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Abstract A linearized Crank—Nicolson Galerkin finite element method with bilinear element
for nonlinear Schrodinger equation is studied. By splitting the error into two parts which are
called the temporal error and the spatial error, the unconditional superconvergence result is
deduced. On one hand, the regularity for a time-discrete system is presented based on the
proof of the temporal error. On the other hand, the classical Ritz projection is applied to get
the spatial error with order O (h?) in L%-norm, which plays an important role in getting rid of
the restriction of t. Then the superclose estimates of order O (h?+12%) in H'-norm is arrived
at based on the relationship between the Ritz projection and the interpolated operator. At the
same time, global superconvergence property is arrived at by the interpolated postprocessing
technique. At last, three numerical examples are provided to confirm the theoretical analysis.
Here, & is the subdivision parameter and t is the time step.
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1 Introduction

Consider the following nonlinear Schrédinger equation:

iug + Au+ f(uPu=0, (X,1)e Qx0TI
u=0, (X,1) e 399 x (0, T,
u(X,0) = uo(X), XeQ,

B Dongyang Shi

1

shi_dy@zzu.edu.cn
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

(1.1)

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0390-2&domain=pdf

1094 J Sci Comput (2017) 72:1093-1118

where X = (x,y),0 < T < 00, and  C R? is a rectangle with the boundary 9. i is the
imaginary unit, 1o (X) is a known complex-valued function. Moreover, f(s) is a real-valued
nonlinear function which is twicely continuously differentiable with respective to s.

The NLSE plays an important role in describing physical phenomena, such as optical
pulses, plasma physics and water waves and so on. Different numerical methods for the NLSE
have been investigated extensively. For example, [1] discussed an iterative modification of
the linearized scheme and proved second-order error estimates by use of Newtons method
to linearize the equations at each time level. Continuous Galerkin methods were employed
in [2] and optimal order error estimates in L%®(L?) and L*®(HY), and the corresponding
superconvergence results at the temporal nodes " were obtained. [3] and [4] studied the
normal Galerkin method and introduced the semi-discrete scheme and fully-discrete schemes
for NLSE, respectively and both derived the superclose and superconvergence results in
H'-norm. A meshless local boundary integral equation method and two-grid mixed finite
element method were proposed to solve the unsteady Schrodinger equation in [5] and [6],
respectively. [7] and [8] researched the discontinuous Galerkin method and get optimal
order error estimates. Finite difference method were also considered extensively in [9-12].

In fact, studying a nonlinear physical system often involves the boundedness of U}’ in
L®-norm or a stronger norm, where U}’ is the numerical solution. The usual technique is
employing the inverse inequality to deal with such issue, which will result in some time-step
restrictions, such as T = o(h%) and T = O(hz)/t = O(h) in [1] and [3], respectively.
Moreover, such restrictions also arise in the studies on other nonlinear evolution equations,
such as nonlinear hyperbolic equations [13,14], nonlinear parabolic equation [15-18], non-
linear Sobolev problems [19,20], Navier—Stokes equations [21,22], and so on. Therefore,
how to get rid of such restriction becomes a hot topic and for this issue, a lot of efforts have
been devoted. For instance, a corresponding time-discrete system was introduced in [23] to
split the error into two parts, the temporal error and the spatial error, and the spatial error
was reduced to the unconditional boundedness of numerical solution in L°°-norm. Then the
optimal L? error estimate without any time-step restrictions for the NLSE was obtained.
Subsequently, this so-called splitting technique was also applied to other equations [24-30].
Especially, [31] used different technique from the above studies to get the unconditional
superclose for Sobolev equation with conforming mixed FEM.

Different from [3] and [23], we discuss the unconditional superconvergence estimate for
(1.1) with bilinear element[32]. A time-discrete system with solution U" is developed to split
the error u” — U} into the temporal error " — U”" and the spatial error U" — U}/. On one
hand, we obtain the temporal error ||u” — U" || = O(z?), which is one order higher than that
of [23]. Then the boundedness of d;;U", which plays an important role in the analysis of the
spatial error, is arrived at. As it is shown in our paper, H? error estimate of the temporal error
is important for getting rid of the restriction of t. In the existing literature, there have also
been other related works of HZ error estimate for certain nonlinear PDEs, such as [32,33]. On
the other hand, we introduce the classical Ritz prjection operator R, to get the unconditional
result of | R,U" — U}|lp with order O (h?), which implies the unconditional boundedness of
U ll0,00- Consequently, the superclose property of || R,U" — U} || with order Oh% +1%)
is deduced on the basis of the above achievements. Furthermore, through the relationship
between R, and the corresponding interpolation operator I, we get || [,u" — U}'|l; with
order O (h? + %) unconditionally. At the same time, we derive the global superconvergence
by using the postprocessing operator in [31]. At last, some numerical results also show the
validity of the theoretical analysis.

Throughout this paper, we denote the natural inner product in L>(2) by (-, -) and the
norm by || - [lo, and let H}(Q) = {v € H'(Q) : v|so = 0}. Further, we use the classical
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Sobolev spaces W7 (), 1 < p < oo, denoted by W7, withnorm || - ||, ,. When p = 2,
we simply write || - |, as || - |l,,. Besides, we define the space L”(a, b; Y) with the norm

1
N fllLrapy)y = (fab IfG, t)||‘§dt)5, and if p = oo, the integral is replaced by the essential
supremum.

2 A Linearized Galerkin Approximation Scheme

Let 2 be a rectangle in (x, y) plane with edges parallel to the coordinate axes, ['j be a

quasiuniform partition of € into rectangular ;. Denote h = max diamzr;, the mesh size,
Thelp

Vi, be the usual bilinear FE space, V0 = {vy, € Vi, vplag = 0}. Let Ry, : Ho1 — V0 be the
associated Ritz projection operator on Vo defined by

(V(u — Rpu), Vo) = 0, Yo, € Vio. 2.1)
It follows from [17] that
IVRyullo < Cl[Vullo, (22)
and
lu — Ryullo < Ch*lulls,s = 1,2,Yu € HH(Q) N H*(Q). (2.3)

Moreover, for u € H3(Q2), we can found in [34] that
e — Ruully = OB |ulls, (24)

where [, be the associated interpolated operator over Vj.

