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Abstract AlinearizedCrank–NicolsonGalerkinfinite elementmethodwith bilinear element
for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are
called the temporal error and the spatial error, the unconditional superconvergence result is
deduced. On one hand, the regularity for a time-discrete system is presented based on the
proof of the temporal error. On the other hand, the classical Ritz projection is applied to get
the spatial error with order O(h2) in L2-norm, which plays an important role in getting rid of
the restriction of τ . Then the superclose estimates of order O(h2 +τ 2) in H1-norm is arrived
at based on the relationship between the Ritz projection and the interpolated operator. At the
same time, global superconvergence property is arrived at by the interpolated postprocessing
technique. At last, three numerical examples are provided to confirm the theoretical analysis.
Here, h is the subdivision parameter and τ is the time step.
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1 Introduction

Consider the following nonlinear Schrödinger equation:

⎧
⎪⎨

⎪⎩

iut + �u + f (|u|2)u = 0, (X, t) ∈ � × (0, T ],
u = 0, (X, t) ∈ ∂� × (0, T ],
u(X, 0) = u0(X), X ∈ �,

(1.1)
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where X = (x, y), 0 < T < ∞, and � ⊂ R
2 is a rectangle with the boundary ∂�. i is the

imaginary unit, u0(X) is a known complex-valued function. Moreover, f (s) is a real-valued
nonlinear function which is twicely continuously differentiable with respective to s.

The NLSE plays an important role in describing physical phenomena, such as optical
pulses, plasma physics andwater waves and so on. Different numericalmethods for theNLSE
have been investigated extensively. For example, [1] discussed an iterative modification of
the linearized scheme and proved second-order error estimates by use of Newtons method
to linearize the equations at each time level. Continuous Galerkin methods were employed
in [2] and optimal order error estimates in L∞(L2) and L∞(H1), and the corresponding
superconvergence results at the temporal nodes tn were obtained. [3] and [4] studied the
normal Galerkinmethod and introduced the semi-discrete scheme and fully-discrete schemes
for NLSE, respectively and both derived the superclose and superconvergence results in
H1-norm. A meshless local boundary integral equation method and two-grid mixed finite
element method were proposed to solve the unsteady Schrödinger equation in [5] and [6],
respectively. [7] and [8] researched the discontinuous Galerkin method and get optimal
order error estimates. Finite difference method were also considered extensively in [9–12].

In fact, studying a nonlinear physical system often involves the boundedness of Un
h in

L∞-norm or a stronger norm, where Un
h is the numerical solution. The usual technique is

employing the inverse inequality to deal with such issue, which will result in some time-step

restrictions, such as τ = o(h
1
4 ) and τ = O(h2)/τ = O(h) in [1] and [3], respectively.

Moreover, such restrictions also arise in the studies on other nonlinear evolution equations,
such as nonlinear hyperbolic equations [13,14], nonlinear parabolic equation [15–18], non-
linear Sobolev problems [19,20], Navier–Stokes equations [21,22], and so on. Therefore,
how to get rid of such restriction becomes a hot topic and for this issue, a lot of efforts have
been devoted. For instance, a corresponding time-discrete system was introduced in [23] to
split the error into two parts, the temporal error and the spatial error, and the spatial error
was reduced to the unconditional boundedness of numerical solution in L∞-norm. Then the
optimal L2 error estimate without any time-step restrictions for the NLSE was obtained.
Subsequently, this so-called splitting technique was also applied to other equations [24–30].
Especially, [31] used different technique from the above studies to get the unconditional
superclose for Sobolev equation with conforming mixed FEM.

Different from [3] and [23], we discuss the unconditional superconvergence estimate for
(1.1) with bilinear element[32]. A time-discrete systemwith solutionUn is developed to split
the error un − Un

h into the temporal error un − Un and the spatial error Un − Un
h . On one

hand, we obtain the temporal error ‖un −Un‖2 = O(τ 2), which is one order higher than that
of [23]. Then the boundedness of ∂̃t tUn , which plays an important role in the analysis of the
spatial error, is arrived at. As it is shown in our paper, H2 error estimate of the temporal error
is important for getting rid of the restriction of τ . In the existing literature, there have also
been other relatedworks of H2 error estimate for certain nonlinear PDEs, such as [32,33]. On
the other hand, we introduce the classical Ritz prjection operator Rh to get the unconditional
result of ‖RhUn −Un

h ‖0 with order O(h2), which implies the unconditional boundedness of
‖Un

h ‖0,∞. Consequently, the superclose property of ‖RhUn −Un
h ‖1 with order O(h2 + τ 2)

is deduced on the basis of the above achievements. Furthermore, through the relationship
between Rh and the corresponding interpolation operator Ih , we get ‖Ihun − Un

h ‖1 with
order O(h2 + τ 2) unconditionally. At the same time, we derive the global superconvergence
by using the postprocessing operator in [31]. At last, some numerical results also show the
validity of the theoretical analysis.

Throughout this paper, we denote the natural inner product in L2(�) by (·, ·) and the
norm by ‖ · ‖0, and let H1

0 (�) = {v ∈ H1(�) : v|∂� = 0}. Further, we use the classical
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Sobolev spacesWm,p(�), 1 ≤ p ≤ ∞, denoted byWm,p , with norm ‖ · ‖m,p. When p = 2,
we simply write ‖ · ‖m,p as ‖ · ‖m . Besides, we define the space L p(a, b; Y ) with the norm

‖ f ‖L p(a,b;Y ) = (
∫ b
a ‖ f (·, t)‖p

Y dt)
1
p , and if p = ∞, the integral is replaced by the essential

supremum.

2 A Linearized Galerkin Approximation Scheme

Let � be a rectangle in (x, y) plane with edges parallel to the coordinate axes, �h be a
quasiuniform partition of � into rectangular πh . Denote h = max

πh∈�h
diamπh the mesh size,

Vh be the usual bilinear FE space, Vh0 = {vh ∈ Vh, vh |∂� = 0}. Let Rh : H1
0 → Vh0 be the

associated Ritz projection operator on Vh0 defined by

(∇(u − Rhu),∇vh) = 0,∀vh ∈ Vh0. (2.1)

It follows from [17] that

‖∇Rhu‖0 ≤ C‖∇u‖0, (2.2)

and

‖u − Rhu‖0 ≤ Chs‖u‖s, s = 1, 2,∀u ∈ H1
0 (�) ∩ H2(�). (2.3)

Moreover, for u ∈ H3(�), we can found in [34] that

‖Ihu − Rhu‖1 = O(h2)‖u‖3, (2.4)

where Ih be the associated interpolated operator over Vh0.
Let {tn : tn = nτ ; 0 ≤ n ≤ N } be a uniform partition of [0, T ] with the time step

τ = T/N , tn− 1
2

= 1
2 (tn + tn−1) and σ n = σ(X, tn). For a sequence of functions {σ n}Nn=0,

we remark

∂̃tσ
n = σ n − σ n−1

τ
, ∂̃t tσ

n = ∂̃tσ
n − ∂̃tσ

n−1

τ
, σ̃ n = σ n + σ n−1

2
, n = 1, 2, . . . , N ,

σ̂ n = 3

2
σ n−1 − 1

2
σ n−2, n = 2, . . . , N .

