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Abstract A hybrid Schwarz/multigrid method for spectral element solvers to the Poisson
equation in R

2 is presented. It extends the additive Schwarz method studied by Lottes and
Fischer (J Sci Comput 24:45–78, 2005) by introducing nonuniform weight distributions
based on the smoothed sign function. Using a V-cycle with only one pre-smoothing, the new
method attains logarithmic convergence rates in the range from 1.2 to 1.9, which corresponds
to residual reductions of almost two orders of magnitude. Compared to the original method,
it reduces the iteration count by a factor of 1.5–3, leading to runtime savings of about 50%. In
numerical experiments themethod proved robustwith respect to themesh size and polynomial
orders up to 32. Used as a preconditioner for the (inexact) CG method it is also suited for
anisotropic meshes and easily extended to diffusion problems with variable coefficients.

Keywords Multigrid method · Schwarz methods · Spectral element method ·
p-Version finite element method

1 Introduction

High-order finite element methods (FEM) enjoy an increasing interest in computational
science and engineering. They include hp-FEM, spectral element methods (SEM) as well
as discontinuous Galerkin methods [7,16]. The motive that drives the development of high-
order methods lies in their potential to deliver accuracy with lower cost in comparison to the
first and second order methods used in common simulation tools [29]. However, realizing
this advantage in practice is a formidable task. Along with curvilinear mesh generation, the
provision of efficient solvers for the resulting algebraic equation systems remains the main
challenge.
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Projection methods for incompressible flow, or implicit discretization of diffusion terms
lead to a sequence of linear elliptic problems which are related or equivalent to the Poisson
equation or, more generally, the Helmholtz equation [10]. Fast solvers for such equations are
therefore a crucial ingredient of competitive high-order methods and, hence, have been in
focus of research for almost 30 years [1,5,8,11–13,15,17–19,21,22,24–26]. For Helmholtz
or Poisson problems discretized on regular meshes, efficient multigrid (MG) techniques
have been developed recently. [19] proposed additive Schwarz smoothers based on extended
element domains, which attain residual reductions of approximately 0.2 within one sweep.
They found that weighting the overlapping Schwarz updates by the inverse of the counting
matrix, which corresponds to taking the arithmetic mean, plays a crucial role in obtaining
multigrid-like iteration counts. A detailed analysis of the method was given in [18]. [13]
presented a similar multigrid approach for the p-finite element method on locally refined
Cartesian meshes. They used a multiplicative Schwarz smoother on element domains which
possess only a minimal overlap confined to the element boundaries. [11] developed a p-
multigrid method based on static condensation which, apart from pre- and post-processing,
reaches linear complexity. The proposed block smoother can be classified as an additive
Schwarz method using a monotonic increasing shape function for blending the overlapping
updates. Using this smoother the multigrid method attained convergence rates of about 0.02
combined with a run-time efficiency that comes close to fast direct finite difference solvers.
The success of this approach inspired us to extend the idea of nonuniform weighting to
the full, “uncondensed” problem and thus led to the present work. The primary goal is
to show how nonuniform weighting can be used to boost the performance of high-order
spectral-element multigrid techniques. Further, we investigate the influence of the overlap
width, smoothing strategies, additive versus multiplicative Schwarz methods and Krylov
acceleration on robustness and efficiency. In addition to this, we consider the extension to
diffusion problems with variable coefficients.

The remainder of the paper is organized as follows: Sect. 2 provides a brief description
of the spectral element discretization. Section 3 presents the solution techniques, namely
the weighted additive and multiplicative Schwarz methods, the p-multigrid method and the
inexact multigrid-preconditioned conjugate gradient method. Section 4 proceeds with the
discussion of numerical experiments for assessing the solution methods and application to
variable diffusion. Finally, Sect. 5 concludes the paper.

