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Abstract We examine the long time error behavior of discontinuous Galerkin spectral ele-
ment approximations to hyperbolic equations. We show that the choice of numerical flux at
interior element boundaries affects the growth rate and asymptotic value of the error. Using
the upwind flux, the error reaches the asymptotic value faster, and to a lower value than a
central flux gives, especially for low resolution computations. The differences in the error
caused by the numerical flux choice decrease as the solution becomes better resolved.

Keywords Discontinuous Galerkin spectral element method · Energy stability · Error
growth · Error bound · Hyperbolic problems

1 Introduction

To compute long time behavior of hyperbolicwave propagation problems accurately, the error
should not grow large over time. Stability of a numerical scheme ensures that the solution
remains bounded in some norm for fixed time, but the equation that describes the time
variation of the error includes a forcing term generated by the approximation or truncation
errors. That forcing term can lead to unbounded growth in the error for long times even
though the solution remains bounded.

Examples of both linear and bounded temporal error growth are observed in computa-
tions presented in the literature. Linear growth of the error in approximations of hyperbolic
systems has been noted for both finite difference [5,11] and discontinuous Galerkin [4,7]
approximations. In [7], the authors prove linear growth of the error and note that the bound is
sharp, meaning that slower than linear growth cannot be guaranteed, though the growth rate
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is controlled by the order of the approximation. On the other hand, bounded error behavior
is observed for some finite difference approximations, e.g. [1,2], and [8].

An explanation for when the error is bounded or not was presented in [10]. Linear growth
is observed when waves are trapped in cavities or in periodic geometries, which is what
was studied in [7]. Bounded growth occurs when waves are present in the domain for finite
amounts of time, as in an inflow-outflow problem. The idea was explained at the partial
differential equation (PDE) level in [10] in terms of a model problem with forcing. The
analysis of SBP-SAT (Summation-By-Parts/Simultaneous-Approximation-Term) finite dif-
ference approximations in that paper predicted the same behavior. The conclusion was that
the error is bounded if a sufficiently dissipative boundary procedure is used. It is not bounded
due to the internal discretization. The error levels were significantly lower using characteris-
tic boundary conditions versus noncharacteristic ones. Since the error is bounded, arbitrarily
high order accuracy can be found at any time.

In this paper we examine the long time behavior of the error for discontinuous Galerkin
spectral element methods (DGSEM). We show that although the bounded error property is
a result of dissipative boundary conditions as was shown in [10], the behavior of the error
and its bound are influenced by the internal approximation. In particular, we show that the
choice of the numerical flux at interior element interfaces affects both the rate at which the
error grows and the asymptotic value it attains. The presence of inter-element dissipation
introduced by the numerical flux is a feature of the DGSEM not found in single domain SBP
finite difference approximations. The results, however, apply to multidomain or multiblock
versions of those methods.

2 The Model Problem in One Space Dimension

To show the boundedness of the energy when characteristic boundary conditions are applied,
we study the error equation for the DGSEM approximation of the scalar constant coefficient
initial boundary value problem with a non-periodic boundary condition

⎧
⎪⎨

⎪⎩

ut + ux = 0 x ∈ [0, L]
u(0, t) = g(t)

u(x, 0) = u0(x).

(1)

For truncation errors of the approximation to be bounded in time we assume that the initial
and boundary values are constructed so that u(x, t) ∈ Hm(0, L) for m > 1 and that its
norm ‖u‖Hm is uniformly bounded in time. Such conditions are physically meaningful and
describe problems where the boundary input is, for example, sinusoidal.

The energy of the solution of the initial boundary value problem,measured by theL2 norm
‖u‖2 = (u, u) = ∫ L0 u2dx , is increased through the addition of energy at the left boundary,
and dissipated as waves move out through the boundary at the right. To see this, construct a
weak form of the equation by multiplying it with a test function φ ∈ L

2(0, L) and integrating
over the domain ∫ L

0
utφdx +

∫ L

0
uxφdx = 0. (2)

Replacing φ with u yields
1

2

d

dt
‖u‖2 = − (u, ux ) . (3)
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Integration by parts implies that when the boundary condition at the left is applied,

d

dt
‖u‖2 = g2 (t) − u2(L , t). (4)

Integrating in time over an interval [0, T ] leads to

‖u (T )‖2 +
∫ T

0
u2(L , t)dt = ‖u0‖2 +

∫ T

0
g2(t)dt . (5)

Thus, the energy at time T is the initial energy, plus energy added at the left through the
boundary condition minus the energy lost through the right boundary. It is this behavior that
the numerical approximation should emulate.