With these notations, we develop the linearized Galerkin FEM to problem (1.1): seek Un
h ∈

Vh0, such that for n ≥ 2,

i(∂̃tU
n
h , vh) − (∇Ũ n

h ,∇vh) + ( f (|Û n
h |2)Ũ n

h , vh) = 0, ∀vh ∈ Vh0, (2.5)

and we will analyze a predictor corrector method to determine U 1
h :

i

(
U 1,0
h −U 0

h

τ
, vh

)

−
(

∇U 1,0
h + ∇U 0

h

2
,∇vh

)

=
(

f (|U 0
h |2)U

1,0
h +U 0

h

2
, vh

)

, (2.6)

followed by

i

(
U 1
h −U 0

h

τ
, vh

)

−
(

∇U 1
h + ∇U 0

h

2
,∇vh

)

=
⎛

⎝ f

⎛

⎝

∣
∣
∣
∣
∣

U 1,0
h +U 0

h

2

∣
∣
∣
∣
∣

2
⎞

⎠
U 1
h +U 0

h

2
, vh

⎞

⎠ ,

(2.7)
where U 0

h = Rhu0. Obviously, only a linear system with certain constant coefficients need
to be solved now.
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3 Error Estimates for Time-Discrete System

In this section, we introduce the following time-discrete system:
⎧
⎪⎨

⎪⎩

i ∂̃tUn + �Ũ n + f (|Û n |2)Ũ n = 0, (X, t) ∈ � × (0, T ], n ≥ 2

Un = 0, (X, t) ∈ ∂� × (0, T ], n ≥ 1

U (X, 0) = u0(X), X ∈ �,

(3.1)

When n = 1, we determine U 1 by

i
U 1,0 −U 0

τ
+ �U 1,0 + �U 0

2
+ f (|U 0|2)U

1,0 +U 0

2
= 0 (3.2)

and

i
U 1 −U 0

τ
+ �U 1 + �U 0

2
+ f

(∣
∣
∣
∣
U 1,0 +U 0

2

∣
∣
∣
∣

2
)
U 1 +U 0

2
= 0, (3.3)

whereU 1,0|∂� = 0. The above system can be viewed as a system of linear elliptic equations,
and the existence and uniqueness of solution can be proved immediately. In what follows,
we will set en = un −Un(n = 0, 1, 2, . . . N ), analyze ‖un −Un‖i (i = 0, 1, 2) and give the
regularity result of Un .

Theorem 1 Let u and Um(m = 0, 1, 2, . . . N ) be the solutions of (1.1) and (3.1)–(3.3),
respectively, u ∈ L2(0, T ; H3(�)), ut ∈ L∞(0, T ; H2(�)), utt ∈ L∞(0, T ; H2(�)), then
for m = 1, . . . , N , there exists τ0 such that when τ ≤ τ0, we have

‖∂̃t em‖0 + ‖em‖2 ≤ C0τ
2 (3.4)

and
∥
∥
∥
∥
U 1,0 −U 0

τ

∥
∥
∥
∥
2
+ ‖∂̃t tUm‖2 ≤ C0. (3.5)

Proof Setting K0 � 1+ max
1≤m≤N

(‖um‖0,∞ + ‖∂̃t um‖0,∞). Then we begin to prove (3.4) and

(3.5) by mathematical induction. When m = 1, we have the error equations by (1.1) and
(3.2)–(3.3) as follows:

i
e1,0

τ
+ �e1,0

2
+ f

(∣
∣u0

∣
∣2

) e1,0

2
= S1 + S2 + S3 (3.6)

and

i
e1

τ
+ �e1

2
+ P1

1 = S1 + S2 + S4, (3.7)

where S1 = u1−u0
τ

− u
1
2
t , S2 = �u1+�u0

2 − �u
1
2 , S3 = f (|u0|2) u1+u0

2 − f (|u 1
2 |2)u 1

2 , S4 =
f (| u1+u0

2 |2) u1+u0
2 − f (|u 1

2 |2)u 1
2 and P1

1 = f (| u1+u0
2 |2) u1+u0

2 − f (|U1,0+U0

2 |2)U1+U0

2 . It is
easy to see that ‖S1‖0 + ‖S2‖0 + ‖S4‖0 ≤ Cτ 2, ‖S3‖0 ≤ Cτ .

On one hand, multiplying (3.6) by e1,0
τ
, integrating it over � and then we get

i

∥
∥
∥
∥
e1,0

τ

∥
∥
∥
∥

2

0
− 1

2τ

∥
∥∇e1,0

∥
∥2
0 = −

(

f
(∣
∣u0

∣
∣2

) e1,0

2
,
e1,0

τ

)

+
(

S1 + S2 + S3,
e1,0

τ

)

. (3.8)
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Taking the imaginary part of (3.8), it is easy to get

∥
∥
∥
∥
e1,0

τ

∥
∥
∥
∥

2

0
≤ Cτ 2 + 1

2

∥
∥
∥
∥
e1,0

τ

∥
∥
∥
∥

2

0
+ C

∥
∥e1,0

∥
∥2
0 . (3.9)

Then there exist τ1,C1, such that when τ ≤ τ1, we have

‖e1,0‖0 ≤ C1τ
2. (3.10)

Again, multiplying (3.6) by �e1,0
τ

and integrating it over � to yield

−i

∥
∥
∥
∥
∇e1,0

τ

∥
∥
∥
∥

2

0
+ 1

2τ

∥
∥�e1,0

∥
∥2
0 = −

(

f
(∣
∣u0

∣
∣2

) e1,0

2
,
�e1,0

τ

)

+
(

S1 + S2 + S3,
�e1,0

τ

)

.

(3.11)

Noting

∣
∣
∣
∣

(

f
(∣
∣u0

∣
∣2

) e1,0

2
,
�e1,0

τ

)∣
∣
∣
∣ ≤ 1

8

∥
∥
∥
∥
∇e1,0

τ

∥
∥
∥
∥

2

0
+ C

∥
∥�e1,0

∥
∥2
0

and
∣
∣
∣
∣

(

S1 + S2 + S3,
�e1,0

τ

)∣
∣
∣
∣ ≤ Cτ + 1

8τ

∥
∥�e1,0

∥
∥2
0 .

Then by taking the imaginary part and the real part of (3.11), and summing them together,
we have

∥
∥
∥
∥
∇e1,0

τ

∥
∥
∥
∥

2

0
+ 1

2τ

∥
∥�e1,0

∥
∥2
0 ≤ Cτ + 1

4τ

∥
∥�e1,0

∥
∥2
0 + 1

4

∥
∥
∥
∥
∇e1,0

τ

∥
∥
∥
∥

2

0
+ C‖�e1,0‖20. (3.12)

Since e1,0 ∈ H2(�) ∩ H1
0 (�), there exist τ2,C2,C3, such that when τ ≤ τ2, we have

√
τ

∥
∥
∥
∥
e1,0

τ

∥
∥
∥
∥
1
+ ∥

∥e1,0
∥
∥
2 ≤ C2τ, (3.13)

which implies

∥
∥
∥
∥
U 1,0 −U 0

τ

∥
∥
∥
∥
2

≤ C3 (3.14)

and

‖U 1,0‖0,∞ ≤ ‖e1,0‖0,∞ + ‖u1‖0,∞ ≤ C‖e1,0‖2 + ‖u1‖0,∞ ≤ CC2τ + ‖u1‖0,∞ ≤ K0,

(3.15)

where τ ≤ τ3 ≤ 1/CC2.

On the other hand, multiplying (3.7) by e1
τ
, integrating it over � and then we get

i

∥
∥
∥
∥
e1

τ

∥
∥
∥
∥

2

0
− 1

2τ
‖∇e1‖20 = −

(

P1
1 ,

e1

τ

)

+
(

S1 + S2 + S4,
e1

τ

)

. (3.16)
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By the help of (3.10) and (3.15), we get

‖P1
1 ‖0 =

∥
∥
∥
∥
∥
f

(∣
∣
∣
∣
U1,0 +U0

2

∣
∣
∣
∣

2
)
e1

2
+ u1 + u0

2

(

f

(∣
∣
∣
∣
u1 + u0

2

∣
∣
∣
∣

2
)

− f

(∣
∣
∣
∣
U1,0 +U0

2

∣
∣
∣
∣

2
))∥

∥
∥
∥
∥
0

≤ C‖e1‖0 + C‖e1,0‖0 ≤ Cτ 2 + C‖e1‖0. (3.17)

Taking the imaginary part of (3.16), it is obvious to see that there exist τ4,C4, such that
τ ≤ τ4, it follows that

∥
∥
∥
∥
e1

τ

∥
∥
∥
∥
0

≤ C4τ
2. (3.18)

