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Abstract A p-adaptive continuous residual distribution scheme is proposed in this paper.
Under certain conditions, primarily the expression of the total residual on a given element K
into residuals on the sub-elements of K and the use of a suitable combination of quadrature
formulas, it is possible to change locally the degree of the polynomial approximation of the
solution. The discrete solution can then be considered non continuous across the interface of
elements of different orders, while the numerical scheme still verifies the hypothesis of the
discrete Lax–Wendroff theorem which ensures its convergence to a correct weak solution.
We detail the theoretical material and the construction of our p-adaptive method in the frame
of a continuous residual distribution scheme. Different test cases for non-linear equations at
different flow velocities demonstrate numerically the validity of the theoretical results.

Keywords p-Adaptation · Continuous and discontinuous finite elements · Residual
distribution schemes · Non linear equations

1 Introduction

Because of their potential in delivering higher accuracy with lower cost than low order meth-
ods, high-order methods for computational fluid dynamics (CFD) have obtained considerable
attention in the past two decades [28]. By high order, we mean third order or higher. Most
industrial codes used today for CFD simulations are based upon second-order finite volume
methods (FVM), finite difference methods (FDM), or finite element methods (FEM) [28].
As second-order methods are used in most CFD codes, some very complex flows simu-
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lations might remain out of their reach. Indeed, in some cases, second-order methods are
still too much dissipative and as a consequence they require much finer meshes and become
too expensive even on modern supercomputer clusters. In order to deal with a large and
diverse range of problems, lots of researches have been conducted with the aim of designing
robust and stable high order methods, see [16] and [26]. High-order methods allow the use of
coarser meshes [26–28], high-order boundary representation [20], and improve the accuracy
of the solutions [11,26,28]. Because of their potential, we believe that the next generation
of CFD solvers will have to be based upon high order methods. Besides the use of higher
order methods, a very promising approach is the use of hp-adaptation to change locally the
order of accuracy and the size of the mesh according to the solution [19]. Among high-order
methods, theDiscontinuousGalerkin (DG)method [15,18,23], the residual distribution (RD)
method [1,4,5,12,22] and the hp finite element method (hp-FEM) [8,9,14,24] have attracted
a lot of interest in the recent years. The DG method has a compact stencil regardless the
order of the polynomials representing the solution [17]. This very local formulation leads
to a great flexibility, especially for the parallelization of its implementation. However, DG
methods suffer from the rapid increase of the number of nodes [10], and then, simulations
in three-dimensional space may quickly become too expensive. A possible way to overcome
this problem is to use p-adaptation [9] (which is conceptually easy with DGmethods), where
the local approximation order p (hence the term p-adaptation) is dictated by the flow field.
The optimal solution is hp-adaptation (mesh and polynomial adaptations) to achieve the best
accuracy with the minimum cost. In smooth regions, p-adaptation is preferred, whereas in
discontinuous regions, h-adaptation is preferred.

Another possible approach is the class of residual distribution schemes. RD methods can
be easily stabilized and show good shock capturing abilities [22]. They offer a very compact
stencil like DG methods, but with a smaller number of nodes [5]. The drawback is that
to achieve this low number of nodes, the continuity of the approximation is required and
consequently, the use of p-adaptation with continuous finite elements in the frame of RD
schemes is a priori not possible as this would violate the continuity requirement.

The aim of this work is to demonstrate that it is indeed possible to use p-adaptation with
continuous finite elements in the frame of RD schemes. Such an approach, while offering
the same advantages as classical residual distribution schemes (like among others the low
number of nodes, the non-oscillatory behavior and the accuracy on smooth problems [5]),
exhibits some interesting advantages thanks to p-adaptation, like an improved convergence
and better shock capturing abilities. The practical implementation of p-adaptation for RD
schemes results in a residual based solver that can use high order elements in smooth regions,
and low order elements in discontinuous regions. In this sense, this approach is following the
recommendations for the next generation of CFD solvers [28].

The hp finite element method can be traced back to the work of I. Babuska et al. [9]. The
authors presented an evolution of the finite element method that showed super convergent
properties thanks to a suitable combination of h-adaptation and p-adaptation. Of particular
interest to our work, the hp finite element method applied to the simulation of turbulent and
laminar flows presented in [8], is a method that couples dynamic adaptation techniques with a
high order streamline/upwind Petrov–Galerkin (SUPG) finite element scheme. This method
shares some traits with the work presented here, notably the authors try to achieve similar
goals: the construction of a high order adaptive scheme using continuous finite elements for
the simulation of fluid dynamics. But, as we will show, the construction presented by the
authors is very different from the method we present here for residual distribution schemes.

The paper is organized as follows. In Sect. 2, the mathematical problem is defined and
we recall briefly the general principles of the residual distribution schemes. In Sect. 3, we
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expose how it is theoretically possible to use p-adaptation in the frame of a continuous
Residual Distribution scheme and we propose the detailed construction of the p-adaptive RD
scheme. We present some numerical results in Sect. 4, along with some benefits brought by
p-adaptation. In conclusion, we invoke some possible future extensions and developments to
the work presented here.

2 Mathematical Problem and Residual Distribution Schemes

2.1 Basic Notions of Residual Distribution Schemes

In this section, the basic notions of RD schemes are summarized, more details can be found
in [5]. We are interested in the numerical approximation of steady hyperbolic problems of
the form

div f(u) = 0 , (1)

where u : � ⊂ R
d → R

d+2 is the vector of conservative variables, � is an open set of
R

d , d = 2, 3 is the spatial dimension and f = (f1, . . . , fd) is the vector of flux functions,
with fi (u) : � → R

d+2, i = 1, . . . , d . For convenience, the flux vector f can be written in
column:

f =
⎛
⎜⎝

f1
...

fd+2

⎞
⎟⎠ (2)

with f j=(f1 j , . . . , fd j ). Boundary conditions, that are problem dependent, are applied, we
come back to this point in Sect. 2.4.

We study in the present work the numerical solution of the compressible Euler system of
equations with the vector of unknowns

u =
⎛
⎝

ρ

ρv
E

⎞
⎠ , f =

⎛
⎝

ρv
ρv ⊗ v + p Idd×d

(E + p)v

⎞
⎠

where ρ is the density, v is the fluid velocity, p is the pressure and E = ρet is the total energy
per unit volume where et is the specific total energy. We consider a calorically perfect gas,
and the Euler equations are closed with the relations for energy

et = e + v · v
2

and e = 1

γ − 1
RT, (3)

with the thermodynamic relation of state for a perfect gas

p = ρRT (4)

with the specific heat ratio γ = 1.4, T the gas temperature and R the gas constant which is
287 N m/kg for sea-level air.

In this setting, the vector of unknowns u ∈ R
d+2 is such that ρ > 0 and e > 0. On solid

boundaries, we impose weakly no slip boundary conditions.
In this section, the discussion will stay rather general, andwewill not focus particularly on

the Euler system, but we are going to work on a generic hyperbolic system.Wewant to find an
approximate solution to Eq. (1) with boundary conditions. We assume that � is a polyhedric
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open set, more precisely we suppose that �̄ is constituted of simplices (triangles in dimension
two and tetrahedrons in dimension three). We can then consider a finite decomposition of the
domain

�̄ = ∪
K∈Th

K (5)

where K is a simplex and Th is a conforming triangulation of �̄. We associate to each
simplex K ∈ Th a finite element (K ,Pk(K )d+2, �K ) where �K denotes the set of nodes of
K defined by

�K =
{

x ∈ R
d , λ j (x) ∈ {0, 1

k
,
2

k
, . . . ,

k − 1

k
, 1}, 1 ≤ j ≤ d + 1

}
(6)

where λ j , j = 1, . . . , d + 1 are the barycentric coordinates with respect to the vertices of K
(the finite elements thus defined are affine equivalent to each other).

