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Abstract We analyze rigorously error estimates and compare numerically spatial/temporal
resolution of various numerical methods for the discretization of the Dirac equation in the
nonrelativistic limit regime, involving a small dimensionless parameter 0 < ε � 1 which
is inversely proportional to the speed of light. In this limit regime, the solution is highly
oscillatory in time, i.e. there are propagating waves with wavelength O(ε2) and O(1) in
time and space, respectively. We begin with several frequently used finite difference time
domain (FDTD) methods and obtain rigorously their error estimates in the nonrelativistic
limit regime by paying particular attention to how error bounds depend explicitly on mesh
size h and time step τ as well as the small parameter ε. Based on the error bounds, in order
to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e. 0 < ε � 1, the
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FDTD methods share the same ε-scalability on time step and mesh size as: τ = O(ε3) and
h = O(

√
ε). Then we propose and analyze two numerical methods for the discretization of

the Dirac equation by using the Fourier spectral discretization for spatial derivatives combined
with the symmetric exponential wave integrator and time-splitting technique for temporal
derivatives, respectively. Rigorous error bounds for the two numerical methods show that
their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 < ε � 1. Extensive
numerical results are reported to support our error estimates.

Keywords Dirac equation · Nonrelativistic limit regime · Finite difference time domain
method · Symmetric exponential wave integrator · Time splitting · Spectral method ·
ε-Scalability

1 Introduction

The Dirac equation, which plays an important role in particle physics, is a relativistic wave
equation derived by the British physicist Paul Dirac in 1928 [28–30,74]. It provided a descrip-
tion of elementary spin-1/2 massive particles, such as electrons and positrons, consistent with
both the principle of quantum mechanics and the theory of special relativity. It was the first
theory to fully account for relativity in the context of quantum mechanics. It addressed the
fine details of the hydrogen spectrum in a completely rigorous way and predicted the exis-
tence of a new form of matter, antimatter [4]. Since the graphene was first produced in the
lab in 2003 [1,63–65,67], the Dirac equation has been extensively adopted to study the-
oretically the structures and/or dynamical properties of graphene and graphite as well as
two dimensional (2D) materials [62]. This experimental advance renewed extensively the
research interests on the mathematical analysis and numerical simulations of the Dirac equa-
tion and/or the (nonlinear) Schrödinger equation without/with external potentials, especially
the honeycomb lattice potential [3,35].

We consider the three dimensional (3D) Dirac equation for describing the time evolution
of spin-1/2 massive particles, such as electrons and positrons, within external time-dependent
electromagnetic potentials [28,29]

i h̄∂tΨ =
⎡
⎣−ich̄

3∑
j=1

α j∂ j + mc2β

⎤
⎦Ψ + e

⎡
⎣V (t, x)I4 −

3∑
j=1

A j (t, x)α j

⎤
⎦Ψ. (1.1)

Here, i = √−1, t is time, x = (x1, x2, x3)
T ∈ R

3 (equivalently written as x =
(x, y, z)T ) is the spatial coordinate vector, ∂k = ∂

∂xk
(k = 1, 2, 3), Ψ := Ψ (t, x) =

(ψ1(t, x), ψ2(t, x), ψ3(t, x), ψ4(t, x))T ∈ C
4 is the complex-valued vector wave function

of the “spinorfield”. In is the n×n identity matrix for n ∈ N, V := V (t, x) is the real-valued
electrical potential and A := A(t, x) = (A1(t, x), A2(t, x), A3(t, x))T is the real-valued
magnetic potential vector, and hence the electric field is given by E(t, x) = −∇V − ∂tA and
the magnetic field is given by B(t, x) = curlA = ∇ × A. The physical constants are: c for
the speed of light, m for the particle’s rest mass, h̄ for the Planck constant and e for the unit
charge. In addition, the 4 × 4 matrices α1, α2, α3 and β are defined as

