
J Sci Comput (2017) 73:1290–1315
DOI 10.1007/s10915-017-0362-6

Superconvergence of Local Discontinuous Galerkin
Method for One-Dimensional Linear Schrödinger
Equations

Lingling Zhou1 · Yan Xu1 · Zhimin Zhang2,3 ·
Waixiang Cao4

Received: 20 July 2016 / Revised: 18 December 2016 / Accepted: 12 January 2017 /
Published online: 27 January 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, we study the superconvergence properties of the LDG method for
the one-dimensional linear Schrödinger equation. We build a special interpolation function
by constructing a correction function, and prove the numerical solution is superclose to the
interpolation function in the L2 norm. The order of superconvergence is 2k + 1, when the
polynomials of degree at most k are used. Even though the linear Schrödinger equation
involves only second order spatial derivative, it is actually a wave equation because of the
coefficient i. It is not coercive and there is no control on the derivative for later time based
on the initial condition of the solution itself, as for the parabolic case. In our analysis, the
special correction functions and special initial conditions are required, which are the main
differences from the linear parabolic equations. We also rigorously prove a (2k + 1)-th order
superconvergence rate for the domain, cell averages, and the numerical fluxes at the nodes in
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the maximal and average norm. Furthermore, we prove the function value and the derivative
approximation are superconvergent with a rate of (k + 2)-th order at the Radau points. All
theoretical findings are confirmed by numerical experiments.

Keywords Schrödinger equation · Local discontinuous Galerkin method · Superconver-
gence · Correction function · Initial condition

1 Introduction

In this paper, we consider the local discontinuous Galerkin (LDG) method for the one-
dimensional linear Schrödinger equation

iut + uxx = 0, (x, t) ∈ [0, 2π] × (0, T ]
u(x, 0) = u0(x),

(1.1)

where u(x, t) is a complex function, u0(x) is a sufficiently smooth function and i2 = −1.
We will consider the periodic boundary condition u(0, t) = u(2π, t) and mixed boundary
condition u(0, t) = g0(t), ux (2π, t) = g1(t). We study the superconvergence property of
the LDG method for Eq. (1.1).

Discontinuous Galerkin (DG) methods, first introduced in 1973 by Reed and Hill [18],
are a class of finite element methods using completely discontinuous, piecewise polynomi-
als as the basis functions. It was originally aimed at solving hyperbolic conservation laws
containing only first order spacial derivatives, e.g. [1,3–5]. The LDG method developed
from DG method, was designed to solve partial differential equations (PDEs) with higher
than first order spatial derivatives. Cockburn and Shu constructed the first LDG method to
solve the convection diffusion equation containing second order spatial derivatives in [6].
The idea of the LDGmethod is that reformulate the equation as a first-order system such that
the DG method can be applied. Recently, Rivière and Wheeler proposed a first DG method
for the acoustic wave equation in its original second-order formulation, which is based on
a nonsymmetric interior penalty formulation and requires additional stabilization terms for
optimal convergence [20,21]. The symmetric interior penalty DG method for second-order
scalar wave equation was developed and analyzed by Grote, Schneebeli and Schötzau in [12].
We make reference to [2,15,19,22,25,26,28] for more details and the development of the
DG and LDG method.

Our contribution here is to study the superconvergence phenomena of the LDG method
for the one-dimensional linear Schrödinger equation. In [24], Xu and Shu developed the
LDG methods to solve generalized nonlinear schrödinger equations and proved the stability
of the method. Later, they obtained (k + 1)-th order convergence rate for linear schrödinger
equations in [27]. We refer the reader to [14,16] for the accuracy of LDGmethod for nonlin-
ear schrödinger equations. As for the superconvergence behavior of finite element methods
(FEM) for Schrödinger equation, very little previous work had been done. In [17], Lin and
Liu obtained the second order gradient superconvergence rate for the initial boundary value
problem of Schrödinger equation by linear finite elements. The global superconvergence
of the anisotropic linear triangular finite element for nonlinear Schrödinger equation was
derived in [23]. Both [17,23] only work for linear approximation space. Recently, in [8–
11], Cao and Zhang studied superconvergence properties of DG and LDG method for linear
hyperbolic and parabolic equations. When piecewise polynomials of degree at most k were
used as the basis functions, they provided a strict mathematical proof of the (2k + 1)-th

123



1292 J Sci Comput (2017) 73:1290–1315

order superconvergence rate for the domain and cell averages as well as the numerical fluxes
at mesh points. They also proved the superconvergence rate was (k + 2)-th order for the
function value approximation and (k+1)-th order for the derivative approximation at Radau
points.

In this paper, we aim at achieving the same superconvergence results of the parabolic
equations in [11] for the one-dimensional linear Schrödinger equation. The linear Schrödinger
equation, even though it involves only second order spatial derivative, is actually a wave
equation because of the coefficient i. It is not coercive and there is no control on the derivative
for later time based on the initial condition of the solution itself, as for the parabolic case.
To be more specific, we shall rigorously prove a (2k + 1)-th order superconvergence rate
of the LDG solution for the domain, cell averages and the numerical fluxes at nodes of
the mesh. Moreover, we also prove the function value and the derivative approximation are
superconvergent with a rate of (k + 2)-th order at the Radau points. To the best of our
knowledge, no previous results in the literature show the above superconvergence properties
of the LDG method for Eq. (1.1).

The main step to obtain superconvergence is to construct a correction function. Based on
the energy stability for the variables (the exact solution u and the auxiliary variable q = ux )
[27], we construct correction functions to result in the super-closeness (with order 2k + 1)
between the LDG solutions and special interpolations, which are defined by theGauss–Radau
projections of the exact solutions and the correction functions. The idea of the correction
functions has been successfully applied to the DG and LDG method for linear hyperbolic
and parabolic equations, e.g. [8,9,11].However, it ismore complicated to construct correction
functions for Schrödinger equation due to the complex exact solution of Eq. (1.1). We shall
construct the complex valued correction functions for both variables.Moreover, special initial
conditions are required in our analysis, which are quite different from parabolic equations.
We then prove the superconvergence properties by use of the correction functions.

This paper is organized as follows. In Sect. 2, we present some notations adopted through-
out the paper. In Sect. 3, we consider the LDG scheme for the one-dimensional linear
Schrödinger equation. The correction function is constructed in Sect. 4, which is the most
characteristic and innovative part of this paper. Section 5 present how to construct the suit-
able initial discretization. In Sect. 6, the superconvergence results are proved. The numerical
examples to demonstrate the accuracy are given in Sect. 7. We conclude our results in
Sect. 8.

2 Notations

In this section, we will introduce some notations to be used in the analysis of the super-
convergence properties for the Eq. (1.1). They are slightly different from the real valued
space.

2.1 Symbols

LetWm,p(D) be the Sobolev space on sub-domain D ⊂ Ω , which is equipped with the norm
‖ · ‖m,p,D and semi-norm | · |m,p,D . A � B indicates that A ≤ CB, where C is a positive
constant independent of the exact solution u and the mesh size h. For any r , �r� stands for
the maximal integer no more than r , and �r	 stands for the minimal integer no less than r .
Denote Zr = {1, · · · , r} for any positive integer r .
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2.2 Function Spaces

We first introduce the partition of the domain Ω = [0, 2π]. Let 0 = x 1
2

< x 3
2

< · · · <

xN+ 1
2

= 2π be a subdivision of Ω̄ . We denote the length of τ j = (x j− 1
2
, x j+ 1

2
) by h j =

x j+ 1
2

− x j− 1
2
and set h̄ j = h j/2. Let x j = (x j− 1

2
+ x j+ 1

2
)/2 be the center of the cell and

denote h = max
j∈ZN

h j . We assume that the mesh is quasi-uniform in the sense that h ≤ Ch j

for j ∈ ZN. Then the finite element space is defined by

cVh = {v : v |τ j ∈ Pk(τ j ), j ∈ ZN},
where Pk(τ j ) denotes the space of polynomials of degree at most k on τ j . Note that functions
in cVh are complex valued functions since the solution of the linear Schrödinger Eq. (1.1) is
complex valued.

2.3 Inner Products and Norms in the Complex Space

Let w∗ be the conjugate of w and define the inner product and the conjugate of the inner
product by

(v,w) j =
∫

τ j

vw∗dx, (w, v)∗j = (v,w) j .