Once more, multiplying (3.7) by �e1
τ
, integrating it over � and then we get

−i

∥
∥
∥
∥
∇e1

τ

∥
∥
∥
∥

2

0
+ 1

2τ
‖�e1‖20 = −

(

P1
1 ,

�e1

τ

)

+
(

S1 + S2 + S4,
�e1

τ

)

. (3.19)

Similarly to the estimates of e1,0, we get

∣
∣
∣
∣

(

P1
1 ,

�e1

τ

)∣
∣
∣
∣ =

∣
∣
∣
∣
∣

(

f

(∣
∣
∣
∣
U 1,0 +U 0

2

∣
∣
∣
∣

2
)
e1

2
,
�e1

τ

)

+
(
u1 + u0

2

(

f

(∣
∣
∣
∣
u1 + u0

2

∣
∣
∣
∣

2
)

− f

(∣
∣
∣
∣
U 1,0 +U 0

2

∣
∣
∣
∣

2
))

,
�e1

τ

)∣
∣
∣
∣
∣

≤ Cτ 3 + 1

8

∥
∥
∥
∥
∇e1

τ

∥
∥
∥
∥

2

0
+ 1

16τ
‖�e1‖20 + C‖�e1‖20

and
∣
∣
∣
∣

(

S1 + S2 + S4,
�e1

τ

)∣
∣
∣
∣ ≤ Cτ 3 + 1

16τ
‖�e1‖20,

which implies

∥
∥
∥
∥
∇e1

τ

∥
∥
∥
∥

2

0
+ 1

2τ
‖�e1‖20 ≤ Cτ 3 + 1

4

∥
∥
∥
∥
∇e1

τ

∥
∥
∥
∥

2

0
+ 1

4τ
‖�e1‖20 + C‖�e1‖20. (3.20)

It is apparent to see that there exist τ5,C5,C6, such that when τ ≤ τ5, we have

‖e1‖2 ≤ C5τ
2, (3.21)

which leads to

‖∂̃t tU 1‖2 ≤ C6, (3.22)

and

‖∂̃tU 1‖0,∞ + ‖U 1‖0,∞ ≤ ‖∂̃t e1‖0,∞ + ‖∂̃t u1‖0,∞ + ‖e1‖0,∞ + ‖u1‖0,∞
≤ CC5τ + ‖∂̃t u1‖0,∞ + ‖u1‖0,∞ ≤ K0, (3.23)

where τ ≤ τ6 = 1/CC5.
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By mathematical induction, we assume that (3.4) and (3.5) hold for m ≤ n − 1. Then

‖∂̃tUm‖0,∞ + ‖Um‖0,∞ ≤ ‖∂̃t em‖0,∞ + ‖∂̃t um‖0,∞ + ‖em‖0,∞ + ‖um‖0,∞
≤ CC0τ + ‖∂̃t um‖0,∞ + ‖um‖0,∞ ≤ K0,

where τ ≤ τ7 = 1/CC0.
Now we prove (3.4) and (3.5) also hold for m = n. To estimate en , we subtract (3.1) from

(1.1) to obtain

i ∂̃t e
n + �ẽn + Pn

1 = Rn
1 + Rn

2 + Rn
3 , (3.24)

where Rn
1 = i(∂̃t un − u

n− 1
2

t ), Rn
2 = �ũn − �un− 1

2 , Rn
3 = f (|ûn |2)ũn − f (|un− 1

2 |2)un− 1
2

and Pn
1 = f (|ûn |2)ũn − f (|Û n |2)Ũ n . By Taylor’s expansion, we have

‖Rn
1‖0 + ‖Rn

2‖0 + ‖Rn
3‖0 = O(τ 2). (3.25)

We multiply (3.24) by ∂̃t�en and integrate it over � to get

−i‖∂̃t∇en‖20 + (�ẽn, ∂̃t�en) = −(Pn
1 , ∂̃t�en) + (Rn

1 + Rn
2 + Rn

3 , ∂̃t�en). (3.26)

Taking the real part, the left hand can be rewritten as

Re(�ẽn, ∂̃t�en) = 1

2τ
(‖�en‖20 − ‖�en−1‖20). (3.27)

As to the right hand of (3.26), we need to transfer τ from one part of the inner product to the
other, for there is no term concerning with ∂̃t�en on the left hand. Define û1 = ũ1, Û 1 = Ũ 1

and ê1 = ẽ1, rewrite (Pn
1 , ∂̃t�en) by

(Pn
1 , ∂̃t�en) = −(∂̃t P

n
1 ,�en−1) + ∂̃t (P

n
1 ,�en). (3.28)

Indeed, by the assumption of the mathematical induction, we have

‖∂̃t Pn
1 ‖0 =

∥
∥
∥
∥
∥

( f (|ûn |2)ũn − f (|Û n |2)Ũ n) − ( f (|ûn−1|2)ũn−1 − f (|Û n−1|2)Ũ n−1)

τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥ f (|Û n−1|2)∂̃t ẽn + ∂̃t ũ

n( f (|ûn−1|2) − f (|Û n−1|2))

+ ( f (|Û n |2) − f (|Û n−1|2))ẽn
τ

+ ũn(( f (|ûn |2) − f (|ûn−1|2)) − ( f (|Û n |2) − f (|Û n−1|2)))
τ

∥
∥
∥
∥
∥
0

≤C‖∂̃t ẽn‖0 + C‖ên−1‖0 + C‖ẽn‖0

+ C

∥
∥
∥
∥
∥

( f (|ûn |2) − f (|ûn−1|2)) − ( f (|Û n |2) − f (|Û n−1|2))
τ

∥
∥
∥
∥
∥
0

.

Note that

( f (|ûn |2) − f (|ûn−1|2)) − ( f (|Û n |2) − f (|Û n−1|2))
τ

= ( f
′
(|ûn−1|2)(|ûn |2 − |ûn−1|2) + 1

2 f
′′
(μn

1)(|ûn |2 − |ûn−1|2)2)
τ
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− ( f
′
(|Û n−1|2)(|Û n |2 − |Û n−1|2) + 1

2 f
′′
(μn

2)(|Û n |2 − |Û n−1|2)2)
τ

= f
′
(|Û n−1|2)((|ûn |2 − |ûn−1|2) − (|Û n |2 − |Û n−1|2))

τ

+ (|ûn |2 − |ûn−1|2)( f ′
(|ûn−1|2) − f

′
(|Û n−1|2))

τ

+ 1

2

f
′′
(μn

2)((|ûn |2 − |ûn−1|2)2 − (|Û n |2 − |Û n−1|2)2)
τ

+ 1

2

(|ûn |2 − |ûn−1|2)2( f ′′
(μn

1) − f
′′
(μn

2))

τ
,

where

μn
1 = |ûn−1|2 + λn1(|ûn |2 − |ûn−1|2), μn

2 = |Û n−1|2 + λn2(|Û n |2 − |Û n−1|2).
We find that

∥
∥
∥
∥
∥

(|ûn |2 − |ûn−1|2) − (|Û n |2 − |Û n−1|2)
τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥

(ûn ¯̂un − ûn−1 ¯̂un−1) − (Û n ¯̂Un − Û n−1 ¯̂Un−1)

τ

∥
∥
∥
∥
∥
0

= ‖(ûn−1∂̃t ¯̂un + ¯̂un ∂̃t ûn) − (Û n−1∂̃t
¯̂Un + ¯̂Un ∂̃t Û

n)‖0
= ‖Û n−1∂̃t ¯̂en + ∂̃t ¯̂unên−1 + ¯̂Un ∂̃t ê

n + ∂̃t û
n ¯̂en‖0

≤ C‖∂̃t ên‖0 + C‖ên−1‖0 + C‖ên‖0, (3.29)

which implies
∥
∥
∥
∥
∥

(|ûn |2 − |ûn−1|2)2 − (|Û n |2 − |Û n−1|2)2
τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥

((|ûn |2 − |ûn−1|2) − (|Û n |2 − |Û n−1|2))((|ûn |2 − |ûn−1|2) + (|Û n |2 − |Û n−1|2))
τ

∥
∥
∥
∥
∥
0

≤ C‖∂̃t ên‖0 + C‖ên−1‖0 + C‖ên‖0. (3.30)

Moreover
∥
∥
∥
∥

μn
1 − μn

2
τ

∥
∥
∥
∥
0,∞

=
∥
∥
∥
∥
∥

|ûn−1|2 − |Ûn−1|2 + λn1(|ûn |2 − |ûn−1|2) − λn2(|Ûn |2 − |Ûn−1|2)
τ

∥
∥
∥
∥
∥
0,∞

≤ C.