α1 =
(

0 σ1

σ1 0

)
, α2 =

(
0 σ2

σ2 0

)
, α3 =

(
0 σ3

σ3 0

)
, β =

(
I2 0
0 −I2

)
, (1.2)
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with σ1, σ2, σ3 (equivalently written σx , σy , σz) being the Pauli matrices defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

In order to scale the Dirac equation (1.1), we introduce

t̃ = t

ts
, x̃ = x

xs
, Ψ̃ (t̃, x̃) = x3/2

s Ψ (t, x), Ṽ (t̃, x̃) = V (t, x)
As

, Ã j (t̃, x̃) = A j (t, x)
As

,

(1.4)
where j = 1, 2, 3, and xs , ts and As are the dimensionless length unit, time unit and potential

unit, respectively, satisfying ts = mx2
s

h̄ and As = mv2

e with v = xs
ts

being the wave speed.

Plugging (1.4) into (1.1), multiplying by ts x
3/2
s
h̄ , and then removing all ,̃ we obtain the following

dimensionless Dirac equation in 3D

i∂tΨ =
⎡
⎣− i

ε

3∑
j=1

α j∂ j + 1

ε2 β

⎤
⎦Ψ +

⎡
⎣V (t, x)I4 −

3∑
j=1

A j (t, x)α j

⎤
⎦Ψ, (1.5)

where x ∈ R
3, and ε is a dimensionless parameter inversely proportional to the speed of light

given by

0 < ε := xs
ts c

= v

c
≤ 1. (1.6)

We remark here that if one chooses the dimensionless length unit xs = h̄
mc , ts = xs

c

and As = mc2

e in (1.4), then ε = 1 in (1.6) and Eq. (1.5) with ε = 1 takes the form often
appearing in the literature [2,17,21,23,33,41,49,53]. This choice of xs is appropriate when
the wave speed is at the same order of the speed of light. However, when the wave speed is
much smaller than the speed of light, a different choice of xs is more appropriate. Note that
the choice of xs determines the observation scale of the time evolution of the particles and
decides: (i) which phenomena are ‘visible’ by asymptotic analysis, and (ii) which phenomena
can be resolved by discretization by specified spatial/temporal grids. In fact, there are two

important parameter regimes: One is ε = 1 (⇐⇒ xs = h̄
mc , ts = xs

c and As = mc2

e ), then
Eq. (1.5) describes the case that wave speed is at the same order of the speed of light; the
other one is 0 < ε � 1, then Eq. (1.5) is in the nonrelativistic limit regime.

Similarly to the dimension reduction of the nonlinear Schrödinger equation and/or the
Schrödinger–Poisson equations with/without anisotropic external potentials [8], when the
initial data Ψ (0, x) and the electromagnetic potentials V (t, x) and A(t, x) are independent
of z and thus the wave function Ψ is formally assumed to be independent of z, or when the
electromagnetic potentials V (t, x) and A(t, x) are strongly confined in the z-direction and
thus Ψ is formally assumed to be concentrated on the xy-plane, then the 3D Dirac equation
(1.5) can be reduced to the Dirac equation in 2D with x = (x, y)T ∈ R

2 as

i∂tΨ =
⎡
⎣− i

ε

2∑
j=1

α j∂ j + 1

ε2 β

⎤
⎦Ψ +

⎡
⎣V (t, x)I4 −

2∑
j=1

A j (t, x)α j

⎤
⎦Ψ. (1.7)

This 2D Dirac equation has been widely used to model the electron structure and/or dynamical
properties of graphene since they share the same dispersion relation on the Dirac points [1,35–
37,63–65,67]. Similarly, under the proper assumptions on the initial data and the external
electromagnetic potential, the 3D Dirac equation (1.5) can be reduced to the Dirac equation
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in 1D with Ψ = Ψ (t, x) as

i∂tΨ (t, x) =
[
− i

ε
α1∂x + 1

ε2 β

]
Ψ (t, x) + [V (t, x)I4 − A1(t, x)α1] Ψ (t, x), x ∈ R.

