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Abstract In this paper, we propose a Smoothing, Lifting and Thresholding (SLaT) method
with three stages for multiphase segmentation of color images corrupted by different
degradations: noise, information loss and blur. At the first stage, a convex variant of the
Mumford–Shah model is applied to each channel to obtain a smooth image. We show that
the model has unique solution under different degradations. In order to properly handle the
color information, the second stage is dimension lifting where we consider a new vector-
valued image composed of the restored image and its transform in a secondary color space
to provide additional information. This ensures that even if the first color space has highly
correlated channels, we can still have enough information to give good segmentation results.
In the last stage, we apply multichannel thresholding to the combined vector-valued image
to find the segmentation. The number of phases is only required in the last stage, so users can
modify it without the need of solving the previous stages again. Experiments demonstrate
that our SLaT method gives excellent results in terms of segmentation quality and CPU time
in comparison with other state-of-the-art segmentation methods.
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1 Introduction

IMAGE segmentation is a fundamental and challenging task in image processing and com-
puter vision. It can serve as a preliminary step for object recognition and interpretation. The
goal of image segmentation is to group parts of the given image with similar characteristics
together. These characteristics include, for example, edges, intensities, colors and textures.
For a human observer, image segmentation seems obvious, but consensus among different
observers is seldom found. The problem is much more difficult to solve by a computer. A
nice overview of region-based and edge-based segmentation methods is given in [16]. In our
work we investigate the image segmentation problem for color images corrupted by different
types of degradations: noise, information loss and blur.

Let Ω ⊂ R
2 be a bounded open connected set, and f : Ω → R

d with d ≥ 1 be a given
vector-valued image. For example, d = 1 for gray-scale images and d = 3 for the usual RGB
(red-green-blue) color images. One has d > 3 inmany cases such as in hyperspectral imaging
[35] or inmedical imaging [44]. In this paper, we aremainly concernedwith color images (i.e.
d = 3) though our approach can be extended to higher-dimensional vector-valued images.
Without loss of generality, we restrict the range of f to [0, 1]3 and hence f ∈ L∞(Ω)3.

In the literature, various studies have been carried out andmany techniques have been con-
sidered for image segmentation [14,21,26,28,40,41,43]. For gray-scale images, i.e. d = 1,
Mumford and Shah proposed in [32,33] an energy minimization problem for image segmen-
tation which finds optimal piecewise smooth approximations. More precisely, this problem
was formulated in [33] as

EMS(g, Γ ) := λ

2

∫
Ω

( f − g)2dx + μ

2

∫
Ω\Γ

|∇g|2dx + Length(Γ ), (1)

where λ and μ are positive parameters, and g : Ω → R is continuous in Ω \ Γ but may be
discontinuous across the sought-after boundary Γ . Here, the length of Γ can be written as
H1(Γ ), the one-dimensional Hausdorff measure in R

2. Model (1) has attractive properties
even though finding a globally optimal solution remains an open problem and it is an active
area of research. A recent overview can be found in [1]. For image segmentation, the Chan–
Vese model [14] pioneered a simplification of functional (1) where Γ partitions the image
domain into two constant segments and thus ∇g = 0 on Ω \ Γ . More generally, for K
constant regions Ωi , i ∈ {1, . . . , K }, the multiphase piecewise constant Mumford–Shah
model [46] reads as

EPCMS

(
{Ωi , ci }Ki=1

)
= λ

2

K∑
i=1

∫
Ωi

( f − ci )
2dx + 1

2

K∑
i=1

Per(Ωi ), (2)

where Per(Ωi ) is the perimeter of Ωi in Ω , all Ωi ’s are pairwise disjoint and Ω = ⋃K
i=1 Ωi .

The Chan–Vese model where K = 2 in (2) has many applications for two-phase image
segmentation. Model (2) is a nonconvex problem, so the obtained solutions are in general
localminimizers. To overcome the problem, convex relaxation approaches [4,9,12,36], graph
cut method [22] and fuzzy membership functions [28] were proposed.