2 Discretization

As the model problem we consider the Poisson equation

− ∇2u = f (1)

in the rectangular domain Ω = [0, �x ]× [0, �y] with periodic boundaries. For discretization
Ω is decomposed into ne = nx×ny rectangular elementsΩmn with dimensions�x = �x/nx
and �y = �y/ny . In each element the solution is approximated as

u(x, y)|Ωmn �
p∑

i, j=0

umn
i j ϕi

(
ξm(x)

)
ϕ j

(
ηn(y)

)
(2)

whereϕi are theLagrange polynomials to theGauss-Lobatto-Lengendre (GLL) points {ξi }pi=0

in the one-dimensional standard region Ω̂ = [−1, 1] and ξm(x), ηn(y) the mapping of
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coordinates from Ωmn to Ω̂ [7,16]. Concatenation of the element coefficients umn = [umn
i j ]

and enforcing continuity for shared vertices and edges yields the unique global coefficients
u [see, e.g. [7], pp. 191–194]. Application of the Galerkin spectral element method leads to
the discrete equations

Au = f . (3)

As a consequence of the tensor product ansatz (2) and the Cartesian mesh, the global system
matrix in Eq. (3) assumes the tensor product form

A = My ⊗ Lx + Ly ⊗ Mx , (4)

where M∗ and L∗ represent the one-dimensional mass and stiffness matrices for directions
∗ = x, y, respectively. The detailed structure of these operators and underlying spectral
element techniques are well described in literature [7,16] and therefore deliberately skipped
here.

3 Solution Methods

For solving Eq. (3) we consider polynomial multigrid (MG) and multigrid-preconditioned
conjugate gradients (MGCG). Both approaches rely on Schwarz methods for smoothing. We
first present the Schwarz methods and then sketch MG and MGCG.

3.1 Schwarz Methods

Schwarzmethods are iterative domain decomposition techniques which improve the approxi-
mate solution by parallel or sequential subdomain solves, leading to additive ormultiplicative
methods, respectively. Following [19] we use extended element regions as the subdomains.
Figure 1 illustrates how the subdomain Ωs results from the corresponding element domain
Ωmn by attaching a rectangular strip matching the overlap width δo. As consequence, Ωs

adopts no layers of additional nodes from the neighbor elements. Note, however, that we
exclude the outer layer of nodes located on ∂Ωs . For definiteness we define the overlap width
in terms of no and the GLL points,

δo = ξno+1 + 1. (5)

To derive a local correction to some approximate solution ũ we first convert Eq. (3) into
the equivalent residual form

A�u = f − Aũ = r̃, (6)

where �u = u − ũ. Further we introduce the restriction operator Rs such that us = Rsu

gives the coefficients associated with Ωs . Conversely, the transposed restriction operator
globalizes any local coefficients by adding zeros for exterior nodes. With these prerequisites
the correction contributed by Ωs is defined as the solution of the subproblem

Ass�us = rs, (7)

where Ass = RsARt
s represents the restricted system matrix and rs = Rs r̃ the restricted

residual. Due to the rectangular shape of the subdomain, Ass inherits the tensor product
structure of A. Using the fast diagonalization technique developed by [20] and adopted for
SEM e.g. in [6], the inverse subdomain operator can be expressed in the form
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O

Fig. 1 Example of a subdomain used with the Schwarz method. The shaded area represents Ωs and the dark
region in its center the corresponding element. The circles are the GLL nodes for polynomial order p = 8.
Filled circles indicate the nodes that are solved for and updated; δo is the overlap width

A−1
ss = (Sy ⊗ Sx )(I ⊗ Λx + Λy ⊗ I)−1(St

y ⊗ St
x ), (8)

where I is the unity matrix, S∗ the matrix of eigenvectors to the generalized eigenproblem
for the restricted one-dimensional stiffness and mass matrices, and Λ∗ the diagonal matrix
of eigenvalues for directions ∗ = x, y. With equidistant meshes, as in the present case, the
operators are identical for all subdomains and, hence, the cost for their pre-computation
becomes negligible. Exploiting the tensor-product structure of the inverse, the solution to a
single subdomain,�us = A−1

ss rs , can be evaluated with justΘ
(
2(p+1+2no)3

)
operations.

There exist several options for combining the local solutions. We consider a weighted
version of the additive Schwarz method and the multiplicative Schwarz method. The mul-
tiplicative Schwarz method solves the subproblems (7) consecutively while continually
updating the residual. Note that, in general, onemultiplicative Schwarz iteration corresponds
to the application of a non-symmetric linear operator, albeit A is symmetric. However, for
an even number of steps, the method is symmetrized by reversing the order of subdomains
in each step, which leads to Algorithm 1.

The weighted additive Schwarz method determines all local corrections independently
and computes the global correction as a linear combination of these results, i.e.