(1.8)
In fact, the Dirac equation in 3D (1.5), in 2D (1.7) and in 1D (1.8) can be written in a unified
way in d-dimensions (d = 1, 2, 3)

i∂tΨ =
⎡
⎣− i

ε

d∑
j=1

α j∂ j + 1

ε2 β

⎤
⎦Ψ +

⎡
⎣V (t, x)I4 −

d∑
j=1

A j (t, x)α j

⎤
⎦Ψ, (1.9)

where x ∈ R
d and the initial condition for dynamics is given as

Ψ (t = 0, x) = Ψ0(x), x ∈ R
d . (1.10)

The Dirac equation (1.9) is dispersive and time symmetric. Introducing the position density
ρ j for the j-component ( j = 1, 2, 3, 4) and the total density ρ as well as the current density
J(t, x) = (J1(t, x), J2(t, x), J3(t, x))T for j = 1, 2, 3, 4 and l = 1, 2, 3

ρ(t, x) =
4∑
j=1

ρ j (t, x) = Ψ ∗Ψ, ρ j (t, x) = |ψ j (t, x)|2; Jl(t, x) = 1

ε
Ψ ∗αlΨ, (1.11)

where f denotes the complex conjugate of f and Ψ ∗ = Ψ
T

, then the following conservation
law can be obtained from the Dirac equation (1.9)

∂tρ(t, x) + ∇ · J(t, x) = 0, x ∈ R
d , t ≥ 0. (1.12)

Thus the Dirac equation (1.9) conserves the total mass as

‖Ψ (t, ·)‖2 :=
∫
Rd

|Ψ (t, x)|2 dx =
∫
Rd

4∑
j=1

|ψ j (t, x)|2 dx

≡ ‖Ψ (0, ·)‖2 = ‖Ψ0‖2, t ≥ 0. (1.13)

If the electric potential V is perturbed by a real constant V 0, e.g. V (t, x) → V (t, x) + V 0,
then the solution Ψ (t, x) → e−iV 0tΨ (t, x) which implies the density of each component ρ j

( j = 1, 2, 3, 4) and the total density ρ unchanged. When d = 1, if the magnetic potential
A1 is perturbed by a real constant A0

1, e.g. A1(t, x) → A1(t, x) + A0
1, then the solution

Ψ (t, x) → ei A
0
1tα1Ψ (t, x) which implies the total density ρ unchanged; but this property

is not valid when d = 2, 3. In addition, when the electromagnetic potentials are time-
independent, i.e. V (t, x) = V (x) and A j (t, x) = A j (x) for j = 1, 2, 3, the following energy
functional is also conserved

E(t) :=
∫
Rd

⎛
⎝− i

ε

d∑
j=1

Ψ ∗α j∂ jΨ + 1

ε2 Ψ ∗βΨ + V (x)|Ψ |2 −
d∑
j=1

A j (x)Ψ ∗α jΨ

⎞
⎠ dx

≡ E(0), t ≥ 0. (1.14)

Furthermore, if the external electromagnetic potentials are constants, i.e. V (t, x) ≡ V 0 and
A j (t, x) ≡ A0

j for j = 1, 2, 3 with A0 = (A0
1, . . . , A

0
d)

T , the Dirac equation (1.9) admits the

plane wave solution as Ψ (t, x) = B ei(k·x−ωt), where the time frequency ω, amplitude vector
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B ∈ R
4 and spatial wave number k = (k1, . . . , kd)T ∈ R

d satisfy the following dispersion
relation

ωB =
⎡
⎣

d∑
j=1

(
k j
ε

− A0
j

)
α j + 1

ε2 β + V 0 I4

⎤
⎦B, (1.15)

which immediately implies the dispersion relation of the Dirac equation (1.9) as

ω := ω(k) = V 0 ± 1

ε2

√
1 + ε2

∣∣k − εA0
∣∣2 = O

(
1

ε2

)
, k ∈ R

d . (1.16)