3 The DGSEM Approximation of the Model Problem

To construct the DGSEM, we subdivide the interval into elements ek = [xk−1, xk
]
, k =

1, 2, . . . , K , where the xk, k = 0, 1, . . . , K are the element boundaries with x0 = 0 and
xK = L . Then

K∑

k=1

∫ xk

xk−1

{ut + ux }φdx = 0. (6)

Since φ ∈ L
2, we can choose φ to be nonzero selectively in each element, which tells us that

on each element the solution satisfies
∫ xk

xk−1

{ut + ux }φdx = 0. (7)

To allow us to use a Legendre polynomial approximation of the solution, we map the
element

[
xk−1, xk

]
onto the reference element E = [−1, 1] by the linear transformation

x = xk−1 + �xk
ξ + 1

2
, (8)

where �xk = xk − xk−1 is the length of the element. Under this transformation, ux =
2uξ /�xk so the elemental contribution is

�xk
2

∫ 1

−1
utφdξ +

∫ 1

−1
uξ φdξ = 0. (9)

We then integrate the term with the space derivative by parts to get the elemental weak form

�xk
2

∫ 1

−1
utφdξ + uφ|1−1 −

∫ 1

−1
uφξdξ = 0. (10)

Finally, we define the elemental inner product and norm by

(u, φ)E =
∫ 1

−1
uφdξ, ‖u‖2E = (u, u)E (11)

and write the elemental contribution as

�xk
2

(ut , φ)E + uφ|1−1 − (u, φξ

)

E = 0. (12)

Since it is unlikely to cause confusion, we will typically drop the subscript E .
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We are now ready to construct the DGSEM approximation. Let PN be the space of poly-
nomials of degree ≤ N and let IN : L2(−1, 1) → P

N (−1, 1) be the interpolation operator.
We approximate the solution by a polynomial interpolant, u ≈ U ∈ P

N , which we write in
Lagrange (nodal) form

Uk =
N∑

j=0

Uk
j (t)� j (ξ), (13)

where � j (ξ) ∈ P
N is the j th Lagrange interpolating polynomial that satisfies � j (ξi ) = δi j .

The interpolation nodes, ξ j , j = 0, 1, . . . , N are the nodes of the Gauss-Lobatto quadrature

∫

N
udξ ≡

N∑

j=0

u
(
ξ j
)
w j ≈

∫ 1

−1
udξ . (14)

Then we can define the discrete inner product and norm in terms of the Legendre–Gauss–
Lobatto quadrature as

(u, v)N ≡
∫

N
uvdξ, ‖u‖2N = (u, u)N . (15)

We choose the Gauss–Lobatto points here because they allow for the derivation of provably
stable approximations in multiple dimensions and on curved elements [9]. The discrete norm
is equivalent to the continuous norm ([3], after (5.3.2)) in that for all U ∈ P

N ,

1 � ‖U‖N
‖U‖L2(−1,1)

=
√

2 + 1

N
≤ √

3. (16)

The Gauss–Lobatto quadrature has the property [3] that

(U, V )N = (U, V ) ∀ UV ∈ P
2N−1. (17)

Furthermore, with the interpolation property I
N (u)

(
ξ j
) = u

(
ξ j
) = u j ,

(u, V )N =
N∑

j=0

u
(
ξ j
)
Vjw j =

N∑

j=0

u j Vjw j =
(
I
N (u) , V

)

N
∀ V ∈ P

N (18)

which says that the interpolation operator is the orthogonal projection of L2 onto the space
of polynomials with respect to the discrete inner product (·, ·)N .

In addition to the solution, three more quantities need to be approximated. We use the
Gauss-Lobatto quadrature to approximate the inner products in (12). We restrict the test
function to be φk ∈ P

N ⊂ L
2. Finally, we introduce the continuous numerical “flux” U∗ =

U∗ (UL ,UR
)
to couple the elements at the boundaries to create theweak formof theDGSEM

�xk
2

(
Uk
t , φk

)

N
+
{
U∗ (Uk(1),Uk+1(−1)

)
φk(1) −U∗ (Uk−1(1),Uk(−1)

)
φk(−1)

}

−
(
Uk, φk

ξ

)

N
= 0.

(19)
In this work we will choose the numerical flux to have the form

U∗ (UL ,UR
)

= UL +UR

2
− σ

2

(
UR −UL

)
, (20)
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whereUL ,R are the states on the left and the right and σ ∈ [0, 1]. The numerical flux includes
both the upwind (σ = 1) and central (σ = 0) fluxes

U∗ (UL ,UR
)

=
⎧
⎨

⎩

UL , σ = 1,

UL +UR

2
, σ = 0.