(3.31)

Allocating (3.29)–(3.31), we have
∥
∥
∥
∥
∥

( f (|ûn−1|2) − f (|ûn−2|2)) − ( f (|Û n−1|2) − f (|Û n−2|2))
τ

∥
∥
∥
∥
∥
0

≤ Cτ 2 + C‖∂̃t ên‖0 + C‖ên−1‖0 + C‖ên‖0,
which leads to

‖∂̃t Pn
1 ‖0 ≤ Cτ 2 + C‖∂̃t ên‖0 + C‖ên−1‖0 + C‖ên‖0 + C‖∂̃t ẽn‖0 + C‖ẽn‖0. (3.32)
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Thus

(Pn
1 , ∂̃t�en) ≤ Cτ 2 + C‖∂̃t ên‖0 + C‖ên−1‖0 + C‖ên‖0 + C‖∂̃t ẽn‖0 + C‖ẽn‖0

+ C‖�en−1‖20 + ∂̃t (P
n
1 ,�en). (3.33)

Similar to (3.28), we rewrite (Rn
1 + Rn

2 + Rn
3 , ∂̃t�en) as

(Rn
1 + Rn

2 + Rn
3 , ∂̃t�en) = −(∂̃t R

n
1 + ∂̃t R

n
2 + ∂̃t R

n
3 ,�en−1) + ∂̃t (R

n
1 + Rn

2 + Rn
3 ,�en).

(3.34)

It is not difficult to check that

‖∂̃t Rn
1‖0 =

∥
∥
∥
∥
∥

(∂̃t un − unt ) − (∂̃t un−1 − un−1
t )

τ

∥
∥
∥
∥
∥
0

≤ Cτ 2, (3.35)

and

‖∂̃t Rn
2‖0 =

∥
∥
∥
∥
∥

(�ũn − �un− 1
2 ) − (�ũn−1 − �un−1− 1

2 )

τ

∥
∥
∥
∥
∥
0

≤ Cτ 2. (3.36)

Note that
∥
∥
∥
∥
∥
∥
∂̃t R

n
3‖0 = ‖ ( f (|ûn |2)ũn − f (|un− 1

2 |2)un− 1
2 ) − ( f (|ûn−1|2)ũn−1 − f (|un−1− 1

2 |2)un−1− 1
2 )

τ

∥
∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥
∥

f (|un−1− 1
2 |2)((ũn − ũn−1) − (un− 1

2 − un−1− 1
2 ))

τ
+ (ũn − ũn−1)( f (|ûn−1|2) − f (|un−1− 1

2 |2))
τ

+ un− 1
2 (( f (|ûn |2) − f (|ûn−1|2)) − ( f (|un− 1

2 |2) − f (|un−1− 1
2 |2)))

τ

+ ( f (|ûn |2) − f (|ûn−1|2))(ũn − un− 1
2 )

τ

∥
∥
∥
∥
∥
∥
0

≤ Cτ2. (3.37)

Therefore,

(Rn
1 + Rn

2 + Rn
3 , ∂̄t�en) ≤ Cτ 4 + C‖�en−1‖20 + ∂̄t (R

n
1 + Rn

2 + Rn
3 ,�en). (3.38)

Allocating all the estimates above to get

1

2τ
(‖�en‖20 − ‖�en−1‖20) ≤ Cτ 4 + C‖∂̃t en‖20 + C‖∂̃t en−1‖20 + C‖∂̃t ên‖20

+ C‖�ên‖20 + C‖�ên−1‖20 + C‖�en‖20 + C‖�en−1‖20
+ ∂̃t (P

n
1 ,�en) + ∂̃t (R

n
1 + Rn

2 + Rn
3 ,�en). (3.39)

Replacing n by i in (3.39), then summing it from 2 to n, it follows that

‖�en‖20 ≤ ‖�e1‖20 + Cτ4 + Cτ

n∑

i=1

(‖∂̃t ei‖20 + ‖�ei‖20) + C‖∂̃t ê2‖20 + C‖�ê1‖20

+ (Pn
1 , �en) − (P1

1 ,�e1) + (Rn
1 + Rn

2 + Rn
3 , �en) − (R1

1 + R1
2 + R1

3 ,�e1). (3.40)
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Since

‖Pn
1 ‖20 = ‖ f (|Û n−1|2)ẽn + ũn( f (|ûn−1|2) − f (|Û n−1|2))‖20

≤ C‖ẽn‖20 + C‖ên−1‖20 = Cτ 2

∥
∥
∥
∥
∥

n∑

i=1

∂̄t e
i

∥
∥
∥
∥
∥

2

0

≤ Cτ

n∑

i=1

‖∂̄t ei‖20, (3.41)

together with (3.18) and (3.21), we have

‖�en‖20 ≤ Cτ 4 + Cτ

n∑

i=1

(‖∂̃t ei‖20 + ‖�ei‖20). (3.42)

In order to estimate ‖∂̄t en‖0, we take difference between two time levels n and n − 1 of
(3.24), and multiply it by 1

τ
on both sides, then there holds

i ∂̃t t e
n + ∂̃t�ēn + ∂̃t P

n
1 = ∂̃t R

n
1 + ∂̃t R

n
2 + ∂̃t R

n
3 . (3.43)

On the other hand, multiplying (3.43) by ∂̃t ẽn , integrating it over � and then it follows
that

i(∂̃t t e
n, ∂̃t ẽ

n) − ‖∂̃t∇ ẽn‖20 + (∂̃t P
n
1 , ∂̃t ẽ

n) = (∂̃t R
n
1 , ∂̃t ẽ

n) + (∂̃t R
n
2 , ∂̃t ẽ

n) + (∂̃t R
n
3 , ∂̃t ẽ

n).

(3.44)

Then taking the impartial part of (3.44) and using (3.32), (3.35)–(3.37), it follows that

1

2τ
(‖∂̃t en‖20 − ‖∂̃t en−1‖20) = −Im(∂̃t P

n
1 , ∂̃t ẽ

n) + Im(∂̃t R
n
1 , ∂̃t ẽ

n)

+ Im(∂̃t R
n
2 , ∂̃t ẽ

n) + Im(∂̃t R
n
3 , ∂̃t ẽ

n)

≤ Cτ 4 + C‖∂̃t en‖20 + C‖∂̃t en−1‖20 + C‖�en‖20
+ C‖�en−1‖20 + C‖�en−2‖20. (3.45)

Replacing n by i in (3.45), then summing it from 2 to n, with the result of e1, we get

‖∂̃t en‖20 ≤ Cτ 4 + Cτ

n∑

i=1

(‖∂̃t ei‖20 + ‖�ei‖20). (3.46)

Combining (3.42) and (3.46), we have

‖∂̃t en‖20 + ‖�en‖20 ≤ Cτ 4 + Cτ

n∑

i=1

(‖∂̃t ei‖20 + ‖�ei‖20). (3.47)

Applying the Gronwall’s inequality to (3.47), there exist τ8,C7,C8, such that when τ ≤ τ8,
there holds

‖∂̃t en‖0 + ‖en‖2 ≤ C7τ
2, (3.48)

which implies

‖∂̃t tUn‖2 ≤ C8, (3.49)

and

‖Un‖0,∞ + ‖∂̃tUn‖0,∞ ≤ ‖en‖0,∞ + ‖∂̃t en‖0,∞ + C‖un‖0,∞ + ‖∂̃t un‖0,∞
≤ CC7τ + C‖un‖0,∞ + ‖∂̃t un‖0,∞ ≤ K0, (3.50)
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where τ ≤ τ9 ≤ 1/CC7. It can be seen that C7 and C8 have nothing to do with C0. Then

(3.2) and (3.3) hold for m = n if we take C0 ≥
8∑

i=1
Ci and τ0 ≤ min

1≤i≤9
τi . ��

Remark 1 It can be seen that the result of ‖en‖2 = O(τ 2) is one order higher that in [23],
which leads to ‖∂̃t tUm‖2 ≤ C0. This will play an important role in the foregoing supercon-
vergence analysis.