Let {t, : t, = nt;0 < n < N} be a uniform partition of [0, 7] with the time step
t=T/N,t, 1= %(t,, + ty—1) and 0" = o (X, t,). For a sequence of functions {6”},11\/:0,
we remark

B o —gh—1 _ 5,(7"—5,(7"_1 _ Un+an—1
oo" = ————, 90" = Lo = , n=1,2,...,N,
T T 2
. 3 1
6" = "1 = 70"72, n=2,...,N.
2 2

With these notations, we develop the linearized Galerkin FEM to problem (1.1): seek U}/ €
Vio, such that forn > 2,

i@UL, o) — (VO Vo) + (FAOTE, o) =0, Yoy, € Vi, (2.5)

and we will analyze a predictor corrector method to determine U }1:

1,0 0 1,0 0 1,0 0
(U "~ —=U vU," + VU U= +U
i (’* b, vh> - (” h Vvh> = (f(IU;?Iz)" h vh> . (2.6

T 2 2
followed by
2
(ul-up VU +vUp v+ o\ vl + 0P
i\—— ] —|——— V| = f > Un | s
T 2 2 2
2.7)

where U g = Ryup. Obviously, only a linear system with certain constant coefficients need
to be solved now.
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3 Error Estimates for Time-Discrete System

In this section, we introduce the following time-discrete system:

i0,U" + AU" + f(U"PHU" =0, (X,1)eQ2x(0,T],n>2
U™ =0, (X,1) e Q2 x (0,T],n > 1 (3.1)
U(X,0) =up(X), X e Q,

When n = 1, we determine U'! by

Ul —u® AU+ AU uto+u°
i + +FQUP) ———— =0 (3.2)
T 2 2
and 5
Ul —u° AU+ AU° v+ v\ Ul +U°
i— 5 +f ‘ 5 > =0 (33)

where U'0|3q = 0. The above system can be viewed as a system of linear elliptic equations,
and the existence and uniqueness of solution can be proved immediately. In what follows,
wewillsete” =u" —U"(n =0,1,2,...N), analyze |[u" — U"|;(i =0, 1,2) and give the
regularity result of U".

Theorem 1 Let u and U™ (m = 0, 1,2,...N) be the solutions of (1.1) and (3.1)—(3.3),
respectively, u € L*(0, T; H3()), u, € L0, T; H*()), uy; € L®(0, T; H*()), then

form =1, ..., N, there exists Ty such that when t < 19, we have
1™ lo + lle™[l2 < Cot? (34)
and
UI,O _ UO 5
Hi + 110 U™ |12 < Co. (3.5)
2

Proof Setting Ko £ 1+ lmaxN(Ilum llo.00 + 13:4™ [|0.00)- Then we begin to prove (3.4) and
<m<

(3.5) by mathematical induction. When m = 1, we have the error equations by (1.1) and
(3.2)—(3.3) as follows:

.el’o Ael0 012 el0
&y +f(|u|)—=S1+Sz+S3 (3.6)
T 2 2
and
el Al 1
l?+T+P1:SI+S2+S4a (3'7)

1_,0 1 1 0 1 1,,0 1 1
where §) = 2 —u?, §) = BERC — Au, Sy = f(uH) S — f(urPu?, Sy =

1,0 1,0 1 1 1,0 1,0 1,04 7,0 1,770 i
FUFEPSE = fu2 Pu? and P = f(IF P50 = (55 55 s
easy to see that [[Sylo + lIS2lo + llSallo = C7?, IS0 < Ct.

On one hand, multiplying (3.6) by -, integrating it over £ and then we get

2 1,0 1,0 1,0
L vt = (r (1u0P) 22, 42 oMo
0—27HW lo = (f(\u\) o >+<S1+52+S3, - ) (3.8)

61’0

T

i
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Taking the imaginary part of (3.8), it is easy to get

2

1
<Ct"+ =
0 2

2

1,0
¢ +Clee. (3.9)
0

T

el0

Then there exist 71, Cy, such that when t < 71, we have
lle"Ollo < €17, (3.10)

Again, multiplying (3.6) by Ae?m and integrating it over €2 to yield

| Vel 2 1 102 012 el Ael Ael0
|| gl ”0_—(f<|u\)7, g )+<sl+s2+s3, g )
3.11)
Noting
1,0 1,0 1,012
02)2 Ae 1| Ve H 1012
()22 <3 oo

and

Ae'0 1
‘<S1+52+SS, ‘ )‘SCT+*HA‘31’OH(Z)'
T 8T

Then by taking the imaginary part and the real part of (3.11), and summing them together,
we have

2
+ Cllae 3. (3.12)
0

2
1 1,02 1 Log2, L Vel
g At < ot jac e+ 1|

Vel:0
E

Since !0 € H2(Q) N HOI(Q), there exist 1, Cp, C3, such that when T < 1, we have

VT

61’0 Lo
G e @13
1

which implies

< C3 (3.14)

2

Ul,() _ UO
=

and

1,0 1,0 1 1,0 1 1
U Mlo,00 < lle” 0,00 + Nl lo,c0 = Clle"ll2 + 1 [lo,00 < CC2T + [l Jl0,00 = Ko,

(3.15)
where T < 13 < 1/CC>.
On the other hand, multiplying (3.7) by %, integrating it over 2 and then we get
12 1 1
e 1 e e
i|=] —=1ve'l=—- (Pll, —) + <51 + 85+ 84, —) ) (3.16)
T|g 2t T T
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By the help of (3.10) and (3.15), we get