(21)

In shorthand, the approximation on the kth element satisfies

�xk
2

(
Uk
t , φk

)

N
+ U∗φk

∣
∣
∣
1

−1
−
(
Uk, φk

ξ

)

N
= 0. (22)

3.1 Stability of the DGSEM

The DGSEM is stable in the sense that the energy of the approximate solution approximates
(5) if the upwind numerical flux is used at the physical boundaries. To show this, we let
φk = Uk to get the energy equation on an element

1

2

�xk
2

d

dt

∥
∥
∥Uk
∥
∥
∥
2

N
= �xk

2

(
Uk
t ,Uk

)

N
= − U∗Uk

∣
∣
∣
1

−1
+
(
Uk,Uk

ξ

)

N
. (23)

The quadrature in the discrete inner product on the right is exact. Alternatively, we can say
that the discrete inner product satisfies the summation by parts rule [9]

(
Uk,Uk

ξ

)

N
=
(
Uk
)2
∣
∣
∣
∣

1

−1
−
(
Uk

ξ ,Uk
)

N
⇒
(
Uk,Uk

ξ

)

N
= 1

2

(
Uk
)2
∣
∣
∣
∣

1

−1
. (24)

Therefore, the elemental contribution to the energy is

1

2

�xk
2

d

dt

∥
∥
∥Uk
∥
∥
∥
2

N
= −

{

U∗Uk − 1

2

(
Uk
)2
}∣
∣
∣
∣

1

−1
. (25)

Summing over all the elements gives the time rate of change of the total energy

1

2

d

dt

K∑

k=1

�xk
2

∥
∥
∥Uk
∥
∥
∥
2

N
= −

K∑

k=1

{

U∗Uk − 1

2

(
Uk
)2
}∣
∣
∣
∣

1

−1
. (26)

The sum over the element endpoints splits into three parts: One for the left physical
boundary, one for the right physical boundary and a sum over the internal element endpoints.
The internal term has contributions from the elements to the left and the right of the interface
and uses the fact that the numerical flux U∗ is unique at the interface. Therefore,

K∑

k=1

{

U∗ − 1

2
Uk
}

Uk
∣
∣
∣
∣

1

−1
= −

{

U∗ (g,U 1(−1)
)− 1

2
U 1(−1)

}

U 1(−1)

+
K∑

k=2

{

U∗ (Uk−1(1),Uk(−1)
)

− 1

2

[
Uk−1(1) +Uk(−1)

]} [
Uk−1(1) −Uk(−1)

]

+
{

U∗ (UK (1),Uext

)
− 1

2
UK (1)

}

UK (1),

(27)
where Uext is some external state required by the numerical flux function.
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Using the central solver at the boundaries does not give conditions that match those of the
PDE seen in (5). On the other hand, when the upwind flux is used,

{

U∗ (g,U 1(−1)
)− 1

2
U 1(−1)

}

U 1(−1) = 1

2
g2 − 1

2

(
U 1(−1) − g

)2

{

U∗ (UK (1),Uext

)
− 1

2
UK (1)

}

UK (1) = 1

2

(
UK (1)

)2
.

(28)

The terms in the sum over the internal faces are each of the form

U∗ (V L , V R
)

�V � − 1

2
�V 2�, (29)

where �V � = V L − V R is the jump in the argument. This quantity is non-negative for either
the upwind or central numerical flux. Direct calculation shows that

U∗ (V L , V R
)

�V � − 1

2
�V 2� = σ

2
�V �2 � 0. (30)

Therefore,

1

2

d

dt

K∑

k=1

�xk
2

∥
∥
∥Uk
∥
∥
∥
2

N
= 1

2
g2 − 1

2

(
U 1(−1, t) − g(t)

)2 − 1

2

(
UK (1, t)

)2 − σ

2

K∑

k=2

�Uk�2.

(31)
Let us now define the global norm by

‖U‖2N =
K∑

k=1

�xk
2

∥
∥
∥Uk
∥
∥
∥
2

N
. (32)

Then, if we define U (0) as the interpolant of the initial condition u0 on the element,

‖U (T )‖2N +
∫ T

0

(
UK (1, t)

)2
dt +

∫ T

0

(
U 1(−1, t) − g(t)

)2
dt + σ

∫ T

0

K∑

k=2

�Uk�2dt

= ‖U (0)‖2N +
∫ T

0
g2(t)dt,

(33)
which also satisfies

‖U (T )‖2N +
∫ T

0

(
UK (1, t)

)2
dt � ‖U (0)‖2N +

∫ T

0
g2(t)dt . (34)

Equation (33) matches (5) except for the additional dissipation that comes from the weak
imposition of the boundary condition, and dissipation from the jumps in the solution at the
element interfaces if the upwind flux (σ = 1) is used. Therefore, theDGSEMfor the (constant
coefficient) problem is strongly stable and the energy at any time T is bounded by the initial
energy plus the energy added at the left boundary minus the energy lost from the right if the
upwind flux (i.e. characteristic boundary condition) is used at the endpoints of the domain.
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4 The Error Equation

We now study the time behavior of the error, whose elemental contribution is Ek =
u (x (ξ) , t) − Uk (ξ, t). For a more general derivation and for multidimensional problems,
although with exact integration, see [7] and [12].

