0.5030 0.5411

Emass 3.3587e−4 3.3580e−4 3.3578e−4 3.3578e−4 3.3578e−4

C-FDM-QI

E∞ 2.4740e−1 1.8176e−1 1.3504e−1 1.0547e−1 8.2782e−2

Ratio – 1.6911 1.9276 1.8503 2.0569

E2 2.7329e−2 1.9577e−2 1.4617e−2 1.1300e−2 8.9899e−3

Ratio – 1.8298 1.8953 1.9276 1.9415

Emass 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4

T2-MC-C-FDM

E∞ 1.8726e−1 1.2895e−1 9.3274e−2 6.8375e−2 5.2096e−2

Ratio – 2.0462 2.1010 2.3255 2.3086

E2 2.3448e−2 1.6041e−2 1.1453e−2 8.4659e−3 6.4334e−3

Ratio – 2.0823 2.1851 2.2634 2.3309

Emass 2.5338e−12 6.9583e−14 2.2135e−15 3.4556e−15 5.8287e−15

Noting that for the adjacent two Lagrangian cells which shares one boundary, the flux that
flow into one cell through that boundary is exactly equals the flux that flow out the other cell
through that boundary,

Ih,∂Ω̄i, j,B

(
Cn)+ Ih,∂Ω̄i, j−1,T

(
Cn) = 0, Ih,∂Ω̄i, j,L

(
Cn)+ Ih,∂Ω̄i−1, j,R

(
Cn) = 0, (47)

and considering the boundary condition (2), we have

I∑

i=1

J∑

j=1

(
hxhy

[
1

hx

(
Kx

i+ 1
2 , j

δxC
n+1
i+ 1

2 , j
− Kx

i− 1
2 , j

δxC
n+1
i− 1

2 , j

)

+ 1

hy

(
Ky

i, j+ 1
2
δyC

n+1
i, j+ 1

2
− Kx

i, j− 1
2
δyC

n+1
i, j− 1

2

)]

+ Ih,∂Ω̄i, j,B

(
Cn)+ Ih,∂Ω̄i, j,R

(
Cn)+ Ih,∂Ω̄i, j,T

(
Cn)+ Ih,∂Ω̄i, j,L

(
Cn)

)

= 0. (48)

Then from (43)–(48), it holds that

I∑

i=1

J∑

j=1

hxhyC
n+1
i, j −

I∑

i=1

J∑

j=1

Ih,Ω̄i, j

(
Cn) =

∫ tn+1

tn

∫

Ω

f (x, t)dxdt. (49)

�
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Table 6 Errors and ratios in space for the 2D advection–diffusion problem by using our T2-MC-C-FDM
and a characteristic finite difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic
interpolation (C-FDM-QI), with K = 10−3, Δt = 1/900 and different Δx = 1