For practical applications, it is important to define the basis of the vector space Pk(K ). A
natural choice is made by the Lagrange basis. Another choice that will be useful in this work
is the Bézier basis. From the definition (6), any node aμ ∈ �K can be written as

aμ = 1

k

d+1∑
j=1

μ j a j , μ = (μ1, . . . , μd+1) (7)

where (a j ) j=1,...,d+1 are the vertices of K and 1
k (μ1, . . . , μd+1) are the barycentric coordi-

nates of aμ with respect to the vertices of K .
The Lagrange basis function ϕμ associated to aμ can then be written as

ϕμ =
⎛
⎝

d+1∏
j=1

(μ j !)
⎞
⎠

−1
d+1∏

j=1, μ j ≥1

μ j −1∏
i=0

(
kλ j − i

)
(8)

and the Bézier basis function Bμ associated to aμ can be written as

Bμ = k!
d+1∏
j=1

μ j !

d+1∏
j=1

λ
μ j
j . (9)

We remark that the Bézier and Lagrange basis functions sum up to unity, and that the Bézier
basis functions are positive on K .

We introduce now the global finite element space

Xh =
{

uh ∈ C0(�̄)d+2; ∀K ∈ Th, uh|K ∈ P
k(K )d+2, k ∈ N

∗} (10)

where we look for the discrete solution to equations (1). We denote by�h the set of Nh nodes
of the finite elements

�h = ∪
K∈Th

�K (11)

and from the conformity assumption of the triangulation, a Lagrange basis of Xh is
constituted of the Lagrange basis functions ψi , 1 ≤ i ≤ Nh of the finite elements
(K ,Pk(K )d+2, �K ), K ∈ Th and likewise, a Bézier basis of Xh , denoted again ψi , 1 ≤
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i ≤ Nh , is constituted of the Bézier basis functions of the finite elements. In either basis, we
can now write the approximate solution uh ∈ Xh as

uh =
∑
i∈�h

uiψi . (12)

In the Lagrange case, we have u j = uh(a j ), where a j ∈ �h is the node associated with the
global shape function ψ j as described above.

In this paper, all the numerical applications will be made with simplices, but the work
presented here can be extended to other kinds of geometric elements like hexahedrons.
We can nowwrite the discrete equations of the residual distribution scheme.Wefirst introduce
the total residual of the element K

	K (uh) =
∫

K
∇ · f(uh)dx . (13)

As Xh is a subspace of H1(�)d+2, we have

f(uh) ∈ H1(�)(d+2)×d

and so we can transform the volume integral (13) into a surface integral with the divergence
formula

	K (uh) =
∫

∂K
f(uh) · n dx (14)

where n is the exterior normal to ∂K . This is the form that is used in practice. We define as
well the boundary total residual for a boundary element (edge in dimension two and face in
dimension three) � ∈ Th ∩ ∂�̄

	� =
∫

�

(
f(u�) − f(uh)

) · n dx . (15)

Once the total residual 	K is computed, the next step is to compute the ”nodal residuals”
	K

σ (also called ”residuals” or ”sub-residuals” in the literature) that write in generic form

	K
σ = βK

σ (uh)	K (uh), σ ∈ �K . (16)

Similarly, the boundary nodal residuals 	K
σ are defined by

	�
σ = β�

σ (uh)	�(uh), σ ∈ �� (17)

where�� is the set of nodes of the face� lyingon the boundary of the domain.The coefficients
βK

σ et β�
σ are the distribution coefficients and in general they depend on the solution uh . They

are real numbers in the scalar case and are matrices in the case of a system of equations. The
nodal residuals must satisfy the conservation constraints

∑
σ∈�h

	K
σ = 	K ,∀ K ∈ Th (18)

and
∑

σ∈��

	�
σ = 	�,∀ � ∈ Th ∩ ∂�̄ . (19)
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The total residual is written with a slight abuse of notation as the integral of f(uh) · n
which is a vector valued function of size d +2.With the notation of Sect. 2.1, the total residual
is then a vector of size d + 2 where the component j, 1 ≤ j ≤ d + 2, is the integral of the
scalar product f j · n. Like the total residual, the nodal residuals are vectors of dimension
d + 2. The boundary total and nodal residuals are of the same dimension.

Finally, the residual distribution scheme reads

∀ σ ∈ �h,
∑

K , σ∈�K

	K
σ +

∑
�, σ∈��

	�
σ = 0. (20)

Before going further, let us give some examples of residual distribution schemes.

2.2 Some Particular Residual Distribution Schemes

2.2.1 The Lax–Wendroff Scheme

The Lax–Wendroff scheme is a central linear scheme, which name comes from the fact that
in its scalar version, in the case of P1 interpolation and for a constant advection speed, the
scheme coincides with the scheme named Lax–Wendroff presented in [21]. It is defined by

	K ,LW
σ = 	K

N K
dof

+
∫

�K

(
A · ∇ϕσ

)
�

(
A · ∇uh

)
dx . (21)

The scalar N K
dof is the cardinal of �K , the term A represents A = (A1, . . . , Ad) where

Ai (u) = ∂fi (u)

∂u
(22)

is the Jacobian matrix of the i-th component of the flux. The product A · ∇ϕσ is the matrix
defined by

A · ∇ϕσ =
d∑

i=1

Ai
∂ϕσ

∂xi
(23)

where ϕσ is the basis function (Lagrange or Bézier, see Sect. 2.1) associated to the node σ .
The matrix � is a scaling matrix defined by

� = 1

d
|K |

( ∑
σ∈�K

Rnσ (ū)�+
nσ

(ū)Lnσ (ū)

)−1

. (24)

In the definition above |K | is the volume of the element K , ū is the average value of the
vector of conservative variables on the element K :

ū = 1

N K
dof

∑
σ∈�K

uσ , (25)

Rnσ and Lnσ are respectively the matrices of the right and left eigenvectors of the matrix
A ·nσ defined as in (23),∧+

nσ
is the diagonal matrix with max(λnσ , 0) on the diagonal, where

the λnσ are the eigenvalues of the matrix A · nσ . The vector nσ is defined by

nσ = 1

d

∫
K

∇ϕσ dx . (26)
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The nodal residuals defined in (21) satisfy the conservation relation (18) as we have
∑

σ∈�K

∇ϕσ = 0 (27)

for the Lagrange (8) and Bézier basis functions (9).

2.2.2 The Rusanov Scheme

The Rusanov scheme is a generalization of the one dimensional Rusanov scheme. This
scheme is obtained from a central distribution of the total residual with a dissipation term
added. In the case of a system of equations it is defined by

	K ,Rsv
σ = 1

N K
dof

(
	K (uh) + αK

∑
σ j ∈�K

(uσ − uσ j )

)
. (28)

The parameter αK is chosen as to be larger than the maximum of the spectral radius of
the matrix A · ∇ϕσ . In the scalar case, this choice guaranties that the scheme satisfies a local
maximum principle. In the system case, it is proved to be non oscillatory and known to be
very dissipative [2].

2.3 Construction of a High Order Monotonicity Preserving Residual Distribution
Scheme

If the flow is smooth, we can use the Lax–Wendroff scheme presented above. However, when
the solution presents discontinuities, special care has to be taken to handle them. We recall
now the method we follow.

2.3.1 Limitation

From the Godunov theorem [13,25], there is no monotone and linear scheme that is more
than first order of accuracy. What we call limitation is a procedure that guaranties, at least
for scalar problem, that we can get at the same time a local maximum preserving scheme
that is formally of maximum accuracy; the accuracy being driven by the polynomial degree
plus 1. In the system case, the procedure we describe in this section is high order accurate
and provides non oscillatory solutions. The wording ”limitation” is not very adequate but it
is the traditional wording in this field.

To construct such procedure, in [2], the idea is to start from a first order monotone scheme
and to apply a limitation procedure to the distribution coefficients βK

σ (presented in Sect. 2.1),
such that the limited distribution coefficients are uniformly bounded. In doing so, we see from
relation (16) that we obtain high order nodal residuals.
We choose to apply the limitation procedure for the Rusanov scheme (28), as the resulting
scheme is well suited to handle the shocks occurring in high speed flows [2].