The definitions of the L p-norm over τ j and in the domain Ω are given as

‖v‖p
0,p,τ j

=
∫

τ j

|v|pdx, ‖v‖p
0,p,Ω =

∑
j∈ZN

‖v‖p
0,p,τ j

in the case 1 ≤ p < ∞, and in the case p = ∞
‖v‖0,∞,τ j = I n f {K : |v| ≤ K , a.e.x ∈ τ j }, ‖v‖0,∞,Ω = max

j∈ZN
‖v‖0,∞,τ j .

The Wm,p-norm over τ j and in the domain Ω are defined as

‖v‖p
m,p,τ j =

m∑
l=0

‖Dlv‖p
0,p,τ j

, ‖v‖p
m,p,Ω =

∑
j∈ZN

‖v‖p
m,p,τ j

in the case 1 ≤ p < ∞, and in the case p = ∞
‖v‖m,∞,τ j = max

0≤l≤m
‖Dlv‖0,∞,τ j , ‖v‖m,∞,Ω = max

j∈ZN
‖v‖m,∞,τ j .

If p = 2, we set ‖v‖m,2,D = ‖v‖m,D and |v|m,2,D = |v|m,D , where D ⊂ Ω .

2.4 Projection

We will consider two Gauss–Radau projections P−
h , P+

h into cVh defined by

(P−
h v,w) j = (v,w) j , P−

h v(x−
j+ 1

2
) = v(x−

j+ 1
2
), ∀w ∈ Pk−1, (2.1)

(P+
h v,w) j = (v,w) j , P+

h v(x+
j− 1

2
) = v(x+

j− 1
2
), ∀w ∈ Pk−1. (2.2)

Note that the special projections are often used to derive the optimal L2 error bounds of the
DG methods in the literature, e.g. in [27]. Next, we shall focus on the projections P−

h v, P+
h v
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by the Legendre expansion of v(x, t). In an arbitrary element τ j , j ∈ ZN , v(x, t) has the
following Legendre expansion

v(x, t) =
∞∑

m=0

v j,m(t)L j,m(x), v j,m(t) = 2m + 1

h j
(v, L j,m) j ,

where L j,m denotes the standard Legendre polynomial of degree m on τ j . Then by the
definitions of P−

h v, P+
h v, we obtain

P−
h v(x, t) = −v̄ j,k(t)L j,k(x) +

k∑
m=0

v j,m(t)L j,m(x),

P+
h v(x, t) = −ṽ j,k(t)L j,k(x) +

k∑
m=0

v j,m(t)L j,m(x),

where

v̄ j,k = −v(x−
j+ 1

2
, t) +

k∑
m=0

v j,m, ṽ j,k = (−1)k+1v(x+
j− 1

2
, t) +

k∑
m=0

(−1)k+mv j,m . (2.3)

Finally, by the orthogonal property of the Legendre polynomials, we can easily get

(v − P−
h v,w) j = v̄ j,k(L j,k, w) j , (v − P+

h v,w) j = ṽ j,k(L j,k, w) j , ∀w ∈ cVh . (2.4)

3 The LDG Scheme

In order to define the LDGmethod, we rewrite the linear Schrödinger Eq. (1.1) into a system
of the first order derivatives

iut + qx = 0,

q − ux = 0.

The LDG scheme to solve (1.1) is as follows: find uh , qh ∈ cVh such that for all test functions
η, ϕ ∈ cVh , we have

i((uh)t , η) j − (qh, ηx ) j + q̂hη
∗−| j+ 1

2
− q̂hη

∗+| j− 1
2

= 0, (3.1)

(qh, ϕ) j + (uh, ϕx ) j − ûhϕ
∗−| j+ 1

2
+ ûhϕ

∗+| j− 1
2

= 0. (3.2)

Here the q̂h , ûh are the numerical fluxes. For both periodic and mixed boundary conditions,
we can choose

ûh | j+ 1
2

= u−
h | j+ 1

2
, q̂h | j+ 1

2
= q+

h | j+ 1
2
, j = 0, 1, · · · , N , (3.3)

where

u−
h | 1

2
= u−

h |N+ 1
2
, q+

h |N+ 1
2

= q+
h | 1

2

for periodic boundary condition, and

u−
h | 1

2
= g0(t), q+

h |N+ 1
2

= g1(t)
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for mixed boundary conditions. For simplicity, we use the notation

a1(v,w; η) =
N∑
j=1

a1j (v,w; η), a2(v,w;ϕ) =
N∑
j=1

a2j (v,w;ϕ),

where

a1j (v,w; η) = i(vt , η) j − (w, ηx ) j + w+η∗−| j+ 1
2

− w+η∗+| j− 1
2
,

a2j (v,w;ϕ) = (w, ϕ) j + (v, ϕx ) j − v−ϕ∗−| j+ 1
2

+ v−ϕ∗+| j− 1
2
.

By the above notation, the LDG scheme (3.1)–(3.2) can be rewritten as

a1j (uh, qh; η) = 0, a2j (uh, qh;ϕ) = 0, ∀η, ϕ ∈ cVh .

Obviously, the LDG scheme is also satisfied when we replace the numerical solutions with
the exact solutions u, q = ux . Therefore, we obtain the fundamental error equations

a1j (u − uh, q − qh; η) = 0, a2j (u − uh, q − qh;ϕ) = 0, ∀η, ϕ ∈ cVh . (3.4)

It’s also easily to show the energy functions, for both periodic andmixed boundary conditions,

i(vt , v) + i(vt , v)∗ = a1(v,w; v) + a2(v,w;w) − a1(v,w; v)∗ − a2(v,w;w)∗

+ v−w∗+|N+ 1
2

− v−w∗+| 1
2

− v∗−w+|N+ 1
2

+ v∗−w+| 1
2
, (3.5)

(wt , w) + (wt , w)∗ = a1(v,w;−vt ) + a2(vt , wt ;w) + a1(v,w;−vt )
∗ + a2(vt , wt ;w)∗

+ v−
t w∗+|N+ 1

2
− v−

t w∗+| 1
2

+ v∗−
t w+|N+ 1

2
− v∗−

t w+| 1
2
. (3.6)

It is worthy to point out that applying the energy techniques to obtain the error estimates
can be often found in the literature, e.g. in [27]. Here, our superconvergence analysis is also
based on the energy functions (3.5)–(3.6), which makes them play key roles in obtaining
superconvergence properties.

4 Correction Functions

In this section, we shall construct special correction functions (Wl
u,W

l
q) for fluxes (3.3)

which is the key step to study the superconvergence properties for the LDG solution of Eq.
(1.1).

We start with some preliminary works. Define an integral operator D−1
s by

D−1
s v(x) = 1

h̄ j

∫ x

x
j− 1

2

v(x̂)dx̂, x ∈ τ j , j ∈ ZN , (4.1)

obviously we have (D−1
s v(x))

′ = v(x)/h̄ j . In each element τ j , j ∈ ZN , we define

F1,1(x) = P+
h D−1

s L j,k, F1,r (x) = (P+
h D−1

s P−
h D−1

s )r F1,1, r ≥ 2, (4.2)

F2,1(x) = P−
h D−1

s L j,k, F2,r (x) = (P−
h D−1

s P+
h D−1

s )r F2,1, r ≥ 2, (4.3)

F̄1,r (x) = P−
h D−1

s F1,r , F̄2,r (x) = P+
h D−1

s F2,r , 1 ≤ r ≤ �k/2�. (4.4)

A direct calculation derives

F1,r+1(x) = P+
h D−1

s F̄1,r (x), F2,r+1(x) = P−
h D−1

s F̄2,r (x), 1 ≤ r ≤ �k/2�. (4.5)
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It has been proved in [11] that F1,r , F2,r , F̄1,r and F̄2,r have the following representations

F1,r (x) =
k∑

m=k−2r+2

ar,m(L j,m + L j,m−1)(x), 1 ≤ r ≤ �k/2	, (4.6)

F2,r (x) =
k∑

m=k−2r+2

br,m(L j,m − L j,m−1)(x), 1 ≤ r ≤ �k/2	, (4.7)

F̄1,r (x) =
k∑

m=k−2r+2

αr,m(L j,m − L j,m−1)(x), 1 ≤ r ≤ �k/2�, (4.8)

F̄2,r (x) =
k∑

m=k−2r+2

βr,m(L j,m + L j,m−1)(x), 1 ≤ r ≤ �k/2�, (4.9)

where ar,m , br,m , αr,m and βr,m are some bounded constants independent of the mesh size
h j . By the properties of Legendre polynomials, we obtain, in each element τ j , j ∈ ZN ,

F1,r (x
+
j− 1

2
) = 0, F1,r⊥Pk−2r , ‖F1,r‖0,∞,τ j � 1, (4.10)