Plugging (1.2) and (1.3) into (1.7), the 2D Dirac equation (1.7) can be decoupled for
x ∈ R

2 as

i∂tψ1 = − i

ε

(
∂x − i∂y

)
ψ4 + 1

ε2 ψ1 + V (t, x)ψ1 − [A1(t, x) − i A2(t, x)] ψ4,

i∂tψ4 = − i

ε

(
∂x + i∂y

)
ψ1 − 1

ε2 ψ4 + V (t, x)ψ4 − [A1(t, x) + i A2(t, x)] ψ1,

(1.17)

i∂tψ2 = − i

ε

(
∂x + i∂y

)
ψ3 + 1

ε2 ψ2 + V (t, x)ψ2 − [A1(t, x) + i A2(t, x)] ψ3,

i∂tψ3 = − i

ε

(
∂x − i∂y

)
ψ2 − 1

ε2 ψ3 + V (t, x)ψ3 − [A1(t, x) − i A2(t, x)] ψ2.

(1.18)

Equation (1.18) will collapse to (1.17) under the transformation y → −y and A2 → −A2.
Thus, in 2D, the Dirac equation (1.7) can be reduced to the following simplified PDEs with
Φ := Φ(t, x) = (φ1(t, x), φ2(t, x))T ∈ C

2

i∂tΦ =
[
− i

ε

(
σ1∂x + σ2∂y

)+ 1

ε2 σ3

]
Φ + [V (t, x)I2 − A1(t, x)σ1 − A2(t, x)σ2] Φ,

(1.19)
where Φ = (ψ1, ψ4)

T (or Φ = (ψ2, ψ3)
T under the transformation y → −y and A2 →

−A2). Similarly, in 1D, the Dirac equation (1.8) can be reduced to the following simplified
PDEs with Φ = Φ(t, x) = (φ1(t, x), φ2(t, x))T

i∂tΦ =
[
− i

ε
σ1∂x + 1

ε2 σ3

]
Φ + [V (t, x)I2 − A1(t, x)σ1] Φ, x ∈ R, (1.20)

where Φ = (ψ1, ψ4)
T (or Φ = (ψ2, ψ3)

T ). Again, the Dirac equation in 2D (1.19) and in
1D (1.20) can be written in a unified way for x ∈ R

d in d-dimensions (d = 1, 2)

i∂tΦ =
⎡
⎣− i

ε

d∑
j=1

σ j∂ j + 1

ε2 σ3

⎤
⎦Φ +

⎡
⎣V (t, x)I2 −

d∑
j=1

A j (t, x)σ j

⎤
⎦Φ, (1.21)

and the initial condition for dynamics is given as

Φ(t = 0, x) = Φ0(x), x ∈ R
d . (1.22)

The Dirac equation (1.21) is dispersive and time symmetric. By introducing the position
density ρ j for the j-th component ( j = 1, 2) and the total density ρ as well as the current
density J(t, x) = (J1(t, x), J2(t, x))T

ρ(t, x) =
2∑
j=1

ρ j (t, x) = Φ∗Φ, ρ j (t, x) = |φ j (t, x)|2, J j (t, x) = 1

ε
Φ∗σ jΦ, j = 1, 2,

(1.23)
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the conservation law (1.12) is also satisfied [23]. In addition, the Dirac equation (1.21)
conserves the total mass as

‖Φ(t, ·)‖2 :=
∫
Rd

|Φ(t, x)|2 dx =
∫
Rd

2∑
j=1

|φ j (t, x)|2 dx

≡ ‖Φ(0, ·)‖2 = ‖Φ0‖2, t ≥ 0. (1.24)