1,0 012\ ,1 1 0 1 02 1,0 02
1Pl = | £ u-"+u £+” +u ¥ u +u _f u-"+u
2 2 2 2 2 0
1 1,0 2 1
<Clle llo+Clle”"llo < Ct~ + Clle" llo- (3.17)

Taking the imaginary part of (3.16), it is obvious to see that there exist t4, C4, such that
T < 14, it follows that
el

T

< C472. (3.18)
0

Once more, multiplying (3.7) by AT“’I, integrating it over €2 and then we get

Vel 2

T

—1

1 12 1 Ae! Ae!
+—lAellg=—({P,— )+ S1+ S+ 8% —). (3.19)
0 2t T T

Similarly to the estimates of e!-0, we get

Ae! U0 4+yo 2 e! el ' +ud ul 4+ ud 2
PLES) = (1 ) 555 ) + f
T 2 2 T 2 2
Ul 4 yo)? Ae!
7 ‘f "
L|ve | 1
<c34 - || = — A2+ Cllaet?
<cr +8H | +etaciE+ clac3
and
Ael 3 1 12
S1+ 8+ 84, — || = Ct” + —|lAe |,
T 161
which implies
vel |2 1 1|vel | 1
AR <4 - | 25 —laet |2 + Cllaet3. 3.20
H S| ez oc s | T £ piadBrciad 620

It is apparent to see that there exist t5, Cs, Cg, such that when 7 < 15, we have

lle'll2 < Cs7?, (3.21)
which leads to

18, U2 < Ce, (3.22)
and

13U 10,00 + 11U 110,00 < 13" 0,00 + 172 110,00 + lle* 0,00 + llt" 110,00
< CCst + [|9,u 10,00 + llu' 0,00 < Ko, (3.23)

where T < 74 = 1/CCs.
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By mathematical induction, we assume that (3.4) and (3.5) hold for m < n — 1. Then

19:U™ 0,00 + 1T ll0,00 =< 10r€™ 10,00 + [10:™ [l0,00 + [l€™ ll0,00 + ™ ll0,00

< CCot + [10;u™ ]|0,00 + 14" ll0,00 < Ko,

where T < 177 = 1/CC.
Now we prove (3.4) and (3.5) also hold for m = n. To estimate e", we subtract (3.1) from
(1.1) to obtain

ide" + A&" + P' = R + R} + RY, (3.24)
- _1
where R} = i(Bu" —u; ?), R} = A" — Au""2 RY = f(@" D) — f(u 2Pt
and P{' = Fqa"®an — (U3 U". By Taylor’s expansion, we have
IR}l + 1R o + [R5 llo = O(z?). (3.25)
We multiply (3.24) by 3 Ae" and integrate it over 2 to get
—i|3, Ve I} + (A", Ae") = —(P]', §;Ae") + (R} + RS + Ry, §,Ae").  (3.26)
Taking the real part, the left hand can be rewritten as
~ 1
Re(AZ", B A" = ——(IAe"§ — 1 A"~ ). (327)
T

As to the right hand of (3.26), we need to transfer 7 from one part of the inner product to the
other, for there is no term cgncerning with 9; Ae”" on the left hand. Define Al =a',0'=0!
and é! = &!, rewrite (P, 3; Ae") by

(P!, 3, Ae"y = —(B, P', Ae"™") + 3, (P, Ae™). (3.28)

Indeed, by the assumption of the mathematical induction, we have

s e | AR Py — FQUMAHTT — (fF(a T Pyant = fqo P oY
13 P!l =

T

0
= | FAD T PEE + B (ra ) — AT P

N (fQU"?) — {(IU"‘llz))é"

N AP = A2 = (FAUP) = FATP)))

T

<Cl13:&"lo + Cllé" o + Clle" llo
(fUa™P) = FU" ) — (FQU™MP) — £UO 1)

T

+C

Note that
(FAa™?) = FU" P — (FQUMP) = £UO"1 )

T
_ @ an P — 1@ ) + 3 e ar? — 1at 1))
T
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QU =10 + 5 e U = 10 D)

T
_ LA @ar = 1@ ) = (0P =107 R)
T
R el U B VA (i e A ()
T
L L @an? — ) — 0" - 10
2 T
L LA 1 DA — £ )
2 T ’

where
e R (L e A N LA e (1A R [
We find that

H (" ="' R) = 02 = 107
T

0
(ﬁn’:t_‘n _ ﬁn—l;n—l) o (0}15]}1 _ 0}1—1{]}1—1)
T

0

— @8+ a8 — (015,07 + 03,0M) o

— 10"15,8" 4§ + 0"5,6" + §a"e o

< Cl13:"lo + Clle" o + Clie" llo, (3.29)
which implies

(" = @ )2 — (07 — [0 )2

T

0
C@arE =ant?y — o =10 Pyt — a1 + (02— 1001 12)
- T
0
< Cll3:&" o + ClIe" o + Cl1é" lo- (3.30)
Moreover
‘uﬁ’fug I 1 e L s L el A o B L LA el A ) c
T 0,00 T O,oo_ .
(3.31)

Allocating (3.29)—(3.31), we have
(FAG"P) = £ 2P) — (U2 = £(0"22)

T

0
< CT?+Cl13:&" o + Cllé" lo + Clle" [lo.

which leads to

13, P'llo < CT2 + Cl13:8" o + Cl1e" lo + Clle™ llo + ClIF" lo + Clle" 0. (3.32)

@ Springer



J Sci Comput (2017) 72:1093-1118 1101

Thus
(P, 8iAe") < CT> + Cl|3:¢" o + Clle" llo + Clle"llo + Cl13:&" o + ClIé" llo
+ Cl A" G+ 3, (P, Ae™). (3.33)

Similar to (3.28), we rewrite (R} + R} + R%, 9 Ae") as

(RT 4 Ry + RY, 8, Ae") = — (3, R + 8RS + 8, RY, Ae" ™) + 3,(RT + R} + R%, Ae").

