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Abstract In this paper, we introduce a class of variational models for the restoration of
ultrasound images corrupted by noise. The proposed models involve the convex or noncon-
vex total generalized variation regularization. The total generalized variation regularization
ameliorates the staircasing artifacts that appear in the restored images of total variation based
models. Incorporating total generalized variation regularization with nonconvexity helps
preserve edges in the restored images. To realize the proposed convex model, we adopt the
alternating direction method of multipliers, and the iteratively reweighted �1 algorithm is
employed to handle the nonconvex model. These methods result in fast and efficient opti-
mization algorithms for solving our models. Numerical experiments demonstrate that the
proposed models are superior to other state-of-the-art models.

Keywords Ultrasound image denoising · Total generalized variation · Nonconvex
regularization · Alternating direction method of multipliers · Iteratively reweighted
algorithm

1 Introduction

In various image systems, images are often corrupted by noise during the image acquisition
process. Therefore, image denoising is an important and elemental problem in image pro-
cessing. It aims to remove noise in the observed images and find the best possible restored

B Miyoun Jung
mjung@hufs.ac.kr

Myeongmin Kang
wjdjr1@snu.ac.kr

Myungjoo Kang
mkang@snu.ac.kr

1 Department of Mathematical Sciences, Seoul National University, Seoul, Korea

2 Department of Mathematics, Hankuk University of Foreign Studies, Yongin, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0357-3&domain=pdf


J Sci Comput (2017) 72:172–197 173

image corresponding to the unknown clean image. In this article, we consider the denoising
problem for ultrasound images. The removal of additiveGaussian noise has beenwell-studied
and there are some methods that produce remarkable denoising results. However, ultrasound
images involve more complicated noise such as multiplicative noise [1,42,43].

Let Ω be a bounded open domain with a compact Lipschitz boundary. Experimental
measurements in [28] show that an observed ultrasound image f : Ω → R can be modeled
using the following form:

f = u + √
un, (1)

where u : Ω → R is a true image and n is a Gaussian random variable with zero mean and
a standard deviation σ , i.e. n ∼ N (0, σ ).

To reconstruct u from the noisy data f , various filtering-based methods, such as Lee filter
[26], Kuan filter [25], and PDE-based methods have been proposed. In particular, from the
degradation model (1), Krissian et al. [24] derived the following convex data-fidelity term

∫
Ω

( f − u)2

u
. (2)

In a variational framework, a data-fidelity function is usually derived from the maximum
a posteriori (MAP) estimation based on the degradation model and a probability density
function of noise. In this case, the degradation model in (1) has a singular form. Hence,
finding a proper data-fidelity function according to the MAP estimation is very complicated.
In fact, the data-fidelity term in (2) is not derived from the MAP estimation. This term was
obtained by adapting the work of Rudin et al. [39] dealing with the Gaussian distribution.

Several variational models involving the term (2) have been proposed for solving the
inverse problem in (1). First, Jin et al. [21] proposed the following total variation (TV)
regularization based model:

min
u>0

∫
Ω

|Du| + λ

∫
Ω

(u − f )2

u
dx, (3)

where λ > 0 is a tuning parameter, and TV [39] is defined as∫
Ω

|Du| = sup
v

{∫
Ω

u div(v) dx | v ∈ C1c (Ω), ‖v‖∞ ≤ 1

}
,

where the vector measure Du represents the directional or weak gradient of u, and ‖ · ‖∞ is
the essential supremum norm. This regularization has been widely used in image processing
owing to its edge-preservingproperty.The authors in [21] proved the existence anduniqueness
of the solution of model (3), and it was shown that the solution belongs to [min( f ),max( f )]
when f > 0. From now on, we call the model in (3) the “TV model”. More recently, the
well-balanced speckle noise reduction (WBSN) model, associated with an edge detection
technique, was proposed in [3]:

min
u

∫
Ω

g|∇u|2 dx + λ

∫
Ω

(1 − g)
(u − f )2

u
dx, (4)

where g is a smooth non-increasing function, defined as g(x) = 1
1+k|(Gσ ∗u)|(x) with a Gaus-

sian function Gσ and a constant value k > 0. To minimize the model (4) with a fixed g, the
authors in [3] obtained a numerical solution by solving the Euler–Lagrangian equation for u
and then updating g from its definition.

Despite the benefits of TV regularization, TV-based methods cause staircasing artifacts in
the restored images. There have been many efforts to improve the performance of TV using
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higher-order regularization. In [12,29], the second-order TV regularization was proposed
to reduce the staircasing effects. Furthermore, several hybrid regularization methods com-
bining TV with a higher-order regularizer have been considered. The first one is a convex
combination of TV and second-order TV [27,37], which takes advantages of both first- and
second-order derivatives. In an earlier work, the infimal convolution TV (ICTV) regularizer
[10,40] was developed, which takes the infimal convolution of TV and second-order TV.
Recently, as a generalization of ICTV, the total generalized variation (TGV) regularizer [6]
was proposed. The TGV regularization results in restored images with sufficiently denoised
smooth regions and well-preserved edges. In this work, we employ the TGV regularization
for the removal of noise in the ultrasound images.

In early works, numerical algorithms [9,39] that directly solve the Euler–Lagrangian
equation using the finite difference method were used to find a minimizer of an energy func-
tional. Recently, because of the development of the operating splitting technique [20], many
unconstrained minimization problems in image processing can be converted into linearly
constrained problems with simple objective functions. This also leads to numerous iterative
algorithms [11,46,47] for solving linearly constrained minimization problems, which com-
monly have some subproblems that can be solved alternately. In particular, the alternating
direction method of multipliers (ADMM) [15,20] is one of the most well-known convex
optimization algorithms. The ADMM is equivalent to the Douglas-Rachford splitting algo-
rithm [14], and it has been applied to efficiently solve various image processing problems
[18,19,41]. We adopt the ADMM here to solve our convex minimization problem.

Since the seminal work of Geman and Geman [17], many studies [4,16,32,38] have
demonstrated that nonconvex regularization performs better than convex regularization for
image restoration by preserving edges. Specifically, Krishnan et al. [23] demonstrated the
superiority of the nonconvex �q -norm of gradient for 0.5 < q < 0.8 over its �1 norm in
an image denoising problem. Moreover, several studies [22,36] have utilized a nonconvex
hybrid higher-order regularizer and shown its superiority over nonconvex TV regularizers.
Recently, Ochs et al. [34,35] introduced a nonconvex TGV for some applications in computer
vision.We also utilize a nonconvex TGV for the ultrasound image denoising problem. On the
other hand, many efficient algorithms for solving nonconvex minimization problems have
been developed [2,30,31,33,44]. Recently, the iteratively convex majorization-minimization
methods for solving nonsmooth nonconvex optimization problems have been proposed in [34,
35] with convergence analysis. These methods are the generalized versions of the reweighted
�1 algorithm in [8]. In this work, we exploit the algorithm in [34] for solving our nonconvex
model.

In this article, we introduce two TGV based minimization models for the restoration of
ultrasound images polluted by noise. We make use of the convex or nonconvex TGV as a
regularization term in ourminimization problems. The TGV regularization allows the smooth
transition regions in ultrasound images to be restored naturally. In addtion, the nonconvex
TGV preserves the edges of the restored images well. We also present a convergence analysis
for the convex TGV model and efficient optimization algorithms for solving the proposed
convex or nonconvex models.