After [14], many approaches have decomposed the segmentation process into several
steps and here we give a brief overview of recent work in this direction. The paper [25]
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performs a simultaneous segmentation of the input image into arbitrarily many pieces using
a modified version of model (1) and the final segmented image results from a stopping
rule using a multigrid approach. In [27], after involving a bias field estimation, a level set
segmentation method dealing with images with intensity inhomogeneity was proposed and
applied toMRI images. In [8], an initial hierarchy of regions was obtained by greedy iterative
region merging using model (2); the final segmentation is obtained by thresholding this
hierarchy using hypothesis testing. The paper [2] first determined homogeneous regions
in the noisy image with a special emphasis on topological changes; then each region was
restored usingmodel (2). Furthermultistagemethods extendingmodel (2) can be found in [42]
where wavelet frames were used, and in [7] which was based on iterative thresholding of the
minimizer of the ROF functional [39], just to cite a few. In the discrete setting, the piecewise
constant Mumford–Shah model (2) amounts to the classical Potts model [37]. The use of
this kind of functionals for image segmentation was pioneered by Geman and Geman [19].
In [41], a coupled Potts model was used for direct partitioning of images using a convergent
minimization scheme. In [6], a conceptually different two-stage method for the segmentation
of gray-scale images was proposed. In the first stage, a smoothed solution g is extracted from
the given image f by minimizing a non-tight convexification of the Mumford–Shah model
(1). The segmented image was obtained in the second stage by applying a thresholding
technique to g. This approach was extended in [11] to images corrupted by Poisson and
Gamma noises. Since the basic concept of our method in this paper is similar, we will give
more details on [6,11] in Sect. 2.

Extending or conceiving segmentation methods for color images is not a simple task
since one needs to discriminate segments with respect to both luminance and chrominance
information. The two-phase Chan–Vese model [14] was generalized to deal with vector-
valued images in [13] by combining the information in the different channels using the data
fidelity term. Many methods are applied in the usual RGB color space [5,13,16,23,25,31,
36,41], among others. It is often mentioned that the RGB color space is not well adapted to
segmentation because for real-world images theR,G andB channels can be highly correlated.
In [38], RGB images are transformed into HSI (hue, saturation, and intensity) color space
in order to perform segmentation. In [2] a general segmentation approach was developed for
gray-value images and further extended to color images in theRGB, theHSV (hue, saturation,
and value) and the chromaticity–brightness (CB) color spaces. However, a study on this point
in [34] has shown that the Lab (perceived lightness, red-green and yellow-blue) color space
defined by the Commission Internationale de l’Eclairage (CIE) is better adapted for color
image segmentation than the RGB and the HSI color spaces. In [8] RGB input images were
first converted to Lab space. In [47] color features were described using the Lab color space
and texture using histograms in RGB space.

A careful examination of the methods that transform a given RGB image to another
color space (HSI, CB, Lab, …) before performing the segmentation task has shown that
these algorithms are always applied only to noise-free RGB images (though these images
unavoidably contain quantization and compression noise). For instance, this is the case of
[2,8,38,47], amongothers.One of themain reasons is that if the inputRGB image is degraded,
the degradation would be hard to control after a transformation to another color space [34].
Our goal is to develop an image segmentation method that has the following properties:

(i) work on vector-valued (color) images possibly corrupted with noise, blur and missing
data;

(ii) initialization independent and non-supervised (the number of segments is not fixed in
advance);
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(a) Given noisy image (b) Using only RGB space (c) Using RGB+Lab space

Fig. 1 Segmentation results for a noisy image (a) without the dimension lifting in Stage 2 (b) and with Stage
2 (c)

(iii) take into account perceptual edges between colors and between intensities so as to
detect vector-valued objects with edges and also objects without edges;

(iv) obtain an image adapted for segmentation using convex methods;
(v) the segmentation is done at the last stage: no need to solve the previous stage when the

number of segments required is changed.

Contributions The main contribution of this paper is to propose a segmentation method
having all these properties. Goals (a)–(d) lead us to explore possible extensions of themethods
[6,11] to vector-valued (color) images. Goal (e) requires finding a way to use information
from perceptual color spaces even though our input images are corrupted; see goal (a). Let
V1 and V2 be two color spaces. Our method has the following 3 steps:

1. Let the given degraded image be in V1. The convex variational model [6,11] is applied
in parallel to each channel of V1. This yields a restored smooth image. We show that the
model has unique solution.

2. The second stage consists of color dimension lifting:we transform the smooth color image
obtained at Stage 1 to a secondary color space V2 that provides us with complementary
information. Then we combine these images as a new vector-valued image composed of
all the channels from color spaces V1 and V2.

3. According to the desired number of phases K , we apply a multichannel thresholding to
the combined V1–V2 image to obtain a segmented image.

We call our method “SLaT” for Smoothing, Lifting and Thresholding. Unlike the methods
that perform segmentation in a different color space like [2,8,38,45,47], we can deal with
degraded images thanks to Stage 1 which yields a smooth image that we can transform to
another color space. We will fix V1 to be the RGB color space since one usually has RGB
color images.We use the Lab color space [30] as the secondary color space V2 since it is often
recommended for color segmentation [8,16,34]. The crucial importance of the dimension
lifting Stage 2 is illustrated in Fig. 1 which shows the results without Stage 2, i.e. V2 = ∅
(middle) or with Stage 2 (right). To the best of our knowledge, it is the first time that two
color spaces are used jointly in variational methods for segmentation.

This provides us with additional information on the color image so that in all cases we
can obtain very good segmentation results. The number of phases K is needed only in Stage
3. Its value can reasonably be selected based on the RGB image obtained at Stage 1.