We compute the error in two parts as

Ek =
(
I
N (u) −Uk

)
+
(
u − I

N (u)
)

≡ εk + εkp, (35)

so that εk ∈ P
N . The triangle inequality allows us to bound the two parts separately

∥
∥
∥Ek
∥
∥
∥
2

N
≤
∥
∥
∥ε

k
∥
∥
∥
2

N
+
∥
∥
∥ε

k
p

∥
∥
∥
2

N
. (36)

The interpolation error, εkp , is independent of the approximate solution and is the sum of
the series truncation error and the aliasing error. Its continuous norm converges spectrally
fast as [3] (5.4.33)

∥
∥
∥ε

k
p

∥
∥
∥
L2(−1,1)

=
∥
∥
∥u − I

Nu
∥
∥
∥
L2(−1,1)

� CN−m |u|Hm;N (−1,1), (37)

where

|u|2Hm;N (−1,1) =
m∑

n=min(m,N+1)

∥
∥
∥
∥
∂nu

∂ξn

∥
∥
∥
∥

2

L2(−1,1)
. (38)

On an element itself (as opposed to the reference element), the interpolation error is bounded
by [3] (5.4.42)

∥
∥
∥ε

k
p

∥
∥
∥
Hn(ek )

=
∥
∥
∥u − I

N (u)

∥
∥
∥
Hn(ek )

� C�xmin(m,N )−n
k Nn−m |u|Hm;N (ek ), (39)

for n = 0, 1. Equivalence of the discrete and continuous norms allows us to bound the discrete
norm in terms of the continuous one, so the contribution of εkp in (36) decays spectrally fast.

The part of the error that depends onU , namely εk , depends on the spatial approximation.
To find the equation that εk satisfies, note that u satisfies the continuous equation (12) and that
u = I

N (u) + εkp . Then when we replace u by this decomposition and restrict φ to PN ⊂ L
2,

�xk
2

(
∂

∂t
I
N (u), φk

)

+ I
N (u)φk

∣
∣
∣
1

−1
−
(
I
N (u), φk

ξ

)

= −�xk
2

(
∂εkp

∂t
, φk

)

− εkpφ
k
∣
∣
∣
1

−1
+
(
εkp, φ

k
ξ

)
.

(40)

Note that the endpoints of the interval are Gauss-Lobatto points, so the interpolant equals the
solution there and εkp = 0 at the endpoints. Also, we can integrate the last term by parts so
the boundary terms on the right vanish and

�xk
2

(
∂

∂t
I
N (u), φk

)

+ I
N (u)φk

∣
∣
∣
1

−1
−
(
I
N (u), φk

ξ

)

= −�xk
2

(
∂εkp

∂t
, φk

)

−
((

εkp

)

ξ
, φk
)

.

(41)
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Next,
(

∂

∂t
I
N (u), φk

)

=
(

∂

∂t
I
N (u), φk

)

N
+
{(

∂

∂t
I
N (u), φk

)

−
(

∂

∂t
I
N (u), φk

)

N

}

, (42)

where the term in the braces is the error associated with the Gauss-Lobatto quadrature, which
is spectrally small through [3] (5.4.38)

∣
∣(u, φ) − (u, φ)N

∣
∣ � CN−m |u|Hm;N−1(−1,1)‖φ‖L2(−1,1) (43)

for all φ ∈ P
N and m ≥ 1 and some C independent of m and u. The error bound (43) comes

from applying the Cauchy–Schwarz inequality, the interpolation error estimate, exactness of
the quadrature and the norm equivalence to

(u, φ) − (u, φ)N = (u, φ) −
(
ΠN−1(u), φ

)
+
(
ΠN−1(u), φ

)
− (u, φ)N

=
(
u − ΠN−1(u), φ

)
−
(
u − ΠN−1(u), φ

)

N
,

(44)

where ΠN : L2 → P
N is the L2 orthogonal projection (series truncation) operator.

Also when φ is restricted to P
N , the volume term in (41) is equal to the quadrature

(
I
N (u), φξ

)
=
(
I
N (u), φξ

)

N
. (45)

Finally, the value of the interpolant at a point can be represented in terms of the limits from
the left, IN (u)−, and the right, IN (u)+ as

I
N (u) = U∗ (

I
N (u)−, IN (u)+

)
+
{
I
N (u) −U∗ (

I
N (u)−, IN (u)+

)}
. (46)

At the element interfaces, u is continuous (m > 1), so that the error term in the braces is
zero. Thus, at ξ = ±1, IN (u) = U∗ (

I
N (u)−, IN (u)+

)
.