The rest of our paper is organized as follows. In Sect. 2, we review the TGV regular-
ization and describe the ADMM for the general convex minimization problem with linear
constrains.We also present the iteratively reweighted �1 algorithm for the linearly constrained
nonconvexminimization problem. In Sect. 3, we introduce our minimization models with the
convex TGV or nonconvex TGV regularization for ultrasound image denoising. Specifically,
Sect. 3.1 presents the convergence analysis for our convex TGV model and an optimization
algorithm for solving the model. Section 3.2 describes the nonconvex TGV-based model and
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its optimization algorithm. In Sect. 4, we provide some numerical experiments with compar-
isons to existing denoising models. Lastly, in Sect. 5, we summarize this work and discuss
future work.

2 Background

2.1 Total Generalized Variation

The total generalized variation (TGV) was proposed by Bredies et al. [6], as a generalization
of the infimal convolution of TV and second-order TV regularizers [10], as follows:

TGV k
α (u) = sup

v

{∫
Ω

u divk(v) dx | v ∈ Ckc (Ω, Symk(Rd)),

‖div j (v)‖∞ ≤ α j , j = 0, . . . , k − 1

}
, (5)

where Symk(Rd) is the space of symmetric k-tensors on Rd as

Symk(Rd) = {ξ : Rd × · · · × R
d |ξ is k-linear and symmetric},

and the Ckc (Ω, Symk(Rd)) represents the space of compactly supported symmetric tensor
fields. Here, α = (α0, α1, . . . , αk−1) is a fixed positive vector. When k = 1 and α0 = 1, the
definition of TGV is identical to that of TV, which implies that TGV is a generalization of
TV.

According to [6], the TGV k
α can be represented as a k-fold infimal convolution by employ-

ing the Fenchel–Rockafellar duality formula, which is given by

TGV k
α (u) = inf

u j ,∀ j=1,...,k

k∑
j=1

αk− j

∫
Ω

|E(u j−1) − u j | dx, (6)

where u0 = u, uk = 0, u j ∈ Ck− j
c (Ω, Sym j (Rd)) for all j = 1, . . . , k, and E is the distri-

butional symmetrized derivative, i.e., E(u j−1) = ∇u j−1+(∇u j−1)
T

2 ; for instance, when k = 2,
TGV 2

α involves the l1-norm of E(u0) − u1 = ∇u − u1 and E(u1) with appropriate weights.
In this case, the minimization in (6) can be interpreted as an optimal balancing between the
first- and second-order derivatives of u in terms of sparse penalization (via the Radon norm).
Therefore, from this representation (6), one can say that TGV k

α (u) automatically balances the
first- and higher-order derivatives (up to the order k), rather than using any fixed combination.
As a result, it reduces the staircasing effects of the TV functional.

In this work, we particularly utilize the second order TGV, obtained by letting k = 2 in
(5). The followings describe several properties of the second order TGV, denoted by TGV 2

α

[5,7]. First, TGV 2
α : L p(Ω) → R ∪ {∞} is a proper, convex, and lower semicontinuous

function for 1 ≤ p < ∞. Moreover, there exist some positive constants c and C that, for any
u ∈ L1(Ω), satisfy

c(‖u‖1 + T V (u)) ≤ ‖u‖1 + TGV 2
α (u) ≤ C(‖u‖1 + T V (u)).

Lastly, TGV 2
α satisfies the Poincaré inequality, i.e., there exists a positive constant C ′ such

that for any u ∈ L1(Ω),
‖u − P(u)‖2 ≤ C ′ · TGV 2

α (u), (7)
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where P is a linear projection to the space of affine functions. Using these properties, we
will prove the existence and uniqueness of the solutions of our proposed model in the next
section.

2.2 Alternating Direction Method of Multipliers

This section reviews a convex optimization algorithm called the alternating direction method
of multipliers (ADMM).

Let us consider the following linearly constrained minimization problem:

min
x,y

H(x) + G(y) such that Ax + By = b, (8)

where H : R
n → R ∪ {∞} and G : R

m → R ∪ {∞} are convex, proper, and lower
semicontinuous functions, A ∈ R

k×n, B ∈ R
k×m , and b ∈ R

k .
The augmented Lagrangian function for problem (8) is given by

LA(x, y, λ;μ) = H(x) + G(y) − λT (Ax + By − b) + μ

2
‖Ax + By − b‖22,

where λ is a Lagrange multiplier vector or dual variable and μ > 0 is a penalty parameter.
The augmented LagrangianmethodminimizesLA over x and y jointly for fixed λ and then

updates λ for fixed x and y. Since the augmented Lagrangian function has a coupled penalty
term with respect to (x, y), it is hard to solve the subproblem over (x, y) in many cases. To
overcome this drawback, the ADMM alternately solves the subproblem, by minimizing the
augmented Lagrangian function LA over one variable (x or y) with the other variable fixed
and performs only one outer iteration, which yields⎧⎪⎨

⎪⎩
xk+1 = argmin

x
LA(x, yk+1, λk;μ),

yk+1 = argmin
y

LA(xk+1, y, λk;μ),

λk+1 = λk − νμ(Axk+1 + Byk+1 − b),

(9)

where ν ∈ (0, 1+√
5

2 ) is a parameter. The convergence of the ADMM was proved in [13] as
follows:

Theorem 1 Assume that there exists a saddle point (x∗, y∗, λ∗) of problem (8) and that A

and B have full column rank or H and G are coercive. Then, for any ν ∈ (0, 1+√
5

2 ), the
tuple (xk, yk, λk) generated by the ADMM (9) satisfies

λk → λ∗, Axk → Ax∗, and Byk → By∗, as k → ∞.

The ADMM is adopted to solve our convex minimization problem.

2.3 Iterative Reweighted �1 Algorithm

In this subsection, we recall the iteratively reweighted �1 algorithm (IRLA) [34], which was
proposed for solving nonconvex optimization problems.

For a convex function f , a vector g is called a subgradient at a point x if for any vector
y, f (y) − f (x) − gT (y − x) ≥ 0 is satisfied. The set of all subgradients at x is called the
subdifferential at x and is denoted by ∂ f (x). If f̃ is a concave function, then − f̃ is a convex
function. An element of −∂(− f̃ ) is called a limiting-supergradient of f̃ .

Let us consider the following nonconvex minimization optimization problem with linear
constraints:

min
x

E1(x) + E2(|x|), subject to Ax = b, (10)
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where E1 is a proper, lower semicontinuous, and convex function, E2 is a concave and
coordinatewise nondecreasing function, and | · | is coordinatewise. When the IRLA is applied
to problem (10), it leads to the following iterative algorithm,

xk+1 = arg min
Ax=b

E1(x) + 〈x̃k, |x|〉, (11)

where x̃k is a limiting-supergradient of E2(·) at |xk |. If E2 is a differentiable function, then
the limiting-supergradient of E2 is given by ∇E2, from the property of the subdifferential.

The convergence of IRLA was proved in [34]:

Theorem 2 Let (xk+1) be the sequence generated by the IRAL algorithm (11), and assume
that E1(x) + E2(|x|) → ∞ as ‖x‖ → ∞, and Ax = b. Then, (xk+1) is bounded and has at
least one accumulation point.

In the following section, we apply the IRLA to solve our proposed nonconvex model.

3 Proposed Models and Algorithms

In this section, we present the convex or nonconvex TGV regularization based models for
ultrasound image denoising. We also present efficient optimization algorithms to solve our
proposed models by utilizing the ADMM and the IRLA.