Remark 2 If we use a fully explicit method for the nonlinear term in (3.1)–(3.3), the uncon-
ditional convergence analysis is still valid by an H2 error estimate for the time semi-discrete.
The idea is very similar and the process of proof is much easier.

4 Superconvergence Results for the Fully Discrete System

In this section, we will establish an estimate for ‖RhUn − Un
h ‖0 = O(h2), which results in

the unconditional boundedness of ‖Un
h ‖0,∞. Then ‖∇(RhUn−Un

h )‖0 with order O(h2+τ 2)

is deduced which will result in the superclose results ‖∇(Ihun −Un
h )‖0 with order O(h2 +

τ 2) unconditionally on the basis of the relationship between Ih and Rh . At last, the global
superconvergence is deduced through the interpolated postprocessing technique. A pervading
strategy throughout the error analysis in the rest of this paper is splitting the error to a sum
of two terms:

Ui −Ui
h = Ui − RhU

i + RhU
i −Ui

h � r i + θ i , i = 0, 1, 2, . . . , N . (4.1)

Theorem 2 Let u and Um
h be the solutions of (1.1) and (2.5)–(2.7) respectively, for m =

1, 2, . . . , N, under the conditions in Theorem 1, we have

‖∇(Ihu
m −Um

h )‖0 = O(h2 + τ 2). (4.2)

Proof Since ‖RhU 1,0‖0 + ‖RhU 1,0‖0,∞ + ‖RhUm‖0,∞ ≤ C‖U 0‖2 + C‖U 1,0‖2 +
C‖Um‖2 ≤ C , let K

′
0 � 1 + ‖RhU 1,0‖0,∞ + max

0≤i≤N
‖RhUi‖0,∞. First of all, we obtain

the result that there exist τ
′
0 and h

′
0, when τ ≤ τ

′
0 and h ≤ h

′
0, it follows

‖θm‖0 ≤ C
′
0h

2, (4.3)

which bounds ‖Um
h ‖0,∞ unconditionally. For m = 1, we have ‖U 0

h ‖0,∞ = ‖RhU 0‖0,∞ ≤
K

′
0. Using (2.6) and (3.2), the error equation is deduced by

i

(
θ1,0

τ
, vh

)

−
(∇θ1,0

2
,∇vh

)

= − i(
r1,0 − r0

τ
, vh) +

(∇r1,0 + ∇r0

2
,∇vh

)

+
(

f (|U 0|2)U
1,0 +U 0

2
− f (|U 0

h |2)U
1,0
h +U 0

h

2
, vh

)

.

(4.4)
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Substituting vh = θ1,0

τ
in (4.4), we get

i

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥

2

0
− 1

2τ

∥
∥∇θ1,0

∥
∥2
0 = − i

(
r1,0 − r0

τ
,
θ1,0

τ

)

+
(∇r1,0 + ∇r0

2
,
∇θ1,0

τ

)

+
(

f (|U 0|2)U
1,0 +U 0

2
− f (|U 0

h |2)U
1,0
h +U 0

h

2
,
θ1,0

τ

)

.

(4.5)

By (2.1) and (2.3), it follows that

∣
∣
∣
∣

(
r1,0 − r0

τ
,
θ1,0

τ

)∣
∣
∣
∣ ≤ Ch2

∥
∥
∥
∥
U1,0 −U0

τ

∥
∥
∥
∥
2

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥
0

≤ Ch4 + 1

8

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥

2

0
(∇r1,0 + ∇r0

2
,
∇θ1,0

τ

)

= 0
∣
∣
∣
∣
∣

(

f (|U0|2)U
1,0 +U0

2
− f (|U0

h |2)U
1,0
h +U0

h

2
,
θ1,0

τ

)∣
∣
∣
∣
∣

=
∣
∣
∣
∣

(

f (|U 0
h |2)

(
θ1,0

2
+ r1,0 + r0

2

)

,
θ1,0

τ

)

+
(
U1,0 +U0

2
( f (|U0|2) − f (|U0

h |2)), θ1,0

τ

)∣
∣
∣
∣

≤ Ch4 + C‖θ1,0‖20 + 1

8

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥

2

0
.

Taking the imaginary part and the real part, respectively, summing them together, then we
get

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥

2

0
+ 1

2τ
‖∇θ1,0‖20 ≤ Ch4 + C‖θ1,0‖20 + 1

2

∥
∥
∥
∥
θ1,0

τ

∥
∥
∥
∥

2

0
. (4.6)

Thus there exist τ
′
1,C

′
1, such that when τ ≤ τ

′
1, we have

1

τ
‖θ1,0‖0 + ‖∇θ1,0‖0 ≤ C

′
1h

2, (4.7)

which implies

‖U 1,0
h ‖0,∞ ≤ Ch−1‖θ1,0‖0 + ‖RhU

1,0‖0,∞ ≤ CC
′
1h + ‖RhU

1,0‖0,∞ ≤ K
′
0, (4.8)

where h ≤ h
′
1 ≤ 1/CC

′
1. Making use of (2.7) and (3.3) to deduce the error equation and

setting vh = θ1

τ
, then we have

i

∥
∥
∥
∥
∥

θ1

τ

∥
∥
∥
∥
∥

2

0

− 1

2τ
‖∇θ1‖20 = − i

(
r1 − r0

τ
,
θ1

τ

)

+
(

∇r1 + ∇r0

2
,
∇θ1

τ

)

+
⎛

⎝ f

⎛

⎝

∣
∣
∣
∣
∣

U1,0 +U0

2

∣
∣
∣
∣
∣

2
⎞

⎠
U1 +U0

2
− f

⎛

⎝

∣
∣
∣
∣
∣

U1,0
h +U0

h
2

∣
∣
∣
∣
∣

2⎞

⎠
U1
h +U0

h
2

,
θ1

τ

⎞

⎠ .

(4.9)
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Similar to the proof of θ1,0, we get

∣
∣
∣
∣

(
r1 − r0

τ
,
θ1

τ

)∣
∣
∣
∣ ≤ Ch2

∥
∥
∥
∥
U 1 −U 0

τ

∥
∥
∥
∥
2

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥
0

≤ Ch4 + 1

8

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥

2

0
,

(∇r1 + ∇r0

2
,
∇θ1

τ

)

= 0,
∣
∣
∣
∣
∣
∣

⎛

⎝ f

(∣
∣
∣
∣
U 1,0 +U 0

2

∣
∣
∣
∣

2
)
U 1 +U 0

2
− f

⎛

⎝

∣
∣
∣
∣
∣

U 1,0
h +U 0

h

2

∣
∣
∣
∣
∣

2
⎞

⎠
U 1
h +U 0

h

2
,
θ1

τ

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

⎛

⎝ f

⎛

⎝

∣
∣
∣
∣
∣

U 1,0
h +U 0

h

2

∣
∣
∣
∣
∣

2
⎞

⎠

(
θ1

2
+ r1 + r0

2

)

,
θ1

τ

⎞

⎠

+ U 1 +U 0

2

⎛

⎝ f

(∣
∣
∣
∣
U 1,0 +U 0

2

∣
∣
∣
∣

2
)