F2,r (x
−
j+ 1

2
) = 0, F2,r⊥Pk−2r , ‖F2,r‖0,∞,τ j � 1, (4.11)

F̄1,r (x
−
j+ 1

2
) = 0, F̄1,r⊥Pk−2r , ‖F̄1,r‖0,∞,τ j � 1, (4.12)

F̄2,r (x
+
j− 1

2
) = 0, F̄2,r⊥Pk−2r , ‖F̄2,r‖0,∞,τ j � 1. (4.13)

We are now ready to define the correction functions for all 1 ≤ l ≤ k. From (2.4), we
have the following properties in each element τ j , j ∈ ZN , ∀w ∈ cVh ,

(u − P−
h u, w) j = ū j,k(t)(L j,k, w) j , (q − P+

h q, w) j = q̃ j,k(t)(L j,k, w) j , (4.14)

where ū j,k(t), q̃ j,k(t) are given by (2.3). Let us denote the derivatives by

ū(m)
j,k = Dm

t ū j,k(t), q̃(m)
j,k = Dm

t q̃ j,k(t), 0 ≤ m ≤ �k/2	.
Then we define, at the boundary points,

Wl
q(x

+
N+ 1

2
, t) = 0, Wl

u(x
−
1
2
, t) = 0, ∀t ≥ 0, (4.15)

and in each element τ j , j ∈ ZN ,

Wl
q(x, t) =

�l/4	∑
m=1

wq1,m +
�l/4+1/2�∑

m=1

wq2,m +
�l/4+1/4�∑

m=1

wq3,m +
�l/4�∑
m=1

wq4,m, (4.16)

Wl
u(x, t) =

�l/4	∑
m=1

wu1,m +
�l/4+1/2�∑

m=1

wu2,m +
�l/4+1/4�∑

m=1

wu3,m +
�l/4�∑
m=1

wu4,m, (4.17)

where

wq1,m = i4m−1(−1)m−1h̄4m−3
j ū(2m−1)

j,k F1,2m−1, wq3,m = i4m(−1)mh̄4m−1
j ū(2m)

j,k F1,2m , (4.18)

wq2,m = i4m−1(−1)m−1h̄4m−2
j q̃(2m−1)

j,k F̄2,2m−1, wq4,m = i4m(−1)mh̄4mj q̃(2m)
j,k F̄2,2m , (4.19)

wu1,m = i4m(−1)m−1h̄4m−3
j q̃(2m−2)

j,k F2,2m−1, wu4,m = i4m(−1)mh̄4mj ū(2m)
j,k F̄1,2m , (4.20)
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wu2,m = i4m−1(−1)m−1h̄4m−2
j ū(2m−1)

j,k F̄1,2m−1, wu3,m = i4m−1(−1)m−1h̄4m−1
j q̃(2m−1)

j,k F2,2m .

(4.21)

With the definitions of the correction functions Wl
q , W

l
u and the properties (4.10)–(4.13) of

the functions F1,r , F2,r , F̄1,r and F̄2,r , we can easily prove the following lemma, which is
crucial in our analysis later.

Lemma 1 Suppose Wl
q , W

l
u ∈ cVh are defined by (4.15)–(4.21). Then, for all η, ϕ ∈ cVh,

Wl
q(x

+
j− 1

2
, t) = 0, Wl

u(x
−
j− 1

2
, t) = 0, ∀ j ∈ ZN+1. (4.22)

Moreover, if l = 4r ,

i((Wl
u)t , η) j − (Wl

q , ηx ) j = −(wq1,1, ηx ) j + i((wu4,r )t , η) j , (4.23)

(Wl
q , ϕ) j + (Wl

u, ϕx ) j = (wu1,1, ϕx ) j + (wq4,r , ϕ) j , (4.24)

if l = 4r + s, s = 1, 2, 3,

i((Wl
u)t , η) j − (Wl

q , ηx ) j = −(wq1,1, ηx ) j + i((wus ,r+1)t , η) j , (4.25)

(Wl
q , ϕ) j + (Wl

u, ϕx ) j = (wu1,1, ϕx ) j + (wqs ,r+1, ϕ) j . (4.26)

Proof From the properties (4.10)–(4.13) and the definitions (4.18)–(4.21), we get, ∀ j ∈ ZN

wq1,m(x+
j− 1

2
, t) = wq2,m(x+

j− 1
2
, t) = wq3,m(x+

j− 1
2
, t) = wq4,m(x+

j− 1
2
, t) = 0,

wu1,m(x−
j+ 1

2
, t) = wu2,m(x−

j+ 1
2
, t) = wu3,m(x−

j+ 1
2
, t) = wu4,m(x−

j+ 1
2
, t) = 0,

hence, the desired results (4.22) follow from the definitions (4.15)–(4.17). By a direct calcu-
lation from (4.6)–(4.9), we obtain, for any integer l, 1 ≤ l ≤ k,

D−1
s F1,m(x−

j+ 1
2
) = D−1

s F1,m(x+
j− 1

2
) = D−1

s F2,m(x−
j+ 1

2
) = D−1

s F2,m(x+
j− 1

2
) = 0

for all m ∈ Z�l/2�, and

D−1
s F̄1,m(x−

j+ 1
2
) = D−1

s F̄1,m(x+
j− 1

2
) = D−1

s F̄2,m(x−
j+ 1

2
) = D−1

s F̄2,m(x+
j− 1

2
) = 0

for all m ∈ Z�l/2�−1 in case l = 2r and m ∈ Z�l/2� in case l = 2r + 1. Noticing the fact that
(D−1

s v(x))
′ = v(x)/h̄ j and the properties (4.4)–(4.5), we have, by integration by parts and

(2.1)–(2.2),

i((wu1,m)t , η) j − (wq2,m , ηx ) j = i4m+1(−1)m−1h̄4m−3
j q̃(2m−1)

j,k (F2,2m−1, η) j

− i4m−1(−1)m−1h̄4m−2
j q̃(2m−1)

j,k (F̄2,2m−1, ηx ) j

= (i4m+1 + i4m−1)(−1)m−1h̄4m−3
j q̃(2m−1)

j,k (F2,2m−1, η) j = 0,

(wq1,m , ϕ) j + (wu2,m , ϕx ) j = i4m−1(−1)m−1h̄4m−3
j ū(2m−1)

j,k (F1,2m−1, ϕ) j

+ i4m−1(−1)m−1h̄4m−2
j ū(2m−1)

j,k (F̄1,2m−1, ϕx ) j

= ((−1)m−1 − (−1)m−1)i4m−1h̄4m−3
j ū(2m−1)

j,k (F1,2m−1, ϕ) j = 0

for all m ∈ Z�l/4� in case l = 4r , 4r + 1 and m ∈ Z�l/4�+1 in case l = 4r + 2, 4r + 3. With
the same arguments, we have
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i((wu2,m)t , η) j − (wq3,m, ηx ) j = 0,

(wq2,m, ϕ) j + (wu3,m, ϕx ) j = 0

for all m ∈ Z�l/4� in case l = 4r , 4r + 1, 4r + 2 and m ∈ Z�l/4�+1 in case l = 4r + 3, and

i((wu3,m)t , η) j − (wq4,m, ηx ) j = 0,

(wq3,m, ϕ) j + (wu4,m, ϕx ) j = 0

for all m ∈ Z�l/4�, and

i((wu4,m)t , η) j − (wq1,m+1, ηx ) j = 0,

(wq4,m, ϕ) j + (wu1,m+1, ϕx ) j = 0

for all m ∈ Z�l/4�−1 in case l = 4r and m ∈ Z�l/4� in case l = 4r + s, s = 1, 2, 3. After
summing over all m, we obtain the desired results (4.23)–(4.26).

Now the special interpolation functions can be defined, in each element τ j , j ∈ ZN ,

ulI = P−
h u − Wl

u, qlI = P+
h q − Wl

q , 1 ≤ l ≤ k. (4.27)

By using (2.1)–(2.2) and (4.22), we have

ulI (x
−
j− 1

2
, t) = u(x−

j− 1
2
, t), qlI (x

+
j− 1

2
, t) = q(x+

j− 1
2
, t), ∀ j ∈ ZN+1. (4.28)

For simplicity, we denote the error between the exact solution and the numerical solution by
eu = u − uh , eq = q − qh , and let ηu = ulI − uh , ηq = qlI − qh be the error between the
interpolation function and the numerical solution. Then we have

eu = u − ulI + ηu, eq = q − qlI + ηq . (4.29)

We will next present a significant result of our superconvergence analysis to end this section.