The limitation procedure is achieved through the following sequence of operations. First,
we compute the matrices Ln and Rn which are respectively the matrices of the left and right
eigenvectors of the matrix

A(ū) · v̄
||v̄|| (29)
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where A(ū) represents the Jacobian matrix (22) evaluated at the average state (25) and v̄ is
the average speed vector computed the same way as ū. The nodal residuals (28) are projected
on the vector space generated by the left eigenvectors Ln , so the intermediate nodal residuals
write

	K ,∗
σ = Ln	K ,Rsv

σ (30)

and we have the total residual

	K ,∗ =
∑

σ∈�K

	K ,∗
σ . (31)

Then, the high order distribution coefficients are computed from the original first order
distribution coefficients by the non linear mapping:

β̂K ,∗
σ =

(
	K ,∗

σ

	K ,∗

)+

∑
σ j ∈K

(
	K ,∗

σ j

	K ,∗

)+ . (32)

We have built the intermediate high order nodal residuals in the characteristic space:

	̂K ,∗
σ = β̂K ,∗

σ 	K ,∗ (33)

and finally we project them from the characteristic space to the physical space:

	̂K
σ = Rn	̂K ,∗

σ (34)

where Rn are the right eigenvectors defined above.
In the particular case where v̄ is close to the null vector:

||v̄|| < tol

where tol is a tolerance parameter (for example we used tol = 10e−8 for the simulations
of Sect. 4), the limited distribution coefficients are directly obtained by the same procedure
with v̄

||v̄|| in (29) replaced by an arbitrary vector of norm unity. In this paper we choose the
first element of the canonical basis, we have shown in [2] that this choice has no influence
on the stability of the method.

2.3.2 Stabilization

The solution obtained with a limited Rusanov scheme can exhibit spurious modes and can
showpoor iterative convergence [5]. These problems are solved via the addition of the filtering
term presented above for the scheme (21) and so the high order filtered Rusanov scheme for
the Euler equations reads

	̂K ,Rus
σ (uh) = 	̂K

σ (uh) + θ

∫
�K

(
A · ∇ϕσ

)
�

(
A · ∇uh

)
dx (35)

where θ is a shock capturing term. In most applications, we take θ = 1, and in some cases a
more elaborated version must be chosen. In this paper, we take θ = 1.
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2.4 Boundary Conditions

For the nodes lying on the boundary of the domain, we use the following formula for the
nodal residuals:

∀ � ∈ Th ∩ ∂�̄, ∀σ ∈ ��, 	�
σ (uh) =

∫
�

ϕσ

(
F (uh, u−, n) − f(uh) · n

)
dx (36)

where u− is the state that is imposed by the Dirichlet conditions and F is a numerical flux
that depends on u−, the outward normal n and the local state uh . In the case of a no-slip
condition, the boundary condition u− satisfies this condition and the numerical flux is only
a pressure flux. More details can be found in [5].

2.5 A Lax–Wendroff Like Theorem and Its Consequences

The following theorem has been proved in [6]:

Theorem 2.1 Assume the family of meshes T = (Th)h is regular. For K an element or a
boundary element of Th, we assume that the residuals {	K

σ }σ∈K satisfy:

• For any M ∈ R
+, there exists a constant C which depends only on the family of meshes

Th and M such that for any uh ∈ Xh with ||uh ||∞ ≤ M, then

‖	K
σ (uh|K )‖ ≤ C

∑

σ,σ
′ ∈�K

|uσ − u
σ

′ | (37)

• They satisfy the conservation property (18)–(19).

Then if there exists a constant Cmax such that the solutions of the scheme (20) satisfy ||uh ||∞ ≤
Cmax and a function v ∈ L2(�)p such that (uh)h (or at least a sub-sequence) verifies
limh ||uh − v||L2

loc(�)p = 0, then v is a weak solution of (1).

One of the interests of this result, besides indicating automatic consistency constraints
for a scheme (20), is that the important constraint is to have the conservation relations (18)–
(19) at the element level. This is a weaker statement than the usual one: usually, we ask
conservation at the element interface level, and not globally on the element. Note that (18)–
(19) enables however to explicitly construct the numerical flux, so that the scheme (18)–(19)
can be reinterpreted as an almost standard finite volume scheme, see [3] for more details. Of
course there is something to pay: the flux needs to be genuinely multidimensional.

Let us take a closer look at the relation (18)–(19). We need to see how they are actually
implemented. Indeed, in the numerical implementation, we do not ask for (18)–(19), but for
a discrete version of these relations, namely:

For any element K ∈ Th ,

∑
σ∈�K

	K
σ (uh) =

∫
∂K

f(uh) · n (38a)

and any boundary element � ∈ Th ∩ ∂�̄,

∑
σ∈��

	�
σ =

∫
�

(F (uh, u−, n) − f (uh) · n ) dx (38b)

where here
∫
signifies that the integral is computed with a quadrature formula, which reads
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1. On elements:
∫

∂K
f(uh) · n =

∑
e edge/face ⊂∂K

(
|e|

∑
q

ωq f(uq) · n
)

2. On boundary elements:
∫

�

(F(uh, u−, n) − f(uh) · n) dx = |�|
∑

q

ωq
(
F(uq , u−, n) − f(uq) · n

)

If we have a close look at the proof of Theorem 2.1, we see that besides the boundedness
of the sequence of solutions in suitable norms that enable to use compactness argument, what
really matters at the algebraic level is that we have the following property on any edge: If
� = �′ is the same face shared by respectively the two adjacent elements K and K ′, then
we have n|� = −n�′ and consequently

∫
�

ϕσ f(uh) · n +
∫

�′
ϕσ f(uh) · n = 0, (39)

where ϕσ ∈ P
k(K ) is the basis function associated to the node σ . This is clearly true because

uh is continuous. Now, in the numerical implementation, the easiest way to do so is that the
quadrature points on � seen from K are the same as the ones on � seen from K ′. These two
remarks are at the core of the present development, as we see now.

3 Residual Distribution Schemes and p-Adaptation

Aswe have seen in the previous section, what matters for conservation is that, for any element
K , the sum of the residuals is equal to the total residual, or more precisely

∑
σ∈K

	K
σ =

∫
∂K

f(uh) · n.

The total residual 	K = ∫
∂K f(uh) · n is obtained thanks to quadrature formulas. We show

in this section that in many cases this quantity can be rewritten as a weighted sum of total
residuals on sub-elements. To make this more precise, we first look at the quadratic case on
a triangle, where the Simpson formula is used on each edge. The main idea of this paper
comes from this observation.

We thenpresent the quadratic case on a tetrahedron. From these particular cases,wepresent
two formulas that generalize to arbitrary polynomial orders the formulas given for quadratic
polynomials. These general formulas make it possible to construct a p-adaptive residual
distribution scheme of arbitrary orders, with the definition of a modified nodal residual that
we present at the end of the section. We choose to present the particular cases of quadratic
approximation along with their generalization, instead of giving only the general formulas,
as we think that it is necessary for the comprehension of the reader.

As the formulas presented in this section allow to combine in the same mesh different
polynomial orders for the approximation of the solution, we use the term p-adaptation. Our
method of p-adaptation is proposed within the frame of a continuous residual distribution
scheme and is not as general as the method described for example in [8] which is proposed
in the frame of the Finite Element method (see “Appendix 2”).
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K1

K4

K2

K3

1 4 2

5

3

6

Fig. 1 Subdivided triangle K

3.1 Quadratic Interpolation on Triangular Elements

Let us now consider the case of a triangular element and a quadratic approximation.
We consider a triangle and for simplicity its vertices are denoted by 1,2,3 and the mid-

points of the edges are denoted by 4,5,6 (see Fig. 1). We subdivide the triangle K = (1, 2, 3)
into four sub-triangles: K1 = (1, 4, 6), K2 = (4, 2, 5), K3 = (5, 3, 6) and K4 = (4, 5, 6),
as shown in Fig. 1. If we denote by λi , i = 1, 2, 3 the barycentric coordinates corresponding
respectively to the vertices i = 1, 2, 3 then the linear interpolant of the flux f reads

f (1) =
3∑

i=1

f(ui )λi

and the quadratic interpolant of the same flux reads

f (2) =
6∑

i=1

f(ui )ϕi

with, from (8):

ϕi = (2λi − 1)λi , for i = 1, 2, 3
ϕ4 = 4λ2λ1, ϕ5 = 4λ3λ2, ϕ6 = 4λ1λ3 .