Extensive numerical tests on synthetic and real-world images have shown that our method
outperforms state-of-the-art variational segmentation methods like [28,36,41] in terms of
segmentation quality, speed and parallelism of the algorithm, and the ability to segment
images corrupted by different kind of degradations.
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Outline In Sect. 2, we briefly review the models in [6,11]. Our SLaT segmentation method is
presented in Sect. 3. In Sect. 4, we provide experimental results on synthetic and real-world
images. Conclusion remarks are given in Sect. 5.

2 Review of the Two-Stage Segmentation Methods in [6,11]

The methods in [6,11] for the segmentation of gray-scale images are motivated by the
observation that one can obtain a good segmentation by properly thresholding a smooth
approximation of the given image. Thus in their first stage, these methods solve a minimiza-
tion problem of the form

inf
g∈W 1,2(Ω)

{
λ

2

∫
Ω

Φ( f, g)dx + μ

2

∫
Ω

|∇g|2dx +
∫

Ω

|∇g|dx
}

, (3)

where Φ( f, g) is the data fidelity term, μ and λ are positive parameters. We note that the
model (3) is a convex non-tight relaxation of the Mumford–Shah model in (1). Paper [6]
considers Φ( f, g) = ( f − Ag)2 where A is a given blurring operator; when f is degraded
by Poisson or Gamma noise, the statistically justified choice Φ( f, g) = Ag − f log(Ag) is
used in [11]. Under a weak assumption, the functional in (3) has a unique minimizer, say ḡ,
which is a smooth approximation of f . The second stage is to use the K-means algorithm
[24] to determine the thresholds for segmentation. Thesemethods have important advantages:
they can segment degraded images and the minimizer ḡ is unique. Further, the segmentation
stage being independent from the optimization problem (3), one can change the number of
phases K without solving (3) again.

3 SLaT: Our Segmentation Method for Color Images

Let f = ( f1, . . . , fd) be a given color image with channels fi : Ω → R, i = 1, · · · , d .
For f an RGB image, d = 3. This given image f is typically a blurred and noisy version of
an original unknown image. It can also be incomplete: we denote by Ω i

0 the open nonempty
subset of Ω where the given fi is known for channel i . Our SLaT segmentation method
consists of three stages described next.

3.1 First Stage: Recovery of a Smooth Image

First, we restore each channel fi of f separately by minimizing the functional E below

E(gi ) = λ

2

∫
Ω

ωi · Φ( fi , gi )dx + μ

2

∫
Ω

|∇gi |2dx +
∫

Ω

|∇gi |dx, i = 1, . . . , d, (4)

where | · | stands for Euclidian norm and ωi (·) is the characteristic function of Ω i
0, i.e.

ωi (x) =
{
1, x ∈ Ω i

0,

0, x ∈ Ω \ Ω i
0.

(5)

For Φ in (4) we consider the following options:

(i) Φ( f, g) = ( f − Ag)2, the usual choice;
(ii) Φ( f, g) = Ag − f log(Ag) if data are corrupted by Poisson noise.
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Theorem 1 below proves the existence and the uniqueness of the minimizer of (4). In view
of (4) and (5), we define the linear operator (ωiA) by

(ωiA) : u(x) ∈ L2(Ω) 	→ ωi (x)(Au)(x) ∈ L2(Ω). (6)

Theorem 1 LetΩ be a bounded connected open subset ofR2 with a Lipschitz boundary. Let
A : L2(Ω) → L2(Ω) be bounded and linear. For i ∈ {1, . . . , d}, assume that fi ∈ L2(Ω)

and that Ker(ωiA)
⋂

Ker(∇) = {0} where Ker stands for null-space. Then (4) with either
Φ( fi , gi ) = ( fi − Agi )2 or Φ( fi , gi ) = Agi − fi log(Agi ) has a unique minimizer ḡi ∈
W 1,2(Ω).

Proof First considerΦ( fi , gi ) = ( fi−Agi )2.Using (6), E(gi ) defined in (4) can be rewritten
as

E(gi ) = λ

2

∫
Ω

(ωi · fi − (ωiA)gi )
2dx + μ

2

∫
Ω

|∇gi |2dx +
∫

Ω

|∇gi |dx . (7)

Noticing that ωi · fi ∈ L2(Ω) and that (ωiA) : L2(Ω) → L2(Ω) is linear and bounded, the
statement follows from [6, Theorem 2.4.].