3.1 Convex TGV Model

First, we propose the following minimization model, which includes the the second-order
TGV regularizer and the data fidelity term in (2):

min
u∈S(Ω)

E(u) = TGV 2
α (u) + γ

∫
Ω

( f − u)2

u
dx, (12)

where S(Ω) = {u ∈ L2(Ω) : u > 0} and γ is a regularization parameter that controls
the balance between the TGV regularization and data fidelity terms. From the definition of
TGV 2

α (u) in (6), the TGV model (12) can be reformulated as follows

min
u∈S(Ω),v

α1

∫
Ω

|∇u − v| dx + α0

∫
Ω

|E(v)| dx + γ

∫
Ω

( f − u)2

u
dx, (13)

whereα1, α0 > 0 are parameters that balance thefirst- and second-order regularization terms.
It is straightforward that the model (12) is convex, due to the convexity of the data-fidelity
and TGV terms, as shown in [24] and [7], respectively.

The following theorem exhibits the existence and uniqueness of the solutions for the
proposed model in (12).

Theorem 3 The proposed variational model in (12) admits a unique solution.

Proof The proof of this theorem is given in the appendix, which is based on the properties
of the second-order TGV. ��
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3.1.1 ADMM for Solving Our Model (12)

In this subsection, we introduce an optimization algorithm for solving our convex TGVmodel
in (12). From its equivalent model in (13), we can derive the discrete TGV2

α functional as

TGV2
α(u) = inf

v∈C2
c (Ω,R2)

α1‖∇u − v‖1 + α0‖E(v)‖1,

where the operators ∇u and E(v) are given by

∇u =
[

∂xu
∂yu

]
and E(v) =

[
∂xv1

1
2 (∂xv2 + ∂yv1)

1
2 (∂xv2 + ∂yv1) ∂yv2

]
.

With this discrete TGV formulation, the discretized version of our proposed model in (13)
is as follows:

min
u>0,v

α1‖∇u − v‖1 + α0‖E(v)‖1 + γ

〈
( f − u)2

u
, 1
〉
. (14)

Here, we assume that fi, j �= 0 for all (i, j) ∈ Ω (see Remark 1 for further explanation).
Furthermore, the set S(Ω) is not a closed set. Hence, we consider the closed set S̄(Ω) =
{u ∈ L2(Ω) : u ≥ 0} instead of S(Ω) for the numerical algorithms. Since the term ( f −u)2

u
blows up at u = 0, the close set S̄(Ω) is a simple relaxation of S(Ω). Therefore, we solve
the following minimization problem instead of the original problem in (14):

min
u≥0,v

α1‖∇u − v‖1 + α0‖E(v)‖1 + γ

〈
( f − u)2

u
, 1
〉
. (15)

We now introduce three auxiliary variables: z, d = (d1, d2)T , and w = (w1, w2, w3)
T .

Using these auxiliary variables, the unconstrained model in (15) can be rewritten as the
following constrained form,

min
u,v,z≥0,d,w

α1‖d‖1 + α0‖w‖1 + γ

〈
( f − z)2

z
, 1
〉
,

subject to z = u, d = ∇u − v, w = E(v).

(16)

Letting D(z) =
〈
( f −z)2

z , 1
〉
and setting

A =
⎡
⎣ I 0 0
0 I 0
0 0 I

⎤
⎦ , x =

⎡
⎣ z
d
w

⎤
⎦ , B =

⎡
⎣ −I 0

−∇ I
0 −E

⎤
⎦ , y =

[
u
v

]
, λ =

⎡
⎣λ1

λ2

λ3

⎤
⎦ ,

H(x) = α1‖d‖1 + α0‖w‖1 + γ D(z) and G(y) = 0,

(17)

the constrained problem in (16) can be rewritten in the form in (8), so we can use the ADMM
to solve it. The augmented Lagrangian function for problem (16) is given by

LA(z, d, w, u, v, λ1, λ2, λ3;μ) = α1‖d‖1 + α0‖w‖1 + γ D(z)

−(λ1)T (z − u) − (λ2)T (d − ∇u + v) − (λ3)T (w − E(v))

+μ

2
‖z − u‖22 + μ

2
‖d − ∇u + v‖22 + μ

2
‖w − E(v)‖22. (18)
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The ADMM can then applied to problem (16) as follows,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ zk+1

dk+1

wk+1

⎞
⎠ = arg min

z≥0,d,w
LA(z, d, w, uk, vk, λ

1
k, λ

2
k , λ

3
k;μ),

(
uk+1

vk+1

)
= argmin

u,v
LA(zk+1, dk+1, wk+1, u, v, λ1k , λ

2
k, λ

3
k;μ),

λ1k+1 = λ1k − νμ(zk+1 − uk+1),

λ2k+1 = λ2k − νμ(dk+1 − ∇uk+1 + vk+1),

λ3k+1 = λ3k − νμ(wk+1 − E(vk+1)).

The variables z, d , and w in the augmented Lagrangian function are independent of each
other. Hence, we can solve the subproblem for (zk+1, dk+1, wk+1) in the ADMM separately.
We can then obtain the ADMM for model (16) as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dk+1 = argmin
d

α1‖d‖1 − (λ2k)
T (d) + μ

2
‖d − ∇uk + vk‖22,

wk+1 = argmin
w

α0‖w‖1 − (λ3k)
T (w) + μ

2
‖w − E(vk)‖22,

zk+1 = argmin
z≥0

γ D(z) − (λ1k)
T (z) + μ

2
‖z − uk‖22,(

uk+1

vk+1

)
= argmin

u,v
(λ2k)

T (∇u − v) + (λ3k)
T (E(v)) + λ1k

T
u

+μ

2
‖∇u − v − dk+1‖22 + μ

2
‖E(v) − wk+1‖22 + μ

2
‖u − zk+1‖22,

λ1k+1 = λ1k − νμ(zk+1 − uk+1),

λ2k+1 = λ2k − νμ(dk+1 − ∇uk+1 + vk+1),

λ3k+1 = λ3k − νμ(wk+1 − E(vk+1)).

(19)

From Theorem 1, we can derive the following convergence result.

Theorem 4 For any ν ∈ (0, 1+√
5

2 ), the tuple (zk, dk, wk, uk, vk, λ1k, λ
2
k , λ

3
k) generated by

the ADMM (19) converges to a saddle point (z∗, d∗, w∗, u∗, v∗, λ1∗, λ2∗, λ3∗) of problem (16).

Proof Since D(z) is not convex when z < 0, we can rewrite the constrained model in (16)
as the following equivalent formula

min
u,v,z,d,w

α1‖d‖1 + α0‖w‖1 + γ
〈
D̃(z), 1

〉
,

subject to z = u, d = ∇u − v and w = E(v),
(20)

where D̃(z) is the extended value function of ( f −z)2

z , which is defined as

(D̃(z))i =
⎧⎨
⎩

( f − zi )2

zi
, if zi > 0,

+∞, otherwise.

It is trivial to show that D̃(z) is convex, proper, and lower semi-continuous.
Moreover, the z-subproblem in the ADMM (the third line in (19)) is equivalent to

argmin
z

γ 〈D̃(z), 1〉 − (λ1k)
T (z) + μ

2
‖z − uk‖22.
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Hence, the tuple generated by the ADMM (19) is exactly the same as the tuple generated by
the ADMM when it is applied to problem (20). Since A and B have full column rank, the
assertion of this theorem follows from Theorem 1. ��

Solving the subproblems in (19). We now solve the subproblems in the ADMM (19). First,
the subproblems for dk+1 and wk+1 in (19) have closed form solutions obtained using the
shrink operator as follows,

dk+1 = shrink

(
λ2k

μ
+ ∇uk − vk,

α1

μ

)
and wk+1 = shrink

(
λ3k

μ
+ E(vk),

α0

μ

)
,

where the shrink operator shrink(s, t) is defined as

shrink(s, t) = s

‖s‖1 max(‖s‖1 − t, 0).