− f

⎛

⎝

∣
∣
∣
∣
∣

U 1,0
h +U 0

h

2

∣
∣
∣
∣
∣

2
⎞

⎠ ,
θ1

τ

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ Ch4 + C‖θ1‖20 + C‖θ1,0‖20 + 1

8

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥

2

0
≤ Ch4 + C‖θ1‖20 + 1

8

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥

2

0
,

where the last step is deduced by the help of (4.7). Also, taking the imaginary part and the
real part, respectively, summing them together, then we get

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥

2

0
+ 1

2τ
‖∇θ1‖20 ≤ Ch4 + C‖θ1‖20 + 1

2

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥

2

0
. (4.10)

Thus there exist τ
′
2,C

′
2, such that when τ ≤ τ

′
2, we have

∥
∥
∥
∥
θ1

τ

∥
∥
∥
∥
0
+ ‖∇θ1‖0 ≤ C

′
2h

2, (4.11)

which implies

‖U 1
h ‖0,∞ ≤ Ch−1‖θ1‖0 + ‖RhU

1‖0,∞ ≤ CC
′
2h + ‖RhU

1‖0,∞ ≤ K
′
0, (4.12)

where h ≤ h
′
2 ≤ 1/CC

′
2. By mathematical induction, we assume that (4.3) holds for m ≤

n − 1, then we have

‖Um
h ‖0,∞ ≤ Ch−1‖θm‖0 + ‖RhU

m‖0,∞ ≤ CC
′
0h + ‖RhU

m‖0,∞ ≤ K
′
0, (4.13)

where h ≤ h
′
3 ≤ 1/CC

′
0.

Then when m = n, setting Pn
2 = f (|Û n |2)Ũ n − f (|Û n

h |2)Ũ n
h , we get the error equation

from (2.5) and (3.1) as follows:

i(∂̃tθ
n, vh) − (∇ θ̃n,∇vh) = −i(∂̃t r

n, vh) + (∇r̃ n,∇vh) − (Pn
2 , vh). (4.14)

Choosing vh = θ̃n in (4.14), the impartial part results in

1

2τ
(‖θn‖20 − ‖θn−1‖20) = −Re(∂̄t r

n, θ̃n) + Im(∇rn,∇ θ̃n) − Im(Pn
2 , θ̃n). (4.15)
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We bound Pn
2 as

‖Pn
2 ‖0 = ‖ f (|Û n

h |2)(θ̃n + r̃ n) + Ũ n f
′
(μn

6)(|Û n |2 − |Û n
h |2)‖0

≤ C‖θ̃n‖0 + C‖r̃ n‖0 + C‖θ̂n‖0 + C‖r̂ n‖0 ≤ C‖θ̃n‖0 + C‖θ̂n‖0 + Ch2,

where μn
6 = |Û n−1|2 + λn6(|Û n−1

h |2 − |Û n−1|2).
Thus,

1

2τ
(‖θn‖20 − ‖θn−1‖20) ≤ C‖θn‖20 + C‖θn−1‖20 + C‖θn−2‖20 + Ch4. (4.16)

Summing (4.16) up gives

‖θn‖20 ≤ ‖θ1‖20 + Cτ

n∑

i=1

‖θ i‖20 + Ch4. (4.17)

Applying the Gronwall’s inequality to (4.17), together with (4.11), there exist τ
′
3,C

′
3, when

τ ≤ τ
′
3, we have

‖θn‖0 ≤ C
′
3h

2, (4.18)

which leads to

‖Un
h ‖0,∞ ≤ Ch−1‖θn‖0 + ‖RhU

n‖0,∞ ≤ CC
′
3h + ‖RhU

n‖0,∞ ≤ K
′
0, (4.19)

where h ≤ h
′
4 ≤ 1/CC

′
3. Clearly, C

′
3 has nothing to do with C

′
0. Thus (4.3) holds for m = n,

if we take C
′
0 ≥

3∑

i=1
C

′
i , τ

′
0 ≤ min

1≤τ≤3
τ

′
i and h

′
0 ≤ min

1≤τ≤4
h

′
i .

Secondly, we will give the result

‖∇θm‖0 ≤ C(h2 + τ 2) (4.20)

unconditionally. Because of (4.11), it is apparent to see that (4.20) holds for m = 1. When
m = n, (n ≥ 2), choosing vh = ∂̃tθ

n in (4.14) and taking the real part result in

1

2τ
(‖∇θn‖20 − ‖∇θn−1‖20) = Im(∂̃t r

n, ∂̃tθ
n) + Re(∇rn,∇ ∂̃tθ

n) − Re(Pn
2 , ∂̃tθ

n). (4.21)

Then (4.21) leads to

1

2τ
(‖∇θn‖20 − ‖∇θn−1‖20) ≤ Ch4 + C‖∂̃tθn‖20. (4.22)

Summing (4.22) from 2 to n, we obtain

‖∇θn‖20 ≤ Ch4 + Cτ

n∑

i=1

‖∂̃tθ i‖20. (4.23)

Obviously, to obtain the estimate of ‖∇θn‖0, we need the boundedness of ‖∂̃tθ i‖0. Taking
difference between two time levels n and n − 1 of (4.14), with Û 1

h = Ũ 1
h , r̂1 = r̃1, θ̂1 = θ̃1

we have

i(∂̃t tθ
n, vh) − (∇ ∂̃t θ̃

n,∇vh) = −i(∂̃t t r
n, vh) + (∇ ∂̃t r̃

n,∇vh) − (∂̃t P
n
2 , vh). (4.24)
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Setting vh = ∂̃t θ̃
n in (4.24), the imaginary part gives

1

2τ
(‖∂̃tθn‖20 − ‖∂̃tθn−1‖20) = −Re(∂̃t t r

n, ∂̃t θ̃
n) + Im(∇ ∂̃t r̃

n,∇ ∂̃t θ̃
n) − Im(∂̃t P

n
2 , ∂̃t θ̃

n).

(4.25)

Similar to the estimate of θn , it is not difficult to check that

|(∂̃t t rn, ∂̃t θ̃n)| ≤ Ch2‖∂̃t tUn‖2‖∂̃t θ̃n‖0 ≤ Ch4 + C‖∂̃t θ̃n‖20, (4.26)

(∇ ∂̃t r̃
n,∇ ∂̃t θ̃

n) = 0. (4.27)

Based on the achievements above, it follows that

‖∂̃t Pn
2 ‖0 =

∥
∥
∥
∥
∥

( f (|Û n |2)Ũ n − f (|Û n−1|2)Ũ n−1) − ( f (|Û n
h |2)Ũ n

h ) − f (|Û n−1
h |2)Ũ n−1

h )

τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥ f (|Û n−1|2)∂̃t Ũ n − f (|Û n−1

h |2)∂̃t Ũ n
h

+ Ũ n( f (|Û n |2) − f (|Û n−1|2)) − Ũ n
h ( f (|Û n

h |2) − f (|Û n−1
h |2))

τ

∥
∥
∥
∥
∥
0

≤ ‖ f (|Û n−1
h |2)(∂̃t θ̃n + ∂̃t r̃

n) + ∂̃t Ũ
n( f (|Û n−1|2) − f (|Û n−1

h |2))‖0

+ C

∥
∥
∥
∥
∥

( f (|Û n |2) − f (|Û n−1|2)) − ( f (|Û n
h |2) − f (|Û n−1

h |2))
τ

∥
∥
∥
∥
∥
0

+ C

∥
∥
∥
∥
∥

( f (|Û n |2) − f (|Û n−1|2))(Ũ n − Ũ n
h )

τ

∥
∥
∥
∥
∥
0

.