50 , 1
60 , 1

70 , 1
80 and 1

90

h 1
50

1
60

1
70

1
80

1
90

C-FDM-LI

E∞ 4.7742e−1 4.4610e−1 4.1761e−1 3.9187e−1 3.6860e−1

Ratio – 0.3722 0.4281 0.4765 0.5197

E2 5.9305e−2 5.4328e−2 5.0082e−2 4.6410e−2 4.3200e−2

Ratio – 0.4807 0.5280 0.5702 0.6086

Emass 3.3596e−4 3.3582e−4 3.3579e−4 3.3578e−4 3.3578e−4

C-FDM-QI

E∞ 1.3394e−1 9.4153e−2 6.9652e−2 5.2981e−2 4.1665e−2

Ratio – 1.9331 1.9553 2.0488 2.0398

E2 1.6369e−2 1.1552e−2 8.5629e−3 6.5987e−3 5.2461e−3

Ratio – 1.9118 1.9422 1.9513 1.9475

Emass 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4 1.5156e−4

T2-MC-C-FDM

E∞ 1.1372e−1 7.7481e−2 5.4707e−2 4.0385e−2 3.0404e−2

Ratio – 2.1046 2.2577 2.2732 2.4101

E2 1.5561e−2 1.0531e−2 7.4768e−3 5.5092e−3 4.1789e−3

Ratio – 2.1415 2.2218 2.2870 2.3463

Emass 3.6851e−12 6.4178e−14 1.0367e−14 1.7688e−13 3.1976e−13

3 Numerical Simulation

3.1 Test 1: Gaussian Hump in Solid Body Rotation

In this first numerical test, we consider a advection–diffusion problem (1)–(4) of a Gaussian
concentration hump moving in 2D spatial domain Ω = [−1, 1] × [−1, 1], the velocity
u = (ux , uy) = (−4y, 4x) (Fig. 2). The initial concentration configuration of the Gaussian
hump is given by

c(x, y, 0) = exp

(

− (x − x0)2 + (y − y0)2

2σ 2
0

)

, (x, y) ∈ Ω, (50)

where (x0, y0) = (−0.4, 0) is the initial center of the Gaussian hump, and σ0 = 0.07 is
the standard deviation. The source term is set to be f (x, y, t) = 0. The inflow boundary
condition gin(x, y, t) is computed according to the analytical exact solution of the problem,
which is given as

c(x, y, t) = 2σ 2

2σ 2 + 4Kt
exp

(
− (x̄(t) − x0)2 + (ȳ(t) − y0)2

2σ 2 + 4Kt

)
, (51)

where x̄(t) = x cos(4t) + y sin(4t) and ȳ(t) = −x sin(4t) + y cos(4t), and the outflow
boundary condition is set according to the analytical solution as well.

Numerical experiments are carried out using different diffusion coefficients of Kx =
Ky = K = 0, 10−5, 10−3, respectively. We first examine the convergence rates of numerical
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Fig. 3 Velocity field of u = (ux , uy) = (0.1 sin(πx/5) sin(πy/5), 0) for square wave moving test. (Test 2)

Fig. 4 Comparison of the surfaces plots of the moving square wave at T = 50 by different numerical methods
with reference exact solution. a Reference solution, b T2-MC-C-FDM, c C-FDM-LI and d C-FDM-QI

schemes in time by comparing the results at T = π
4 by different methods. Tables 1, 2 and 3

exhibit the errors and ratios in time by using our T2-MC-C-FDM and a characteristic finite
difference method based on bi-linear interpolation (C-FDM-LI) and bi-quadratic interpola-
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Fig. 5 Comparison of the contour plots of the moving square wave at T = 50 by different numerical methods
with reference exact solution. a Reference solution, b T2-MC-C-FDM, c C-FDM-LI and d C-FDM-QI

tion (C-FDM-QI) [9], and different Nt = 10, 20, 30, 40 and 50. We can see that the our
scheme gets second order accuracy in time for both L2 and L∞ errors, while the C-FDM-
LI and C-FDM-QI get first order accuracy in time. For example, the ratios in L2 norm at
Nt = 60 when the diffusion coefficients are 10−5 and 10−3 are 2.0046 and 1.9599 for our
T2-MC-C-FDM, while C-FDM-LI gets 0.8284 and 0.8366, and C-FDM-QI gets 0.8884 and
0.8899, respectively. Meanwhile, T2-MC-C-FDM gets much smaller errors than C-FDM-LI
and C-FDM-QI. For example, for K = 10−3, the L∞ error at Nt = 40 of T2-MC-C-FDM is
8.0925×10−3, while it is 3.2839×10−1 for C-FDM-LI, and 3.2524×10−1 for C-FDM-QI,
respectively. The mass errors are also shown in the tables, which indicate that T2-MC-C-
FDM preserves mass perfectly, while the mass error for C-FDM-LI and C-FDM-QI are over
5 × 10−3.