Next consider that Φ( fi , gi ) = Agi − fi log(Agi ). Then

E(gi ) = λ

2

∫
Ω

ωi · (Agi ) − (ωi · fi ) log(Agi )dx

+μ

2
‖∇gi‖2L2(Ω)

+ ‖∇gi‖L2(Ω). (8)

1. Existence Since W 1,2(Ω) is a reflective Banach space and E(gi ) is convex lower semi-
continuous, by Ekeland and Temam [17, Proposition 1.2] we need to prove that E(gi )
is coercive on W 1,2(Ω), i.e. that E(gi ) → +∞ as ‖gi‖W 1,2(Ω) := ‖gi‖L2(Ω) +
‖∇gi‖L2(Ω) → +∞.
The functionAgi 	→ (Agi − f logAgi ) is strictly convex with a minimizer pointwisely
satisfying Agi = f ∈ [0, 1], hence Φ( fi , gi ) ≥ 0. Thus ‖∇gi‖L2(Ω) is upper bounded
by E(gi ) > 0 for any gi ∈ W 1,2(Ω) and f �= 0. Using the Poincaré inequality, see [18],
we have:

‖gi − giΩ ‖L2(Ω) ≤ C1‖∇gi‖L2(Ω) ≤ C1E(gi ), (9)

where C1 > 0 is a constant and giΩ = 1
|Ω|

∫
Ω
gidx . Let us set C2 := (

1 − 1
e ‖ fi‖∞

)
.

We have C2 > 0 because ‖ fi‖∞ ≤ 1. Recall the fact that t
e ≥ log t for any t > 0 which

can be easily verified by showing that t/e − log t is convex for t > 0 with minimum at
e. Hence we have

ωi · Φ( fi , gi ) ≥ (ωiA) gi − 1

e
(ωi · fi )Agi

= ωi · (1 − 1

e
fi )Agi ≥ C2 (ωiA) gi

which should be understood pointwisely. Hence,

‖(ωiA) gi‖L1(Ω) ≤ 2

C2λ
E(gi ). (10)

Let C3 := ‖(ωiA)1‖L1(Ω) where 1(x) = 1 for any x ∈ Ω . Using Ker(∇) =
{u ∈ L2(Ω) : u = c 1 a.e. for x ∈ Ω, c ∈ R} together with the assumption
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Ker(ωiA)
⋂

Ker(∇) = {0} one has C3 > 0. Using (10) together with the fact that
giΩ > 0 yields

|giΩ | ‖(ωiA)1‖L1(Ω) = |giΩ | C3

= ‖ωi · (A1giΩ )‖L1(Ω)

≤ 2

C2λ
E(gi ),

and thus

|giΩ | ≤ 2

C2C3λ
E(gi ).

Applying the triangular inequality in (9) gives ‖gi‖L2(Ω) − |giΩ | ≤ C1‖∇gi‖L2(Ω).
Hence

‖gi‖L2(Ω) ≤ |giΩ | + C1‖∇gi‖L2(Ω) ≤
(

2

C2C3λ
+ 1

)
E(gi ).

Comparing with (9) yet again shows that we have obtained

‖gi‖W 1,2(Ω) = ‖gi‖L2(Ω) + ‖∇gi‖L2(Ω)

≤
(

2

C2C3λ
+ 1 + C1

)
E(gi ).

Therefore, E is coercive.
2. Uniqueness Suppose ḡi1 and ḡi2 are both minimizers of E(gi ). The convexity of E

and the strict convexity of Agi 	→ (Agi − f logAgi ) entail Aḡi1 = Aḡi2 on Ω i
0 and

∇ ḡi1 = ∇ ḡi2 . Further, the assumption on Ker(ωiA)
⋂

Ker(∇) shows that ḡi1 = ḡi2 . 
�
The condition Ker(ωiA)

⋂
Ker(∇) = {0} is mild which means that Ker(ωiA) does not

contain constant images.

The discrete model In the discrete setting, Ω is an array of pixels, say of size M × N , and
our model (4) reads as

E(gi ) = λ

2
Ψ ( fi , gi ) + μ

2
‖∇gi‖2F + ‖∇gi‖2,1, i = 1, . . . , d. (11)

Here

Ψ ( fi , gi ) :=
∑
j∈Ω

(
ωi · ( fi − Agi )

2)
j ,

or

Ψ ( fi , gi ) :=
∑
j∈Ω

(
ωi · (Agi − fi log(Agi )

))
j .

The operator∇ = (∇x ,∇y) is discretized using backward differences with Neumann bound-
ary conditions. Further, ‖ · ‖2F is the Frobenius norm, so

‖∇gi‖2F =
∑
j∈Ω

(
(∇x gi )

2
j + (∇ygi )

2
j

)
,

and ‖∇gi‖2,1 is the usual discretization of the TV semi-norm given by
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(a) R channel ḡ1 (b) G channel ḡ2 (c) B channel ḡ3

(d) L channel ḡt1 (e) a channel ḡt2 (f) b channel ḡt3

Fig. 2 Channels comparison for the restored (smoothed) ḡ in Stage 1 used in Fig. 1. a–c The R, G and B
channels of ḡ; d–f the L, a and b channels of ḡt—the Lab transform of ḡ. Both ḡ and ḡt were used to obtain
the result in Fig. 1c

‖∇gi‖2,1 =
∑
j∈Ω

√
(∇x gi )2j + (∇ygi )2j .