Making these substitutions,

�xk
2

(
∂

∂t
I
N (u), φk

)

N
+ U∗ (

I
N (u)−, IN (u)+

)
φk
∣
∣
∣
1

−1
−
(
I
N (u), φk

ξ

)

N
=

− �xk
2

(
∂εkp

∂t
, φk

)

−
((

εkp

)

ξ
, φk
)

− �xk
2

{(
∂

∂t
I
N (u), φk

)

−
(

∂

∂t
I
N (u), φk

)

N

}

(47)

The right hand side of (47) is the amount by which the exact solution u fails to satisfy the
approximation (22), in other words it is the spectrally small “truncation error”. Therefore,
we use (44) and write

�xk
2

(
∂

∂t
I
N (u), φk

)

N
+ U∗ (

I
N (u)−, IN (u)+

)
φk
∣
∣
∣
1

−1
−
(
I
N (u), φk

ξ

)

N

= �xk
2

(
T
k(u), φk

)
+ �xk

2

(
Q

k(u), φk
)

N
,

(48)

where

Q
k(u) = ∂

∂t

(
I
N (u) − ΠN−1

(
I
N (u)
))

= I
N (ut ) − ΠN−1

(
I
N (ut )

)
, (49)
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and

T
k = −

{
∂εkp

∂t
+ ∂εkp

∂x
+ Q

k(u)

}

. (50)

The quantityQmeasures the projection error of a polynomial of degree N onto a polynomial
of degree N−1. It is bounded under the assumptions on the boundedness of u. The remaining
parts of T satisfy bounds determined by (39). Specifically,

∥
∥
∥
∥
∥

∂εkp

∂x

∥
∥
∥
∥
∥

� C�xmin(m,k)−1
k N 1−m |u|Hm;N (ek), (51)

which is convergent in N when m > 1 and the Sobolev norm of the solution is uniformly
bounded in time. (It is for this reason the initial and boundary conditions for (1) have the
specified smoothness.) The norm of the time derivative term is similarly bounded in time
since ut = −ux .

When we subtract (22) from (48), we get an equation for the error, εk

�xk
2

(
εkt , φ

k
)

N
+ ε∗φk

∣
∣
∣
1

−1
−
(
εk, φk

ξ

)

N
= �xk

2
(Tk, φk) + �xk

2

(
Q

k, φk
)

N
, (52)

where by linearity of the numerical flux,

ε∗ = U∗ (εL , εR
)

. (53)

We get the energy equation for the error by letting φk = εk . Then

1

2

�xk
2

d

dt

∥
∥
∥ε

k
∥
∥
∥
2

N
+ ε∗εk

∣
∣
∣
1

−1
−
(
εk, εkξ

)

N
= �xk

2
(Tk, εk) + �xk

2

(
Q

k, εk
)

N
. (54)

As before, summation by parts says that
(
εk, εkξ

)

N
= 1

2
(εk)2

∣
∣
∣
1

−1
. (55)

Therefore,

1

2

�xk
2

d

dt

∥
∥
∥ε

k
∥
∥
∥
2

N
+
{

ε∗ − 1

2
εk
}

εk
∣
∣
∣
∣

1

−1
= �xk

2
(Tk, εk) + �xk

2

(
Q

k, εk
)

N
, (56)

We now sum over all of the elements

1

2

d

dt

K∑

k=1

�xk
2

∥
∥
∥ε

k
∥
∥
∥
2

N
+

K∑

k=1

{

ε∗ − 1

2
εk
}

εk
∣
∣
∣
∣

1

−1

=
K∑

k=1

�xk
2

{(
T
k, εk
)

+
(
Q

k, εk
)

N

}
,

(57)

to get the global energy equation

1

2

d

dt
‖ε‖2N +

K∑

k=1

{

ε∗ − 1

2
εk
}

εk
∣
∣
∣
∣

1

−1
=

K∑

k=1

�xk
2

{(
T
k, εk
)

+
(
Q, εk

)

N

}
, (58)

which is of the same formas (26) except for the right hand side generated by the approximation
errors.
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We now bound the right hand side of (58). We re-write it as

R =
K∑

k=1

{(√
�xk
2

T
k,

√
�xk
2

εk

)

+
(√

�xk
2

Q
k,

√
�xk
2

εk

)

N

}

, (59)

and use the Cauchy–Schwarz inequality on the inner products to get the bound

R �
K∑

k=1

{∥
∥
∥
∥
∥

√
�xk
2

T
k

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

√
�xk
2

εk

∥
∥
∥
∥
∥

}

+
K∑

k=1

{∥
∥
∥
∥
∥

√
�xk
2

Q
k

∥
∥
∥
∥
∥
N

∥
∥
∥
∥
∥

√
�xk
2

εk

∥
∥
∥
∥
∥
N

}

. (60)