Note that

∥
∥
∥
∥
∥

( f (|Û n |2) − f (|Û n−1|2)) − ( f (|Û n
h |2) − f (|Û n−1

h |2))
τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥
f

′
(|Û n−1

h |2) (|Û
n |2 − |Û n−1|2) − (|Û n

h |2 − |Û n−1
h |2)

τ

+ (|Û n |2 − |Û n−1|2)
τ

( f
′
(|Û n−1|2) − f

′
(|Û n−1

h |2))

+ 1

2
f

′′
(μn

9)
(|Û n |2 − |Û n−1|2)2 − (|Û n

h |2 − |Û n−1
h |2)2)

τ

+ (|Û n |2 − |Û n−1|2)2
2τ

( f
′′
(μn

8) − f
′′
(μn

9))

∥
∥
∥
∥
∥
0

,

where

μn
8 = |Û n−1|2 + λn8(|Û n |2 − |Û n−1|2), μn

9 = |Û n−1
h |2 + λn9(|Û n

h |2 − |Û n−1
h |2).
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In fact,
∥
∥
∥
∥
∥

(|Û n |2 − |Û n−1|2) − (|Û n
h |2 − |Û n−1

h |2)
τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥

(Û n ¯̂Un − Û n−1 ¯̂Un−1) − (Û n
h

¯̂Un
h − Û n−1

h
¯̂Un−1
h )

τ

∥
∥
∥
∥
∥
0

= ‖Û n−1∂̃t
¯̂Un − Û n−1

h ∂̃t
¯̂Un
h + ¯̂Un ∂̃t Û

n − ¯̂Un
h ∂̃t Û

n
h ‖0

= ‖Û n−1
h (∂̃t

¯̂Un − ∂̃t
¯̂Un
h ) + ∂̃t

¯̂Un(Û n−1 − Û n−1
h ) + ¯̂Un

h (∂̃t Û
n − ∂̃t Û

n
h ) + ∂̃t Û

n(
¯̂Un − ¯̂Un

h )‖0
≤ C‖∂̃t θ̂n‖20 + ‖∂̃t r̂ n‖20 + C‖θ̂n‖20 + ‖r̂ n‖20 + C‖θ̂n−1‖20 + ‖r̂ n−1‖20
≤ Ch4 + C‖∂̃t θ̂n‖20 + C‖θ̂n‖20 + C‖θ̂n−1‖20,

and
∥
∥
∥
∥
∥

(|Û n |2 − |Û n−1|2)2 − (|Û n
h |2 − |Û n−1

h |2)2)
τ

∥
∥
∥
∥
∥
0

=
∥
∥
∥
∥
∥
(|Û n |2 − |Û n−1|2) + (|Û n

h |2 − |Û n−1
h |2)) (|Û n |2 − |Û n−1|2) − (|Û n

h |2 − |Û n−1
h |2))

τ

∥
∥
∥
∥
∥
0

≤ Ch4 + C‖∂̃t θ̂n‖20 + C‖θ̂n‖20 + C‖θ̂n−1‖20.
Moreover,

‖ f
′′
(μn

8) − f
′′
(μn

9)‖0 = ‖|Û n−1|2 − |Û n−1
h |2 + λn9((|Û n |2 − |Û n−1|2)

− (|Û n
h |2 − |Û n−1

h |2)) + (|Û n |2 − |Û n−1|2)(λn8 − λn9)‖0
≤ C‖θ̂n‖0 + C‖θ̂n−1‖0 + Ch2 + Cτ.

Therefore

|(∂̃t Pn
2 , ∂̃tθ

n)| ≤ Ch4 + Cτ 4 + ‖∂̃t θ̃n‖0 + C‖∂̃t θ̂n‖20 + C‖θ̂n‖20 + C‖θ̂n−1‖20. (4.28)

Recalling (4.26)–(4.28), it follows that

1

2τ
(‖∂̃tθn‖20 − ‖∂̃tθn−1‖20) ≤ Ch4 + Cτ 4 + ‖∂̃t θ̃n‖0 + C‖∂̃t θ̂n‖20 + C‖θ̂n‖20 + C‖θ̂n−1‖20.

(4.29)

Summing (4.29), together with (4.23), it gives that

‖∂̃tθn‖20 ≤ Ch4 + Cτ 4 + Cτ

n∑

i=1

‖∂̃tθ i‖20. (4.30)

Applying the Gronwall’s inequality to (4.30), we have

‖∂̃tθn‖20 ≤ Ch4 + Cτ 4, (4.31)

which results in

‖∇θn‖0 ≤ Ch2 + Cτ 2. (4.32)
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At last, by the help of (2.2)–(2.4), it reduces to

‖∇(Ihu
n −Un

h )‖0 ≤ C‖∇(Ihu
n − Rhu

n)‖0 + C‖∇(Rhu
n − RhU

n)‖0
+ C‖∇(RhU

n −Un
h )‖0

≤ Ch2‖un‖3 + C‖en‖2 + C‖∇θn‖0
≤ Ch2 + Cτ 2.

��
Remark 3 It is worthy to note that Theorem 2 can not be obtained by Ih alone. In order to keep
the order of ‖IhUn−Un

h ‖0 and ‖∇(IhUn−Un
h )‖0, we should employ (∇(un− Ihun),∇vh) =

O(h2)‖un‖3‖vh‖1 or (∇(un − Ihun),∇vh) = O(h2)‖un‖4‖vh‖0 as that in [3]. Thus the
regularity of Un and un should be much stricter. However, we can only bound ‖Un‖2 under
the assumption that � is a rectangle. On the other hand, we take different approach to bound
‖∂̃t Pn

2 ‖0, comparing with that in [3], then we avoid the appearance of the boundedness about
‖∂̃tUn

h ‖0,∞. Thus we get our final result unconditionally, which improves the conclusion of
[3].

Based on Theorem 2 and interpolated postprocessing operator I 22h constructed in [31],
we can deduce the following global superconvergence easily.

Theorem 3 Let u and Um
h be the solutions of (1.1) and (2.2)–(2.4) respectively, for m =

1, . . . , N, under the conditions of Theorem 1, we have

‖um − I 22hU
m
h ‖1 = O(h2 + τ 2). (4.33)

5 Numerical Results

In this section, we present three numerical examples to confirm our theoretical analysis.

Example 1 Considering the cubic Schrödinger equation [23] with� = [0, 1]×[0, 1], we set
f (s) = s, u = 5eit (1+2t2)(1−x)(1− y) sin(x) sin(y) and g(X, t) is chosen corresponding
to the exact solution. A uniform rectangular partition with M + 1 nodes in each direction is
used in our computation.

We solve the system by the linearized Galerkin method with bilinear element. To confirm
our error estimates in H1-norm, we choose τ = h and the numerical results with respect to
time t = 0.25, 0.5, 0.75, 1.0 are listed in the following Tables 1, 2, 3 and 4 respectively. We
can see clearly from them that when h → 0, ‖un − Un

h ‖1 is convergent at an optimal rate

Table 1 Numerical results at t = 0.25 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 7.4992× 10−2 – 8.1712× 10−3 – 7.4341× 10−2 –

20 × 20 3.7372× 10−2 1.0048 1.8003× 10−3 2.1823 1.8550× 10−2 2.0027

40 × 40 1.8670× 10−2 1.0013 4.4767× 10−4 2.0077 4.6333× 10−3 2.0013

80 × 80 9.3329× 10−3 1.0003 1.0724× 10−4 2.0616 1.1571× 10−3 2.0015

123



1110 J Sci Comput (2017) 72:1093–1118

Table 2 Numerical results at t = 0.5 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 9.9799× 10−2 – 1.3817× 10−2 – 9.9293× 10−2 –

20 × 20 4.9808× 10−2 1.0026 3.3910× 10−3 2.0267 2.4764× 10−2 2.0035

40 × 40 2.4891× 10−2 1.0008 8.2439× 10−4 2.0403 6.1742× 10−3 2.0039

80 × 80 1.2444× 10−2 1.0002 2.0720× 10−4 1.9923 1.5417× 10−3 2.0017

Table 3 Numerical results at t = 0.75 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 1.4121× 10−1 – 1.4179× 10−2 – 1.4021× 10−1 –