For each i , the minimizer ḡi can be computed easily using different methods, for example
the primal-dual algorithm [10,15], alternating direction method with multipliers (ADMM)
[3], or the split-Bregman algorithm [20]. Then we rescale each ḡi onto [0, 1] to obtain
{ḡi }di=1 ∈ [0, 1]d .
3.2 Second Stage: Dimension Lifting with Secondary Color Space

For the ease of presentation, in the following, we assume V1 is the RGB color space. The goal
in color segmentation is to recover segments both in the luminance and in the chromaticity
of the image. It is well known that the R, G and B channels can be highly correlated. For
instance, the R, G and B channels of the output of Stage 1 for the noisy pyramid image in
Fig. 1 are depicted in Fig. 2a–c. One can hardly expect to make a meaningful segmentation
based on these channels—see the result in Fig. 1b, as well as Fig. 8 where other contemporary
methods are compared.

Stage 1 provides us with a restored smooth image ḡ. In Stage 2, we perform dimension
lifting in order to acquire additional information on ḡ from a different color space that will
help the segmentation in Stage 3. The choice is delicate. Popular choices of less-correlated
color spaces include HSV, HSI, CB and Lab, as described in the Introduction. The Lab color
spacewas created by the CIEwith the aim to be perceptually uniform [30] in the sense that the
numerical difference between two colors is proportional to perceived color difference. This
is an important property for color image segmentation, see e.g. [8,16,34]. For this reason in
the following we use the Lab as the additional color space. Here the L channel correlates to
perceived lightness, while the a and b channels correlate approximately with red-green and
yellow-blue, respectively. As an example we show in Fig. 2d–f the L, a and b channels of
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the smooth ḡ in Stage 1 for the noisy pyramid in Fig. 1a. From Fig. 2 one can see that the
collection of 6 channels gives different information with respect to a further segmentation.
The result in Fig. 1c have shown that this additional color space helps the segmentation
significantly.

Let ḡ′ denote Lab transform of ḡ. In order to compare ḡ′ with ḡ ∈ [0, 1]3, we rescale on
[0,1] the channels of ḡ′ which yields an image denoted by ḡt ∈ [0, 1]3. By stacking together
ḡ and ḡt we obtain a new vector-valued image ḡ∗ with 2d = 6 channels:

ḡ∗ := (
ḡ1, ḡ2, ḡ3, ḡ

t
1, ḡ

t
2, ḡ

t
3

)
.

Our segmentation in Stage 3 is done on this ḡ∗.

Remark 1 The transformation from RGB to Lab color space is based on the intermediate
CIE XYZ tristimulus values. The transformation of ḡ (in RGB color space) to g̃ in XYZ is
given by a linear transform g̃ = Hḡ. Then the Lab transform ḡ′ of ḡ, see e.g., [29, chapter
1], is defined in terms of g̃ as

ḡ′
1 =

{
116 3

√
g̃2/Yr , if g̃2/Yr > 0.008856,

903.3g̃2/Yr , otherwise,

ḡ′
2 = 500 (ρ(g̃1/Xr ) − ρ(g̃2/Yr )) , ḡ′

3 = 200 (ρ(g̃2/Yr ) − ρ(g̃3/Zr )) ,

where ρ(x) = 3
√
x , if x > 0.008856, otherwise ρ(x) = (7.787x + 16)/116, and Xr , Yr

and Zr are the XYZ tristimulus values of the reference white point. The cube root function
compresses some values more than others and the transform corresponds to the CIE chro-
maticity diagram. The transform takes into account the observation that the human eye is
more sensitive to changes in chroma than to changes in lightness. As mentioned before, the
Lab space is perceptually uniform [34]. So the Lab channels provide important complemen-
tary information to the restored RGB image ḡ. Following an aggregation approach, we use
all channels of the two color spaces.