To solve the z-subproblem, we take the partial derivative of the energy with respect to z,
which leads to the following normal equation:

γ

(
1 − f 2

z2

)
− λ1k + μ(z − uk) = 0.

Thus, the exact solution of z-subproblem can be obtained as a positive solution of the fol-
lowing cubic equation:

μz3 + (γ − λ1k − μuk)z
2 − γ f 2 = 0. (21)

The following Lemma shows that this cubic equation (21) has one real positive solution.

Lemma 1 The cubic equation (21) has only one positive solution.

Proof Let (t1, t2, t3) be the solution of the cubic equation in (21). It follows from (21) that

t1 + t2 + t3 = − (γ − λ1k − μuk)

μ
, t1t2 + t2t3 + t1t3 = 0, t1t2t3 = γ f 2

μ
. (22)

Let α = t2 + t3 and β = t2 · t3. It is trivial to find that a cubic equation has at least one real
solution. Thus, we let t1 be a real solution of (21) without loss of generality. It is easy to show
that ti �= 0 for all i = 1, 2, 3.

Case (1) Assume that t1 is negative. Since
γ f 2

μ
> 0, t2 · t3 < 0. Using this inequality and

(22), we have t1(t2 + t3) > 0 and thus t2 + t3 < 0 is satisfied. Thus, we obtain

α < 0 and β < 0. (23)

Because (t2, t3) are the solutions of t2 − αt + β = 0, they satisfy the following equations
without loss of generality:

t2 = α + √
α2 − 4β

2
and t3 = α − √

α2 − 4β

2
.

From (23), t2 and t3 are real numbers, t3 is negative, and t2 is positive.
Case (2) Assume that t1 is positive. It is enough to show that t2 and t3 are either complex

numbers or negative. Because γ f 2

μ
> 0, then t2 · t3 > 0. Similar to the case 1, we have

t2 + t3 < 0, which leads to
α < 0 and β > 0. (24)

Without loss of generality, (t2, t3) can be represented as

t2 = α + √
α2 − 4β

2
and t3 = α − √

α2 − 4β

2
.
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If α2 − 4β < 0, then (t2, t3) are complex numbers. If α2 − 4β ≥ 0, it follows from (24) that
α ± √

α2 − 4β are negative. Thus, in this case, (t2, t3) are negative. ��
In practice, we compute the roots of the cubic Eq. (21), using the cubic formula that is the

closed-form solution for a cubic equation. Then we choose the positive one from the three
solutions.

Lastly, the subproblem for (uk+1, vk+1) in (19) is a least square problem,

argmin
y

‖By + b‖22
with b = (zk+1 − λ1k/μ, dk+1 − λ2k/μ,wk+1 − λ3k/μ)T . Hence, the solution yk+1 of the
above least square problem is the solution of BT By = −BT b. The matrix BT B is given by

BT B =
[
I + ∇T∇ −∇T

−∇ I + ET E
]

.

The block matrices in BT B can be diagonalized by the Fourier transform under the periodic
boundary condition. Thus, solutions (uk+1, vk+1) in our algorithm can be found explicitly
and easily using the Fourier transform and the block matrix inversion formula.

The ADMM for solving model (12) is summarized in Algorithm 1.

Algorithm 1 ADMM for solving model (12)
1: Given parameters γ , μ, ν, α1, and α0.
2: Initialize k = 0, u0 = f , v0 = 0, λ10 = λ20 = λ30 = 0.
3: repeat

4: dk+1 = shrink

(
λ2k
μ

+ ∇uk − vk ,
α1

μ

)
,

5: wk+1 = shrink

(
λ3k
μ

+ E(vk ),
α0

μ

)
,

6: zk+1 is the positive solution of the cubic equation in (21),
7: (uk+1, vk+1) = (BT B)−1(−BT (zk+1 − λ1k/μ, dk+1 − λ2k/μ, wk+1 − λ3k/μ)T ),

8: λ1k+1 = λ1k − νμ(zk+1 − uk+1),

9: λ2k+1 = λ2k − νμ(dk+1 − ∇uk+1 + vk+1),

10: λ3k+1 = λ3k − νμ(wk+1 − E(vk+1)),
11: until a stopping condition is satisfied
12: Final output: u

Remark 1 If fi, j = 0, the equality
√
ui, j = −ni, j has to be satisfied by the degraded model

in (1). In this case, the intensity value of the original image u at (i, j) must be the square of
the Gaussian noise value n2i, j and moreover, ni, j must have a negative value. However, this
phenomenon happens with a very low probability. Hence, we can assume that fi, j �= 0 for
all (i, j) ∈ Ω in practice.

3.2 Nonconvex TGV Model

In many prior methods, the nonconvex TV-based models minimize the support of the image
gradient,which leads to piecewise-constant restored images.They alsoyield staircase artifacts
near smooth transition regions. Therefore, a nonconvex hybrid TV regularizer [36] has been
recently proposed, which is a nonconvex version of a convex combination of the first- and
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second-order TV. This efficiently deals with the discontinuous and smooth regions, producing
visually remarkable solutions.

Here, we utilize a nocnonvex version of TGV 2
α , since TGV 2

α automatically balances
the first- and second-order derivatives, rather than using any fixed combination. Thus, we
introduce a nonconvex version of our TGVmodel in (12), which employs a nonconvex TGV
regularization (NTGV), as follows:

min
u∈S(Ω),v

α1

∫
Ω

φ1(|∇u − v|) dx + α0

∫
Ω

φ2(|E(v)|) dx + γ

∫
Ω

( f − u)2

u
dx, (25)

where φi is a nonconvex log function, such as φi (s) = 1
ρi
log(1+ρi s)with parameter ρi > 0.

The parameterρ1 andρ2 control the nonconvexity of the first- and second-order regularization
terms.Here, we adopt the nonconvex log function among some possible nonconvex functions.
It is hard to solve the minimization problem involving the nonconvex �q -norm regularizer
because finding a limiting-supergradient of ‖ · ‖q at zero is difficult. Moreover, according
to the work in [45], the log function is suitable for the reconstruction of piecewise-smooth
images, while the fractional function is more proper for the reconstruction of piecewise-
constant images. Real ultrasound images are mostly piecewise-smooth, thus, we utilize the
log function as our nonconvex function φi . This log type of NTGVwas introduced in [34,35],
and the only difference with ours is that we adopt different values for the parameters ρ1 and
ρ2.

The proposed nonconvex model (25) takes advantages of both higher-order regulariza-
tion and nonconvex regularization for image denoising. That is, it helps sufficiently denoise
smooth regions without staircasing effects while preserving edges and details. Comparing
with the convex model (12), the NTGVmodel (25) is expected to be more suitable for denos-
ing images having much structures and strong edges or in the presence of high level of noise,
whereas it is expected to provide similar denoising results with the TGV model for images
with weak edges or few discontinuous transitions. On the other hand, the TGV model has
more computational efficiency since the NTGV model solves the TGV model in its inner
loops, which is explained as follows.