Lemma 2 Suppose u ∈ Wk+l+3,∞(Ω), 1 ≤ l ≤ k is the solution of (1.1) and Wl
q , W

l
u ∈ cVh

are defined by (4.15)–(4.21), then we have

‖Wl
q‖0,∞,τ j + ‖Wl

u‖0,∞,τ j � hk+2‖u‖k+l+2,∞,τ j , ∀ j ∈ ZN . (4.30)

Moreover, for all η, ϕ ∈ cVh,

|i((ulI − u)t , η) j + (Wl
q , ηx ) j | � hk+l+1‖u‖k+l+3,∞,τ j ‖η‖0,1,τ j , (4.31)

|(qlI − q, ϕ) j − (Wl
u, ϕx ) j | � hk+l+1‖u‖k+l+2,∞,τ j ‖ϕ‖0,1,τ j , (4.32)

where ulI and q
l
I are defined by (4.27).

Proof By the standard approximation theory, if u ∈ Wk+2m+2,∞(Ω),

|ū(m)
j,k | = |Dm

t ū j,k | � hk+1‖u‖k+1+2m,∞,τ j ,

|q̃(m)
j,k | = |Dm

t q̃ j,k | � hk+1‖u‖k+2+2m,∞,τ j ,

then we have, from the definitions (4.18)–(4.21)

‖wu1,m‖0,∞,τ j � hk+4m−2‖u‖k+4m−2,∞,τ j , ‖wu2,m‖0,∞,τ j � hk+4m−1‖u‖k+4m−1,∞,τ j ,

(4.33)

‖wu3,m‖0,∞,τ j � hk+4m‖u‖k+4m,∞,τ j , ‖wu4,m‖0,∞,τ j � hk+4m+1‖u‖k+4m+1,∞,τ j ,

(4.34)
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‖wq1,m‖0,∞,τ j � hk+4m−2‖u‖k+4m−1,∞,τ j , ‖wq2,m‖0,∞,τ j � hk+4m−1‖u‖k+4m,∞,τ j ,

(4.35)

‖wq3,m‖0,∞,τ j � hk+4m‖u‖k+4m+1,∞,τ j , ‖wq4,m‖0,∞,τ j � hk+4m+1‖u‖k+4m+2,∞,τ j .

(4.36)

Thus we get (4.30) from the definitions (4.16)–(4.17). In the following discussion, we will
focus on showing (4.31)–(4.32). By (4.14), integration by parts, and the definitions of F1,m ,
F2,m , we have, ∀η, ϕ ∈ cVh ,

i((P−
h u − u)t , η) j = −iū(1)

j,k(L j,k, η) j = ih̄ j ū
(1)
j,k(F1,1, ηx ) j = −(wq1,1, ηx ) j ,

(P+
h q − q, ϕ) j = −q̃ j,k(L j,k, ϕ) j = h̄ j q̃ j,k(F2,1, ϕx ) j = (wu1,1, ϕx ) j .

With the definitions of ulI , q
l
I and (4.23)–(4.26), we obtain

i((ulI − u)t , η) j + (Wl
q , ηx ) j = −i((wu4,r )t , η) j , (4.37)

(qlI − q, ϕ) j − (Wl
u, ϕx ) j = −(wq4,r , ϕ) j (4.38)

for l = 4r and

i((ulI − u)t , η) j + (Wl
q , ηx ) j = −i((wus ,r+1)t , η) j , (4.39)

(qlI − q, ϕ) j − (Wl
u, ϕx ) j = −(wqs ,r+1, ϕ) j (4.40)

for l = 4r + s, s = 1, 2, 3. Using the estimates of (4.33)–(4.36), we get the desired results
(4.31)–(4.32) for all l ≥ 1.

5 The Initial Discretization

In this section, we shall consider how to construct the suitable initial discretization such that
the initial solution satisfy ηq = 0,

∫
Ω

ηudx = 0 and ‖ηu‖0,Ω � hk+l+1‖u‖k+l+2,∞,Ω . The
choice of the initial condition is technical and critical to our superconvergence analysis, and
the idea is motivated from Yang and Shu in [29,30]. However, the addition of the correction
functions makes the proof slightly different. Thus we present the detailed process.

Recall the linear error function a2j (eu, eq ; v) = 0 and the fact that eu = u − ulI + ηu , and

eq = q − qlI + ηq , we obtain for all v ∈ cVh ,

a2j (ηu, ηq ; v) = a2j (u
l
I − u, qlI − q; v) =

{−(wq4,r , v) j , l = 4r,
−(wqs,r+1, v) j , l = 4r + s, s = 1, 2, 3.

Here for the last step we use the properties of (2.1), (4.28), (4.38) and (4.40). Without loss of
generality, we only consider l = 4r . If ηq = 0 and by the definition of a2j (·, ·; ·), the above
equation turns out to be

(ηu, vx ) j − η−
u v∗−| j+ 1

2
+ η−

u v∗+| j− 1
2

= −(wq4,r , v) j . (5.1)

Integrating (5.1) by parts yields

((ηu)x , v) j + (η+
u − η−

u )v∗+| j− 1
2

= (wq4,r , v) j . (5.2)

If we choose v = L j,m + L j,m+1, i(L j,m + L j,m+1), m = 0, 1, · · · , k in (5.2), then it is not
difficult to obtain (ηu)x , which can be uniquely determined in the cell τ j , j ∈ ZN . Now we
can easily get the following lemma.
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Lemma 3 Supposeηq = 0, then (ηu)x exists and is unique in each cell τ j , j ∈ ZN .Moreover,
we have

‖(ηu)x‖0,τ j � hk+l+1‖u‖k+l+2,∞,τ j . (5.3)

Proof The existence and uniqueness of (ηu)x can be obtained directly by the above analysis.
Taking v = (ηu)x − (−1)kaL j,k in (5.2), where a = (ηu)

+
x | j− 1

2
such that v(x+

j− 1
2
) = 0, we

obtain

((ηu)x , (ηu)x ) j = (wq4,r , (ηu)x − (−1)kaL j,k) j

� ‖wq4,r‖0,τ j (‖(ηu)x‖0,τ j + |a|‖L j,k‖0,τ j )
� ‖wq4,r‖0,τ j (‖(ηu)x‖0,τ j + h

− 1
2

j ‖(ηu)x‖0,τ j h
1
2
j )

� hk+l+1‖u‖k+l+2,∞,τ j ‖(ηu)x‖0,τ j .
Here we use Cauchy–Schwarz inequality for the second step, the inverse inequality for the
third step, and the estimate (4.36) for the last step. By dividing both sides of the above
inequality by ‖(ηu)x‖0,τ j , we get

‖(ηu)x‖0,τ j � hk+l+1‖u‖k+l+2,∞,τ j , j ∈ ZN .

Thus, the proof is completed.

Now we present how to construct ηu(x, 0) with the help of Lemma 3 and
∫
Ω

ηudx = 0.
Noticing the fact that

ηu(x, 0) = ηu(x
−
j+ 1

2
, 0) −

∫ x
j+ 1

2

x
(ηu)y(y, 0)dy, x ∈ τ j , (5.4)

we only need to determine the value ηu(x
−
j+ 1

2
, 0), since (ηu)x can be obtained by Lemma 3.

For simplicity, we just consider the situation l = 4r and other cases can be proved by the
same arguments. Choosing v = 1 in the Eq. (5.1), we get

ηu(x
−
j+ 1

2
, 0) − ηu(x

−
j− 1

2
, 0) = (wq4,r , 1) j (0).

Summing over j yields

ηu(x
−
j+ 1

2
, 0) = ηu(x

−
1
2
, 0) + S j , (5.5)

where

S j =
j∑

m=1

∫
τm

wq4,r dx(0), ‖S j‖0,∞,τ j �
j∑

m=1

hmh
k+l+1‖u‖k+l+2,∞,τm . (5.6)

Here for the second inequality we use the estimate (4.36). Due to
∫
Ω

ηudx = 0 and the
representation (5.4), we obtain

N∑
j=1

(
h jηu(x

−
j+ 1

2
, 0) −

∫
τ j

∫ x
j+ 1

2

x
(ηu)y(y, 0)dydx

)
= 0.
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Keeping in mind that
∑N

j=1 h j = |Ω| and using (5.5), we get,

ηu(x
−
1
2
, 0) = −1

|Ω|
N∑
j=1

h j S j + 1

|Ω|
N∑
j=1

Bj , (5.7)

where

Bj =
∫

τ j

∫ x
j+ 1

2

x
(ηu)y(y, 0)dydx, j ∈ ZN . (5.8)

In light of the estimate (5.3) of (ηu)x in Lemma 3, we have

‖Bj‖0,∞,τ j � h j h
k+l+1‖u‖k+l+2,∞,τ j , j ∈ ZN . (5.9)

Plugging (5.7) into (5.5), then plugging (5.5) into (5.4), we obtain

ηu(x, 0) = −1

|Ω|
N∑
j=1

h j S j + 1

|Ω|
N∑
j=1

Bj + S j −
∫ x

j+ 1
2

x
(ηu)y(y, 0)dy, x ∈ τ j . (5.10)

Combining (5.3), (5.6), and (5.9), we can easily get the following estimates.