3.3 Third Stage: Thresholding

Given the vector-valued image ḡ∗ ∈ [0, 1]2d for d = 3 from Stage 2 we want now to segment
it into K segments. Here we design a properly adapted strategy to partition vector-valued
images into K segments. It is based on the K -means algorithm [24] because of its simplicity
and good asymptotic properties. According to the value of K , the algorithm clusters all points
of {ḡ∗(x) : x ∈ Ω} into K Voronoi-shaped cells, say Σ1 ∪ Σ2 · · · ∪ ΣK = Ω . Then we
compute the mean vector ck ∈ R

6 on each cell Σk by

ck =
∫
Σk

ḡ∗dx∫
Σk

dx
, k = 1, . . . , K . (12)

We recall that each entry ck[i] for i = 1, · · · , 6 is a value belonging to {R,G,B,L, a, b},
respectively. Using {ck}Kk=1, we separate ḡ

∗ into K phases by

Ωk :=
{
x ∈ Ω : ‖ḡ∗(x) − ck‖2 = min

1≤ j≤K
‖ḡ∗(x) − c j‖2

}
,

k = 1, . . . , K . (13)

It is easy to verify that {Ωk}Kk=1 are disjoint and that
⋃K

k=1 Ωk = Ω . The use of the 
2
distance here follows from our model (4) as well as from the properties of the Lab color
space [8,30].
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3.4 The SLaT Algorithm

We summarize our three-stage segmentation method for color images in Algorithm 1. Like
the Mumford–Shah model, our model (4) has two parameters λ and μ. Extensive numerical
tests have shown that we can fix μ = 1. We choose λ empirically; the method is quite stable
with respect to this choice. We emphasize that our method is quite suitable for parallelism
since {ḡi }3i=1 in Stage 1 can be computed in parallel.

Algorithm 1: Three-stage Segmentation Method (SLaT) for Color Images

Input: Given color image f ∈ V1 and color space V2.
Output:Phases Ωk , k = 1, . . . , K .

1: Stage one: compute ḡi the minimizer in (4), rescale it on [0, 1] for i = 1, 2, 3 and set ḡ = (ḡ1, ḡ2, ḡ3)
in V1

2: Stage two:
compute ḡ′ ∈ V2, the transform of ḡ in V2, to obtain ḡt = (ḡt1, ḡ

t
2, ḡ

t
3); form ḡ∗ =

(ḡ1, ḡ2, ḡ3, ḡ
t
1, ḡ

t
2, ḡ

t
3)

3: Stage three:
choose K , apply the K -means algorithm to obtain {ck }Kk=1 in (12) andfind the segmentsΩk , k = 1, . . . , K
using (13).

4 Experimental Results

In this section, we compare our SLaT method with three state-of-the-art variational color
segmentation methods [28,36,41]. Method [28] uses fuzzy membership functions to approx-
imate the piecewise constant Mumford–Shah model (2). Method [36] uses a primal-dual
algorithm to solve a convex relaxation of model (2) with a fixed code book. Method [41]
uses an ADMM algorithm to solve the model (2) (without phase number K ) with struc-
tured Potts priors. These methods were originally designed to work on color images with
degradation such as noise, blur and information loss. The codes we used were provided
by the authors, and the parameters in the codes were chosen by trial and error to give the

(i) 6-phase (ii) 4-quadrant (iii) Rose (iv) Sunflower (v) Pyramid

(vi) Kangaroo (vii) Vase (viii) Elephant (ix) Man

Fig. 3 Images used in our tests

123



J Sci Comput (2017) 72:1313–1332 1323

loss + noise

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 4 Six-phase synthetic image segmentation (size: 100 × 100). a Given Gaussian noisy image with mean
0 and variance 0.1; b given Gaussian noisy image with 60% information loss; c given blurry image with
Gaussian noise; (a1–a4), (b1–b4) and (c1-c4): Results of methods [28,36,41], and our SLaT on (a, b, c),
respectively

best results of each method. For our model (4), we fix μ = 1 and only vary λ. In the seg-
mented figures below, each phase is represented by the average intensity of that phase in the
image. All the results were tested on a MacBook with 2.4 GHz processor and 4GB RAM,
and Matlab R2014a. We present the tests on two synthesis and seven real-world images
given in Fig. 3 [images (v)–(ix) are chosen from the Berkeley Segmentation Dataset and
Benchmark1]. The images are all in RGB color space. We considered combinations of three
different forms of image degradation: noise, information loss, and blur. The Gaussian and
Poisson noisy images are all generated using Matlab function imnoise. For Gaussian
noisy images, the Gaussian noise we added are all of mean 0 and variance 0.001 or 0.1. To
apply the Poisson noise, we linearly stretch the given image f to [1, 255] first, then linearly
stretch the noisy image back to [0, 1] for testing. The mean of the Poisson distribution is
10. For information loss case, we deleted 60% pixels values randomly. The blur in the test
images were all obtained by a vertical motion-blur with 10 pixels length. In Stage 1 of our
method, the primal-dual algorithm [10,15] and the split-Bregman algorithm [20] are adopted
to solve (4) for Φ( f, g) = Ag − f log(Ag) and Φ( f, g) = ( f − Ag)2, respectively. We

terminate the iterations when
‖g(k)

i −g(k+1)
i ‖2

‖g(k+1)
i ‖2

< 10−4 for i = 1, 2, 3 or when the maximum

iteration number 200 is reached. In Stage 2, the transformation fromRGB to Lab color spaces
is implemented by Matlab build-in function makecform(’srgb2lab’). In Stage 3,
given the user defined number of phases K , the thresholds are determined automatically by
Matlab K-means function kmeans. Since ḡ∗ is calculated prior to the choice of K , users
can try different K and segment the image all without re-computing ḡ∗.