�u �
∑

s

Rt
s(W�us), (9)

whereW is a diagonal local weight matrix. Application of Eq. (9) leads to Algorithm 2. Note
thatW = I recovers the classical additive Schwarz method. The arithmetic mean employed
in [19] is obtained by choosing W = RsC

+Rt
s , where C+ is the pseudoinverse of the

counting matrix C = ∑
s R

t
sRs . We propose a more flexible approach which elevates the

weights gradually from zero at the border to one in the core zone. Due to the regular shape of
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Algorithm 1 Multiplicative Schwarz method
1: function MSchwarz(u, f , ni)
2: for i = 1, ni do
3: for e = 1, ne do

4: s ←
{
e i odd
ne + 1 − e i even

5: r ← f − Au
6: u ← u + Rt

sA
−1
ss Rsr

7: end for
8: end for
9: return u
10: end function

Algorithm 2 Weighted additive Schwarz method
1: function WSchwarz(u, f , ni)
2: for i = 1, ni do
3: r ← f − Au
4: u ← u + ∑ne

s=1R
t
sWA−1

ss Rsr
5: end for
6: return u
7: end function

Ωs theweights can be cast in the tensor product formW = Wy ⊗ Wx . The one-dimensional
weight distributions W∗ are generated from the continuous weighting function

wκ(ξ) = 1

2

[
φκ

(
ξ + 1

δo

)
− φκ

(
ξ − 1

δo

)]
, (10)

where ξ is the 1D standard coordinate extended beyond Ω̂ and φκ is a weakly mono-
tonic increasing shape function. In particular we consider the shape functions φκ with
κ ∈ {1, 3, 5, . . . } defined as

φκ(x) =
{

φ̂κ (x) x ∈ Ω̂

sgn(x) else
(11)

where φ̂κ is a polynomial of degree i satisfying the conditions

φ̂κ (±1) = ±1 (12a)

dk φ̂κ

d xk
(±1) = 0, 0 < k ≤ (κ − 1)/2. (12b)

The φ̂κ are strictly monotonic in (−1, 1) and generate a smooth transition of the weight
function in the overlap zone, as exemplified in Fig. 2 for the quintic case. By increasing the
polynomial degree the shape function converges toward the sign function, which translates
into a top hat weighting function. We remark that omitting the shape function in Eq. (10)
yields the arithmetic mean. For reference, Table 1 summarizes all weight functions used in
the numerical experiments.

3.2 Multigrid

For MG we define a series of polynomial levels {pl} with pl = 2l increasing from 1 at l = 0
to p at top level L . Correspondingly, ul denotes the global coefficients and Al the system
matrix on level l. On the top level we have uL = u and AL = A, whereas on lower levels
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Fig. 2 One-dimensional weight distribution for elements of order p = 16 with an overlap of no = 2 points
using a quintic shape function. The core region and the overlap zone of the subdomain are shaded in dark and
light blue, respectively. Filled circles indicate the node positions (Color figure online)

Table 1 Weight functions (WF) and related shape functions

WF Shape function Method

w1 φ̂1 = x Linear

w3 φ̂3 = (3x − x3)/2 Cubic

w5 φ̂5 = (15x − 10x3 + 3x5)/8 Quintic

w7 φ̂7 = (35x − 35x3 + 21x5 − 5x7)/16 7th order

wt φ̂t = sgn(x) Top hat

wa φ̂a = 0 Arithmetic mean

ul is the defect correction and Al the counterpart of A obtained with elements of order pl .
For transferring the correction from level l − 1 to level l we use the embedded interpolation
operator I l , and for restricting the residual its transpose. These ingredients allow to build
a multigrid V-cycle, which is summarized in Algorithm 3. Both, the multiplicative and the
weighted additive Schwarz method stated in Algorithm 1 and 2, respectively, can serve as the
Smoother. The number of pre- and post-smoothing steps, ns1,l and ns2,l , can differ from
level to level to allow variable V cycles [4]. Line 8 of Algorithm 3 defines the coarse grid
solution by means of the pseudoinverse A+

0 . In our implementation the coarse problem is
solved using the conjugate gradient method. To achieve convergence in spite of singularity,
the right side is projected to the null space of A0, as proposed by [14].