We now present an optimization algorithm to solve the NTGV model in (25), by using
the IRLA. First, we consider the discretized version of model (25):

min
u>0,v

α1〈φ1(|∇u − v|), 1〉 + α0〈φ2(|E(v)|), 1〉 + γ D(u). (26)

Using the variable splitting technique, we can reformulate the unconstrained model in
(26) into the following constrained problem as

min
u,v,z>0,d,w

α1〈φ1(|d|), 1〉 + α0〈φ2(|w|), 1〉 + γ D(z),

subject to z = u, d = ∇u − v andw = E(v).
(27)

By letting

x =

⎡
⎢⎢⎢⎢⎣

u
v

z
d
w

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎣ −I 0 I 0 0

−∇ I 0 I 0
0 −E 0 I 0

⎤
⎦ , b = 0,

E1(x) = γ
〈
( f −z)2

z , 1
〉
, E2(x) = α1〈φ1(|d|), 1〉 + α0〈φ2(|w|), 1〉,

the constrained model in (27) can be reformulated as the form in (10).
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Hence, the IRLA can be applied to problem (27), which is given by

⎡
⎢⎢⎢⎢⎣

uk+1

vk+1

zk+1

dk+1

wk+1

⎤
⎥⎥⎥⎥⎦ = arg min

Ax=b

{
α1〈d̃k, |d|〉 + α0〈w̃k, |w|〉 + γ D(z)

}
(28)

with d̃k := 1

ρ1|dk | + 1
and w̃k := 1

ρ2|wk | + 1
.

The IRLA (28) leads to another convex minimization problem in its inner iteration. It has
the same form as the convex TGV model in (16) except for the weighted functions d̃k and
w̃k . Hence, the subproblem in (28) can be solved by the ADMM. That is, by changing the
setting in (17) using H(x) = α1〈d̃k, |d|〉 + α0〈w̃k, |w|〉 + γ D(z), we can apply the ADMM
to the subproblem in (28), which yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dk+1 = argmin
d

α1〈d̃k, |d|〉 − (λ2k)
T (d) + μ

2
‖d − ∇uk + vk‖22,

wk+1 = argmin
w

α0〈w̃k, |w|〉 − (λ3k)
T (w) + μ

2
‖w − E(vk)‖22,

zk+1 = argmin
z≥0

γ D(z) − (λ1k)
T (z) + μ

2
‖z − uk‖22,(

uk+1

vk+1

)
= argmin

u,v
(λ2k)

T (∇u − v) + (λ3k)
T (E(v)) + λ1k

T
u

+μ

2
‖∇u − v − dk+1‖22 + μ

2
‖E(v) − wk+1‖22 + μ

2
‖u − zk+1‖22,

λ1k+1 = λ1k − νμ(zk+1 − uk+1),

λ2k+1 = λ2k − νμ(dk+1 − ∇uk+1 + vk+1),

λ3k+1 = λ3k − νμ(wk+1 − E(vk+1)).

(29)

The subproblems for dk+1 and wk+1 in (29) can be computed explicitly with the shrink
operator as follows:

dk+1 = shrink

(
λ2k

μ
+ ∇uk − vk,

α1d̃k
μ

)
, wk+1 = shrink

(
λ3k

μ
+ E(vk),

α0w̃k

μ

)
.

The other solutions can be obtained as described in Sect. 3.1.
Overall, the optimization algorithm for solving our NTGV model in (25) is summarized

in Algorithm 2.
Lastly, we can obtain a partial convergence of the IRLA in (28) for solving the constrained

problem in (27). In other words, it is trivial to show that the the objective function in problem
(27) is coercive in z ∈ S(Ω). Therefore, fromTheorem 2, we can obtain a partial convergence
of the IRLA in (28) when it is applied to problem (27): The sequence (uk, vk, zk, dk, wk)

generated by (28) is bounded, and it has at least one accumulation point. That is, there exists
a converging subsequence to an accumulation point. However, the nonconvex log function
in (27) is not a sum of a convex function; thus, we cannot even assure the local convergence
of the algorithm in (28) (see [34] for more details).
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Algorithm 2 IRLA with ADMM for solving model (25)
1: Given parameters γ , μ, ν, α1, α0, ρ1, and ρ2.
2: Initialize � = 0, u0 = f , v0 = 0, d j = ∇u, w j = 0, and λ10 = λ20 = λ30 = 0.
3: repeat
4: d̃� := 1

ρ1|d�|+1

5: w̃� := 1
ρ2|w�|+1

6: for k = 1 to Min do

7: d�,k+1 = shrink

(
λ2
�,k

μ
+ ∇u�,k − v�,k ,

α1d̃�

μ

)
,

8: w�,k+1 = shrink

(
λ3
�,k

μ
+ E(v�,k ),

α0w̃�

μ

)
,

9: z�,k+1 is the positive solution of the cubic equation in (21),

10:

(
u�,k+1
v�,k+1

)
= (BT B)−1

⎛
⎝−BT

(
λ1
�,k

μ
− z�,k+1,

λ2
�,k

μ
− d�,k+1,

λ3
�,k

μ
− w�,k+1

)T
⎞
⎠,

11: λ1�,k+1 = λ1�,k − νμ(z�,k+1 − u�,k+1),

12: λ2�,k+1 = λ2�,k − νμ(d�,k+1 − ∇u�,k+1 + v�,k+1),

13: λ3�,k+1 = λ3�,k − νμ(w�,k+1 − E(v�,k+1)),
14: end for
15: until a stopping condition is satisfied
16: Final output: u

4 Numerical Experiments

In this section, we present numerical results for our proposed models and compare them with
existing variational models such as the TV model [21] and the WBSN model [3]. We test
using both natural images and real ultrasound images. All experiments were implemented
using MATLAB R2015b on a desktop PC with an Intel CPU at 3.50GHz, 16GB RAM, and
a 64-bit Window 10 operating system.

In [21], the authors solved the TVmodel by using the gradient-descent method. However,
this model can be easily implemented by the split-Bregman method, similar to our approach.
For fair comparison with our models, we use the split-Bregman method to solve the TV
model. The stopping criterion for our TGV/NTGV model and the TV model is given by

‖uk − uk−1‖2
‖uk‖2 < 10−4 or k > M, (30)

where M is the maximum iteration number; M = 500 for our TGVmodel and the TVmodel,
M = 100 for our NTGV model. Besides, the maximum iteration number of the ADMM for
the inner subproblem in the NTGV model is fixed as Min = 10. The WBSN model is solved
by the gradient-descent based method, so the maximum iteration number M is set as 5000.

Recall that the data fidelity term in (2) is not derived from the MAP estimation based on
the degradation model. These result in denoised images with shifted intensity values. That is,
variational models using (2) as the data fidelity term are likely to produce a big gap between
the mean of a restored image and that of an original clean image. To reduce this gap, we add
the bias correction step in the final restored image. Since mean(n) = 0, it follows from the
degradation model in (1) that

mean( f ) = mean(u) + mean(
√
u · n)

≈ mean(u) + mean(
√
u)mean(n) = mean(u).
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Fig. 1 Original images. a Synthetic1 (256 × 256), b Synthetic2 (253 × 253), c Castle (321 × 481), d Child
(255 × 255), e Lena (256 × 256), f Parrot (256 × 256), g Pepper (512 × 512), h Woman (256 × 254)

Table 1 Comparison of PD algorithm [11] versus ADMM applied to solve model (12)

Model Computing time/Energy value/Iteration number

Noise level σ = 2 σ = 4 σ = 6

PD 5.09 4.9655 295 7.73 10.7610 468 11.00 14.9701 680

ADMM 1.26 4.8042 33 1.42 10.6660 39 1.52 14.8293 40

Best algorithmic performance are given in bold
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Fig. 2 Plot of energy functional E(uk ) in (12) via iteration number k when using PD algorithm [11] (blue)
and ADMM (red), when noise level (1st column) σ = 2, (2nd) σ = 4, (3rd) σ = 6 (Color figure online)

From this approximation and the constraint u > 0, the rescaled image ũ is obtained from the
denoised image u as follows:

ũ = max{u + mean( f ) − mean(u), 0}.
We then regard the image ũ as the final restored image for all models.