(3.34)
It is not difficult to check that
~ én_n_én—l_n—l
1Ry = | Q) Z O m i ) ) o2 (3.35)
T
0
and
1 1
N A~n —A n—xsy _ A~n—l — A 11—1—7
13 R2 o = || (A AW — (A " ) < ce (3.36)
T
0
Note that
1 1 1 1
iR = I FQa" P = fQu" 2" 2) = (fQa" = Pyt = fu 2 P2
3 - T
0
_| i@ i - @b -y @i g B - 2Ry
- T T
1 1 1
+ WTIFAA) — FAAT) = QT2 ) = e T2 R))
T
1
N (fUa"?) — fQa" 2@ — u""2)
T
0
<ce2 (3.37)

Therefore,
(R} + R} 4+ RY, 8,Ae") < Ct* + C||Ae" V2 + 3, (R! + RS + RY, Ae").  (3.38)
Allocating all the estimates above to get
1 _ < — -
57 (lae” 15— A" 3) < CT* + Clldre 1§ + Cllde" G + Cllde" 1§
+ CllAS" 3+ Claé" 3 + Clae™ |3+ Cllae" "3
+ 3 (P!, Ae™) + 3, (R + RS + R}, Ae™). (3.39)
Replacing n by i in (3.39), then summing it from 2 to n, it follows that
lae"[§ < 1ae' 1f+ Ct* + T Y de 1F + ae 1) + Cllae?1F + Cllae'1F

i=1

+ (P!, A"y — (P}, Ael) + (R} + RS + RY, Ae") — (R} + R) + RY, Ae).  (3.40)
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Since

1P = 1FQO" 2y +a" (fQa" 1) — FAU" P13

n 2 n
<cl@+cle i = | D del | <> l1ae 13, (3.41)
i=1 0 i=1
together with (3.18) and (3.21), we have
n
laeig < Ct*+ Ct Y (e’ Ilf + I Ae'Ip). (3.42)

i=1

In order to estimate ||3;¢" o, we take difference between two time levels n and n — 1 of
(3.24), and multiply it by % on both sides, then there holds

iét,e" +51Aén +5[P1n = 5[Ril +51R’21 +5thl (343)
On the other hand, multiplying (3.43) by 9,&", integrating it over € and then it follows
that

i(De", 3") — 18, V" |3+ (B, P, 8,8") = (R}, 3,8") + (3, RS, 3,&") + (3, RY, 8,&").
(3.44)

Then taking the impartial part of (3.44) and using (3.32), (3.35)—(3.37), it follows that
%(uéte"ng — 13" 3) = —Im(3, P, 3,&") + Im(3, R}, 8,&")
+ Im(3, RS, 8,&") + Im(3, R}, 3,&")
< Ct* + Claie" 1§ + Cllde" " Ilg + Cllae" I3
+ Cllae" g + Cllae™ 3. (3.45)
Replacing n by i in (3.45), then summing it from 2 to n, with the result of ¢!, we get

n
18:e™ 15 < C* + CT Y _(ldre I + I Ae' 1) (3.46)

i=1
Combining (3.42) and (3.46), we have
n
19:e™ 15 + llAe™ 15 < C* + CT Y _(lldie' Ilg + A€ 1) (3:47)
i=1

Applying the Gronwall’s inequality to (3.47), there exist tg, C7, Cg, such that when 7 < tg,
there holds

13" o+ le"ll2 < C772, (3.48)
which implies
18, U" |2 < Cs, (3.49)
and

1T 10,00 + 13:U" 0,00 < ll€" 10,00 + 13:€" 0,00 + Cllt" 10,00 + 13:u™ ll0,00
< CCrt + Cllu™llo,00 + 13:u" 0,00 < Ko, (3.50)
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where 7 < 79 < 1/CC7. It can be seen that C7 and Cg have nothing to do with Co. Then
8
(3.2) and (3.3) hold for m = n if we take Co > Y C; and 79 < 1m_in9 7. ]
i=1 ==

Remark 1 1t can~be seen that the result of [|e" |2 = O(z?) is one order higher that in [23],
which leads to [|9;;U™||2 < Co. This will play an important role in the foregoing supercon-
vergence analysis.

Remark 2 1f we use a fully explicit method for the nonlinear term in (3.1)—(3.3), the uncon-
ditional convergence analysis is still valid by an H? error estimate for the time semi-discrete.
The idea is very similar and the process of proof is much easier.

4 Superconvergence Results for the Fully Discrete System

In this section, we will establish an estimate for || R, U" — U}'|lo = O (h?), which results in
the unconditional boundedness of || U}/ [0, 00 Then ||V (R, U™ — U} [|o with order O (h?+12)
is deduced which will result in the superclose results ||V (/,u" — U;')||o with order oh? +
12) unconditionally on the basis of the relationship between /; and Rj,. At last, the global
superconvergence is deduced through the interpolated postprocessing technique. A pervading
strategy throughout the error analysis in the rest of this paper is splitting the error to a sum
of two terms:

U —U =U -~ RU +RU —U} 2+ +6",i=0,1,2,...,N. (4.1)

Theorem 2 Let u and U}" be the solutions of (1.1) and (2.5)-(2.7) respectively, for m =
1,2, ..., N, under the conditions in Theorem 1, we have

IV (L™ — UM o = Oh* + 72). 4.2)

Proof Since [|[R,UMllg + |R2U"ll0.0c + IRAU™0.c < CIU2 + CIIUO|, +

CIU™2 < C,let Ky 2 1+ [|[RyUOllo.00 + Jmax. |RLU||0.00. First of all, we obtain

the result that there exist r(; and hé), when v < 1:(; and h < h;), it follows
16™ llo < Coh?, 4.3)

which bounds [|U}" ||, unconditionally. For m = 1, we have U} [lo,00 = [RAU (0,00 <
K(;. Using (2.6) and (3.2), the error equation is deduced by

. plo vel0 .rl’o—ro Vrlo—i-Vr
i\—.,v ) — Vo | =—i(————,vp) +
T 2 T
U+ u° *+Up
+<ﬂWW)2—fmm> Lo )

4.4)
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Substituting v, = $ in (4.4), we get

OLO1P 1 g (rh0 =0 gl0 Vrl0 4 v,0 vplo
| oo - (A O (R
0

T
UI,O UO +U 01 0
+ (.f(IUOIZ);—f(IUhI >7h, )

~.