3.3 Preconditioned Conjugate Gradients

For enhancing robustness and efficiency multigrid methods can be accelerated by Krylov
subspace methods [27]. In the present case, with symmetric system matrices on all grid lev-
els, one would favor preconditioned conjugate gradients. Unfortunately, weighted additive
Schwarz and multiplicative Schwarz with uneven iteration count are both non-symmetric
and hence affect the symmetry of MG as well. As a remedy, it is possible to symmetrize the
weighting method or to use GMRES instead of CG for acceleration. According to [18], how-
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Algorithm 3 Multigrid V-cycle.
1: function MultigridCycle(u, f , ns)
2: uL ← u
3: fL ← f
4: for l = L , 1 step −1 do
5: ul ← Smoother(ul , fl , ns1,l ) 	 Pre-smoothing
6: fl−1 ← It

l (fl − Alul ) 	 Residual restriction
7: end for
8: u0 ← A+

0 f0 	 Coarse grid solution
9: for l = 1, L do
10: ul ← ul + Ilul−1 	 Correction prolongation
11: ul ← Smoother(ul , fl , ns2,l ) 	 Post-smoothing
12: end for
13: return u ← uL
14: end function

Algorithm 4 Inexact multigrid preconditioned conjugate gradients.
1: function MGCG(u, f , ns, imax, rmax)
2: rold ← 0
3: r ← f − Au
4: p ← MultigridCycle(0, r, ns)
5: δ ← ptr
6: for i = 1, imax do
7: q ← Ap
8: α ← δ/(ptq)

9: u ← u + αp
10: r ← r − αq
11: if ‖r‖ ≤ rmax exit
12: z ← MultigridCycle(0, r, ns)
13: β ← qt (r − rold)/δ
14: p ← z + βp
15: δ ← ztr
16: rold ← r
17: end for
18: return u
19: end function

ever, symmetrization can deteriorate the efficiency of the method. This detrimental behavior
was confirmed in own tests and, hence, the symmetrized method is not considered here.

Recently, generalizations of the conjugate gradient method have been developed that
allow for relaxing some restrictions of standard CG and, thus, promise a cheaper alternative
to GMRES. The use of inaccurately solved and non-symmetric preconditioners in CG-like
methods has been justified, e.g., in [2,9,23]. Moreover, [3] demonstrated the suitability of
the so-called flexible PCG in conjunction with non-symmetric multigrid preconditioners.
Following this approach,we use theMGCGmethod summarized inAlgorithm4. Thismethod
is equivalent to the flexible PCG of [23], but can be regarded also as a variant of the inexact
PCG proposed by [9]. The main difference to standard PCG consists in the application of
the Polak-Ribìere formula for β, instead of the Fletcher-Reeves formula, on line 13 of the
algorithm. We also note that, as before with the coarse problem, the right side f must be in
the null space of A if the system is singular.
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4 Results

Numerical tests were performed to assess the influence of weighting, overlap and cycling
strategy on the computational efficiency and robustness of MG and MGCG. The methods
were implemented in Fortran and compiled using the GNU compiler collection 6.0 with –O3.

All results are based on test cases with the source f evaluated analytically from the
exact solution and starting from a random initial guess confined to the interval [0,1]. The
convergence speed is evaluated using the number of cycles n10 needed to reduce the norm of
the residual by a factor of 1010 and the average logarithmic convergence rate according to [28]

r̄ = 1

n
log10

‖r(0)‖
‖r(n)‖ , (13)

where r(n) is the Euclidean norm of the residual vector after the nth cycle. Note that n10 is
nearest integer greater than or equal to 10/r̄ .

As an efficiency measure we define the approximate number of operator applications
required for reducing the residual by a factor of 10k ,

ω̄k = k

r̄

Wcyc

Wop
, (14)

whereWcyc is the cost for one cycle andWop the cost for one application of the systemmatrix
A. Exploiting sum factorization [7,16], Wop can be estimated as 2n3pne, where np = p + 1
and ne is the number of elements. According to Sect. 3.1, the cost of one Schwarz iteration is
approximately 2(np + 2no)3ne. Assuming a maximum relative overlap of no/np this yields
the estimate

Wcyc =
[
4
(
1 + 2

no
np

)3
csns + 2cs + ccg

]
n3pne, (15)

where ns is the number of pre- and post-smoothing steps on the finest level, cs = 4/3 for the
classical V-cycle and cs = 2 for a variable V-cycle doubling the number of smoothing steps
when changing to the next lower level, and ccg = 2 is the extra cost for conjugate gradients
with MGCG. Since the bracketed term is constant, the overall cost of one multigrid cycle
scales approximately with pN , where N = p2ne denotes the number of unknowns. Among
the multigrid components, the smoother is by far the most expensive part, accounting for
about 80–90% of the total cost in typical applications.