The selection of parameters is as follows. First, we select α0 and α1 to satisfy α0+α1 = 1.
We tune the parameter α1, which controls the balance between first- and second-order terms.
For real ultrasound images, α1 is fixed as 0.4 or 0.6. The parameter γ is selected depending
on the noise level σ ; if the noise level σ is large, a small value of γ is more proper, and vice
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Fig. 3 Denoising results of our proposed models and other models on synthetic images. a, cOriginal images,
b, d Noisy images (b σ = 2, d σ = 4), e TV model [21], f WBSN model [3], g TGV model (12), h NTGV
model (25)

versa. Hence, we mainly tune the parameters α1 and γ to achieve the best restored images.
The parameter μ in the ADMM affects on the speed of the algorithm; we set μ = 0.01 for
our TGV and the TV models, and μ = 0.05 for our NTGV model. The values for ρ1 and ρ2
in the NTGV model are selected in the ranges [0.001, 0.005] and [0.05, 0.2], respectively,
for natural images. Since real ultrasound images in general have blurry edges, we tune the
parameter ρ1 in the range [0.01, 0.05].
4.1 Denoising Results of Synthetic and Natural Images

In the experiments, all clean images have intensity values in the range [0, 255]. In this
numerical test, we used two synthetic images and six natural images, as shown in Fig. 1. The
test images were corrupted using (1) as the degradation model, with σ = 2, 4, and 6.

In order to measure the quality of the restored images, we compute the peak signal-to-
noise ratio (PSNR) value and the structure similarity (SSIM) index, which are defined as
follows:

PSNR(u∗, ū) = 10 log10

(
2552mn

‖u∗ − ū‖22

)
,

SSIM(u∗, ū) = (2μūμu∗ + c1)(σūu∗+c2)

(μ2
ū + μ2

u∗ + c1)(σ 2
ū + σ 2

u∗ + c2)
,
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Fig. 4 Denoising results of our proposed models and other models on a natural image when σ = 2. aOriginal
image, b TV model [21], c WBSN model [3], d Noisy image, e TGV model (12), f NTGV model (25)

Fig. 5 Denoising results of our proposed models and other models on a natural image when σ = 4. aOriginal
image, b TV model [21], c WBSN model [3], d Noisy image, e TGV model (12), f NTGV model (25)
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Fig. 6 Denoising results of our proposed models and other models on a natural image when σ = 4. aOriginal
image, b TV model [21], c WBSN model [3], d Noisy image, e TGV model (12), f NTGV model (25)

where u∗ ∈ R
m×n is the clean image, ū ∈ R

m×n is the restored image, μu is the average
of u, σu is the standard deviation of u, and c1 and c2 are some constants for stability. For
all methods, we determined the tuning parameters that obtained the best restored images
visually as well as using the PSNR and SSIM values.

Before discussing denoising results, we first compare the ADMM and the primal-dual
algorithm [11] that is used for solving the TGV-based denoising model in [6]. We apply
both algorithms to our TGV model (12), and the same regularization parameters (α1, γ ) and
stopping criterion in (30) are used. Table 1 and Fig. 2 present the denoising results of the
“child” image in the presence of noise with σ = 2, 4, 6. In Table 1, we present the computing
time, final energy functional values, and total iteration numbers, and Fig. 2 shows the plots of
the energy functional in (12) via iteration number k. It can be seen that the ADMM reaches
the stopping criterion much faster and provides lower final energy functional values than the
PD algorithm, which implies the ADMM finds more accurate solutions within shorter time.
These show the efficiency of the ADMM for solving our TGVmodel, compared with the PD
algorithm.
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Fig. 7 Denoising results of our proposed models and other models on a natural image when σ = 6. aOriginal
image, b TV model [21], c WBSN model [3], d Noisy image, e TGV model (12), f NTGV model (25)

Fig. 8 Denoising results of our proposed models and other models on a natural image when σ = 6. aOriginal
image, b TV model [21], c WBSN model [3], d Noisy image, e TGV model (12), f NTGV model (25)
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Table 2 Comparison results for PSNR and SSIM

Model TV WBSN TGV NTGV

Image PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR /SSIM

Noise level σ = 2

castle 27.26/0.8258 27.21/0.8237 27.49/0.8280 28.31/0.8445

face 29.38/0.8818 28.46/0.8683 30.97/0.9210 31.28/0.9222

lena 28.64/0.8426 27.87/0.8107 29.28/0.8598 29.94/0.8731

parrot 28.34/0.8418 27.38/0.8228 28.48/0.8433 29.05/0.8600

pepper 30.40/0.8179 29.15/0.8056 30.82/0.8261 31.32/0.8337

woman 30.96/0.8877 30.62/0.8847 33.24/0.9388 33.56/0.9401

syn2 34.20/0.9633 36.45/0.9802 36.62/0.9822 42.35/0.9924

syn1 34.26/0.9646 34.27/0.9742 36.48/0.9780 38.56/0.9861

Noise level σ = 4

castle 24.02/0.7318 24.16/0.7303 24.21/0.7350 24.95/0.7631

face 25.94/0.8059 25.28/0.7732 27.17/0.8571 27.70/0.8624

lena 26.03/0.7699 25.25/0.7333 26.26/0.7806 26.72/0.8021

parrot 24.20/0.7676 24.24/0.7516 24.61/0.7744 25.80/0.7964

pepper 27.29/0.7702 27.26/0.7603 27.51/0.7812 28.43/0.7925

woman 28.00/0.8203 27.24/0.8095 29.63/0.8947 29.96/0.8983

syn2 31.78/0.9470 32.07/0.9637 32.48/0.9722 36.09/0.9864

syn1 31.80/0.9369 31.96/0.9597 32.49/0.9650 32.78/0.9738

Noise level σ = 6

castle 23.08/0.6905 23.29/0.7036 23.18/0.6865 23.65/0.7147

face 24.21/0.7444 23.52/0.7159 25.44/0.8063 25.70/0.8117

lena 23.64/0.6973 23.76/0.6865 24.50/0.7248 24.94/0.7471

parrot 23.18/0.7305 22.68/0.6981 23.17/0.7263 23.93/0.7475

pepper 25.99/0.7428 25.74/0.7353 26.12/0.7506 26.71/0.7622

woman 26.31/0.7741 25.30/0.7430 27.93/0.8615 28.19/0.8657

syn2 29.61/0.9355 28.96/0.9380 30.04/0.9571 31.69/0.9786

syn1 29.52/0.9218 30.09/0.9387 30.27/0.9535 31.36/0.9656

Best denoising performance are given in bold

In Figs. 3, 4, 5, 6, 7, and 8, we display the original images, noisy images, and restored
images of all models, tested on synthetic and natural images. Figure 3 presents the denosing
results when the noise level σ = 2 and 4, respectively, tested on piecewise smooth synthetic
images. Figures 4, 5, 6, 7, and 8 exhibit the results when σ = 2, 4, 6, respectively, tested on
natural images.