Let us evaluate the total residual for the quadratic interpolant, we denote by ni the integral∫
K ∇λi dx , i = 1, 2, 3 and we have:

∫
K
div f (2)dx =

6∑
i=1

∫
K

fi · ∇ϕi dx

=
6∑

i=1

fi ·
∫

K
∇ϕi dx
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=
3∑

i=1

fi
ni

3
+ 4

3

(
(f4(n1 + n2) + f5(n2 + n3) + f6(n1 + n3)

)

= 2

3

(
f1

n1

2
+ f4

n2

2
+ f6

n3

2

)

+ 2

3

(
f4

n1

2
+ f2

n2

2
+ f5

n3

2

)

+ 2

3

(
f6

n1

2
+ f5

n2

2
+ f3

n3

2

)

− 2
(
f5

n1

2
+ f6

n2

2
+ f4

n3

2

)

= 2

3

( ∫
K1

div f (1)dx +
∫

K2

div f (1)dx

+
∫

K3

div f (1)dx

)
+ 2

∫
K4

div f (1)dx (40)

where f (1) denotes the P1 interpolant of the flux in each of the sub-triangles of Fig. 1. The
change in signs comes from the fact that the inward normals of the sub-triangle K4, appearing
in the expression of

∫
K4

div f (1)dx, are the opposite of the vectors ni/2.
The relation (40) demonstrates that a very simple relation, with positive weights, exists

between the P
1 residuals in the sub-triangles and the quadratic residual in K .

3.2 Quadratic Approximation on Tetrahedral Elements

The formula (40) has no equivalent in dimension three if we use Lagrange finite elements,
but this problem can be solved by a change of basis as explained in the following. For better
clarity, we detail the reference quadratic tetrahedron K in Fig. 2. The ten nodes of K are
numbered 1 to 10 and their coordinates are given by:

1 = (0, 0, 0); 2 = (1, 0, 0); 3 = (0, 0, 1); 4 = (0, 1, 0);
5 = (1/2, 0, 0); 6 = (1/2, 0, 1/2); 7 = (0, 0, 1/2);
8 = (1/2, 1/2, 0); 9 = (0, 1/2, 1/2); 10 = (0, 1/2, 0).

We subdivide the tetrahedron into eight sub-tetrahedrons as shown in Fig. 2. The central
octahedron (5, 6, 7, 8, 9, 10) can be split with the diagonal (7, 8), (6, 10) or (5, 9), as shown
in Fig. 3, and the sub-tetrahedrons obtained are then:

• Exterior tetrahedrons:
K1 = (5, 7, 10, 1); K2 = (2, 6, 5, 8); K3 = (3, 9, 6, 7); K4 = (8, 9, 10, 4).

• With diagonal (7, 8):
K5 = (6, 9, 8, 7); K6 = (8, 9, 10, 7); K7 = (8, 10, 5, 7); K8 = (8, 6, 5, 7).

• With diagonal (6, 10):
K5 = (6, 9, 8, 7); K6 = (8, 9, 10, 7); K7 = (8, 10, 5, 7); K8 = (8, 6, 5, 7).

• With diagonal (5, 9):
K5 = (5, 9, 6, 7); K6 = (5, 9, 10, 7); K7 = (5, 9, 6, 8); K8 = (5, 9, 10, 8).

Now if we try to compute the equivalent of formula (40) for the three dimensional
case using a Lagrange interpolation, we find that the coefficients corresponding to the sub-
tetrahedrons K1, K2, K3, K4 are equal to 0. This is due to a property of the P

2 Lagrange
basis functions in dimension three:
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Fig. 2 Subdivided tetrahedron K
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7
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9

1

Fig. 3 Subdivided octahedron with resp. diagonal (8, 7),(10, 6) and (5, 9)
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∫
K

∂ϕ j

∂xd
= 0, j = 1, . . . , 4, d = 1, 2, 3.

This implies that the nodal residuals corresponding to the vertices of the tetrahedron K
will not contribute to Eq. (20), which may give a problematic residual scheme. To avoid this
problem, while still using quadratic elements, we use the Bézier basis functions (9). More
precisely, instead of using a Lagrange interpolation of the flux, we approximate the flux with
a Bézier expansion. From the linear algebra point of view, this is a change of basis, but with
this basis we obtain positive weights.

If we denote by	 a quadratic polynomial, with the notation of definition (9), the expansion
of 	 in the Bézier basis reads

	 =
10∑

σ=1

	σ Bσ

and the difference with Lagrange interpolation is that 	σ = 	(σ) only for σ = 1, 2, 3, 4.
For the other nodes, we have

	(σ) = 	 j1 + 	 j2

4
+ 	σ

2
(41)

where j1 and j2 are the two vertices of the tetrahedron on the edge where σ lies. It is clear
that 	σ = 	(σ) + O(h2). We also notice that

∇ Bσ =
4∑

j=1

Pj (λ1, λ2, λ3, λ4)∇λ j

where Pj (λ1, λ2, λ3, λ4) is a polynomial in λ1, λ2, λ3, and λ4 with positive coefficients.
Now we need to find an equivalent formula of (40) for the three dimensional case with

the Bézier basis functions. In the same spirit as for (40), we expand the flux in term of Bézier
polynomials:

f B :=
10∑

σ=1

fσ Bσ

where for σ = 1, . . . , 4, fσ is the value of the flux at the vertices of the tetrahedron and when
σ > 4, fσ is defined according to (41).

With the notation Ni = ∇λi , the gradients of the Bézier basis functions write:

∇ B1 = 2λ1N1; ∇ B2 = 2λ2N2; ∇ B3 = 2λ3N3; ∇ B4 = 2λ4N4;
∇ B5 = 2

(
λ1N2 + λ2N1

); ∇ B6 = 2
(
λ2N3 + λ3N2

);
∇ B7 = 2

(
λ1N3 + λ3N1

); ∇ B8 = 2
(
λ2N4 + λ4N2

);
∇ B9 = 2

(
λ3N4 + λ4N3

); ∇ B10 = 2
(
λ1N4 + λ4N1

)
.

(42)

With n j = ∫
K N j , we find the following formula for the three dimensional case:

2
∫

K
div f Bdx = 2

10∑
σ=1

( ∫
K

fσ div Bσ dx
)

= (f1n1 + f2n2 + f3n3 + f4n4)

+ (f5n2 + f5n1) + (f6n3 + f6n2)

+ (f7n1 + f7n3) + (f8n4 + f8n2)
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+ (f9n3 + f9n4) + (f10n4 + f10n1)

= (f1n1 + f5n2 + f10n4 + f7n3) (I )

+ (f2n2 + f6n3 + f5n1 + f8n4) (I I )

+ (f3n3 + f9n4 + f6n2 + f7n1) (I I I )

+ (f8n2 + f9n3 + f10n1 + f4n4) (I V ) (43)

The quantities (I), (II), (III), (IV) are interpreted as the integrals of the divergence of the
following one degree polynomial functions:

(I ) =
∫

K1

div f̃ (1)dx

(I I ) =
∫

K2

div f̃ (1)dx

(I I I ) =
∫

K3

div f̃ (1)dx

(I V ) =
∫

K4

div f̃ (1)dx

where

• On K1, f̃ (1) = f1λ1 + f5λ2 + f10λ4 + f7λ3 ,
• on K2, f̃ (1) = f2λ2 + f6λ3 + f5λ1 + f8λ4 ,
• on K3, f̃ (1) = f3λ3 + f9λ4 + f6λ2 + f7λ1 ,
• on K4, f̃ (1) = f8λ2 + f9λ3 + f10λ1 + f4λ4.

Strictly speaking, fσ is not the value of the flux at the vertices of K j , but this is not a
problem, following [7].
The equality (43) shows like equality (40) a relation between the quadratic residual in K and
the affine residuals in the sub-tetrahedrons, with positive weights independent of the splitting
of the central octahedron.