T
4.5)
By (2.1) and (2.3), it follows that
1,0 _ .0 pl,0 1,0 _ 770 1,0 1,0
[ R e N R e
T T T o T ol
vri0 4 v0 velo
, =0
(=)
U+ u° "+u) 010
‘(f(IUOIZ)Z — AUy >7h,
T
91,0 r1,0+r0 91,0 UI’O—I—UO 91,0
= ’(quEP) (7 + T) , T) + (f(mv% — FAUH), T)‘

9]0
< Ch* +Cl1o™0)3 + < H

Taking the imaginary part and the real part, respectively, summing them together, then we
get

91,0 1 91 0
’ - ||v9' 2 < cht+clet0)3 + = H (4.6)
T 0
Thus there exist 11,, C; , such that when 7 < r;, we have
1 ,
;ne“’no + V6" 0p < Cyh?, “.7)

which implies
100,00 < CHMI0Mll0 + IR U Oll0.00 < CCLR+ IRAU M l0.00 < Ky, (4.8)

where h < h/1 < 1/CC;. Making use of (2.7) and (3.3) to deduce the error equation and

. 1

setting v, = 97, then we have

2 1_.0 1 0 1
1 ||V9 H rl—0 gl n Vri 4+ VrY Vo
27 0= I - 2 T

R

1

i

1,0 0
v, +U,
2

U040
2

2
1 0 1
Ul +U o
2 ]

(4.9)
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Similar to the proof of 610, we get

2

1.0 pl 1 _ 770 1 1
(r " ,i> < Ch? v-ulj e SCh4+1 o ,
T T T 21 T lo &1 7o
vrl +vr0 ve! —o
2 T
1,0 02 1 0 1,0 0|2 1 0 o1
Uulto+u U'+u ; ul+ul T\ ul+u? e
2 2 2 2 Ut
2
. Uy’ + Ul (e Lty o
- 2 2 2 T
2
LUt U4+ uo ; v+ 0|\ e
2 2 2 T
1]6!? 16>
< Ch4+C||01||(2)+C||91'0||(2)+g ‘7 < Ch4+C||01||(2)+§‘ ,
0 0

where the last step is deduced by the help of (4.7). Also, taking the imaginary part and the
real part, respectively, summing them together, then we get

91 ? 1 12 4 12 1 91 ?
— +==IVOlg=Ch"+Clo |l + = |[—]| - (4.10)
Ty 2t 210 7o
Thus there exist ré, C/z, such that when 7 < ‘L'é, we have
91 1 "2
— || +1IVe o < Cyh7, 4.11)
T llo
which implies
UL .00 < CA™116 0 + 1RRU 0,00 < CCoh + | RAU 0,00 < K. (4.12)

where h < h/2 <1/C C/z. By mathematical induction, we assume that (4.3) holds for m <
n — 1, then we have

UM 0,00 < CRTH6™ llo + [ RRU™ lo.00 < CColt + [ RAU™ ll0,00 < Ko (4.13)
where h < hy < 1/CC,,.

Then when m = n, setting P;’ = f(|ﬁ”|2)ﬁ” - f(|l7;’:|2)0;:, we get the error equation
from (2.5) and (3.1) as follows:

(30", vp) — (VO", Voy) = —i (97", vp) + (VF", Vuy) — (P, vp). (4.14)

Choosing v, = 6" in (4.14), the impartial part results in

1 _ - ~ -
E(n@”ug —16"7113) = —Re(@,r", 6") + Im(Vr", VE") — Im(P}, 6"). (4.15)
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We bound P2" as
1P o = I FATL Y@ + 7 + T F (0" > = 107 Pl
< Cl6"lo + ClI#llo + C18"lo + CIF" llo < ClI6" lo + ClI6" [l + Ch?,
where pg = [0~ > + 35 (103> = 10" ).
Thus,
1 _ _ _
E(ne"n% —16"7MIB) < cle™ 13 + cle" g + clle" 215 + cht. (4.16)
Summing (4.16) up gives
n .
6™ 13 < 1613+ " 16713 + cht. (4.17)
i=l1

Applying the Gronwall’s inequality to (4.17), together with (4.11), there exist ‘L'3’, C;, when
T < r;, we have

16" lo < C3h?, (4.18)

which leads to
U 0,00 < Ch™1 16" l0 + |RAU 0,00 < CC3h + |RAU 0,00 < Ko (4.19)
where h < h; < l/CC; Clearly, C; has nothing to do with C(l). Thus (4.3) holds form = n,

1fwetakeCO>ZC ro< m1n 1: andh < min h

] <3 1<t<4

Secondly, we will give the result
IV6™llo < C(h* +7%) (4.20)

unconditionally. Because of (4.11), it is apparent to see that (4.20) holds for m = 1. When
m =n, (n > 2), choosing vy, = 9,;0" in (4.14) and taking the real part result in