Throughout the examples, we can observe that our proposed models alleviate the stair-
casing effects often found in piecewise smooth transition areas in the restored images by the
TV and WBSN models. Hence, the restored images of our models look more like natural
images. For instance, in Figs. 4 and 5, the restored images of the TV and WBSN models
have staircasing artifacts around the chin of the child and woman, while our TGV models
conserve the piecewise smooth transition regions verywell. This demonstrates the superiority
of the TGV-based regularizers over the first-order derivative based regularizers for denoising
piecewise smooth images. In addition, the WBSN and NTGVmodels commonly recover the
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Table 3 Comparison results for computing time

Model TV WBSN TGV NTGV TV WBSN TGV NTGV

Noise level σ = 2 σ = 4

castle 2.27 71.42 8.46 37.40 4.24 64.92 13.77 34.62

face 0.69 34.51 1.63 3.93 1.06 29.07 1.76 6.65

lena 0.90 33.12 1.74 10.47 1.34 30.67 2.98 10.63

parrot 0.67 35.72 2.93 9.31 1.41 31.94 1.86 10.41

pepper 3.98 111.43 9.82 30.84 6.57 112.95 11.84 49.38

woman 0.82 35.76 1.27 2.45 1.16 30.56 1.36 3.46

syn2 1.77 36.10 2.49 4.84 2.26 31.13 3.87 8.69

syn1 2.00 35.95 2.89 3.44 2.41 31.88 4.49 10.70

Model TV WBSN TGV NTGV

Noise level σ = 6

castle 4.94 62.56 12.80 27.47

face 1.36 30.65 1.76 6.32

lena 1.97 27.27 4.22 9.47

parrot 1.44 25.22 8.06 12.08

pepper 8.37 105.59 12.67 31.23

woman 1.52 30.55 1.82 5.47

syn2 2.99 32.70 5.05 15.97

syn1 3.33 32.67 15.55 11.58

denoised images with well preserved edges. However, because theWBSN uses the Tikhonov
regularization

∫
Ω

|∇u|2 dx , it smoothes out small features or weak edges in the restored
images. Specifically, in Fig. 6, the castle’s reflection in the lake is barely visible because of
the oversmoothing. In contrast, the images recovered by our NTGV model include the small
details.

Comparing our two models, we can see that the NTGV model provides sharper edges
and more preserved fine features than the TGV model, particularly in the presence of strong
edges or high level of noise, as seen in Figs. 3, 6, 7, and 8. This shows the merit of the
nonconvex regularization. On the other hand, in Figs. 4 and 5, the restored images of our
models are visually similar. The NTGV model produces slightly better preserved edges and
textures than the TGV model, which can be seen in the regions of the textural patterns in
child, and the eyes and the woolen hat in woman. Hence, we can presume that both models
produce similar denoising results for the images having smooth regions with weak edges.

Lastly, in Table 2, we present the PSNR values and SSIM values of all models for noise
levels σ = 2, 4, and 6. We also observe from Table 2 that our models obtain restored images
that are superior to those obtained by the others. Specifically, the NTGV model outperforms
the others when σ = 6. In terms of the computing time in Table 3, the TVmodel is the fastest
for all cases. In contrast, the WBSN is the slowest because it is solved using the gradient
descent method. The NTGV requires much more time than the TGV model because of the
additional outer iterations for the IRLA. Thus, the TGVmodel has an advantage with respect
to computing time, while the NTGV model recovers the best quality images.
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Fig. 9 Denoising results of our proposed models and other models on breast and thyroid images. a–a’ Noisy
image, b–b’ TV model [21], c–c’ WBSN model [3], d–d’ TGV model (12), e–e’ NTGV model (25)

4.2 Denoising Results of Real Ultrasound Images

In Figs. 9, 10, 11, and 12, we present the denoising results of all models, tested on several real
ultrasound images. The TV and the WBSN models give rise to staircasing artifacts, leading
to a more blocky, less authentic denoised image. But our models avoid these artifacts and
achieve more natural homogenous regions than both state-of-the-arts models. We can also
see that the restored images of our models have smooth interiors and clear boundaries, while
the others create somewhat rough boundaries. In other words, our proposed models perform
better than the other ones.

Moreover, the WBSN and NTGV models find clear corners and features, thanks to their
edge-preserving techniques in common. However, the restored images of the WBSN model
look somewhat like cartoon images, while the NTGV model produces clearer images with
preserved edges. Specifically, the slim vessel in the upper denoised image of our NTGV
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Fig. 10 Denoising results of our proposed models and other models on real ultrasound images. a–a’ Noisy
image, b–b’ TV model [21], c–c’ WBSN model [3], d–d’ TGV model (12), e–e’ NTGV model (25)

model in Fig. 10 is sleek, with no bumps. Although our two models result in visually similar
recovered images, the NTGV model provides slightly clearer slim vessel and edges than
the TGV model in an enlarged view. Therefore, these examples also qualitatively verify the
superior performance of our models for real ultrasound image denoising.

Lastly, as discussed in Sect. 3.2, we can observe from the numerical results that the NTGV
model (25) performs better than the TGV model (12) when denoising images having much
structures or strong edges, such as “castle”, “pepper” images, or images with high level
of noise. On the other hand, the NTGV model provides similar denoising results with the
TGVmodel for images with weak edges, such as “child”, “woman” images or real ultrasound
images.Moreover, the TGVmodel has amuch benefit of computing time, as shown inTable 3.
To sum up, these numerical experiments validate the effectiveness of the TGV regularization
and superiority of the nonconvex regularization.
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Fig. 11 Denoising results of our proposed models and other models on a real ultrasound image. a Noisy
image, b TV model [21], c WBSN model [3], d TGV model (12), e NTGV model (25)

Fig. 12 Denoising results of our proposed models and other models on a real ultrasound image. a Noisy
image, b TV model [21], c WBSN model [3], d TGV model (12), e NTGV model (25)
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5 Conclusion

In this paper, we proposed two TGV-based minimization models for denoising ultrasound
images. Our models consist of a convex data-fidelity term and the convex or nonconvex
TGV regularization terms. The proposedmodels eliminate the staircasing artifacts commonly
appeared in the results of TV-based models. Moreover, the nonconvex TGV model is able to
produce better preserved edges, textures, and fine features in the restored images. We proved
the existence and uniqueness of the minimizers for the convex TGVmodel. We also provided
efficient iterative algorithms by adopting the ADMM to handle the complicated data fidelity
term and nonsmooth convex regularization term, and the IRLA to deal with the nonconvex
regularization term. Compared with state-of-the-art methods, the proposed models perform
effectively by smoothing homogeneous regionswhile preserving edges, and thus they provide
better denoising results for both natural images and real ultrasound images. Real ultrasound
images are usually blurry as well as noisy. Thus, blind deconvolution along with denoising
for ultrasound images is a possible target for future work.
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Appendix: The Proof of Theorem 3

Proof For any fixed x ∈ Ω, we can deduce from the inequality of arithmetic-geometric
mean that for u > 0,

( f (x) − u)2

u
= u + f (x)2

u
− 2 f (x) ≥ 2| f (x)| − 2 f (x).