4.1 Weighting and Overlap

We consider the Poisson problem (1) in the domain Ω = [0, 2]2, which is uniformly subdi-
vided in 8 × 8 square elements with order p ranging from 4 to 32. The right hand side is
chosen to match the exact solution u = sin(πx) sin(πy). In the first test series we set the
overlap to no = 1 on all levels l > 0. Table 2 shows the measured convergence rates for
MG with one pre-smoothing. Column “wa” corresponds to the weighted additive Schwarz
method using the arithmetic mean in overlap areas. Compared to [19] our results agree well
for p = 4, but show a faster convergence with higher polynomial orders. This could be
attributed to using periodic instead of Dirichlet boundary conditions.

The remaining columns in Table 2 display the convergence rates for additive Schwarz
smoothing with the gradual weighting introduced in Sect. 3.1 and multiplicative Schwarz. In
comparison to the arithmetic mean, weighting using a smooth—cubic, quintic or 7th order—
shape function roughly doubled the convergence rate for orders 4, 8 and 16, while linear
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Table 2 Convergence rates r̄ for MGwith additive Schwarz smoothing using one pre- and no post-smoothing
steps, ne = 8 × 8 elements and a fixed overlap of no = 1

p wa w1 w3 w5 w7 wt Mult

4 0.66 0.86 1.01 1.17 1.25 0.72 1.01

8 0.40 0.83 1.17 1.29 1.23 0.52 1.29

16 0.34 0.80 0.84 0.84 0.84 0.42 1.26

32 0.32 0.43 0.43 0.43 0.43 0.38 0.76

The weighting methods are referred to as defined in Table 1. Results for the multiplicative smoother (mult)
are included for comparison

Table 3 Convergence rates for a
level-dependent overlap of
no,l = �pl/8�. For caption see
Table 2

p wa w1 w3 w5 w7 wt Mult

4 0.63 0.91 0.98 0.96 0.79 0.31 1.03

8 0.40 0.75 1.06 1.28 1.28 0.64 1.30

16 0.51 1.07 1.36 1.28 1.12 0.53 1.40

32 0.71 1.39 1.48 1.50 1.51 0.19 1.56

and top hat weighting yielded a lower, but still remarkable improvement. As expected, the
multiplicative Schwarz smoother attained the fastest convergence. At p = 32 all methods
suffer a serious performance degradation, except for arithmetically weighted Schwarz, which
nonetheless remains the slowest.

Inspired by these observations, several tests were run with overlaps depending on the
polynomial degree on each mesh level. Table 3 shows the convergence rates for the case
no,l = �pl/8�. Note that this choice implies no = 0 for degrees less than 8, while reaching
no = 4 with p = 32. As a consequence, the convergence rates for p = 4 are slightly lower
than with no = 1, except for multiplicative Schwarz. For p ≥ 16 the increased overlap
yields a considerable speedup. This improvement is most pronounced for cubic and quintic
weighting, which come remarkably close to multiplicative Schwarz.

As a résumé of the first study we conclude that 1) gradual weighting with a smooth shape
function yields a decisive improvement over arithmetic weighting, and 2) increasing the
overlap with growing p is crucial for robustness.

4.2 Robustness and Efficiency

Next we investigate robustness with respect to the mesh size and aspect ratio. First, MG with
one pre-smoothing is applied on uniform meshes consisting of 42 to 10242 elements with p
ranging from 4 to 32 and up to four million unknowns. Table 4 compiles the results for quinti-
cally weighted and multiplicative Schwarz smoothers with overlap no,l = �pl/8�. Except in
coarse quadrangulations, where periodicity can induce interference effects, the convergence
characteristics are virtually independent of the number of elements ne. The convergence rate
r̄ shows a moderate growth for increasing order p and is similar for both smoothers, with a
slight advantage for the weighted additive Schwarzmethod. As a consequence, the equivalent
number of operator applications required for reducing the residual by an order of magnitude
drops almost to one third when increasing p from 4 to 32 and, thus, mitigates the higher
operator cost per DOF.
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Table 4 Robustness with respect
to problem size: MG using
additive and multiplicative
Schwarz smoothers with overlap
no,l = �pl/8�

p
√
ne MG(1,0), add, w5 MG(1,0), mult

r̄ n10 ω̄1 r̄ n10 ω̄1

4 32 1.17 9 9.2 0.87 12 12.4

64 1.17 9 9.3 0.86 12 12.6

128 1.17 9 9.3 0.85 12 12.7

256 1.17 9 9.3 0.85 12 12.7

8 16 1.30 8 5.4 1.28 8 5.5

32 1.29 8 5.4 1.26 8 5.5

64 1.29 8 5.4 1.26 8 5.5

128 1.28 8 5.4 1.26 8 5.5

16 8 1.33 8 5.1 1.44 7 4.7

16 1.37 8 4.9 1.42 8 4.8

32 1.36 8 5.0 1.46 7 4.6

64 1.36 8 5.0 1.46 7 4.6

32 4 1.90 6 3.5 1.65 7 4.0

8 1.58 7 4.2 1.59 7 4.2

16 1.87 6 3.6 1.63 7 4.1

32 1.93 6 3.4 1.64 7 4.0

64 1.93 6 3.4 1.65 7 4.0

In the second test we fixed the mesh to 16 × 16 elements of order p = 16, but
increased the aspect ratio AR = �x/�y by enlarging the domain into the x direction,
i.e., Ω = [0, 2AR] × [0, 2]. Table 5 reports the results for MG and MGCG using additive
weighted Schwarz with w5, no,l = �pl/8� and one pre-smoothing step. As expected, the
stand-alone MG performs well for small aspect ratios, but degrades for AR > 2. MGCG is
slightly less efficient than MG for AR ≤ 2, but proves more robust at higher aspect ratios.
At AR = 8 it converges approximately twice as fast as MG.

While these observations hold almost uniformly for all orders p considered, it remains to
investigate the impact of solver parameters such as smoothing steps and overlap. Figure 3
presents selected results of the corresponding study for p = 16 and aspect ratios AR = 1 to
16. In particular we considered several variants of MGCG(1,1), each applying one pre- and
one post-smoothing. In one case, indicated by “var”, we employed a variableV-cycle inwhich
the number of smoothing steps doubles with each coarser level, i.e. ns1,l = ns2,l = 2L−l . The
study included quintically weighted additive (“add, w5”) as well as multiplicative (“mult”)
Schwarz smoothers with a level-dependent overlap of no,l = �pl/8�. Additionally we tested
multiplicative Schwarz with no = 0 and ns1 = ns2 = 2, which corresponds to the method of
[13], and the arithmetically averaged additive Schwarz smoother using a constant overlap of
no = 1. Figure 3a depicts the achieved convergence rates. Compared to the case of only one
smoothing, the additional post-smoothing raises r̄ by a factor between 1.5 and 2, which is
well in the expected range. Switching tomultiplicative Schwarz yields an even higher gain for
increasing aspect ratios. A similar effect is achieved using additive Schwarz with the variable
V-cycle.MGCG(2,2) with zero overlap attains a convergence rate similar toMGCG(1,0) with
level-dependent overlap. The arithmetically averaged Schwarz method with two smoothing
steps falls about two thirds behind the quintically weighted method with only one smoothing
for AR = 1, but gains a slight advantage over the latter for higher aspect ratios.
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Table 5 Robustness with respect
to aspect ratio: MG versus
MGCG using additive Schwarz
with w5 and overlap
no,l = �pl/8�

p AR MG(1,0),add, w5 MGCG(1,0),add, w5

r̄ n10 ω̄1 r̄ n10 ω̄1

4 1 1.17 9 9.2 1.30 8 9.3

2 0.99 11 11.0 1.10 10 11.0

4 0.39 26 27.8 0.59 17 20.5

8 0.12 85 91.2 0.28 36 42.5

8 1 1.30 8 5.4 1.33 8 6.1

2 0.86 12 8.2 1.03 8 7.9

4 0.43 24 16.3 0.65 16 12.5

8 0.16 63 43.9 0.34 30 23.8

16 1 1.37 8 4.9 1.55 7 5.1

2 0.95 11 7.1 1.14 9 6.9

4 0.50 20 13.5 0.72 14 10.8

8 0.17 59 39.9 0.39 26 20.1

32 1 1.87 6 3.6 2.01 5 3.8

2 1.23 9 5.4 1.42 8 5.4

4 0.65 16 10.3 0.83 12 9.2

8 0.22 46 30.4 0.44 23 17.5

As the convergence rate does not account for the cost, it is of limited valuewhen comparing
methods of different computational complexity. A better measure is the equivalent number of
operator applications required for reducing the residual by one order of magnitude, ω̄1, which
is shown inFig. 3b. In thismetric, themultiplicativeMGCG(1,1)with level-dependent overlap
performs best, especially for higher aspect ratios. It is followed by its additive counterpart
with quintic weighting, which is at level for AR ≤ 2, but needs ca 34 instead of 26 operator
applications for AR = 16. The comparison also reveals that the benefit of the variableV-cycle
is lost due to the higher computational complexity. Generally, the influence of smoothing and
overlap parameters lessenswith increasing aspect ratio (exempting the case of no = 0), which
indicates that the role of the conjugate gradient method gets more important.

Figure 3c depicts the runtimesmeasured on a 3.1GHz Intel Core i7-5557UCPU.Note that
MGCG(1,1) with quintic weighting attained the best performance despite its higher operation
count in comparison toMGCG(1,1) with multiplicative Schwarz. This is because the additive
Schwarz method evaluates the residual for all elements at once, yielding a single, highly
efficient BLAS3 operation. In contrast, multiplicative Schwarz requires a series of local
residual updates, which is harder to optimize. Consistently, the multiplicative MGCG(2,2)
with no = 0 remains the least efficient method for all aspect ratios. Compared toMGCG(1,1)
with no = 1 and arithmetic weighting, the method with no,l = �pl/8� and quintic weighting
succeeds twice as fast for AR = 1 and still gains 23% at AR = 16. Though other choices
may yield even better performance, the study documents that the method is not too sensitive
to parameter variations, such that only minor improvements can be expected.

4.3 Variable Diffusion

Since many problems in physics involve variable coefficients, it is interesting to explore if
the multigrid method is capable to retain its efficiency in such applications. As an example
we consider the diffusion equation
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Fig. 3 Performance of MGCG for different aspect ratios. All cases use 16×16 elements of order p = 16 and
no,l = �pl/8�, if not specified otherwise. a Average logarithmic convergence rate. b Operator applications
required for 101 residual reduction. c Solver runtime for 1010 residual reduction
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− ∇ · (ν∇u) = f (16)

with variable diffusivity ν in the periodic domain Ω = [0, AR] × [0, 1]. From a physical
perspective it seems reasonable that the solution and the diffusivity vary on similar scales.
Following this idea we set u = sin(2πx) sin(2πy) and

ν = 1 + ν̂ sin
(
2π(x − s)

)
sin

(
2π(y − s)

)
, (17)

where ν̂ is the amplitude and s the shift of the diffusivity fluctuation.According to preliminary
studies, a non-zero shift poses an additional difficulty to the solver. Taking this into account,
s = 0.2 is chosen in all tests reported below. The source is analytically computed from
f = −(ν∇2u + ∇ν · ∇u).
Discretization using rectangular spectral elements yields the linear system

Bu = f , (18)

where B(ν) represents the discrete diffusion operator or, equivalently,

B�u = f − Bũ = r̃, (19)

for the correction �u to a given approximation ũ. Application of the Schwarz method
described in Sect. 3.1 leads to the local correction equation

Bss�us = rs, (20)

where Bss and rs are the diffusion operator and, respectively, the residual restricted to the
subdomain Ωs . In comparison to the subdomain problem for Poisson case (7), Eq. (20) is
more expensive to solve, because the fast diagonalization technique is no longer applicable.
Yet, the smoothing property is more important for multigrid than accurate solution of the
subproblems. This motivates the reintroduction of the discrete Laplacian by approximating
the restricted diffusion operator on the left side of (20) byBss ≈ ν̄sAss , where the diffusivity
ν̄s is assumed to be constant in Ωs . For simplicity, ν̄s is set to the average of ν over the
embedded element. The correction can then be approximated as

�us ≈ 1

ν̄s
A−1

ss rs, (21)

where, again, A−1
ss stands for the application of the factored inverse obtained from fast

diagonalization. As a result, the solution techniques developed in Sect. 3 can be utilized with
no change except for the residual evaluation.