20 × 20 7.0536× 10−2 1.0014 4.2319× 10−3 1.7444 3.5022× 10−2 2.0013

40 × 40 3.5259× 10−2 1.0004 1.0843× 10−3 1.9646 8.7352× 10−3 2.0033

80 × 80 1.7628× 10−2 1.0001 2.7280× 10−4 1.9908 2.1809× 10−3 2.0019

Table 4 Numerical results at t = 1.0 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 1.9940× 10−1 – 1.2256× 10−2 – 1.9713× 10−1 –

20 × 20 9.9574× 10−2 1.0018 3.9617× 10−3 1.6293 4.9356× 10−2 1.9978

40 × 40 4.9775× 10−2 1.0003 1.0630× 10−3 1.8980 1.2318× 10−2 2.0025

80 × 80 2.4886× 10−2 1.0000 2.7281× 10−4 1.9621 3.0760× 10−3 2.0016

Table 5 Convergence results of ‖un −Un
h ‖1 with h = 1

160 and τ = kh

t k = 1 k = 5 k = 10 k = 20 k = 40

0.25 9.33290× 10−3 9.33431× 10−3 9.38386× 10−3 1.13252× 10−2 3.42397× 10−2

0.50 1.24436× 10−2 1.24498× 10−2 1.26254× 10−2 1.51977× 10−2 1.64216× 10−2

0.75 1.76280× 10−2 1.76395× 10−2 1.78389× 10−2 1.82913× 10−2 4.99408× 10−2

1.00 2.48864× 10−2 2.48983× 10−2 2.49922× 10−2 2.80435× 10−2 4.20744× 10−2

O(h), and ‖Un
h − Ihun‖1, ‖un − I 22hU

n
h ‖1 are superconvergent at O(h2), which coincide

with our theoretical analysis. To show the unconditional stability, we choose h = 1/128 and
the large time steps τ = h, 4h, 8h, 16h, respectively. We present the numerical results in
Table 5, which suggest that the scheme is stable for large time steps.We also describe the
error reduction results at t = 0.25, 0.5, 0.75, 1.0 in Figs. 1, 2, 3 and 4 respectively, where
E1
h = ‖un −Un

h ‖1, E2
h = ‖Un

h − Ihun‖1, E3
h = ‖un − I 22hU

n
h ‖1.

Example 2 We consider the Schrödinger equation with � = [0, 1]× [0, 1], f (s) = −s2 + s
and u = e(i+1)t x3y3(1− x)(1− y). g(X, t) is chosen corresponding to the exact solution. A
uniform rectangular partition with M +1 nodes in each direction is used in our computation.
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Fig. 1 Error reduction results at t = 0.25

Fig. 2 Error reduction results at t = 0.5
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Fig. 3 Error reduction results at t = 0.75

Fig. 4 Error reduction results at t = 1.0

Similar to Example 1, we can see from Tables 6, 7, 8, 9 and 10 and Figs. 5, 6, 7 and 8 that
all these results are in good agreement with our theoretical analysis.
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Table 6 Numerical results at t = 0.25 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 7.2234× 10−3 – 8.7373× 10−4 – 1.0448× 10−2 –

20 × 20 3.6163× 10−3 0.9982 2.6497× 10−4 1.7214 2.9768× 10−3 1.8114

40 × 40 1.8085× 10−3 0.9997 4.8180× 10−5 2.4593 7.7611× 10−4 1.9394

80 × 80 9.0432× 10−4 0.9999 9.8289× 10−6 2.2933 1.9729× 10−4 1.9760

Table 7 Numerical results at t = 0.5 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 9.2642× 10−3 – 1.1238× 10−3 – 1.3491× 10−2 –

20 × 20 4.6418× 10−3 0.9970 2.8240× 10−4 1.9925 3.8251× 10−3 1.8184

40 × 40 2.3220× 10−3 0.9993 5.9749× 10−5 2.2408 9.9645× 10−4 1.9406

80 × 80 1.1611× 10−3 0.9998 1.5509× 10−5 1.9458 2.5310× 10−4 1.9771

Table 8 Numerical results at t = 0.75 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 1.1885× 10−2 – 1.5383× 10−3 – 1.7244× 10−2 –

20 × 20 5.9590× 10−3 0.9960 3.9513× 10−4 1.9610 4.9064× 10−3 1.8133

40 × 40 2.9814× 10−3 0.9991 6.8124× 10−5 2.5361 1.2800× 10−3 1.9385

80 × 80 1.4909× 10−3 0.9998 2.2895× 10−5 1.5731 3.2462× 10−4 1.9793

Table 9 Numerical results at t = 1.0 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 1.5255× 10−2 – 1.5360× 10−3 – 2.2180× 10−2 –

20 × 20 7.6504× 10−3 0.9957 3.7801× 10−4 2.0227 6.3027× 10−3 1.8152

40 × 40 3.8281× 10−3 0.9989 1.0225× 10−4 1.8863 1.6411× 10−3 1.9414

80 × 80 1.9144× 10−3 0.9997 2.9618× 10−5 1.7876 4.1648× 10−4 1.9783

Table 10 Convergence results of ‖un −Un
h ‖1 with h = 1

160 and τ = kh

t k = 1 k = 5 k = 10 k = 20 k = 40

0.25 9.04315× 10−4 9.04401× 10−4 9.05601× 10−4 9.14301× 10−4 1.29022× 10−3

0.50 1.16114× 10−3 1.16126× 10−3 1.16265× 10−3 1.17703× 10−3 1.21668× 10−3

0.75 1.49092× 10−3 1.49098× 10−3 1.49184× 10−3 1.51410× 10−3 1.91354× 10−3

1.00 1.91436× 10−3 1.91443× 10−3 1.91539× 10−3 1.94401× 10−3 2.11468× 10−3
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Fig. 5 Error reduction results at t = 0.25

Fig. 6 Error reduction results at t = 0.5

Example 3 We consider the example [35] describing the dynamics of Bose-Einstein Con-
densate at extremely low temperature, reads

{
i ∂u(x,y,t)

∂t = − 1
2�u + V (x, y)u + |u|2u, (x, y) ∈ [0, 2π] × [0, 2π],

u0(x, y) = sin x sin y,
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Fig. 7 Error reduction results at t = 0.75

Fig. 8 Error reduction results at t = 1.0

where V (x, y) = 1−sin2 x sin2 y and� = [0, 1]×[0, 1]. The exact solution for the problem
is u = e−2ti sin x sin y. A uniform rectangular partition with M + 1 nodes in each direction
is used in our computation.

Tables 11, 12 and 13 and Figs. 9 and 10 confirm our theoretical analysis.
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Table 11 Numerical results at t = 0.5 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 0.8429 – 0.0851 – 1.4949 –

20 × 20 0.4078 1.0473 0.0220 1.9537 0.3891 1.9419

40 × 40 0.2021 1.0131 0.0055 1.9886 0.0982 1.9859

80 × 80 0.1008 1.0033 0.0014 1.9972 0.0246 1.9965

Table 12 Numerical results at t = 1.0 with τ = h

M × M ‖un −Un
h ‖1 Order ‖Un

h − Ihu
n‖1 Order ‖un − I 22hU

n
h ‖1 Order

10 × 10 0.8562 – 0.1702 – 1.5027 –

20 × 20 0.4096 1.0636 0.0439 1.9537 0.3910 1.9424

40 × 40 0.2023 1.0177 0.0111 1.9886 0.0987 1.9860

80 × 80 0.1008 1.0046 0.0028 1.9972 0.0247 1.9965

Table 13 Convergence results of
‖un −Un

h ‖1 with h = π
80 and

τ = kh

t k = 1
π k = 5

π k = 10
π k = 20

π

0.25 0.1008017 0.1008401 0.1016795 0.1143344

0.50 0.1008063 0.1009596 0.1042730 0.1476723

0.75 0.1008140 0.1011586 0.1084578 0.1906936

1.00 0.1008248 0.1014366 0.1140587 0.2382053

Fig. 9 Error reduction results at t = 0.5
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Fig. 10 Error reduction results at t = 1.0
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