Lemma 4 If ηq = 0 and
∫
Ω

ηudx = 0, then ηu exists and is unique in each cell τ j , j ∈ ZN .
Moreover, we have

‖ηu‖0,Ω � hk+l+1‖u‖k+l+2,∞,Ω . (5.11)

Algorithm for Initial Condition
Now we are ready to implement the initial discretization. Without loss of generality, we

only consider the case l = 4r . If l = 4r + s, s = 1, 2, 3, we only need to replace wq4,r by
wqs,r+1 in the following process.

(1) Use (5.2) to find (ηu)x .
(2) Compute S j in each cell from (5.6).
(3) Work out Bj from the expression of (ηu)x and (5.8).
(4) In each element τ j , calculate ηu by (5.10).
(5) Figure out uh = ulI − ηu , where ulI is defined by (4.27). We refer to [11] for the details

how to compute ulI .

6 Superconvergence

In this section, we will discuss the superconvergence properties for the Eq. (1.1), which is
the main part in our paper. Various errors shall be studied, such as the domain, cell average,
and the errors at the nodes and Radau points. We first analyse the errors between the special
interpolation functions (ulI , q

l
I ) and the LDG solutions (uh, qh).

6.1 Superconvergence for the Interpolation Function

Theorem 5 Assume that u ∈ Wk+l+6,∞(Ω), 1 ≤ l ≤ k is the exact solution of (1.1), and
uh, qh are the numerical solutions of LDG scheme (3.1)–(3.2) with the initial conditions
qh(·, 0) = qlI (·, 0) and

∫
Ω

(ulI − uh)(x, 0)dx = 0, where ulI , q
l
I ∈ cVh are defined by (4.27).

Then for the periodic and mixed boundary conditions, it holds that

‖(ulI − uh)t‖0,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω, ∀t ≥ 0, (6.1)
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‖qlI − qh‖0,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω, ∀t ≥ 0. (6.2)

Proof Noticing the linear error functions (3.4) and the notation (4.29), we get, for all v,
w ∈ cVh ,

a1(ηu, ηq ; v) = a1(ulI − u, qlI − q; v) =
N∑
j=1

i((ulI − u)t , v) j + (Wl
q , vx ) j ,

a2(ηu, ηq ; v) = a2(ulI − u, qlI − q; v) =
N∑
j=1

(qlI − q, v) j − (Wl
u, vx ) j ,

a1((ηu)t , (ηq)t ; v) = a1((ulI − u)t , (q
l
I − q)t ; v) =

N∑
j=1

i((ulI − u)t t , v) j + ((Wl
q)t , vx ) j ,

a2((ηu)t , (ηq)t ; v) = a2((ulI − u)t , (q
l
I − q)t ; v) =

N∑
j=1

((qlI − q)t , v) j − ((Wl
u)t , vx ) j .

Here we use the properties (2.1)–(2.2) and (4.28). By the same line of reasoning used to
prove (4.31)–(4.32) and iut = −uxx , we have

|a1(ηu, ηq ; v)| = |a1(ulI − u, qlI − q; v)| � hk+l+1‖u‖k+l+3,∞,Ω‖v‖0,1,Ω, (6.3)

|a2(ηu, ηq ; v)| = |a2(ulI − u, qlI − q; v)| � hk+l+1‖u‖k+l+2,∞,Ω‖v‖0,1,Ω, (6.4)

|a1((ηu)t , (ηq)t ; v)| = |a1((ulI − u)t , (q
l
I − q)t ; v)| � hk+l+1‖u‖k+l+5,∞,Ω‖v‖0,1,Ω,

(6.5)

|a2((ηu)t , (ηq)t ; v)| = |a2((ulI − u)t , (q
l
I − q)t ; v)| � hk+l+1‖u‖k+l+4,∞,Ω‖v‖0,1,Ω .

(6.6)

Note that the choice of the numerical fluxes and the property (4.28), we have, for m = 0, 1,

(∂mt ηu)
−(η∗

q)
+|N+ 1

2
= (∂mt ηu)

−(η∗
q)

+| 1
2
, (∂mt ηu)

−(η∗
q)

+
t |N+ 1

2
= (∂mt ηu)

−(η∗
q)

+
t | 1

2

(6.7)

for both periodic and mixed boundary conditions. Then choosing v = ηu , w = ηq in the
energy function (3.6), we obtain

d

dt
‖ηq‖20,Ω = |a1(ηu, ηq ;−(ηu)t ) + a2((ηu)t , (ηq)t ; ηq) + a1(ηu, ηq ;−(ηu)t )

∗

+ a2((ηu)t , (ηq)t ; ηq)
∗|

� hk+l+1‖u‖k+l+4,∞,Ω(‖(ηu)t‖0,1,Ω + ‖ηq‖0,1,Ω)

� hk+l+1‖u‖k+l+4,∞,Ω(‖(ηu)t‖0,Ω + ‖ηq‖0,Ω).

Integrating the above inequality with respect to time between 0 and t , we obtain

‖ηq‖20,Ω(t) � thk+l+1‖u‖k+l+4,∞,Ω(‖(ηu)t‖0,Ω(t) + ‖ηq‖0,Ω(t)). (6.8)

Here we use the special choice of initial condition ηq(x, 0) = 0. By taking v = (ηu)t ,
w = (ηq)t in (3.5), we obtain

123



J Sci Comput (2017) 73:1290–1315 1303

i((ηu)t t , (ηu)t ) + i((ηu)t t , (ηu)t )
∗ = a1((ηu)t , (ηq)t ; (ηu)t ) + a2((ηu)t , (ηq)t ; (ηq)t )

− a1((ηu)t , (ηq)t ; (ηu)t )
∗ − a2((ηu)t , (ηq)t ; (ηq)t )

∗.
(6.9)

Here we use the property (6.7) again. Integrating the second term of the right-hand side by
parts over the interval [0, t] yields

∫ t

0
a2((ηu)t , (ηq)t ; (ηq)t )dt =

N∑
j=1

∫ t

0
((qlI − q)t , (ηq)t ) j − ((Wl

u)t , (ηq)t x ) j dt

=
N∑
j=1

((qlI − q)t , ηq) j |t0 −
N∑
j=1

((Wl
u)t , (ηq)x ) j |t0

−
N∑
j=1

∫ t

0
((qlI − q)t t , ηq) j − ((Wl

u)t t ,−(ηq)x ) j dt.

Then by the same arguments used in Lemma 2, we obtain
∣∣∣∣
∫ t

0
a2((ηu)t , (ηq)t ; (ηq)t )dt

∣∣∣∣ � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω‖ηq‖0,Ω(t).

We then integrate (6.9) with respect to time between 0 and t and obtain, from (6.5),

‖(ηu)t‖20,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω(‖(ηu)t‖0,Ω(t)

+ ‖ηq‖0,Ω(t)) + ‖(ηu)t‖20,Ω(0). (6.10)

Now we analyse ‖(ηu)t‖0,Ω(0). From the error functions (3.4) and ηq(·, 0) = 0 , we have

0 = a1j (eu, eq ; v)(0) = a1j (u − ulI , q − qlI ; v)(0) + a1j (ηu, ηq ; v)(0)

= i((ηu)t , v) j (0) + i((u − ulI )t , v) j (0) − (Wl
q , vx ) j (0).

Here we use the properties (2.2) and (4.28). By (4.37) and (4.39), it is not difficult to obtain,
in each element τ j , j ∈ ZN ,

(ηu)t (x, 0) = −(wu4,r )t (x, 0)

in case l = 4r and

(ηu)t (x, 0) = −(wus ,r+1)t (x, 0)

in case l = 4r + s, s = 1, 2, 3. By (4.33)–(4.34), we have

‖(ηu)t‖0,Ω(0) � ‖(ηu)t‖0,∞,Ω(0) � hk+l+1‖u‖k+l+3,∞,Ω . (6.11)

Combining (6.8), (6.10), and (6.11) and using Young’s inequality, we get

‖(ηu)t‖0,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω,

‖ηq‖0,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω .

The proof is completed.

By the aid of Theorem 5, we proceed to study the superconvergence properties of the error
ηu , which will be presented in the following theorem.
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Theorem 6 Assume that the conditions of Theorem 5 are satisfied. Then for the periodic and
mixed boundary conditions,

‖ulI − uh‖0,Ω(t) � (1 + t)hk+l+1‖u‖k+l+6,∞,Ω, ∀t ≥ 0. (6.12)

Proof Noticing the special initial conditions, we see that (6.12) is true in the case t = 0 by
Lemma 4. Thus we only consider t > 0. By taking v = ηu , w = ηq in (3.5) and with similar
arguments to prove (6.8), we obtain

‖ηu‖20,Ω(t) � ‖ηu‖20,Ω(0) + thk+l+1‖u‖k+l+3,∞,Ω(‖ηu‖0,Ω(t) + ‖ηq‖0,Ω(t)).

Applying Young’s inequality and the results of Theorem 5, we complete the proof.

Remark 7 We remark that we obtain the supercloseness between the LDG solution (uh, qh)
and the special interpolation function (ukI , q

k
I ) if we choose l = k in Theorems 5 and 6,

which achieves a superconvergence rate of (2k + 1)-th order. The significant results will
be frequently used to prove the (2k + 1)-th superconvergence rate for the domain and cell
averages as well as the numerical fluxes at mesh nodes.

6.2 Superconvergence of Numerical Fluxes at Nodal Points

In this subsection, we provide the superconvergence results for the numerical fluxes at mesh
nodes.

Theorem 8 Assume that u ∈ W 2k+6,∞(Ω), k ≥ 1 is the exact solution of (1.1), and uh, qh
are the numerical solutions of LDG scheme (3.1)–(3.2) with the initial condition qh(·, 0) =
qkI (·, 0) and

∫
Ω

(ukI − uh)(x, 0)dx = 0, where ukI , q
k
I ∈ cVh are defined by (4.27). Then for

the periodic and mixed boundary conditions, it holds that,

eu,n � (1 + t)h2k+1‖u‖2k+6,∞,Ω, eq,n � (1 + t)h2k+1‖u‖2k+6,∞,Ω, (6.13)

‖eu‖∗ � (1 + t)h2k+1‖u‖2k+6,∞,Ω, ‖eq‖∗ � (1 + t)h2k+1‖u‖2k+6,∞,Ω, (6.14)

where

eu,n = max
j∈ZN

|(û − ûh)(x j+ 1
2
, t)|, ‖eu‖∗ =

⎛
⎝ 1

N

N∑
j=1

∣∣∣(û − ûh)(x j+ 1
2
, t)

∣∣∣2
⎞
⎠

1
2

,

eq,n = max
j∈ZN

|(q̂ − q̂h)(x j− 1
2
, t)|, ‖eq‖∗ =

⎛
⎝ 1

N

N∑
j=1

∣∣∣(q̂ − q̂h)(x j− 1
2
, t)

∣∣∣2
⎞
⎠

1
2

.

Proof We obtain (6.14) by following the same logical in Theorem 4.4 of [11]. For (6.13),
we first consider periodic boundary condition. Assume that ηu(x, t) has the following rep-
resentation

ηu(x, t) = ηu(x j , t) + su(x, t)
x − x j
h j

, x ∈ τ j , t > 0. (6.15)

From the definition of a2j (·, ·; ·), we obtain
0 = a2j (eu, eq ; v) = a2j (ηu, ηq ; v) + a2j (u − ukI , q − qkI ; v)

= (ηq , v) j − ((ηu)x , v) j + a2j (u − ukI , q − qkI ; v),
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where v = su(x, t)
x−x

j− 1
2

h j
. By (6.2) and (6.4), we get

|((ηu)x , v) j | = |(ηq , v) j + a2j (u − ukI , q − qkI ; v)|
� (1 + t)h2k+1‖u‖2k+6,∞,Ω‖v‖0,τ j . (6.16)

Denote Rev(x, t) to be the real part of v(x, t), and Imv(x, t) to be the imaginary part of
v(x, t). Rewrite su(x, t) = s1(x, t) + is2(x, t), where s1(x, t) = Resu(x, t), s2(x, t) =
Imsu(x, t). Then by direct calculation, we get

(Re(ηu)x ,Rev) j =
∫

τ j

s1(x, t)
x − x j− 1

2

h j

d

dx
(s1(x, t)

x − x j
h j

) = 1

4h j

∫
τ j

s21dx

+
s21 (x j+ 1

2
, t)

4
,

(Im(ηu)x , Imv) j =
∫

τ j

s2(x, t)
x − x j− 1

2

h j

d

dx
(s2(x, t)

x − x j
h j

) = 1

4h j

∫
τ j

s22dx

+
s22 (x j+ 1

2
, t)

4
.

Here the last equation can be found in [7]. From (6.16), we obtain

‖s1‖20,τ j � h j |(Re(ηu)x ,Rev) j | � h j |((ηu)x , v) j |
� (1 + t)h2k+2‖u‖2k+6,∞,Ω‖v‖0,τ j .

By the same arguments, we get

‖s2‖20,τ j � (1 + t)h2k+2‖u‖2k+6,∞,Ω‖v‖0,τ j .
Thus

‖su‖20,τ j = ‖s1‖20,τ j + ‖s2‖20,τ j � (1 + t)h2k+2‖u‖2k+6,∞,Ω‖v‖0,τ j .
Since ‖v‖0,τ j � ‖su‖0,τ j , the above inequality becomes

‖su‖0,τ j � (1 + t)h2k+2‖u‖2k+6,∞,Ω .

By the inverse inequality, we have

‖su‖0,∞,τ j � h− 1
2 ‖su‖0,τ j � (1 + t)h2k+

3
2 ‖u‖2k+6,∞,Ω . (6.17)

On the other hand, choose v = 1 in the equation a2j (eu, eq ; v) = 0 to obtain

η−
u | j+ 1

2
− η−

u | j− 1
2

= e−
u | j+ 1

2
− e−

u | j− 1
2

=
∫

τ j

eqdx =
∫

τ j

ηq + Wk
q dx .

Here for the first step we use (4.28) and for the last step we use property (2.2) of the Gauss–
Radau projection. Then

η−
u | j+ 1

2
= η−

u | 1
2

+
j∑

m=1

∫
τm

ηq + Wk
q dx . (6.18)
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By the representation of (6.15), we have

ηu(x j , t) = ηu(x0, t) + 1

2
su(x

−
1
2
, t) − 1

2
su(x

−
j+ 1

2
, t) +

j∑
m=1

∫
τm

(ηq + Wk
q )(x, t)dx .

(6.19)

From the definitions (4.10)–(4.13) and the orthogonal properties of Legendre polynomials,
we have, for m = 0, 1

∫
τ j

∂mt Wl
u(x, t)dx =

∫
τ j

∂mt wu4,r (x, t)dx (6.20)

in case l = 4r , and
∫

τ j

∂mt Wl
u(x, t)dx =

∫
τ j

∂mt wus ,r+1(x, t)dx (6.21)

in case l = 4r + s, s = 1, 2, 3. By (4.33)–(4.34), for all 1 ≤ l ≤ k we have,

∣∣∣∣∣
∫

τ j

∂mt Wl
u(x, t)dx

∣∣∣∣∣ � hk+l+2‖u‖k+l+1+2m,∞,τ j , m = 0, 1, ∀t ≥ 0. (6.22)

By the same arguments, we also get

∣∣∣∣∣
∫

τ j

∂mt Wl
q(x, t)dx

∣∣∣∣∣ � hk+l+2‖u‖k+l+2+2m,∞,τ j , m = 0, 1, ∀t ≥ 0. (6.23)

Choosing v = 1 in the equation a1(eu, eq ; v) = 0, we obtain, by the periodic boundary
condition,

N∑
j=1

i
∫

τ j

(ηu + Wk
u )t dx =

N∑
j=1

i
∫

τ j

(eu)t dx = e+
q | 1

2
− e+

q |N+ 1
2

= 0.