Then we test the convergence rates of numerical schemes in space. Table 4, 5 and 6 show
the errors and ratios in space by using our T2-MC-C-FDM, C-FDM-LI and C-FDM-QI
with Δt = 1/900 and different Δx = 1

50 ,
1
60 ,

1
70 ,

1
80 and 1

90 for three different diffusion
coefficients of K = 0, K = 10−5 and K = 10−3. We can see that the convergence rate
of C-FDM-LI in space is less than one, and C-FDM-QI and T2-MC-C-FDM get second
order accuracy in space for both the L∞ and L2 errors, while T2-MC-C-FDM has better
performances. For example, when K = 10−5, Δx = 1

70 , the L∞ and L2 errors of C-FDM-
LI are 6.1278 × 10−1 and 6.5607 × 10−1, the errors of C-FDM-QI are 1.3504 × 10−1 and
1.4617×10−2,whileT2-MC-C-FDMgets smaller errors of 9.3274×10−2 and1.1453×10−2.
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Fig. 6 We consider the evolution of density in a velocity field that is specified by u =
(0.1 sin(πx/5) sin(πy/5), 0). In such a velocity field, the standard characteristic finite different approach
fails to capture the location of moving fronts and the shape of the solution. a t = 20 s, b t = 30 s, c t = 50 s
and d t = 60 s
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Fig. 7 Shown is the time history of the discrete mass error
∑

ΔxΔyci, j (t) −∑
ΔxΔyci, j (0) for a square

wave that is evolved in a velocity field u = (0.1 sin(πx/5) sin(πy/5), 0). Solutions are obtained by standard
characteristic schemes C-FDM-LI, C-FDM-QI and our proposed conservative scheme T2-MC-C-FDM
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Fig. 8 Velocity field of u = (ux , uy) = (ψy ,−ψx ), where ψ(x, y) = (1/
√
2) sin(πx) sin(πy). (Test 3)

3.2 Test 2: Square Wave Moving Test

In this test, we consider the advection–diffusion problem for a advected square wave over
the velocity field of u = (ux , uy) = (0.1 sin(πx/5) sin(πy/5), 0) (Fig. 3) over a 2D spatial
domain Ω = [0, 5] × [0, 5].

The initial value c(x, y,0) is given as

c(x, y, 0) =
{
1, 0.4 ≤ x ≤ 0.7, 1.5 ≤ y ≤ 3.5,
0, otherwise.

(52)
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Fig. 9 Time series of the mass error of the results computed by T2-MC-C-FDM, C-FDM-LI and C-FDM-QI
when using time step size of Δt = 1

40 and spatial step size of hx = hy = 1
200

The source term f (x, y, t) = 0 and the boundary condition is given as (2), such that the total
mass of the advected square shall keep a constant value according to Theorem 2.

Figures 4 and 5 show the surface and contour plots of the advected wave at time t = 50
by using different numerical methods of our T2-MC-C-FDM and standard characteristic
method with linear and quadratic interpolations, a large time step is taken as Δt = 5, and
h = 1

40 . Numerical solutions obtained by using fine mesh of h = 1
40 and Δt = 1

40 are used
as reference solution. Figure 6 shows results at y = 2.5 at different times of t = 20, t = 30,
t = 50 and t = 60. We can note the marked difference between our T2-MC-C-FDM and
standard characteristic FD method. It clearly shows that, even by using large time step size,
our method could still capture the shape and front of the moving square very well, while
the solutions of other two methods have much higher prediction of the hight of the moving
square and show a clear deviation of the fronts from the reference exact solution. Figure 7
shows the loss of conservation of the standard characteristic method as compared to the
T2-MC-C-FDM which maintains exact value up to round off error.