1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Table 1 Comparison of percentage of correct pixels for the 6-phase synthetic image

Method 1 (%) Method 2 (%) Method 3 (%) Our SLaT method (%)

Figure 4

(a) 70.11 99.53 82.55 99.51

(b) 13.90 16.92 85.04 99.25

(c) 28.08 98.58 74.77 98.88

Average 37.36 71.68 80.79 99.21

Methods 1–3 are the methods in [28,36,41], respectively

Table 2 Iteration numbers and CPU time in seconds

Method 1 Method 2 Method 3 Our SLaT method
Iter. Time Iter. Time Iter. Time Iter. for {gi }3i=1 Time

Figure 4

(a) 200 5.03 150 6.02 20 4.40 (92, 86, 98) 2.53

(b) 200 5.65 150 4.01 16 3.65 (98, 95, 106) 2.73

(c) 200 6.54 150 4.03 17 4.18 (97, 95, 94) 2.48

Figure 5

(a) 200 13.92 150 13.89 17 16.89 (54, 54, 51) 5.47

(b) 200 13.16 150 14.32 14 13.62 (101, 92, 88) 7.74

(c) 200 17.68 150 16.37 16 15.75 (154, 147, 142) 9.89

Figure 6

(a) 200 10.58 150 7.53 19 11.62 (50, 73, 93) 5.11

(b) 200 9.59 150 7.36 20 14.64 (84, 105, 115) 6.43

(c) 200 10.39 150 7.39 19 9.76 (200, 200, 200) 17.75

Figure 7

(a) 200 44.26 150 66.01 19 106.35 (97, 106, 109) 25.13

(b) 200 52.12 150 54.76 20 110.68 (148, 161, 171) 38.30

(c) 200 44.51 150 55.09 18 101.09 (116, 125, 124) 30.00

Figure 8

(a) 200 17.76 150 19.02 16 25.08 (80, 83, 99) 20.99

(b) 200 18.41 150 16.45 16 28.33 (109, 114, 129) 22.45

(c) 200 18.02 150 18.21 15 31.93 (127, 120, 144) 30.92

Figure 9

(a) 200 18.47 150 19.62 15 27.56 (47, 42, 62) 10.98

(b) 200 17.35 150 16.63 15 26.63 (86, 85, 93) 15.93

(c) 200 18.07 150 17.61 15 23.13 (48, 48, 52) 15.02
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Table 2 continued

Method 1 Method 2 Method 3 Our SLaT method
Iter. Time Iter. Time Iter. Time Iter. for {gi }3i=1 Time

Figure 10

(a) 200 24.57 150 31.64 20 56.28 (101, 95, 94) 27.29

(b) 200 27.15 150 28.92 21 63.02 (154, 142, 131) 27.89

(c) 200 26.54 150 29.79 20 55.45 (161, 147, 141) 33.79

Figure 11

(a) 200 26.62 150 32.87 17 87.13 (35, 35, 36) 14.23

(b) 200 24.77 150 26.39 16 60.98 (102, 102, 103) 18.99

(c) 200 25.26 150 31.16 18 77.73 (48, 50, 58) 18.15

Figure 12

(a) 200 32.23 150 41.91 19 47.12 (106, 102, 108) 21.93

(b) 200 34.83 150 44.70 20 53.48 (116, 116, 117) 23.95

(c) 200 35.01 150 49.93 19 49.14 (67, 65, 63) 21.04

Average 200 22.17 150 25.25 18 41.69 (99, 99, 104) 17.67

Methods 1–3 are the methods in [28,36,41], respectively

loss + noise

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 5 Four-phase synthetic image segmentation (size: 256×256). a Given Gaussian noisy image with mean
0 and variance 0.001; b given Gaussian noisy image with 60% information loss; c given blurry image with
Gaussian noise; (a1–a4), (b1–b4) and (c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c),
respectively
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(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 6 Two-phase rose segmentation (size: 303× 250). a Given Poisson noisy image; b given Poisson noisy
image with 60% information loss; c given blurry image with Poisson noise; (a1–a4), (b1–b4) and (c1–c4):
Results of methods [28,36,41], and our SLaT on (a, b, c), respectively

4.1 Segmentation of Synthetic Images

Example 1. Six-phase segmentation Figure 4 gives the result on a six-phase synthetic image
containing five overlapping circles with different colors. The image is corrupted by Gaussian
noise, information loss, and blur, see Fig. 4a–c respectively. From the figures, we see that
method Li et al. [28] and method Storath and Weinmann [41] both fail for the three exper-
iments while method Pock et al. [36] fails for the case of information lost. Table 1 shows
the segmentation accuracy by giving the ratio of the number of correctly segmented pixels
to the total number of pixels. The best ratios are printed in bold face. From the table, we
see that our method gives the highest accuracy for the case of information loss and blur. For
denoising, method [36] is 0.02% better. Table 2 gives the iteration numbers of each method
and the CPU time cost. We see that our method outperforms the others compared. Moreover,
if using parallel technique, the time can be reduced roughly by a factor of 3.