1 L 5 3
2—(||V0” 13 = 1VO" 112y = Im(8,r", 3,0™) + Re(Vr", V3,0") — Re(Py, 3,0"). (4.21)
T
Then (4.21) leads to
1 B 3
E(IIW”II% —Ive"13) < ch* + ClId,6" 13 (4.22)
Summing (4.22) from 2 to n, we obtain
n .
IVe™|I5 < Ch* + Ct Y 1136715, (4.23)
i=1

Obviously, to obtain the estimate of || V8" ||p, we need the boundedness of ||8,9 ||0 Takmg
difference between two time levels n and n — 1 of (4.14), with U i hl, =71 91 =6!
we have

(30", vp) — (V3,0", Vvy) = —i (1", vp) + (VO 7", Vo) — (3 Py, vp).  (4.24)
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Setting v, = 5,5” in (4.24), the imaginary part gives

1 - - - -~ - -~ ~ -~
27(”3’9"”5 — 130" 3) = —Re @y, 5:0™) + Im(V3, 7", V,6") — Im(3; Py, 3,6™).

(4.25)

Similar to the estimate of 6", it is not difficult to check that
(B, 3,6™)| < Ch*(|3, U 12118,6" o < Ch* + C|18,6" 15, (4.26)
(V3,7",V3,6™) = 0. 4.27)

Based on the achievements above, it follows that

113 P4 llo

_ H L L o L B VA (/A LY B ALY/ L)
T

0
f(|0n—1|2)5t0n f(|ﬁ1171|2)5t0n
h h

N U"(fAU"P) = FAQUP) = TF (FAOI P = FAT1P))
T

0
< IFAO 2 @,0" + 87" + 8, 0" (£AU™1») = £AT PN o

Le AU = QU2 = (FAOP) — £AT1P)
t 0
T2y tn—1,2 n__ yrn
| GO = a0t P @ - O
T 0
Note that
H AT = £AU) = (A0 = £ 2))
T 0
LA 0n2_ 0n712 _ 0?12_ 0"—12
=Hf(wg_l'z)u - |)r<| e /A
0n2_0'1712 L a L
WD qomrpy - aoppy
1 [jn2_0n—122_ 0}12_0"7122
+§fw,9,)<| 2 — 10" — 01— 10 )2
T
A0 =102 o
+ 5 f = f | .
T 0
where

wlh = 0" P R0 = (0", ks = 100 2807 = 10071,
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In fact,

H (0P = 10" P) = (02 = 103 )
T

0
(0n0n _ 0117107171) _ (0/210;11 _ 0;11—1021—1)
T

0

= 10"5,0" — 075,00 + 0"3,0" — 03,070

= 10PN G0 = 5,00 + 3,0m0" — 00 + 03,0 = 3,00 + 3,00 — OMllo
< ClI36" I + 137" 15 + CIO™ G + 171§ + C1o™ G + 17"~ 115

< Ch* 4 113,613 + 1613 + 19"~ 113,

and

T

‘ (0" = 10" P2 — (10312 = 10,7 P

0
(0" = 10" = 40P = 103117
T

0" = 10" + (012 = 100112y

< Ch* + 13,613 + Cl16™ 12 + 116" 112
Moreover,
1 ) = £ @d)llo = 10" P = 103711 + 250" P = 10"
— (0P =107 2 + 0" = 10" 08 = 28 llo
< Cl6"lo + C1I0" "o + Ch*> + Cr.
Therefore
13 Py, 3,0M)| < Ch* + Ct* + 113,8" [lo + C18,0" I3 + CI6" 13+ C19" 113, (4.28)

Recalling (4.26)—(4.28), it follows that

1 - N -~ <4 R .
5 196" 13 = 136" 113) < Ch* + CT* 4+ 18,6" o + C113,6™ 13 + C16" 13 + 16"~ |13.

(4.29)
Summing (4.29), together with (4.23), it gives that
n .
13:6"13 < Ch* + CT* + CT Y 13,613 (4.30)
i=1
Applying the Gronwall’s inequality to (4.30), we have
13:6" 13 < Ch* + Ct*, (4.31)
which results in
V6™ |lo < Ch* + Ct2. (4.32)
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At last, by the help of (2.2)—(2.4), it reduces to
IVUpu" = U)llo < CIVUu" — Rpu)llo + CIIV(Rpu"™ — RyU™)lo
+ CIIV(R,U" = U)o
< CI?||u" I3+ Clle"ll2 + C1IV6" llo
< Ch? + Ct%
|

Remark 3 Itis worthy to note that Theorem 2 can not be obtained by [, alone. In order to keep
the order of || I,U" — U} [lo and | V (I, U" —U}') ||, we should employ (V (u" — Iu"), Vup,) =
OB [[u" I3l or (V" — L"), Vup) = O(h?)|[u"[l4]|vallo as that in [3]. Thus the
regularity of U" and u" should be much stricter. However, we can only bound ||U" ||, under
the assumption that €2 is a rectangle. On the other hand, we take different approach to bound
II 5; Pj'|lo, comparing with that in [3], then we avoid the appearance of the boundedness about
I U i 10,00- Thus we get our final result unconditionally, which improves the conclusion of

[3].

Based on Theorem 2 and interpolated postprocessing operator 122h constructed in [31],
we can deduce the following global superconvergence easily.

Theorem 3 Let u and U} be the solutions of (1.1) and (2.2)-(2.4) respectively, for m =
1, ..., N, under the conditions of Theorem 1, we have

lu™ — I3,U" Iy = O(h? + ©). (4.33)

5 Numerical Results

In this section, we present three numerical examples to confirm our theoretical analysis.

Example 1 Considering the cubic Schrodinger equation [23] with = [0, 1] x [0, 1], we set
f(s)=s,u= 5e (14215 (1—x)(1— y) sin(x) sin(y) and g(X, ¢) is chosen corresponding
to the exact solution. A uniform rectangular partition with M + 1 nodes in each direction is
used in our computation.