3.3 Test 3: Gaussian Hump in Vortex Shear

We now consider the transport of a Gaussian hump in a divergence free velocity field u =
(ux , uy) = (ψy,−ψx ), where ψ(x, y) = 1√

2
sin(πx) sin(πy) (Fig. 8) over domain Ω =

[0, 1] × [0, 1].
The initial distribution of the Gaussian hump is given as

c(x, y, 0) = exp

(

− (x − x0)2 + (y − y0)2

2σ 2
0

)

, (x, y) ∈ Ω, (53)

where the center of the initial Gaussian hump is specified as x0 = 0.25 and y0 = 0.5. The
source term is zero.
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Fig. 10 Comparison of the contour plots of the moving Gaussian hump in vortex shear at different times
by different numerical methods with reference exact solution. a Reference solution, b T2-MC-C-FDM,
c C-FDM-LI and d C-FDM-QI

Take the spatial step sizes hx = hy = 1/200 and the time step size Δt = 1
40 , a group of

contour plots at different times from t = 0.75 to t = 2 are obtained by using our T2-MC-C-
FDM, C-FDM-LI and C-FDM-QI, and are presented in Fig. 10. The distribution solved by
using fine mesh of h = 1

200 and Δt = 1
200 is used as reference exact solution. We can see

clearly that our method get perfect match comparing to the exact solution, while C-FDM-LI
and C-FDM-QI performs much worse, which smear the hump badly and lost large area of
the hump. Figure 9 displays the mass errors of the results computed by T2-MC-C-FDM,
C-FDM-LI and C-FDM-QI as time increases. Comparing to the initial total mass of 0.101, it
can be seen that at the time T = 2, the C-FDM-LI and C-FDM-QI lost a majority percentage
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Fig. 11 The surfaces and contour plots of the moving sharp front by different numerical methods. a Reference
Solution, b T2-MC-C-FDM, c C-FDM-LI and d C-FDM-QI

of the Gaussian hump mass, which is over 80% while our T2-C-CFDM conserves the mass
perfectly.

3.4 Test 4: Steep Front Moving

In this subsection, we compute the moving steep front problem with our T2-MC-C-FDM.
Consider the advection–diffusion problem on the spatial domain Ω = [0, 1] × [0, 1] with
the following initial and boundary conditions:

c(x, y, 0) =
{
1, 0 ≤ x ≤ 0.1 or 0.9 ≤ y ≤ 1,
0, otherwise,

(54)

c(0, y, t) = 1, y ∈ [0, 1], c(x, 1, t) = 1, x ∈ [0, 1], t ∈ (0, T ], (55)

∂c(1, y, t)

∂x
= 0, y ∈ [0, 1], ∂c(x, 0, t)

∂y
= 0, x ∈ [0, 1], (56)

the diffusion is taken as K = 0.001 and the velocity is u = (1,−1).
The contour plots of the approximate solutions at time t = 0.2 computed by the T2-

MC-C-FDM, the C-FDM-LI, the C-FDM-QI are presented in Fig. 11. The spatial step sizes
are taken as Δx = Δy = 1/100. The approximation of our T2-MC-C-FDM (Fig. 11b) is
obtained with a time step size Δt = 1/50 while the solutions of the C-FDM-LI and the
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Fig. 12 The comparison of solution curves of different numerical methods on a sectional plane

C-FDM-QI (Fig. 11c, d) are both obtained with a very small time step size Δt = 1/500. We
use a fine mesh of spatial step sizes Δx = Δy = 1/200 and time step size of Δt = 1/100 to
get a reference analytical solution. We can see that our T2-MC-CFDM simulates the steep
front very well and get almost same results as the reference solution, even if the time step
size taken is very large, while the standard C-FDM-LI fails to capture the rarefaction of the
steep front, and C-FDM-QI shows non-physical oscillation near the front even by using a
much smaller time step size (Fig. 12).

4 Conclusion

We have developped in this paper a time second order mass conservative accurate method
for solving the advection–diffusion equations. The method takes advantage of characteristic
method and is therefore capable of using large time step size, whilist by using high order
conservative interpolation technique, it gets high accurate solutions and preserves the mass
exactly, which makes it appropriate for large scale scientific simulations and areas where
conservation is an important concern. The convergence order in time and space are verified
through numerical tests by comparing with analytical solutions. Numerical experiments of
moving square wave, Gaussian hump moving in vortex shear and steep front moving show
that our T2-MC-C-FDM can get high accurate non-oscillation solutions even when large
time step sizes are used.
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