Integrating the above equation with respect to time over [0, t] and by the special initial
condition

∫
Ω

ηu(x, 0)dx = 0, we get

N∑
j=1

∫
τ j

ηu(x, t)dx =
N∑
j=1

∫
τ j

W k
u (x, 0) − Wk

u (x, t)dx,

Due to the representation of (6.15), we have

N∑
j=1

(
h jηu(x j , t) +

∫
τ j

su(x, t)
x − x j
h j

dx

)

=
N∑
j=1

∫
τ j

W k
u (x, 0) − Wk

u (x, t)dx .
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Combining (6.17) and (6.19), we have

|ηu(x0, t)| � ‖su‖0,∞,Ω + ‖ηq‖0,Ω(t) +
N∑
j=1

∣∣∣∣∣
∫

τ j

W k
u dx(0)

∣∣∣∣∣

+
N∑
j=1

∣∣∣∣∣
∫

τ j

W k
u dx(t)

∣∣∣∣∣ +
N∑
j=1

∣∣∣∣∣
∫

τ j

W k
q dx(t)

∣∣∣∣∣
� (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Then by (6.19), we have

|ηu(x j , t)| � ‖su‖0,∞,Ω + |ηu(x0, t)| + ‖ηq‖0,Ω(t) +
j∑

m=1

∣∣∣∣
∫

τm

Wk
q dx(t)

∣∣∣∣
� (1 + t)h2k+1‖u‖2k+6,∞,Ω, ∀ j ∈ ZN .

Note that u(x−
j+ 1

2
, t) = ukI (x

−
j+ 1

2
, t), we get

|(u − uh)(x
−
j+ 1

2
, t)| = |(ukI − uh)(x

−
j+ 1

2
, t)| � ‖ηu‖0,∞,Ω

� (1 + t)h2k+1‖u‖2k+6,∞,Ω, ∀ j ∈ ZN ,

then the first inequality of (6.13) follows directly. Assume that ηq(x, t) has the following
representation

ηq(x, t) = ηq(x j , t) + sq(x, t)
x − x j
h j

, x ∈ τ j , j ∈ ZN . (6.24)

From the definition of a1j (·, ·; ·), we obtain
0 = a1j (eu, eq ; v) = a1j (ηu, ηq ; v) + a1j (u − ukI , q − qkI ; v)

= i((ηu)t , v) j + ((ηq)x , v) j + a1j (u − ukI , q − qkI ; v),

where v = sq(x, t)
x−x

j+ 1
2

h j
. From (6.1) and (6.3), we have

|((ηq)x , v) j | = | − i((ηu)t , v) j − a1j (u − ukI , q − qkI ; v)|
� (1 + t)h2k+1‖u‖2k+6,∞,Ω‖v‖0,τ j .

By similar arguments, it is not difficult to get

‖sq‖0,∞,τ j � h− 1
2 ‖sq‖0,τ j � (1 + t)h2k+

3
2 ‖u‖2k+6,∞,τ j ,

|ηq(x j , t)| � (1 + t)h2k+1‖u‖2k+6,∞,Ω, ∀ j ∈ ZN .

Then, in light of (6.24), we have

|(q − qh)(x
+
j− 1

2
, t)| = |(qkI − qh)(x

+
j− 1

2
, t)| � ‖ηq‖0,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Thuswe obtain (6.13) is true for periodic boundary condition.Next,wewill analyze themixed
boundary conditions. Since η−

u | 1
2

= 0 for mixed boundary conditions, the representation of
(6.18) yields that
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|ηu(x−
j+ 1

2
, t)| �

j∑
m=1

∫
τm

|ηq |dx +
j∑

m=1

∣∣∣∣
∫

τm

Wk
q dx

∣∣∣∣
� (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Here we use Theorem 5 and the estimates (6.23). In light of the representation (6.15), we
have

ηu(x j , t) = ηu(x
−
j+ 1

2
, t) − 1

2
su(x

−
j+ 1

2
, t),

which yields that

‖ηu(x, t)‖0,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Here we use the estimate (6.17). Similarly, choose v = 1 in the equation a1j (eu, eq ; v) = 0
to obtain

η+
q | j− 1

2
− η+

q | j+ 1
2

= e+
q | j− 1

2
− e+

q | j+ 1
2

= i
∫

τ j

(eu)t dx = i
∫

τ j

(ηu)t + (Wk
u )t dx .

Then

η+
q | j+ 1

2
= η+

q | 1
2

− i
j∑

m=1

∫
τm

(ηu)t dx − i
j∑

m=1

∫
τm

(Wk
u )t dx .

Since η+
q |N+ 1

2
= 0 for mixed boundary conditions, the estimates (6.22) and (6.1) give that

|ηq(x+
1
2
, t)| � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

By similar arguments, we have

‖ηq(x, t)‖0,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Note that u(x−
j+ 1

2
, t) = ukI (x

−
j+ 1

2
, t) and q(x+

j− 1
2
, t) = qkI (x

+
j− 1

2
, t), we get

eu,n � (1 + t)h2k+1‖u‖2k+6,∞,Ω, eq,n � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

for mixed boundary conditions. The proof is completed.

6.3 Superconvergence for the Domain and Cell Averages

In this subsection, we study the superconvergence properties for the domain and cell averages.

Theorem 9 Assume that the conditions of Theorem 8 are satisfied, then, for the periodic and
mixed boundary conditions, we have, ∀t > 0,

‖eu‖c � (1 + t)h2k+1‖u‖2k+6,∞,Ω, ‖eu‖d � h2k+1‖u‖2k+6,∞,Ω, (6.25)

‖eq‖c � (1 + t)h2k+1‖u‖2k+6,∞,Ω, ‖eq‖d � h2k+1‖u‖2k+6,∞,Ω, (6.26)
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where

‖eu‖d =
∣∣∣∣ 1

2π

∫ 2π

0
(u − uh)(x, t)dx

∣∣∣∣ ,

‖eu‖c =
⎛
⎝ 1

N

N∑
j=1

∣∣∣∣ 1

h j

∫ x
j+ 1

2

x
j− 1

2

(u − uh)(x, t)dx

∣∣∣∣
2
⎞
⎠

1
2

,

similarly, the domain average ‖eq‖d and the cell average ‖eq‖c of q − qh can be defined in
the same way. Moreover, for the periodic boundary condition, there holds

‖eq‖d = 0. (6.27)

Proof From the properties (2.1)–(2.2) of P+
h , P−

h , we can obtain∫
τ j

(u − uh)(x, t)dx =
∫

τ j

(ukI − uh)(x, t)dx +
∫

τ j

W k
u (x, t)dx, (6.28)

where Wk
u is defined by (4.17). Choosing l = k in Theorem 6 and by the estimate (6.22), we

obtain

‖eu‖c � ‖ukI − uh‖0,Ω + h2k+1‖u‖2k+1,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Summing over all j in (6.28), we obtain

‖eu‖d � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

The proof of ‖eq‖d and ‖eq‖c can be obtained by the same arguments. In addition, note that
a2j (eu, eq ; 1) = 0, we have

∫ x
j+ 1

2

x
j− 1

2

(q − qh)(x, t)dx = (u − uh)(x
−
j+ 1

2
, t) − (u − uh)(x

−
j− 1

2
, t).

Summing over all j and by the periodic boundary condition, we obtain
∫ 2π

0
(q − qh)(x, t)dx = 0,

which yields (6.27).

6.4 Superconvergence of the Function Value Approximation at Radau Points

In this subsection, we will study the superconvergence phenomena for the function value at
Radau points. The notations Rl

j,m , R
r
j,m , m ∈ Zk stand for the k interior left and right Radau

points in the interval τ j , j ∈ ZN . Namely, Rl
j,m , m ∈ Zk are zeros of L j,k + L j,k+1 except

for x j− 1
2
, and Rr

j,m , m ∈ Zk are zeros of L j,k+1 − L j,k except for x j+ 1
2
.

Theorem 10 Assume that the conditions of Theorem 8 are satisfied, then for the periodic
and mixed boundary conditions, it holds that,

eu,r � (1 + t)hk+2‖u‖2k+6,∞,Ω, eq,l � (1 + t)hk+2‖u‖2k+6,∞,Ω, (6.29)

where

eu,r = max
( j,m)∈ZN×Zk

|(u − uh)(R
r
j,m, t)|, eq,l = max

( j,m)∈ZN×Zk
|(q − qh)(R

l
j,m, t)|. (6.30)
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Proof From the proof of Theorem 8, we know that

‖ηu(x, t)‖0,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω , ‖ηq (x, t)‖0,∞,Ω � (1 + t)h2k+1‖u‖2k+6,∞,Ω .

Thus the desired results can be obtained by the same arguments used in Theorem 4.6 of [11].

6.5 Superconvergence of the Derivative Approximation at Radau Points

This subsection will prove the superconvergence results for the derivative approximation at
Radau points.