We then use the Cauchy–Schwarz inequality

K∑

k=1

akbk �

√
√
√
√

K∑

k=1

a2k

√
√
√
√

K∑

k=1

b2k (61)

to see that

R �

√
√
√
√

K∑

k=1

�xk
2

∥
∥Tk
∥
∥2

√
√
√
√

K∑

k=1

�xk
2

∥
∥εk
∥
∥2 +

√
√
√
√

K∑

k=1

�xk
2

∥
∥Qk
∥
∥2
N

√
√
√
√

K∑

k=1

�xk
2

∥
∥εk
∥
∥2
N . (62)

Using the definition of the global norm (32) and the equivalence between the continuous and
discrete norms, (16),

R �
{‖T‖ + ‖Q‖N

} ‖ε‖N ≡ E(t)‖ε‖N . (63)

Therefore, the global error equation is

1

2

d

dt
‖ε‖2N +

K∑

k=1

{

ε∗ − 1

2
εk
}

εk
∣
∣
∣
∣

1

−1
� E(t)‖ε‖N . (64)

Again, the sum over the element endpoints splits into three parts: One for the left physical
boundary, one for the right physical boundary and a sum over the internal element endpoints.
The last has contributions from the elements to the left and the right of the interface

K∑

k=1

{

ε∗ − 1

2
ε

}

ε

∣
∣
∣
∣

1

−1
= −

{

U∗ (0, ε1(−1)
)− 1

2
ε1(−1)

}

ε1(−1)

+
K∑

k=2

{

U∗ (εk−1(1), εk(−1)
)

− 1

2

[
εk−1(1) + εk(−1)

]} [
εk−1(1) − εk(−1)

]

+
{

U∗ (εK (1), 0
)

− 1

2
εK (1)

}

εK (1). (65)

The external states for the physical boundary contributions are zero because IN (u) = g at
the left boundary and the external state for U 1 is set to g. At the right boundary, where the
upwind numerical flux is used, it doesn’t matter what we set for the external state, since its
coefficient in the numerical flux is zero.
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The inner element boundaries contribute as in the stability proof

K∑

k=2

{

U∗ (εk−1(1), εk(−1)
)

− 1

2

[
εk−1(1) − εk(−1)

]} [
εk−1(1) − εk(−1)

]

= σ

2

[
εk−1(1) − εk(−1)

]2 ≥ 0.

(66)

At the left boundary, let e ← ε0(−1) to simplify the notation. Then

−
{

U∗ (0, e) − 1

2
e

}

e = −
{(

0 + e

2
− σe

2

)

− 1

2
e

}

e = σ

2
e2. (67)

At the right, with e ← εK (1),
{

U∗ (e, 0) − 1

2
e

}

e =
{(

0 + e

2
+ 1

2
σe

)

− 1

2
e

}

e = σ

2
e2. (68)

Therefore, the energy growth rate is bounded by

1

2

d

dt
‖ε‖2N + σ

2

{
(
ε0(−1)

)2 +
(
εK (1)

)2
}

+ σ

2

K∑

k=2

�εk�
2 � E(t) ‖ε‖N . (69)

Grouping the boundary and interface terms,

1

2

d

dt
‖ε‖2N + BT s � E(t)‖ε‖N , (70)

where

BT s = σ

2

{
(
ε0(−1)

)2 +
(
εK (1)

)2
}

+ σ

2

K∑

k=2

�εk�
2
. (71)

Note that BT s ≥ 0. We also note that (69) is the same kind of estimate found for summation
by parts finite difference approximations [10] except for the additional sum over the squares
of the element endpoint jumps, which represents additional damping (when σ > 0) that does
not exist in the single block finite difference approximation. However, in the multi-block
version, it does, see Remark 2 below.

5 Bounded Error in Time for the DGSEM

Using the product rule, we write (70) as

d

dt
‖ε‖N + BT s

‖ε‖2N
‖ε‖N � E(t). (72)

As noted in [10], one should not throw away the dissipation contributed by the boundary
terms. So we leave them in and write

d

dt
‖ε‖N + η(t)‖ε‖N � E(t). (73)

In [10], it is argued that themean value of η(t) over any finite time interval, η̄, is bounded from
below by a positive constant, i.e., η̄ � δ0 > 0. Furthermore, the truncation and quadrature
errors are bounded in time under the assumption that u and its time and space derivatives
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are bounded in time. An integrating factor allows one to integrate (73) to get a bound on the
error at any time t

‖ε(t)‖N � 1 − e−δ0t

δ0
M, (74)

where by the boundedness assumption on the exact solution, M = max
s∈[0,∞)