Again, if the electric potential V is perturbed by a real constant V 0, e.g. V (t, x) → V (t, x)+
V 0, the solution Φ(t, x) → e−iV 0tΦ(t, x) which implies the density of each component ρ j

( j = 1, 2) and the total density ρ unchanged. When d = 1, if the magnetic potential A1

is perturbed by a real constant A0
1, e.g. A1(t, x) → A1(t, x) + A0

1, the solution Φ(t, x) →
ei A

0
1tσ1Φ(t, x) implying the total density ρ unchanged; but this property is not valid when

d = 2. When the electromagnetic potentials are time-independent, i.e. V (t, x) = V (x) and
A j (t, x) = A j (x) for j = 1, 2, the following energy functional is also conserved

E(t) :=
∫
Rd

⎛
⎝− i

ε

d∑
j=1

Φ∗σ j∂ jΦ + 1

ε2 Φ∗σ3Φ + V (x)|Φ|2 −
d∑
j=1

A j (x)Φ∗σ jΦ

⎞
⎠ dx

≡ E(0), t ≥ 0. (1.25)

Furthermore, if the external electromagnetic potentials are constants, i.e. V (t, x) ≡ V 0 and
A j (t, x) ≡ A0

j for j = 1, 2, the Dirac equation (1.21) admits the plane wave solution as

Φ(t, x) = B ei(k·x−ωt), where the time frequency ω, amplitude vector B ∈ R
2 and spatial

wave number k = (k1, . . . , kd)T ∈ R
d satisfy the following dispersion relation

ωB =
⎡
⎣

d∑
j=1

(
k j
ε

− A0
j

)
σ j + 1

ε2 σ3 + V 0 I2

⎤
⎦B, (1.26)

which again implies the dispersion relation (1.16) of the Dirac equation (1.21) for d = 2, 1.
For the Dirac equation (1.9) with ε = 1, i.e. O(1)-speed of light regime, there are extensive

analytical and numerical results in the literatures. For the existence and multiplicity of bound
states and/or standing wave solutions, we refer to [25,26,31,32,44,47,75] and references
therein. For the analysis of the classical/semiclassical limits via the Wigner transform tech-
niques, we refer to [7,20,22,43,57,72] and references therein. For the numerical methods
and comparison such as the finite difference time domain (FDTD) methods and the Gaussian
beam methods, we refer to [5,7,27,38,39,45,69,77] and references therein. However, for the
Dirac equation (1.9) with 0 < ε � 1, i.e. nonrelativistic limit regime (or the scaled speed of
light goes to infinity), the analysis and efficient computation of the Dirac equation (1.9) (or
1.21) are mathematically rather complicated. The main difficulty is due to that the solution
is highly oscillatory in time and the corresponding energy functionals (1.14) and (1.25) are
indefinite [18,33] and become unbounded when ε → 0. There are extensive mathematical
analysis of the (semi)-nonrelativistic limit of the Dirac equation (1.9) to the Pauli equa-
tion [18,19,24,40,46,54,59–61,68,76] and/or the Schrödinger equation when ε → 0 [18].
These rigorous analytical results show that the solution propagates waves with wavelength
O(ε2) and O(1) in time and space, respectively, when 0 < ε � 1. In fact, the oscillatory
structure of the solution of the Dirac equation (1.9) when 0 < ε � 1 can be formally
observed from its dispersion relation (1.15) (or 1.26). To illustrate this further, Fig. 1 shows

the solution of the Dirac equation (1.21) with d = 1, V (t, x) = 1−x
1+x2 , A1(t, x) = (1+x)2

1+x2
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Fig. 1 The solution φ1(t = 1, x) and φ1(t, x = 0) of the Dirac equation (1.21) with d = 1 for different ε.
Re( f ) denotes the real part of f

and Φ0(x) = (
exp(−x2/2), exp(−(x − 1)2/2)

)T
for different ε. This highly oscillatory

nature of the solution of (1.9) (or 1.21) causes severe numerical burdens in practical com-
putation, making the numerical approximation of (1.9) (or 1.21) extremely challenging and
costly in the nonrelativistic regime 0 < ε � 1. In [53], the resolution of the time-splitting
Fourier pseudospectral (TSFP) method was studied for the Maxwell–Dirac equation in the
nonrelativistic limit regime.