3.3 General Subdivision Formulas for all Orders of Approximation

The formulas presented above for the specific case of quadratic approximation can be gen-
eralized to any degree of approximation as we show now. For dimension two and dimension
three, we use a Bézier basis to obtain consistent formulas for both cases. The derivation of
these formulas is quite technical, so in order to eliminate any ambiguity, we detail exactly
the construction of the formulas with figures, for dimension two and for dimension three, at
the risk of being repetitive. A lot of indices are required for the presentation of the formulas
and we notify the reader that the notation used here is local to this subsection. With a slight
abuse of notation, in this section the term P

k triangle (respectively Pk tetrahedron) represents
the finite element (K ,Pk, �K ) where K is a triangle (respectively a tetrahedron). We denote
f B the kth-order Bézier expansion of the flux f :

f B =
∑

σ∈�K

fσ Bσ . (44)

3.3.1 The Two Dimensional Case

For the Pk triangle, the sub-triangles are numbered from the top to the bottom of the triangle
as shown in Fig. 1. This numbering is consistent with the iterative construction of the P

k
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triangle from the Pk−1 triangle: a set of P1 sub-triangles is added at the bottom of the Pk−1

triangle, and the whole set constitutes the Pk triangle. With this construction, the Pk triangle
is constituted of k layers of P1 sub-triangles: the P

1 triangle is constituted of the layer 1,
the P

2 triangle is constituted of layers 1 and 2, and so on until the Pk triangle. Each layer
i, i = 1, . . . , k is of length 2i − 1.

Thanks to this numbering, we can now derive the general subdivision formula in the two
dimensional case. We first need the following preliminary results:∫

K
∇ Bi = 2

k + 1

∫
K

∇λi , i = 1, 2, 3
∫

K
∇ Bi = 2

k + 1

( ∫
K

∇λi1 +
∫

K
∇λi2

)
, i = 4, . . . , 3k

∫
K

∇ Bi = 2

k + 1

( ∫
K

∇λ1 +
∫

K
∇λ2 +

∫
K

∇λ3
) = 0, i = 3k + 1, . . . ,

(k + 1)(k + 2)

2

where i1 and i2 are the vertices of the segment that contains the node i . The results above are
proved with the following formula:

∫
K

λ
i1
1 λ

i2
2 λ

i3
3 = 2 mes(K )

i1! i2! i3!
(i1 + i2 + i3 + 2)! . (45)

We can now present the subdivision formula for the k-th order in dimension two.

Proposition 3.1 In dimension two, we have the following formula, for k ≥ 1:

∫
K

div f Bdx = 2

k + 1

k∑
i=1

( ∫
K

(i−1)2+1

div f̃
(1)

dx +
∫

K
(i−1)2+3

div f̃
(1)

dx + · · ·

+
∫

Ki2−2

div f̃
(1)

dx +
∫

Ki2

div f̃
(1)

dx

)
.

(46)

Proof First, let us precise the notation used in the proof. The indices in n j1 and n j2 represent
the vertices of the segment containing the node j . The triangles Kl , l = 1, . . . , k2 are the
P
1 sub-triangles of the triangle K (see Fig. 1). For a given l, the vertices of Kl are denoted

by l1, l2, l3 and the function f̃
(1)

is defined by:

f̃
(1) = fl1λ1 + fl2λ2 + fl3λ3 . (47)

This definition depends on the ordering of the vertices of Kl . They are ordered in the reference
triangle as in Fig. 4. The quantities f j are not the values of f at the nodes j , they are considered
as the values of f at theBézier control points. Practically, they are computed from the definition
of the Bézier basis functions (9) and by solving a linear system (Fig. 5).

We denote by ni the integral
∫

K ∇λi dx , i = 1, 2, 3 and we have:

∫
K
div f Bdx =

(k+1)(k+2)
2∑

j=1

f j ·
∫

K
∇ B j

= 2

k + 1

( 3∑
j=1

f j ·
∫

K
∇λ j

+
3k∑
j=4

f j · ( ∫
K

∇λ j1 +
∫

K
∇λ j2

)
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j1 j2

j3

Fig. 4 Ordering of vertices for relation (47)

1

2 3 4

(k− 2)2 + 1 (k− 1)2

(k− 1)2 + 1 k2

(k− 2)2 + 2

(k− 1)2 + 2

P
1 layer

P
2 layer

P
k−1 layer

P
k layer

Fig. 5 Numbering of P1 sub-triangles Ki in P
k triangle K

+
(k+1)(k+2)

2∑
j=3k+1

f j · ( ∫
K

∇λ1 +
∫

K
∇λ2 +

∫
K

∇λ3
))

= 2

k + 1

(
f1 · n1 + f2 · n2 + f3 · n3

+ f4 · (
n41 + n42

) + · · · + f3k · (
n3k1 + n3k2

)

+ f3k+1 · (
n1 + n2 + n3

) + · · · + f (k+1)(k+2)
2

· (
n1 + n2 + n3

))

= 2

k + 1

k∑
i=1

( ∫
K

(i−1)2+1

div f̃
(1)

dx +
∫

K
(i−1)2+3

div f̃
(1)

dx + · · ·

+
∫

Ki2−2

divf̃
(1)

dx +
∫

Ki2

divf̃
(1)

dx

)
. (48)

��
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P
1 layer

P
2 layer

P
k−1 layer

P
k layer

Fig. 6 Subdivided P
k tetrahedron K : layers and their bottom faces

3.3.2 The Three Dimensional Case

The construction is similar to the two dimensional case, but slightly more complicated. The
P

k tetrahedron is iteratively constructed by layers constituted of P1 tetrahedrons. Each i-
layer, i = 1, . . . , k has a bottom face constituted of i2 P1 triangles. The iterative layers and
their bottom faces are described in Fig. 6. Let us now consider the bottom face of the layer
i . Its triangles are numbered from the top to the bottom, like in the two dimensional case, as
shown in Fig. 7. Each triangle is a face of a P1 tetrahedron of the layer i , and we number this
tetrahedron with the number of such triangles. With this numbering, we can obtain a general
three dimensional subdivision formula. We use again the Bézier basis functions (9) like in
the two dimensional case, and we have the following preliminary results:

∫
K

∇ Bi = 6

(k + 1)(k + 2)

∫
K

∇λi , i ∈ Sv

∫
K

∇ Bi = 6

(k + 1)(k + 2)

( ∫
K

∇λi1 +
∫

K
∇λi2

)
, i ∈ Se

∫
K

∇ Bi = 6

(k + 1)(k + 2)

( ∫
K

∇λi1 +
∫

K
∇λi2 +

∫
K

∇λi3

)
, i ∈ S f

∫
K

∇ Bi = 6

(k + 1)(k + 2)

( ∫
K

∇λ1 +
∫

K
∇λ2 +

∫
K

∇λ3 +
∫

K
∇λ4

) = 0, i ∈ St

where

• Sv is the set of vertices of K ,
• Se is the set nodes situated on the edges of K , excepted the vertices (i1 and i2 are the

vertices of the edge that contains the node i),
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• S f is the set nodes situated on the faces of K , excepted those on the edges (i1, i2 and i3
are the vertices of the face containing the node i),

• St is the set of nodes situated strictly inside K ,
• Bi is the kth-order Bézier basis function associated to the node i .

The results above are proved with the 3D version of (45):
∫

K
λ

i1
1 λ

i2
2 λ

i3
3 λ

i4
4 = 6 mes(K )

i1! i2! i3! i4!
(i1 + i2 + i3 + i4 + 3)! . (49)

We can now present the subdivision formula for the k-th order in dimension three.

Proposition 3.2 In dimension three, we have the following formula, for k ≥ 1:

∫
K

div f Bdx = 6

(k+1)(k+2)

k∑
i=1

i∑
i ′=1

( ∫
K

(i ′−1)2+1

div f̃
(1)

dx+
∫

K
(i ′−1)2+3

div f̃
(1)

dx+· · ·

+
∫

Ki ′2−2

div f̃
(1)

dx +
∫

Ki ′2
div f̃

(1)
dx

)
.