E(s) < ∞ is

bounded.
Equation (74) says that for bounded truncation error the dissipative boundary conditions

keep the error bounded for large time.
We nowmake four predictions from (74) about the behavior of the error, which come from

the fact that δ0 is a lower bound on the average of η(t), which in turn depends on the size of
the contributions of the element boundaries. Before doing so, we modify the boundary terms
to explicitly incorporate the upwind flux (σ = 1) at the physical boundaries. We now write

BT s = 1

2

{
(
ε0(−1)

)2 +
(
εK (1)

)2
}

+ σ

2

K∑

k=2

�εk�
2
. (75)

The model (74) predicts:

P1 Using the upwind flux at the physical boundaries and either the upwind flux or the central
flux at the interior element interfaces, the error growth is bounded asymptotically in time.
Under these conditions, BT s �= 0 for all time, leading to (74). For large time, the error
‖ε(t)‖N → M/δ0. Equivalence of the norms implies that the same holds true in the
continuous norm.

P2 Using the upwind flux σ = 1 in the interior will lead to a smaller asymptotic error than
using the central flux, σ = 0. This will be especially true for under-resolved approxima-
tions.
As time increases the error approaches M/δ0, so the larger δ0 is the smaller the asymp-
totic error. Using the upwind flux in the interior, σ = 1, increases the contribution of the
boundary terms, BT s, and hence the size of the mean, η̄. The interface jumps in (75) are
larger when the resolution is low, so the effect will be more pronounced at low resolution.

P3 As the resolution increases, the difference between the asymptotic error from the central
and upwind fluxes should decrease.
Following the argument of prediction P2, the size of the jumps decreases as the solution
converges, therefore decreasing the effects of the inter-element jump terms in BT s so
that δ0 approaches the same value.

P4 The error growth rate will be larger when the upwind flux is used compared to when the
central flux is used. Equivalently, the upwind flux solution should approach its asymptotic
value faster than the central flux solution.
The rate at which the error approaches the asymptotic value depends on δ0, which is
larger with the upwind flux due to the presence of the jump terms in the interior.

Remark 1 The fundamental bounded error behavior P1 was shown to hold for SBP-SAT
finite difference approximations in [10]. The predictions P2–P4 are new.

Remark 2 We have also revisited [10], and derived the error bounds for the multi-block finite
difference approximation. The relations (73),(74) and (75) also hold, i.e. an almost identical
result. The bound M now corresponds to the maximum truncation error and ε represents
the difference between the numerical solution and the exact one at each grid-point. The
main difference between the DGSEM and SBP-SAT result is that in practice the number of
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interfaces used in the DGSEM is larger in a typical application due to the differences in the
types of meshes used, unstructured vs block structured.

6 Numerical Examples

In this section we present numerical examples to illustrate the bounded error properties of
the DGSEM for the boundary value problem (1) as predicted by the model, (74). We also
present a two dimensional example to show that the same behaviors appear for systems of
equations in multiple space dimensions.

6.1 Error Behavior in One Space Dimension

We illustrate the behavior of the error for L = 2π and the initial condition u0 =
sin(12(x − 0.1)), with the boundary condition g(t) chosen so that the exact solution is
u(x, t) = sin(12(x − t − 0.1)). We approximate the PDE with the DGSEM in space, and
integrate in time with a low storage third order Runge-Kutta method, with the time step
chosen so that the time integration error is negligible. In all the one dimensional tests, the
elements will be of uniform size.

Figure 1 shows the error as a function of time for 50 elements with a fourth order polyno-
mial approximation. The error is bounded as time increases for both the upwind and central
fluxes (P1) and the error bound for the central flux is larger than that of the upwind flux (P2).
The upwind flux error also reaches its asymptotic value much sooner (t � 1/2 vs. t ≈ 3)
than the central flux error (P4).

We observe in Fig. 1 that the central flux error is significantly noisier than the upwind
flux error. This observation is typical for all of the meshes and polynomial orders tested.
We interpret that as due to the fact that when using the central flux in the interior, the only
dissipation comes from the upwind flux at the physical boundaries, as observed in the plot on
the left of Fig. 2 showing the eigenvalues of the discrete spatial operator. The eigenvalues of
the upwind flux shown on the right of Fig. 2 all have negative real parts, indicating dissipation
in all modes.