Recently, different numerical methods were proposed and analyzed for the efficient com-
putation of the Klein–Gordon equation in the nonrelativistic limit regime [11,12,34] and/or
highly oscillatory dispersive partial differential equations (PDEs) [9,10,13,14]. To our knowl-
edge, so far there are few results on the numerics of the Dirac equation in the nonrelativistic
limit regime. The aim of this paper is to study the efficiency of the frequently used FDTD
and TSFP methods applied to the Dirac equation in the nonrelativistic limit regime, to pro-
pose the symmetric exponential wave integrator Fourier pseudospectral (sEWI-FP) method
and to compare their resolution capacities in this regime. We start with the detailed analysis
on the stability and convergence of several standard implicit/semi-implicit/explicit FDTD
methods [71]. Here we pay particular attention to how the error bounds depend explicitly on
the small parameter ε in addition to the mesh size h and time step τ . Based on the estimates,
in order to obtain ‘correct’ numerical approximations when 0 < ε � 1, the meshing strategy
requirement (ε-scalability) for those frequently used FDTD methods is: h = O(

√
ε) and

τ = O(ε3), which suggests that the standard FDTD methods are computationally expen-
sive for the Dirac equation (1.9) as 0 < ε � 1. To relax the ε-scalability, we then propose
the sEWI-FP method and compare it with the TSFP method, whose ε-scalability are opti-
mal for both time and space in view of the inherent oscillatory nature. The key ideas of the
sEWI-FP are: (i) to apply the Fourier pseudospectral discretization for spatial derivatives; and
(ii) to adopt the symmetric exponential wave integrator (sEWI) for integrating the ordinary
differential equations (ODEs) in phase space [42,50] which was well demonstrated in the
literatures that it has favorable properties compared to standard time integrators for oscilla-
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tory differential equations [42,50–52]. Rigorous error estimates show that the ε-scalability
of the sEWI-FP method is h = O(1), and τ = O(ε2) for the Dirac equation with external
electromagnetic potentials, meanwhile, the ε-scalability of TSFP method is h = O(1) and
τ = O(ε2). Thus, the sEWI-FP and TSFP offer compelling advantages over commonly used
FDTD methods in temporal and spatial resolution when 0 < ε � 1.

The rest of this paper is organized as follows. In Sect. 2, several second-order FDTD meth-
ods are reviewed and their stabilities and convergence are analyzed in the nonrelativistic limit
regime. In Sect. 3, a symmetric exponential wave integrator Fourier pseudospectral method is
proposed and analyzed rigorously. In Sect. 4, a time-splitting Fourier pseudospectral method
is reviewed and analyzed rigorously. In Sect. 5, numerical comparison results are reported.
Finally, some concluding remarks are drawn in Sect. 6. The mathematical proofs of the error
estimates are given in the appendices, where extensions of sEWI-FP and TSFP to higher
dimensions are also presented. Throughout the paper, we adopt the standard notations of
Sobolev spaces, use the notation p � q to represent that there exists a generic constant C
which is independent of h, τ and ε such that |p| ≤ C q .