(50)

Proof Let us precise the notation used in the proof. We denote by f j the value of the flux at
the global node j , and by fiαβ

the flux at the node β of the tetrahedron α of the layer i . We
precise the sublayer, it indicates in which layer of the bottom face of triangles the tetrahedron
is taken (see Fig. 7). It corresponds to the index i ′. The indices in n j1 , n j2 (for j ∈ Se)
represent the vertices of the edge containing the node j and in n j1 , n j2 , n j3 (for j ∈ S f ) they
represent the vertices of the face containing the node j . For a given layer i , i = 1, . . . , k,
the tetrahedrons Kl are P1 sub-tetrahedrons of the tetrahedron K in the layer i . The number
l, with l = (i − 1)2, . . . , i2, is local to the layer i and coincides with the number of the
triangle l of the bottom face of the layer i which is a face of Kl (see Figs. 6, 7). With this
numbering, we have a general formula in the three dimensional case that is similar to the
two dimensional case. For a given l, the vertices of Kl are denoted by l1, l2, l3, l4 and the

function f̃
(1)

is defined by:

f̃
(1) = fl1λ1 + fl2λ2 + fl3λ3 + fl4λ4 . (51)

1

2 3 4

(k− 2)2 + 1 (k− 1)2

(k− 1)2 + 1 k2

(k− 2)2 + 2

(k− 1)2 + 2

P
1 layer

P
2 layer

P
k−1 layer

P
k layer

Fig. 7 Numbering of P1 sub-triangles constituting the bottom face of the Pk layer of tetrahedron K
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j3

j2

j1

j4

Fig. 8 Ordering of vertices

This definition depends on the ordering of the vertices of Kl . They are ordered in the reference
tetrahedron as in Fig. 8. Like in the two dimensional case, the quantities f j are not the values
of f at the nodes j , they are considered as the values of f at the Bézier control points and in
practice are computed from the definition of the Bézier basis functions (9) and by solving a
linear system.

We denote by ni the integral
∫

K ∇λi dx , i = 1, 2, 3 and we have:

∫
K
div f Bdx =

(k+1)(k+2)(k+3)
6∑

j=1

f j ·
∫

K
∇ B j

= 6

(k + 1)(k + 2)

( ∑
j∈Sv

f j ·
∫

K
∇λ j

+
∑
j∈Se

f j · ( ∫
K

∇λ j1 +
∫

K
∇λ j2

)

+
∑
j∈S f

f j · ( ∫
K

∇λ j1 +
∫

K
∇λ j2 +

∫
K

∇λ j3
)

+
∑
j∈St

f j · ( ∫
K

∇λ1 +
∫

K
∇λ2 +

∫
K

∇λ3 +
∫

K
∇λ4

))

= 6

(k + 1)(k + 2)

( ∑
j∈Sv

f j · n j

+
∑
j∈Se

f j · (
n j1 + n j2

)

+
∑
j∈S f

f j · (
n j1 + n j2 + n j3

)

+
∑
j∈St

f j · (
n1 + n2 + n3 + n4

) )
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= 6

(k + 1)(k + 2)

(
f111 · n1 + f112 · n2 + f113 · n3 + f114 · n4 (lay. 1 )

+ f211 · n1 + f212 · n2 + f213 · n3 + f214 · n4 (lay. 2, tet. 1, sublay. 1)

+ f221 · n1 + f222 · n2 + f223 · n3 + f224 · n4 (lay. 2, tet. 2, sublay. 2)

+ f241 · n1 + f242 · n2 + f243 · n3 + f244 · n4 (lay. 2, tet. 4, sublay. 2)

+ · · ·
+ fk11

· n1 + fk12
· n2 + fk13

· n3 + fk14
· n4 (lay. k, tet. 1, sublay. 1)

+ fk21
· n1 + fk22

· n2 + fk23
· n3 + fk24

· n4 (lay. k, tet. 2, sublay. 2)

+ fk41
· n1 + fk42

· n2 + fk43
· n3 + fk44

· n4 (lay. k, tet. 4, sublay. 2)

+ · · ·
+ fk

(k−1)2+11
· n1 + fk

(k−1)2+12
· n2

+ fk
(k−1)2+13

· n3 + fk
(k−1)2+14

· n4 (lay. k, tet. (k − 1)2 + 1, sublay. k)

+ · · ·
+ fkk21

· n1 + fkk22
· n2 + fkk23

· n3 + fkk24
· n4 (lay. k, tet. k2, sublay. k)

)

= 6

(k + 1)(k + 2)

k∑
i=1

i∑

i ′=1

( ∫
K

(i ′−1)2+1

div f̃
(1)

dx +
∫

K
(i ′−1)2+3

div f̃
(1)

dx + · · ·

+
∫

Ki ′2−2

div f̃
(1)

dx +
∫

Ki ′2
div f̃

(1)
dx

)
. (52)

��
3.4 Definition of the Nodal Residuals in a Divided Element

We denote here by S the set of P1 sub-elements of a given element K . The term element
represents a triangle in dimension two or a tetrahedron in dimension three as above. For
a given element K subdivided into smaller elements indexed by ξ, ξ ∈ S (for example
ξ = K1, . . . , K4 in the case of quadratic interpolation in dimension two), we have, as we
have proved, a relation between the residual 	K and the residuals 	ξ of the sub-elements of
K . Once the residuals 	ξ are computed, the next step is to compute the nodal residuals 	

ξ
σ ,

as described in Sect. 2.2. Then, the nodal residuals	
ξ
σ need to be modified in order to satisfy

the conservation relation (18), as we show now. We denote by γξ , ξ ∈ S the coefficients
given by the formulas of Sect. 3.3.

Proposition 3.3 If the nodal residuals 	
ξ
σ , σ ∈ �ξ , ξ ∈ S satisfy the conservation relation

(18), then the nodal residuals defined by

	K
σ :=

∑
ξ∈S,σ∈�ξ

γξ	
ξ
σ (53)

satisfy the conservation relation (18).

Proof With the notation of Sect. 3, f (k) represents the k-th order interpolant of the flux f . We
assume that

∀ξ ∈ S,
∑

σ∈�ξ

	ξ
σ =

∫
∂ξ

f (1) · n
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and that

	K
σ =

∑
ξ∈S,σ∈�ξ

γξ	
ξ
σ .

We then have

∑
σ∈�K

	K
σ =

∑
σ∈�K

( ∑
ξ∈S,σ∈�ξ

γξ	
ξ
σ

)

=
∑
ξ∈S

γξ

( ∑
σ∈�ξ

	ξ
σ

)

=
∑
ξ∈S

γξ

∫
∂ξ

f (1) · n

=
∫

∂K
f (k) · n dx .

��

We remark that it is possible to use any scheme inside the elements ξ ∈ S as long as they
satisfy the conservation relation (18) and the nodal residuals in K are defined by relation
(53). Under the assumption of the Lax–Wendroff theorem, the new scheme with arbitrary
mixed P1 and Pk elements will also be convergent to a weak solution of the problem because
the conservation property (18) is still satisfied (see [4]). We follow the same reasoning for
the boundary residuals.

3.5 Practical Implementation

The nodal residuals are modified according to the definition given in Sect. 3.4. We describe
now the consequences on the practical implementation of the residual distribution scheme.

3.5.1 Computation of the Nodal Residuals

As the computation of the nodal residuals is made inside each sub-element ξ of a divided
element K , it is convenient to introduce 	

K ,ξ
σ the contribution of the node σ in triangle K

brought by the sub-element ξ , as it is the quantity that is actually computed. It is defined by

	K ,ξ
σ := γξ 	ξ

σ . (54)

3.5.2 Computation of the Jacobian Matrix of the Implicit Scheme

The system of equations (20) is solved with an implicit scheme detailed in Appendix 1. To
implement the subdivision formulas, the implicit scheme requires only a slight modification
in the definition of the Jacobianmatrices. Indeed, to compute the Jacobianmatrix, for example
in the case of the Lax–Wendroff scheme (21), we need to differentiate the two terms of (21):

∂	
ξ
σ (uh)

∂u j
= 1

N ξ
dof

∂

∂u j

(
	ξ(uh) +

∫
ξ

A · ∇ϕσ � A · ∇uhdx
)

(55)
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and so, according to (53), we have, with the same notation as in Sect. 3.5.1:

∂	
K ,ξ
σ (uh)

∂u j
:=γξ

∂	
ξ
σ (uh)

∂u j
. (56)