At better resolution, P3 suggests that the difference between the asymptotic errors from
the upwind and central fluxes should decrease. Figure 3 on the left shows the time behavior
of the error for N = 7 and K = 50, where the polynomial order is increased but the

Central Flux

Upwind Flux

||E
||N

0

0.0005

0.0010

0.0015

Time
0 5 10 15 20

Central Flux

Upwind Flux

||E
||N

0

0.0005

0.0010

0.0015

Time
0 1 2 3 4

Fig. 1 Error behavior as a function of time for N = 4, K = 50. Right Closeup of the early time behavior.
The dashed horizontal lines mark the mean time-asymptotic value of the error
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Fig. 2 Eigenvalues of the spatial operator with the central flux (Left) and the upwind flux (Right) for N = 4,
K = 50
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Fig. 3 Error behavior as a function of time for N = 7, K = 50 (Left) and N = 4,K = 80 (Right)

number of elements stays fixed. The asymptotic error has decreased and the central flux still
gives a larger error. There is also much less difference between the time it takes for the two
approximations to reach the error bound, which is consistent with the argument leading to
P4. Using the same number of degrees of freedom but lower order and more elements also
supports P3. The asymptotic errors are closer than for N = 4, K = 50, but more elements
means more jumps to dissipate energy and the dissipation effect is stronger at the lower order
[6].

In general, we would expect spectral convergence of the error for a spectral element
method. Indeed, we’ve seen that the quantity E depends only on the smoothness of the
solution, u. However, we expect the time asymptotic error to be bounded by E/δ0 where δ0
depends on the size of the jumps at the element interfaces. So the question is whether 1/δ0
increases faster or slower than the approximation errors in E. The arguments in [10] leading
to the estimate (74) are not precise enough to answer that question. Experimentally, Fig. 4
shows that the upper bound of the error for the upwind flux (which is less noisy and hence
more easily measured) as a function of polynomial order is clearly spectral. This suggests
that the approximation errors decay faster than 1/δ0 grows.
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Fig. 4 Convergence of the time
asymptotic error for the upwind
flux as a function of N for
K = 50
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Fig. 5 Circular mesh with a hole
showing internal degrees of
freedom for N = 4

6.2 Error Behavior in Two Space Dimensions

To see that the conclusions derived from the one dimensional approximation extend to mul-
tiple space dimensions, we compute solutions to the symmetric linear wave equation in first
order system form

⎡

⎣
p
u
v

⎤

⎦

t

+
⎡

⎣
0 c 0
c 0 0
0 0 0

⎤

⎦

⎡

⎣
p
u
v

⎤

⎦

x

+
⎡

⎣
0 0 c
0 0 0
c 0 0

⎤

⎦

⎡

⎣
p
u
v

⎤

⎦

x

= 0, (76)

with wavespeed c = 1 on the circular domain with a hole shown in Fig. 5.
We choose the initial and boundary conditions so that the exact solution is the sinusoidal

plane wave
⎡

⎣
p
u
v

⎤

⎦ =
⎡

⎣

1
kx
c
ky
c

⎤

⎦ sin
(
2
(
kx x + ky y − ct

))
(77)
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Fig. 6 Contours of p for the
plane wave solution of the
symmetric wave equation for
N = 4
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time
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Fig. 7 Time history of the error for the two dimensional wave propagation problem. The dashed horizontal
guidelines mark the limits of the time asymptotic states. Arrows mark the approximate times where the time
asymptotic state is reached

with wavevector
(
kx , ky

) =
(√

3/2, 1/2
)
. The computed solution contours at t = 10 are

shown in Fig. 6.
Since the element boundaries are curved in this test problem, the metric terms associ-

ated with the transformations from the elements to the reference element [−1, 1]2 are not
constant. To ensure that the approximation is stable, we use the skew-symmetric DGSEM
approximation developed in [9]. With the skew-symmetric approximation, the volume terms
for the constant coefficient problem vanish in the stability and error proofs leaving only the
boundary terms, just as in one space dimension. For the time integration, we again use a third
order low storage Runge–Kutta method with the time step chosen so that the time integration
error is negligible.

The time history of the error for the two-dimensional example is shown in Fig. 7. The
features predicted by the one dimensional analysis still hold: For both the upwind and central
fluxes, the error is bounded in time (P1), rather than growing linearly. The error bound for
the central flux is once again larger than that of the upwind flux (P2). Finally, it takes longer
for the central flux to reach its time asymptotic state where the pattern starts repeating than
does the upwind flux, T ≈ 8 vs. T ≈ 2 (P3).
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7 Conclusions

We have shown that when characteristic boundary conditions are implemented through the
numerical flux, the discontinuous Galerkin spectral element method exhibits bounded error
growth, just as has been observed in the past for finite difference approximations. The numer-
ical flux used at element interfaces affects the speed at which the asymptotic error is reached
and the magnitude of that error. The use of the upwind flux leads to a shorter time to, and
a smaller value of, the asymptotic error. This effect decreases as the resolution increases
and the jumps at the interfaces decreases. Numerical experiments in both one and two space
dimensions show this behavior predicted by the error growth model.
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