2 FDTD Methods and Their Analysis

In this section, we apply the commonly used FDTD methods to the Dirac equation (1.9) (or
1.21) and analyze their stabilities and convergence in the nonrelativistic limit regime. For
simplicity of notations, we shall only present the numerical methods and their analysis for
(1.21) in 1D. Generalization to (1.9) and/or higher dimensions is straightforward and results
remain valid without modifications. Similarly to most works in the literatures for the analysis
and computation of the Dirac equation (cf. [17,23,48,49,53,66,77] and references therein),
in practical computation, we truncate the whole space problem onto an interval Ω = (a, b)
with periodic boundary conditions, which is large enough such that the truncation error is
negligible. In 1D, the Dirac equation (1.21) with periodic boundary conditions collapses to

i∂tΦ =
[
− i

ε
σ1∂x + 1

ε2 σ3

]
Φ + [V (t, x)I2 − A1(t, x)σ1] Φ, x ∈ Ω, t > 0, (2.1)

Φ(t, a) =Φ(t, b), ∂xΦ(t, a) = ∂xΦ(t, b), t ≥ 0; Φ(0, x) = Φ0(x), x ∈ Ω, (2.2)

where Φ := Φ(t, x), Φ0(a) = Φ0(b) and Φ ′
0(a) = Φ ′

0(b).

2.1 FDTD Methods

Choose mesh size h := Δx = b−a
M with M being an even positive integer, time step τ :=

Δt > 0 and denote the grid points and time steps as:

x j := a + jh, j = 0, 1, . . . , M; tn := nτ, n = 0, 1, 2, . . . .

Denote XM = {U = (U0,U1, . . . ,UM )T | Uj ∈ C
2, j = 0, 1, . . . , M, U0 = UM } and we

always use U−1 = UM−1 and UM+1 = U1 if they are involved. For any U ∈ XM , we denote
its Fourier representation as

Uj =
M/2−1∑
l=−M/2

Ũl e
iμl (x j−a) =

M/2−1∑
l=−M/2

Ũl e
2i jlπ/M , j = 0, 1, . . . , M, (2.3)

123



1102 J Sci Comput (2017) 71:1094–1134

where μl and Ũl ∈ C
2 are defined as

μl = 2lπ

b − a
, Ũl = 1

M

M−1∑
j=0

Uj e
−2i jlπ/M , l = −M

2
, . . . ,

M

2
− 1. (2.4)

The standard l2-norm in XM is given as

‖U‖2
l2 = h

M−1∑
j=0

|Uj |2, U ∈ XM . (2.5)

Let Φn
j be the numerical approximation of Φ(tn, x j ) and V n

j = V (tn, x j ), V
n+1/2
j = V (tn +

τ/2, x j ), An
1, j = A1(tn, x j ) and An+1/2

1, j = A1(tn + τ/2, x j ) for 0 ≤ j ≤ M and n ≥ 0.

Denote Φn = (
Φn

0 , Φn
1 , . . . , Φn

M

)T ∈ XM as the solution vector at t = tn . Introduce the
finite difference discretization operators for j = 0, 1, . . . , M and n ≥ 0 as:

δ+
t Φn

j = Φn+1
j − Φn

j

τ
, δtΦ

n
j = Φn+1

j − Φn−1
j

2τ
, δxΦ

n
j = Φn

j+1 − Φn
j−1

2h
,

and the average as

Φ
n+ 1

2
j = Φn+1

j + Φn
j

2
.

Here we consider several frequently used FDTD methods to discretize the Dirac equation
(2.1) for j = 0, 1, . . . , M − 1.

I. Leap-frog finite difference (LFFD) method, for n ≥ 1,

iδtΦ
n
j =

[
− i

ε
σ1δx + 1

ε2 σ3

]
Φn

j +
[
V n
j I2 − An

1, jσ1

]
Φn

j . (2.6)

II. Semi-implicit finite difference (SIFD1) method, for n ≥ 1,

iδtΦ
n
j = − i

ε
σ1δxΦ

n
j +

[
1

ε2 σ3 + V n
j I2 − An

1, jσ1

]
Φn+1

j + Φn−1
j

2
. (2.7)

III. Another semi-implicit finite difference (SIFD2) method, for n ≥ 1,

iδtΦ
n
j =

[
− i

ε
σ1δx + 1

ε2 σ3

]
Φn+1

j + Φn−1
j

2
+
[
V n
j I2 − An

1, jσ1

]
Φn

j . (2.8)