3.5.3 Boundary Conditions

The nodal residuals of boundary faces (here we use the term face for either the edge of a
triangle in dimension two or the face of a tetrahedron in dimension three) are computed
by using the formula (36). If we denote by � the face of a subdivided element K lying
on the boundary of �, � is therefore subdivided into sub-faces. Let ς be such a sub-face.
From the relation (53), we see that in order to be consistent with relation (36) in the case
of subdivision, we need to multiply the nodal residuals of the subdivided boundary by the
sub-division coefficient of the element containing this sub-divided boundary face, and so the
contribution of the node σ in the face � brought by the sub-face ξ is

	�,ς
σ := γξ 	ς

σ (57)

and thus the contribution to the global Jacobian is

∂	
�,ς
σ (uh)

∂u j
:= γξ

∂	
ς
σ (uh)

∂u j
. (58)

3.5.4 Choice of Quadrature Formulas

As explained in Sect. 2.5, the relation (39) is verified if we use the same quadrature points
at the interfaces between elements. In the case of an interface between two elements of
the same degree, we simply use the same quadrature formula, and so the requirements of
relation (39) are automatically satisfied. For an interface between a subdivided element and
a non-subdivided one, we use quadrature formulas such that all the quadrature points at the
interface physically coincide.

4 Numerical Results

We present now some numerical results for different speed flows in dimension two and three
that illustrate the theoretical results exposed above. Even if the formulas presented in Sect. 3.3
make it possible to use any polynomial order, for simplicity the test cases presented in this
paper use P

1 and P
2 elements. As explained in Sect. 2.3, for subsonic flows we use the

Lax–Wendroff scheme (21) and for transonic and faster flows we use the Rusanov scheme
(35).

Our approach can be described as follows. In all test cases except the subsonic test case,
the mesh is mostly made of P2 elements except in the shock zone where P

1 elements are
used. The shock zone is located by a shock detector (see [5]) based here on the variation of
pressure inside each element of the mesh:

ϕK = max
σ∈�K

(
max

K ′, σ∈�K ′

| max
ν∈�K ′

pν − min
ν∈�K ′

pν |
| max

ν∈�K ′
pν | + | min

ν∈�K ′
pν | + ε

)
(59)
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Fig. 9 Possible transformations of two adjacent (initially subdivided) triangles. Notice that no hanging node
is generated

where pν is the pressure at the node ν, K , K ′ are elements of themeshTh and ε is themachine
epsilon (in our implementation, ε = 1e − 16). This shock detector is used as follows. We
set a threshold ϕ which depends on the test case, we start with a mesh that contains only
subdivided P

1 elements, then after a short number of iterations (which depends on the test
case too), the values ϕK are computed for each element K . If the value ϕK is above the
threshold ϕ, then the element remains subdivided with P

1 elements, otherwise, the element
becomes a P2 element and is not subdivided. As a result, we use P1 elements in the shock
zone, and P

2 elements everywhere else. The threshold ϕ is determined empirically for each
test case by initially running the same simulation with different values of ϕ for a short number
of iterations. The optimal value of ϕ is the one for which the shock zone seems to be visually
the closest to the zone where there are strong variations of the isolines of pressure.

We precise now what happens at the interface between two elements. To illustrate this,
we have represented in Fig. 9 the possible transformations of two adjacent elements in the
quadratic two-dimensional case. As described above, the two adjacent elements are initially
subdivided into P

1 elements. Then, they can be transformed into either one element subdi-
vided into P

1 elements and one P2 element (case a and c), or they can be transformed into
two P2 elements (case b). It is important to remark that the method does not generate hanging
nodes, in dimension two or three and for any degree k of approximation.
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Fig. 10 Mesh for test case 4.1 with elements randomly subdivided: elements in dark zones are subdivided,
the others are not subdivided

4.1 Subsonic Flow

We show here, just for theoretical purposes, how our method behaves with the mesh of a
NACA0012 wing profile constituted of randomly subdivided elements. The inflow condition
is Mach=0.5, the pressure is Pinlet = 0.7 and half of the elements of the mesh are randomly
selected and subdivided into P1 elements. As the flow is subsonic, we use the Lax–Wendroff
scheme (21). The mesh is shown in Fig. 10.

We can see, in Fig. 11, a comparison of the convergence curveswhenP1,P2 andmixed ele-
ments (P2 elements and subdividedP1 elements) are used.We remark that with the same level
of convergence for the three types of finite elements, the convergence speed with subdivided
elements is as expected between those obtained with P1 and P2 elements.

As stated above, for this test case the elements are arbitrarily subdivided and we do not
take advantage of p-adaptation to improve the accuracy of the solution. In the next test cases,
the elements will be subdivided according to the properties of the solution.

4.2 Transonic Flow

We test our method on a Naca0012 wing profile with Mach=0.8, a pressure of 0.71 and an
angle of attack of 1.25 degrees. For this problem, we use the limited Rusanov scheme (35),
more adapted for transonic flows than the Lax–Wendroff scheme, as explained in Sect. 2.3.
As small size, low-order elements capture irregular solutions better than high-order elements,
which to the contrary approximate smooth solutions better than low-order elements [9], we
use the shock detector (59) that allows to use P1 elements only where the shock is detected
and P

2 elements otherwise. The mesh is shown in Fig. 12, the subdivided elements are
dark-colored and correspond to the elements containing a strong variation of pressure. The
convergence curve obtained with p-adaptation, Fig. 13, shows a jump of the residual due to
the switch from P

1 elements to P
2 elements everywhere except in the shock zone. After the
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Fig. 11 Convergence of residuals for test case 4.1
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Fig. 12 Shock zone for test case 4.2: subdivided elements are dark-colored

jump, we observe the convergence of the residual. For this test case ϕ was set to 1.5, and the
switch was set after 300 iterations. We remark from Fig. 14, that the position of the shock
obtained with mixed elements is in very good agreement with the position predicted using
classical P2 or P1 elements. This is important for the validation of our method and proves
that we are here consistent with the results obtained with classical P1 and P

2 elements.
In addition, we make the following interesting observation. As we use smaller P1 elements
in the discontinuous zone where they are better suited to capture a discontinuity than coarser
P
2 elements, we obtain a better representation of the shock, as with the P

1 mesh. This
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Fig. 14 Comparison of pressure coefficients obtained with P
1, P2 and mixed elements

observation is confirmed if we compare, in Fig. 15, the solutions obtained with p-adaptation
to the solution obtained with a P2 mesh. We can see that the shock is better represented with
the p-adaptive solution.

4.3 Supersonic Flow

Now we present a numerical test with a higher speed, Mach=3. Because of the higher speed
used, such test cases can be more difficult to run. The application of p-adaptation, even to
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Fig. 15 Comparison of solutions for test case 4.2 between P2 and mixed elements: a pressure (P1 elements),
b pressure (P2 elements), c pressure (mixed elements)

a little number of elements (only in the shock zone), allows convergence of the residual
and proves to be an efficient approach to simulate such phenomenon. Since the number of
sub-divided elements is small the method remains mostly P2 based.
The following parameters are set: the mesh is made of 3749 vertices and contains a sphere
of diameter 1, centered in 0, which is moving at Mach=3.0.
We divide the boundary conditions into four sub-boundaries as shown in Fig. 16, and we
detail in the following the conditions applied to each of these boundaries:

• on the sphere (boundary 1) inside the domain, we impose a slipping wall boundary
condition,

• in front of the sphere (boundary 2, the half circle on the left of the domain), we impose
Dirichlet boundary conditions with (ρ, u, v, p) = (1.4, 3, 0, 1),

• on the upper and lower horizontal lines (boundary 3), we impose a slippingwall boundary
condition,

• behind the sphere (boundary 4, the vertical line at the right of the domain), we use a
Steger-Warming exit boundary condition [5] with (ρ, u, v, p) = (1, 0.8, 0, 0.3).
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Fig. 16 Boundaries for test case 4.3
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Fig. 17 Shock zone for test case 4.3: subdivided elements are dark-colored

As initial conditions we set a discontinuity line at x = 0.435, with (ρ, u, v, p) =
(1.4, 0, 0, 1) on the left of the discontinuity and (ρ, u, v, p) = (1.4, 3, 0, 1.4) on
the right.