Example 2. Four-phase segmentation Our next test is on a four-phase synthetic image
containing four rectangles with different colors, see Fig. 5. The variable illumination in the
figure make the segmentation very challenging. The results shows that in all cases (noise,
information loss and blur) all three competingmethods [28,36,41] failwhile ourmethod gives
extremely good results. Table 2 shows further that the time cost of our method is the least.

4.2 Segmentation of Real-World Color Images

In this section, we compare our method with the three competing methods for seven real-
world color images in two-phase and multiphase segmentations, see Figs. 6, 7, 8, 9, 10, 11,
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loss + noise

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 7 Four-phase sunflower segmentation (size: 375×500). a Given Gaussian noisy image with mean 0 and
variance 0.1; b given Gaussian noisy image with 60% information loss; c given blurry image with Gaussian
noise; (a1–a4), (b1–b4) and (c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c), respectively

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 8 Two-phase pyramid segmentation (size: 321 × 481). a Given Gaussian noisy image with mean 0 and
variance 0.001; b given Gaussian noisy image with 60% information loss; c given blurry image with Gaussian
noise; (a1–a4), (b1–b4) and (c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c), respectively

and 12. Moreover, for the images from the Berkeley Segmentation Dataset and Benchmark
used in Figs. 8, 9, 10, 11, and 12, the segmentation results by humans are shown in Fig. 13
as ground truth for visual comparison purpose. We see from the figures that our method
is far superior than those by the competing methods, and our results are consistent with
the segmentations provided by humans. The timing of the methods given in Table 2 shows
that our method in most of the cases gives the least timing. Again, we emphasize that our
method is easily parallelizable. All presented experiments clearly show that all goals listed
in Introduction are fulfilled.
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(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 9 Two-phase kangaroo segmentation (size: 321 × 481). a Given Poisson noisy image; b given Poisson
noisy image with 60% information loss; c given blurry image with Poisson noise; (a1–a4), (b1–b4) and
(c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c), respectively

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)
loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 10 Three-phase vase segmentation (size: 481 × 321). a Given Gaussian noisy image with mean 0 and
noise 0.001; b given Gaussian noisy image with 60% information loss; c given blurry image with Gaussian
noise; (a1–a4), (b1–b4) and (c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c), respectively
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(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 11 Three-phase elephant segmentation (size: 321×481). a Given Poisson noisy image; b given Poisson
noisy image with 60% information loss; c given blurry image with Poisson noise; (a1–a4), (b1–b4) and
(c1–c4): Results of methods [28,36,41], and our SLaT on (a, b, c), respectively

(a) Noisy image (a1) (a2) (a3) (a4)

(b) Information (b1) (b2) (b3) (b4)loss + noise

(c) Blur + noise (c1) (c2) (c3) (c4)

Fig. 12 Four-phase man segmentation (size: 321×481). a Given Poisson noisy image; b given Poisson noisy
image with 60% information loss; c given blurry image with Poisson noise; (a1–a4), (b1–b4) and (c1–c4)
results of methods [28,36,41], and our SLaT on (a, b, c), respectively
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Pyramid Kangaroo Vase Elephant Man

Fig. 13 Segmentation results by humans on test images used in Figs. 8, 9, 10, 11, and 12. First to third rows:
original images, segmentation results by human with low segments and with high segments, respectively

5 Conclusions

In this paper we proposed a three-stage image segmentation method for color images. At
the first stage of our method, a convex variational model is used in parallel on each channel
of the color image to obtain a smooth color image. Then in the second stage we transform
this smooth image to a secondary color space so as to obtain additional information of the
image in the less-correlated color space. In the last stage, multichannel thresholding is used
to threshold the combined image from the two color spaces. The new three-stage method,
named SLaT for Smoothing, Lifting and Thresholding, has the ability to segment images
corrupted by noise, blur, or when some pixel information is lost. Experimental results on
RGB images coupled with Lab secondary color space demonstrate that our method gives
much better segmentation results for images with degradation than some state-of-the-art
segmentation models both in terms of quality and CPU time cost. Our future work includes
finding an automatical way to determine λ and possibly an improvedmodel (4) that can better
promote geometry. It is also interesting to optimize channels from the selected color spaces,
and analyze the effect in color image segmentation.
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