It follows from the above inequality that

E(u) ≥ γ

∫
Ω

( f − u)2

u
dx ≥ γ

∫
Ω

2| f | − 2 f dx,

i.e., E(u) is bounded below. Hence, we can choose a minimizing sequence {un} ∈ L2(Ω)

for problem (12), and the sequence {TGV 2
α (un)} is also bounded.

In addition, from the Poincaré inequality of TGV 2
α , we can obtain that

‖un − Pun‖2 ≤ C · TGV 2
α (un), for some constant C,

where P : L2(Ω) → ker(TGV 2
α ) is a linear projection. It follows that un − Pun is bounded

in L2(Ω) for each n.
We can also easily deduce that for u > 0,

∫
Ω

( f − u)2

u
dx =

∫
Ω

u + f 2

u
− 2 f dx ≥ ‖u‖1 −

∫
Ω

2 f dx

≥ c · ‖Pu‖1 −
∫

Ω

2 f dx ≥ c · ‖Pu‖2 −
∫

Ω

2 f dx,

where c is a positive constant that is independent of n. Since {un} is a minimizing sequence
of problem (12), ‖Pun‖2 is bounded from the above inequalities.
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Then, from the following inequalities,

‖un‖2 ≤ ‖un − Pun + Pun‖2 ≤ ‖un − Pun‖2 + ‖Pun‖2,
we can conclude that {un} is bounded in L2(Ω). Therefore, there exist a subsequence {unk }
and u∗ ∈ L2(Ω) such that the subsequence converges weakly to u∗. Since un > 0 and E(u∗)
must be bounded, u∗ > 0 and u∗ ∈ S(Ω).

Because TGV 2
α is lower semicontinuous, E(u) is also lower semicontinuous. By applying

Fatou’s Lemma, we have

E(u∗) ≤ lim inf
n→∞ E(un) = inf

u∈S(Ω)
E(u),

which implies that u∗ is a solution of problem (12).

If we let p(t) = ( f (x)−t)2

t for any fixed x ∈ Ω , then its second derivative is given by

p′′(t) = 2 f (x)2

t3
and thus p′′(t) > 0 for any t > 0. Hence, p is a strictly convex function

when t > 0. Therefore, problem (12) has a unique minimizer. ��

References

1. Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math.
68(4), 925–946 (2008)

2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations
and the Calculus of Variations, vol. 147. Springer, Berlin (2006)

3. Barcelos, C.A., Vieira, L.E.: Ultrasound speckle noise reduction via an adaptive edge-controlled varia-
tional method. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.
145–151 (2014)

4. Besag, J.: Digital image processing: towards Bayesian image analysis. J. Appl. Stat. 16(3), 395–407
(1989)

5. Bredies, K., Holler, M.: A TGV regularized wavelet based zooming model. Scale Space Var. Methods
Comput. Vis. 7893, 149–160 (2013)

6. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526
(2010)

7. Bredies, K., Kunisch, K., Valkonen, T.: Properties of L1 -TGV 2: The one-dimensional case. J. Math.
Anal. Appl. 389(1), 438–454 (2013)

8. Candés, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted �1 minimization. J. Fourier
Anal. Appl. 14, 877–905 (2008)

9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20,
89–97 (2004)

10. Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numer.
Math. 76(2), 167–188 (1997)

11. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

12. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci.
Comput. 22(2), 503–516 (2000)

13. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method
of multipliers. J. Sci. Comput. 66, 889–916 (2016)

14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three
space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

15. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splittingmethod and the proximal point algorithm
for maximal monotone operators. Math. Program. 55, 293–318 (1992)

16. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image
Process. 4(7), 932–946 (1995)

17. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)

18. Getreuer, P.: Total variation inpainting using split Bregman. Image Process. On Line 2, 147–157 (2012)

123



J Sci Comput (2017) 72:172–197 197

19. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation
and surface reconstruction. J. Sci. Comput. 45, 272–293 (2010)

20. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci.
2(2), 323–343 (2009)

21. Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math.
Imaging Vis. 39, 62–74 (2011)

22. Kang, M., Jung, M., Kang, M.: Nonconvex higher-order regularization based Rician noise removal with
spatially adaptive parameters. J. Vis. Commun. Image R. 32, 180–193 (2015)

23. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the
Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)

24. Krissian, K., Kikinis, R., Westin, C., Vosburgh, K.: Speckle constrained filtering of ultrasound images.
IEEE Comput. Vis. Pattern Recogn. 2, 547–552 (2005)

25. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE
Trans. Acoust. Speech Signal Process. ASSP–35, 373–383 (1987)

26. Lee, J.S.: Speckle suppression and anaylsis for synthetic aperture radar. Opt. Eng. 25(5), 636–643 (1999)
27. Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order

filter. J. Vis. Commun. Image R. 18(4), 322–330 (2007)
28. Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in

medical ultrasonic images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)
29. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation

with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process.
12(12), 1579–1590 (2003)

30. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Kluwer, Boston
(2004)

31. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restora-
tion and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)

32. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.: Efficient reconstruction of piecewise constant images
using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

33. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)
34. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: An iterated �1 algorithm for non-smooth non-convex opti-

mization in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2013)

35. Ochs, P.,Dosovitskiy,A.,Brox,T., Pock,T.:On iteratively reweighted algorithm for nonsmoothnonconvex
optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

36. Oh, S., Woo, H., Yun, S., Kang, M.: Non-convex hybrid total variation for image denoising. J. Vis.
Commun. Image R. 24(3), 332–344 (2013)

37. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image
restoration. J. Math. Imaging Vis. 48, 308–338 (2014)

38. Robini, M., Lachal, A., Magnin, I.: A stochastic continuation approach to piecewise constant reconstruc-
tion. IEEE Trans. Image Process. 16(10), 2576–2589 (2007)

39. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D
Nonlinear Phenom. 60(1), 259–268 (1992)

40. Setzer, S., Steidl, G.: Variational methods with higher-order derivatives in image processing. In: Approx-
imation Theory XII: San Antonio, pp. 360–386 (2008)

41. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis.
Commun. Image R. 21(3), 193–199 (2010)

42. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM
J. Imaging Sci. 1(3), 294–321 (2008)

43. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math.
Imaging Vis. 36(2), 168–184 (2010)

44. Teboul, S., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Variational approach for edge-preserving regular-
ization using coupled PDEs. IEEE Trans. Image Process. 7(3), 387–397 (1998)

45. Vese, L., Chan, T.: Redced non-convex functional approximations for image restoration and segmentation.
UCLA CAM Report 97-56 (1997)

46. Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J.
Sci. Comput. 35(2), B336–B358 (2013)

47. Yang, J., Zhang, Y.: Alternating direction algorithms for �1 problems in compressive sensing. SIAM J.
Sci. Comput 33(1), 250–278 (2011)

123


	Total Generalized Variation Based Denoising Models  for Ultrasound Images
	Abstract
	1 Introduction
	2 Background
	2.1 Total Generalized Variation
	2.2 Alternating Direction Method of Multipliers
	2.3 Iterative Reweighted ell1 Algorithm

	3 Proposed Models and Algorithms
	3.1 Convex TGV Model
	3.1.1 ADMM for Solving Our Model (12)

	3.2 Nonconvex TGV Model

	4 Numerical Experiments
	4.1 Denoising Results of Synthetic and Natural Images
	4.2 Denoising Results of Real Ultrasound Images

	5 Conclusion
	Acknowledgements
	Appendix: The Proof of Theorem 3
	References