We solve the system by the linearized Galerkin method with bilinear element. To confirm
our error estimates in H !-norm, we choose T = 4 and the numerical results with respect to
time r = 0.25, 0.5, 0.75, 1.0 are listed in the following Tables 1, 2, 3 and 4 respectively. We
can see clearly from them that when 4 — 0, [|u”" — U} |1 is convergent at an optimal rate

Table 1 Numerical results at t = 0.25 witht = h

MxM [l — U;;Hl Order Uy — Iy Order lu" — Izth,flll Order
10 x 10 74992 x 1072 - 8.1712x 1073 - 7.4341 x 1072 -
20 x 20 3.7372 x 1072 1.0048  1.8003 x 1073 2.1823 1.8550 x 102 2.0027

40 x 40 1.8670 x 102 1.0013 4.4767 x 10~4 2.0077 4.6333 x 1073 2.0013
80 x 80 93329 x 103 1.0003 1.0724 x 10~4 2.0616 1.1571 x 1073 2.0015
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Table 2 Numerical results at t = 0.5 witht = h

M x M lu — Ul Order Uy — Ihu™ Order lu" — 122h Uplh Order

10 x 10 99799 x 1072 - 13817 x 1072 9.9293 x 102 -

20 x 20 4.9808 x 1072 1.0026  3.3910 x 1073 20267  2.4764 x 1072 2.0035
40 x 40 2.4891 x 102 1.0008  8.2439 x 10~4 20403  6.1742x 1073 2.0039
80 x 80 1.2444 x 102 1.0002  2.0720 x 1074 1.9923 1.5417 x 1073 2.0017
Table 3 Numerical results at r = 0.75 witht = h

M x M lu" — Up I Order Uy — Ihu™ Order lu" — 122hU}’:”1 Order

10 x 10 1.4121 x 10~ - 1.4179 x 102 - 1.4021 x 10~! -

20 x 20 7.0536 x 1072 1.0014 42319 x 1073 1.7444 3.5022 x 1072 2.0013
40 x 40 3.5259 x 102 1.0004 1.0843 x 1073 1.9646  8.7352x 1073 2.0033
80 x 80 1.7628 x 102 1.0001 2.7280 x 10~4 1.9908  2.1809 x 1073 2.0019
Table 4 Numerical results at t = 1.0 with 7 = h

MxM lu" — U I Order Uy — Ihu" iy Order lu" — Izth;:lll Order

10x10  1.9940x 107" - 12256 x 1072 — 1.9713 x 107! -

20 x 20 9.9574 x 102 1.0018  3.9617 x 1073 1.6293  4.9356 x 1072 1.9978
40 x 40 4.9775 x 1072 1.0003 1.0630 x 1073 1.8980 1.2318 x 1072 2.0025
80 x 80 2.4886 x 1072 1.0000  2.7281 x 10~4 1.9621 3.0760 x 1073 2.0016
Table 5 Convergence results of ||u" — U];’ [l with h = ﬁ and T = kh

! k=1 k=5 k=10 k=20 k=40

025  933290x 1073 933431x1073 938386 x 1073 1.13252x 1072 3.42397 x 102
0.50 124436 x 1072 124498 x 1072 1.26254 x 1072 1.51977 x 1072 1.64216 x 1072
0.75 1.76280 x 1072 1.76395x 1072 1.78389 x 1072 1.82913 x 1072 4.99408 x 102
1.00 248864 x 1072 248983 x 1072 249922 x 1072 2.80435x 1072 4.20744 x 102

O(h), and U — Lu"|y, [|u" — Izth,’l‘ |1 are superconvergent at O (%), which coincide
with our theoretical analysis. To show the unconditional stability, we choose i1 = 1/128 and
the large time steps T = h, 4h, 8h, 16k, respectively. We present the numerical results in
Table 5, which suggest that the scheme is stable for large time steps.We also describe the
error reduction results at ¢+ = 0.25, 0.5, 0.75, 1.0 in Figs. 1, 2, 3 and 4 respectively, where
Ej = |lu" = U, Ef = \Uf — " |1, Ejy = |lu" = 15,U} |11

Example 2 'We consider the Schrodinger equation with Q = [0, 1] x [0, 1], f(s) = —s24s

andu = e(i+1)’x3y3(l —x)(1 —y). g(X, 1) is chosen corresponding to the exact solution. A
uniform rectangular partition with M + 1 nodes in each direction is used in our computation.
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Error reduction results at t=0.25

—6—E!
10° L e

——E2
o'l ——E}| ]
107k !
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10k 4
10°k .

10° = - —
10 10

Number of elements
Fig. 1 Error reduction results at ¢t = 0.25
Error reduction results at t=0.5

1° k h|J

—s—E2

. 3
10k —— |
107k 5

S

WL 5
10t 4
10°L 4

10° — - —_—
10 10

Number of elements

Fig. 2 Error reduction results at r = 0.5
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Error reduction results at t=0.75

E1
10’k hi ]

—o—t

. 3
10"k —+—E, |
107} !