We use the samemethod as before with the shock detector (59) and obtain the mesh shown
in Fig. 17. The threshold is set at ϕ = 3 and the switch is set at 300 iterations. Again, we
notice in Fig. 18 a jump in the residual due to the change from a P1-only scheme to a mixed
P
1-P2 scheme after the activation of the shock detector.
The isolines of the Mach number, the pressure and the density are shown in respectively

Figs. 19, 20, and 21. As of today, we have not been able to make the classical P2 scheme
converge for this test case. With p-adaptation we obtain a high-order solution that physically
agrees with the solution obtained with a classical P1 scheme.
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Fig. 18 Convergence of residual in test case 4.3
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Fig. 19 Mach number isolines for test case 4.3

4.4 Hypersonic Three Dimensional Flow

We present now a numerical test case with a hypersonic speed (Mach=8) in dimension three.
Like in dimension two, the application of p-adaptation to a little number of elements in the
shock zone (the method remaining mostly P

2 based), proves practically to be efficient as it
allows the convergence of the residual and gives a solution that looks physically admissible.
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Fig. 20 Pressure isolines for test case 4.3
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Fig. 21 Density isolines for test case 4.3

The following parameters are set: a sphere of diameter two is centered in 0 and is moving
at the speed of Mach=8. The boundary conditions are divided into four sub-boundaries, as
shown in Fig. 22. On the sphere inside the domain (boundary 1), we impose a slipping wall
boundary condition, in the left face of the domain (boundary 2), we impose a Steger-Warming
entry boundary condition, with (ρ, u, v, w, p) = (8.0 , 8.25 , 0.0 , 0.0 , 116.5), in the right
face of the domain (boundary 3), we impose a Steger-Warming exit boundary condition, with
(ρ, u, v, w, p) = (1.4 , 0.0 , 0.0 , 0.0 , 1.0), and on the other faces of the boundary (bound-
ary 4), we impose a slipping wall boundary condition. As an initial condition we set a vertical
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Fig. 22 Boundaries for test
case 4.4
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Fig. 23 Convergence of residual for test case 4.4

plan of discontinuity at x = 0.09, with (ρ, u, v, w, p) = (8.0 , 8.25 , 0.0 , 0.0 , 116.5) at
the left of the discontinuity, and (ρ, u, v, w, p) = (1.4 , 0.0 , 0.0 , 0.0 , 1.0) at the right of
the discontinuity.

As shown in Fig. 23, the residual converges well, even with only a very small number of
P
1 elements in the shock zone (see Fig. 24). Like in test case 4.3, with here a threshold ϕ = 3,

we start with subdivided P1 elements everywhere. After 300 iterations, only elements in the
shock zone remain P

1, all the others become P
2 elements. The converged solution (Mach

number, pressure and density), is shown in respectively Figs. 25, 26, and 27.
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Fig. 24 Shock zone for test case 4.4 (with two dimensional slice cut at y = 0 of the pressure)

Fig. 25 Mach number isolines for test case 4.4 (two dimensional slice cut at y = 0)

Fig. 26 Pressure isolines for test case 4.4 (two dimensional slice cut at y = 0)
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Fig. 27 Density isolines for test case 4.4 (two dimensional slice cut at y = 0)

5 Conclusion

We have described a way to use p-adaptation with continuous finite elements within the
frame of residual distribution schemes. We have showed with general formulas that the
method can be theoretically extended to arbitrary polynomial orders, and we have shown for
complex problems modeled by the Euler equations that in practice, in the case of quadratic
approximation in dimension two and three, the method is robust for subsonic, transonic,
supersonic and hypersonic flows. Other applications can be envisaged and in particular, the
extension of our method to the equations of Navier–Stokes coupled with the Penalization
method will be the subject of a forthcoming paper.
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Appendix 1: Implicit Numerical Solver

We need to solve the system of equations (20), written in a compact way as:

R(uh) = 0. (60)

This problem is first relaxed as:

duh

dt
= −R(uh). (61)

To approximate this time derivative, we use the backward Euler formula, and the problem
becomes:

un+1
h − un

h

�tn
= −R(un+1

h ), n = 0, 1, 2, . . . (62)
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Thus, we have to solve a non linear problem at each time step n. We use for that a Newton
method, that when applied to (60) reads:

uk+1
h = uk

h − J−1R(uk
h), k = 0, 1, 2, (63)

where

J = ∂ R(uk
h)

∂u
(64)

is the Jacobian of R. In practice, the Jacobian J is computed from a first order scheme with
the stabilization term. And so, with our Newton method applied to (62) , the linear system
we have to solve at each time step n reads:

[ 1

�tn
+ J (un

hk
)]�un

hk
= −R(un

hk
) (65)

un
hk+1

= un
hk

+ �un
hk

, k = 0, 1, 2 . . . (66)

In practice, for each time step n, we use only one iteration on k, which seems enough to reach
convergence of the nodal residuals to the zero machine.

Appendix 2: Comparison with Constrained Approximation for the Finite
Element Method

In [8] the authors present a mesh adaptation method called “constrained approximation“ in
the frame of a Petrov–Galerkin finite-element method. The idea behind the method is to
use a non regular mesh (non conforming and of various order) and to constrain the value of
the discrete solution at the interface shared by elements of different size (h-adaptation) and
different order (p-adaptation) to keep the solution continuous across the interface.

In Fig. 28 inspired from [8], the authors give an example of h-refinement and p-refinement.
In the h-refinement case, the two triangles share a common edge with two different sizes,
which generates a hanging node in the middle of the edge. In the p-refinement case, the
triangles are of two different polynomial orders (P1 and P2) and so a hanging node is
generated in the middle of the edge. In both cases, the solution is constrained at the hanging
node so that it remains continuous.

The authors use a hierarchical basis of shape functions [24]. For example, in dimension two
this basis is constituted of functions associatedwith the vertices, the edges and the element and
are called accordingly vertex, edge and bubble functions. They are built incrementally with
respect to the desired order of the approximation, by using kernel functions in the definition of
the edge and bubble functions. The main advantages of this basis over the classical Lagrange
basis functions, is that the polynomial order of the approximation can be changed easily (by
adding or removing kernel functions) and in the case of p-adaptation, like in Fig. 28, the
hanging node is naturally suppressed, by changing to one the polynomial order of the shape
function associated with the edge at the interface in the P2 element.

Fig. 28 From left to right: initial mesh, h-adaptation and p-adaptation
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Once the constrains are established, the next step is to apply these constrains. The authors
present a complete set of rules to impose the continuity of the solution in the case of h-
adaptation and p-adaptation. The authors suggest to follow a rule called ”1-irregularity“ rule
(only one hanging node between two elements) in order to avoid too complex situations, at
least for h-adaptation.

We believe that this method is very different from the method we have proposed in this
paper. The first difference is that the generation of hanging nodes makes the mesh non
conforming. In a RD scheme, the question of how this hanging node should be treated does
not seem evident. The distribution schemes (like for example (21) and (35)) would probably
have to be redefined to take into account the hanging nodes, so that the scheme remains
conservative (which is an essential ingredient for the convergence) and still exhibit the same
behavior (for example (non) diffusive or (non) oscillatory). Even if it is still possible to use
a classical Lagrange basis, it is advised in [8] to use a hierarchical basis of functions, as
such a basis is more suited for p-adaptation. So, the compatibility of a hierarchical basis
function with RD schemes should be analyzed. Finally, there is the question as to whether
the hanging nodes should be taken into account in the system of equations (20), and for
the implementation of an implicit RD scheme, what the consequences would be for the
computation of the Jacobian matrix. We are not saying that the constrained approximation
method is not compatible with RD schemes (indeed, we have obtained some preliminary
numerical results with a prototype of a RD scheme based upon the constrained approximation
method, in the case of scalar equations with Lagrange elements and an explicit scheme). But
the questions we have raised should first be carefully assessed before trying to make an RD
scheme compatible with the adaptive method of [8]. To the contrary, the p-adaptive method
for RD schemes we have proposed here is designed for RD schemes by construction and as
such avoids all the problems evoked above.
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