Theorem 11 Assume that the conditions of Theorem 8 are satisfied. For the periodic and
mixed boundary conditions, we have

(eu,l)x � (1 + t)hk+2‖u‖2k+6,∞,Ω . (6.31)

Moreover, if k ≥ 2, we have

(eq,r )x � (1 + t
√
h)hk+2‖u‖k+8,∞,Ω . (6.32)

Here

(eu,l)x = max
( j,m)∈ZN×Zk

|(u − uh)x (R
l
j,m, t)|, (eq,r )x = max

( j,m)∈ZN×Zk
|(q − qh)x (R

r
j,m, t)|.

Proof In light of the LDG scheme (3.2), we have

(qh, v) j = −(uh, vx ) j + u−
h v∗−| j+ 1

2
− u−

h v∗+| j− 1
2

= ((uh)x , v) j + (u+
h − u−

h )v∗+| j− 1
2
. (6.33)

Note that uh can be expressed as

uh(x, t) = uh(x
−
j+ 1

2
, t) +

k∑
m=1

(
cm(t) + idm(t)

)(
L j,m(x) − L j,m−1(x)

)
, ∀ j ∈ ZN ,

where cm(t), dm(t) are real coefficients. Obviously,

(uh)x (x, t) =
k∑

m=1

(
cm(t) + idm(t)

)(
L

′
j,m(x) − L

′
j,m−1(x)

)
. (6.34)

Define D−1
x qh(x, t) = ∫ x

x
j− 1

2

qh(x̂, t)dx̂ , x ∈ τ j , which implies that D−1
x qh(x, t) ∈

Pk+1(τ j ). Similarly, let

D−1
x qh(x, t) = D−1

x qh(x
−
j+ 1

2
, t) +

k+1∑
m=1

(
bm(t) + i fm(t)

)(
L j,m(x) − L j,m−1(x)

)
,

where bm(t), fm(t) are real coefficients. Thus we obtain

qh(x, t) =
k+1∑
m=1

(
bm(t) + i fm(t)

)(
L

′
j,m(x) − L

′
j,m−1(x)

)
. (6.35)

By taking v = L j,m + L j,m−1, m ∈ Zk in (6.33) and the representations (6.34)–(6.35), we
have

bm(t) + i fm(t) = cm(t) + idm(t), m = 1, 2, · · · , k.
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Here we use the orthogonality of the Legendre polynomials
∫

τ j

(L
′
j,m − L

′
j,m−1)(L j,n + L j,n−1)dx =

{
0, m �= n,

2, m = n.

Then we get the relationship between (uh)x and qh ,

qh(x, t) = (uh)x (x, t) +
(
bk+1(t) + i fk+1(t)

)(
L

′
j,k+1(x) − L

′
j,k(x)

)
,

which yields that

qh(R
l
j,m, t) = (uh)x (R

l
j,m, t).

Thus we obtain

(u − uh)x (R
l
j,m, t) = (q − qh)(R

l
j,m, t).

By Theorem 10, we can obtain (6.31). With similar arguments, we also have

(qh)x (R
r
j,m, t) = −i(uh)t (R

r
j,m, t),

which implies that

(q − qh)x (R
r
j,m, t) = −i(u − uh)t (R

r
j,m, t).

When k ≥ 2, choose l = 2 in (6.1) to obtain

‖(ηu)t‖0,∞,Ω � h− 1
2 ‖(ηu)t‖0,Ω � (1 + t)hk+

5
2 ‖u‖k+8,∞,Ω .

Then following the same logic as in Theorem 4.6 of [11], we get

|(u − uh)t (R
r
j,m, t)| � (1 + t

√
h)hk+2‖u‖k+8,∞,Ω .

Thus (6.32) follows.

Remark 12 We remark that for another choice of numerical fluxes, namely, ûh = u+
h ,

q̂h = q−
h , we can also define the corresponding correction functions and obtain all of the

superconvergence results we have proved in previous sections. Since all the technical details
are identical with the arguments used in the case of fluxes (3.3), we omit them here for the
sake of saving space. Thus, we know that all of the superconvergence results are true for the
mixed boundary conditions ux (0, t) = g0(t), u(2π, t) = g1(t).

7 Numerical Results

In this section, we provide numerical examples to illustrate our theoretical findings developed
in the precious sections. Since the program for testing the examples for k = 1, 2 is similar
to k = 3, 4, we just present the results of k = 3, 4 to save space.

Example 7.1 We consider the following problem

iut + uxx = 0, (x, t) ∈ [0, 2π] × (0, 1],
u(x, 0) = exp(2ix) + 3exp(ix), x ∈ [0, 2π],

with the periodic boundary condition, where the exact solution is

u(x, t) = exp(i(2x − 4t)) + 3exp(i(x − t)).
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Fig. 2 Error curves for k = 4 with periodic boundary conditions (left: u, right: q)

We use the LDG scheme (3.1)–(3.2) with k = 3, 4 to solve the problem, and the time
discretization is the ninth order strong-stability preserving (SSP) Runge–Kutta method [13].
We take (3.3) as the choice of numerical fluxes and the initial solution is obtained by the same
method asmentioned in Sect. 1. In our experiments, we use piecewise uniformmeshes, which
are constructed by equally dividing [0, 3π

4 ] and [ 3π4 , 2π ] into N/2 subintervals, N = 4, 8, · · · ,
128. We test our numerical solutions at the final time t = 1 with time step Δt = 0.001h2min
in k = 3, 4, where hmin = 3π/2N in this case. The relevant error curves are shown in Figs. 1
and 2 with log–log scale.

From Figs. 1 and 2, we observe that the LDG solution (uh, qh) is superconvergent to
the special interpolation function (ukI , q

k
I ), with a convergence rate of (2k + 1)-th order; a

(2k + 1)-th superconvergence rate for the cell average of u − uh and q − qh as well as the
domain average of u − uh ; the error for the domain average of q − qh reaches the machine
precision; the average and maximum errors of u − ûh and q − q̂h is superconvergent with a
(2k + 1)-th order at nodes of the mesh; both the function value error u − uh at right Radau
points and its derivative error (u − uh)x at interior left Radau points all converge with a rate
(k + 2)-th order, the same rate for q − qh at left Radau points and (q − qh)x at interior right
Radau points. These results are consistent with our theoretical findings in Theorems 5–11.
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Fig. 3 Error curves for k = 3 with mixed boundary conditions (left: u, right: q)
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Fig. 4 Error curves for k = 4 with mixed boundary conditions (left: u, right: q)

Example 7.2 In this example, we consider the model problem with mixed boundary condi-
tions

iut + uxx = 0, (x, t) ∈ [0, 2π ] × (0, 0.2],
u(x, 0) = exp(3ix), x ∈ [0, 2π ],
u(0, t) = exp(−9it), ux (2π, t) = 3iexp(i(6π − 9t)), t ∈ [0, 0.2],

where the exact solution is u(x, t) = exp(i(3x − 9t)).

Similarly, the problem is solvedbyLDGscheme (3.1)–(3.2)with k = 3, 4. Timediscretiza-
tion is the fourth order Runge–Kutta method. We use the uniform meshes. The numerical
fluxes is taken by (3.3) and the initial solution is obtained by the same method as mentioned
in Sect. 1. In order to obtain the accuracy dominated by the spacial discretization, we take
the time step Δt = 0.001h2 for k = 3, and Δt = 0.001h3 for k = 4, where h = 2π/N in
this case. The corresponding error curves are shown in Figs. 3 and 4 with log–log scale.

Figures 3 and 4 show that the LDG solutions are superclose to the interpolation functions
defined by (4.27), with a (2k + 1)-th convergence rate; for both u and the auxiliary variable
q = ux , domain and cell averages are (2k + 1)-th superconvergent as well as the numerical
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fluxes at all nodes in the maximal and average norm; both the function value error and
derivative approximation at Radau points converge with a rate (k+2)-th order. These results
are consistent with our theoretical findings in Theorems 5–11.

8 Concluding Remarks

We have developed the superconvergence properties of the LDG method for the one-
dimensional linear Schrödinger equation. We build a special interpolation function by
constructing a correction function, and prove supercloseness between the interpolation func-
tion and the numerical solution in the L2 norm, with a order of 2k + 1. We prove the LDG
solutions are superconvergent for the numerical fluxes at the nodes, with a convergence rate
of (2k + 1)-th order in the maximal and average norm. We also prove a (2k + 1)-th order
superconvergence rate for the domain and cell averages.Moreover, we find the function value
and derivative approximation at the Radau points are superconvergent with a rate of (k+2)-th
order. All theoretical findings are confirmed by numerical examples.
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