S
w g3t !
104 4
10°} !
-6
107 = : —
10' 10°
Number of elements
Fig. 3 Error reduction results at ¢t = 0.75
Error reduction results at t=1

—s—E!
10° | hi ]

—s—E]
107k —+—Ep ]

Error

j

107F

107

10°F

10

—
=)

10
Number of elements

Fig. 4 Error reduction results at # = 1.0

Similar to Example 1, we can see from Tables 6, 7, 8, 9 and 10 and Figs. 5, 6, 7 and 8 that
all these results are in good agreement with our theoretical analysis.
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Table 6 Numerical results at r = 0.25 witht = h

M x M lu — Uyl Order U — L™ Order [lu™ — 122h Uyl Order
10 x 10 7.2234 x 1073 - 8.7373 x 1074 - 1.0448 x 1072 -

20 x 20 3.6163 x 1073 0.9982 2.6497 x 10~4 1.7214 29768 x 1073 1.8114
40 x 40 1.8085 x 1073 0.9997  4.8180x 107 24593 77611 x 1074 1.9394
80 x 80  9.0432x 104 0.9999  9.8289 x 10~° 2.2933 1.9729 x 1074 1.9760
Table 7 Numerical results at t = 0.5 witht = h

M x M lu — Uyl Order U — L™ Order " — 13, U7 I Order
10 x 10 9.2642 x 1073 - 1.1238 x 103 - 1.3491 x 1072 -

20 x 20 4.6418 x 1073 0.9970  2.8240 x 10~* 1.9925 3.8251x 1073 1.8184
40 x 40 23220x 1073 09993  5.9749 x 1073 22408  9.9645 x 10~4 1.9406
80 x 80 1.1611x 1073 0.9998 1.5509 x 1075 1.9458 25310 x 1074 1.9771
Table 8 Numerical results at r = 0.75 witht = h

M x M lu — Ul Order Uy — Ihu™ Order [l — 122,1 Uy lh Order
10 x 10 1.1885x 1072 - 1.5383 x 1073 - 1.7244 x 102 -

20 x 20 59590 x 1073 0.9960  3.9513x 1074 1.9610  4.9064 x 1073 1.8133
40 x 40 29814 x 1073 0.9991 6.8124 x 1075 2.5361 1.2800 x 103 1.9385
80 x 80 14909 x 1073 0.9998  2.2895 x 103 1.5731 3.2462 x 1074 1.9793
Table 9 Numerical results at t = 1.0 with 7 = h

M x M " — Ul Order Uy — Iy Order lu" — Izth/':”l Order
10 x 10 15255 x 1072 — 1.5360 x 1073 - 2.2180 x 1072 -

20 x 20 7.6504 x 1073 0.9957  3.7801 x 10~4 20227 63027 x 1073 1.8152
40 x 40 3.8281 x 1073 0.9989 1.0225 x 10~4 1.8863 1.6411 x 1073 1.9414
80 x 80 19144 x 1073 0.9997  2.9618 x 1073 1.7876  4.1648 x 10~4 1.9783
Table 10 Convergence results of ||u" — U }7 [l with h = % and T = kh

! k=1 k=5 k=10 k=20 k=40

025 9.04315x 10™%  9.04401 x 10™%  9.05601 x 10~%  9.14301 x 10~%  1.29022 x 1073
050 1.16114x 1073 116126 x 1073 1.16265x 1073 1.17703 x 10~3  1.21668 x 1073
0.75  1.49092 x 1073 1.49098 x 1073 149184 x 1073 1.51410 x 1073 1.91354 x 1073
100 191436 x 1073 191443 x 1073 191539 x 1073 1.94401 x 10™3  2.11468 x 103
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Error reduction results at t=0.25
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. 3
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Fig. 5 Error reduction results at ¢t = 0.25
Error reduction results at t=0.5
——FE
10° his
——t}
3
10"} —— 5|
107k 5
S
Wg®L 3
104 !
10°} !
-6
107 ——— : -
10' 10°

Number of elements

Fig. 6 Error reduction results at t = 0.5

Example 3 We consider the example [35] describing the dynamics of Bose-Einstein Con-
densate at extremely low temperature, reads

R0 — — S AU+ V(x, y)u+ [ulPu, (x, y) €10, 27] x [0, 2],
up(x,y) =sinxsiny,
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Error reduction results at t=0.75
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Fig. 7 Error reduction results at ¢t = 0.75

Error reduction results at t=1
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——z
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10" — 5|

107

107}

Error
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107 E

10° L : —_—
10' 10°
Number of elements

Fig. 8 Error reduction results at 7 = 1.0

where V(x,A y)=1- sin? x sin? yand 2 = [0, 1] x [0, 1]. The exact solution for the problem
is u = e~ sinx sin y. A uniform rectangular partition with M + 1 nodes in each direction
is used in our computation.

Tables 11, 12 and 13 and Figs. 9 and 10 confirm our theoretical analysis.
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Table 11 Numerical results at t = 0.5 witht = h

M x M lu" — Uyl Order Uy — Ihu™ Iy Order lu" — 122h Uy lh Order
10 x 10 0.8429 - 0.0851 - 1.4949 -
20 x 20 0.4078 1.0473 0.0220 1.9537 0.3891 1.9419
40 x 40 0.2021 1.0131 0.0055 1.9886 0.0982 1.9859
80 x 80 0.1008 1.0033 0.0014 1.9972 0.0246 1.9965
Table 12 Numerical results at = 1.0 witht = h
M x M lu — Ul Order Uy — Iy Order lu™ — Izthlflll Order
10 x 10 0.8562 - 0.1702 - 1.5027 -
20 x 20 0.4096 1.0636 0.0439 1.9537 0.3910 1.9424
40 x 40 0.2023 1.0177 0.0111 1.9886 0.0987 1.9860
80 x 80 0.1008 1.0046 0.0028 1.9972 0.0247 1.9965
Table 13 Convergence results of P P L= 10 k= 20
||u”—U;llH1Withh:§T—0and -7 =7 =7 =7
T =kh 0.25 0.1008017 0.1008401 0.1016795 0.1143344
0.50 0.1008063 0.1009596 0.1042730 0.1476723
0.75 0.1008140 0.1011586 0.1084578 0.1906936
1.00 0.1008248 0.1014366 0.1140587 0.2382053
o' Error reduction results at t=0.5
——F
2
100 L —— Eh i
—
10"k .
£ 107 ;
w
10°k .
10} .
1

10'

Fig. 9 Error reduction results at t = 0.5
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. Error reduction results at t=1
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Fig. 10 Error reduction results at t = 1.0
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