The performance of the scheme was studied in two test series. In the first series, the aspect
ratio was fixed to AR = 1 and the domain Ω = [0, 1]2 decomposed into 82 square elements
of order p = 16. The diffusivity fluctuation amplitude ν̂ was gradually increased from 0 to
0.9, where the latter corresponds to variations of themagnitude up to 90%. Figure 4 shows the
measured convergence rates for MG und MGCG using one pre- and post-smoothing based
on additive Schwarz with a level-dependent overlap of no,l = �pl/8� and quintic weighting.
The results indicate that MG retains its efficiency up to fluctuation amplitudes of about 30%,
but then degrades with rising ν̂. As expected, Krylov acceleration improves the robustness,
such that MGCG achieves r̄ = 0.91 for ν̂ = 0.9, which is nearly twice the convergence rate
obtained with MG. Compared to ν̂ = 0, this corresponds to an increase of the cycle count
and, hence, in runtime, by a factor of just 2.2. A similar behavior was observed for polynomial
orders p = 4, 8 and 32.

In the second test series, we increased the domain extension in the x-direction, while
keeping the diffusivity fluctuation amplitude ν̂ at a constant level. The number of elements
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Fig. 4 MG and MGCG convergence rates for different diffusivity fluctuation amplitudes. Discretization is
based on an isotropic mesh comprising 82 elements of order p = 16. One pre- and post-smoothing with an
overlap of no,l = �pl/8� and quintic weighting were applied in both cases
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Fig. 5 MGCG convergence rate for variable diffusivity on anisotropic meshes with increasing aspect ratio
using a variable V-cycle with one pre- and post-smoothing, overlap no,l = �pl/2� and quintic weighting

is fixed and identical in both directions, such that the element aspect ratio equals AR. For
achieving a robustness similar to the Poisson case it proved necessary to increase the sub-
domain overlap with growing ν̂. Figure 5 shows the convergence rates r̄ for MGCG using a
variable V-cycle and additive Schwarz smoothing for an amplitude of 90%, which represents
the most challenging test in the series. Comparing the results for p = 8 and p = 16 one
observes that r̄ strongly depends on the quadrangulation, but only marginally on the poly-
nomial order. Using a finer mesh yields considerably higher convergence rates and better
robustness. Orders 4 and 32 fit nicely into this picture, but are not shown for clarity. The
congruence of different orders using the same mesh suggests, that the performance depends
on how well the diffusivity fluctuation is resolved by the element mean values adopted for
ν̄s . This presents a possible limitation of the approach, which needs further consideration in
subsequentwork. Nevertheless, the study demonstrates the suitability of the proposedmethod
for problems involving variable diffusivity, as long as the latter is sufficiently resolved.
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5 Conclusions

Wehave developed a nonuniformlyweighted additive Schwarzmethod acting as the smoother
in multigrid solvers for the spectral element discretization of the Poisson equation inR2. The
method generalizes the Schwarz/multigrid method proposed in [19] and was inspired from
weighting techniques devised in [11]. In each step, it determines the solution for a subdomain
corresponding to an extended element region. These local solutions are blended according
to a polynomial shape function which features a smooth transition from zero at the border
toward one in the core of the subdomain. As an alternative we considered a multiplicative
Schwarz method with no weighting required. Both Schwarz methods were integrated in a
polynomial multigrid method which, in turn, was embedded in a preconditioned CGmethod.

The performance of these methods was assessed in a series of numerical experiments with
ansatz orders p ranging from 4 to 32 and up to ne = 2562 elements of aspect ratios AR from
1 to 16. For unit-aspect ratio elements the proposed weighting improved the logarithmic MG
convergence rate and reduced the cost by a factor of 1.5–3 in comparison to the original
method. The study indicates that for robustness the subdomain overlap has to be bounded,
i.e., the number no of node layers adopted from neighbor elements must growwith increasing
order. Thus, with MG, the number of layers varies from level to level. A reasonable choice
is to use an overlap of �pl/8� layers, where pl denotes the polynomial order on level l. The
resulting multigrid method is robust with respect to the mesh size, i.e. p and ne, but degrades
with increasing aspect ratio. This behavior can bemitigated byKrylov subspace acceleration:
Using MG as a preconditioner for the inexact conjugate gradient method [9] improves the
convergence rate for higher aspect ratios considerably.

Finally, it has been shown that the proposed multigrid method is easily adapted and
well suited for solving diffusion problems with varying coefficients, provided the mesh is
fine enough to approximate diffusivity fluctuations by element mean values. Improving the
treatment of variable coefficients and extending the approach to three space dimensions are
topics of ongoing and future work.
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