IV. Crank-Nicolson finite difference (CNFD) method, for n ≥ 0,

iδ+
t Φn

j =
[
− i

ε
σ1δx + 1

ε2 σ3

]
Φ

n+1/2
j +

[
V n+1/2
j I2 − An+1/2

1, j σ1

]
Φ

n+1/2
j . (2.9)

The initial and boundary conditions in (2.2) are discretized as:

Φn+1
M = Φn+1

0 , Φn+1
−1 = Φn+1

M−1, n ≥ 0; Φ0
j = Φ0(x j ), j = 0, 1, . . . , M. (2.10)

Using Taylor expansion and noticing (2.1), the first step for the LFFD (2.6), SIFD1 (2.7) and
SIFD2 (2.8) can be computed as

Φ1
j = Φ0

j − sin
(τ

ε

)
σ1Φ

′
0(x j ) − i

[
sin
( τ

ε2

)
σ3 + τV 0

j I2 − τ A0
1, jσ1

]
Φ0

j , (2.11)
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where j = 0, 1, . . . , M . In the above, we adopt 1
τ

sin
(

τ
ε

)
and 1

τ
sin
(

τ
ε2

)
instead of 1

ε
and

1
ε2 such that (2.11) is second order in term of τ for any fixed 0 < ε ≤ 1 and ‖Φ1‖∞ :=
max

0≤ j≤M
|Φ1

j | � 1 for 0 < ε ≤ 1. We remark here that they can be simply replaced by 1 when

ε = 1.
The above four methods are all time symmetric, i.e. they are unchanged under τ ↔ −τ

and n + 1 ↔ n − 1 in the LFFD, SIFD1 and SIFD2 methods or n + 1 ↔ n in the CNFD
method, and the memory cost is the same at O(M). The LFFD method (2.6) is explicit and
its computational cost per step is O(M). In fact, it might be the simplest and most efficient
discretization for the Dirac equation when ε = 1 and thus it has been widely used when ε = 1.
The SIFD1 method (2.7) is implicit, however at each time step for n ≥ 1, the corresponding
linear system is decoupled and can be solved explicitly for j = 0, 1, . . . , M − 1 as

Φn+1
j =

[
(i − τV n

j )I2 − τ

ε2 σ3 + τ An
1, jσ1

]−1
Hn

j ,

with Hn
j =

[(
(i + τV n

j )I2 + τ
ε2 σ3 − τ An

1, jσ1

)
Φn−1

j − 2iτ
ε

σ1δxΦ
n
j

]
, and thus its compu-

tational cost per step is O(M).
The SIFD2 method (2.8) is implicit, however at each time step for n ≥ 1, the corresponding

linear system is decoupled in phase (Fourier) space and can be solved explicitly in phase space
for l = −M/2, . . . , M/2 − 1 as

˜(Φn+1)l =
(
i I2 − τ sin(μl h)

εh
σ1 − τ

ε2 σ3

)−1

Ln
l , (2.12)

where

Ln
l =

[(
i I2 + τ sin(μl h)

εh
σ1 + τ

ε2 σ3

)
˜(Φn−1)l + 2τ ˜(GnΦn)l

]
,

and Gn = (Gn
0,Gn

1, . . . ,Gn
M )T ∈ XM with Gn

j = −An
1, jσ1 + V n

j I2 for j = 0, 1, . . . , M ,
and thus its computational cost per step is O(M ln M). The CNFD method (2.9) is implicit
and at each time step for n ≥ 0, the corresponding linear system is coupled and needs to be
solved via either a direct solver or an iterative solver, and thus its computational cost per step
depends on the linear system solver, which is usually much larger than O(M), especially in
2D and 3D. Based on the computational cost per time step, the LFFD method is the most
efficient one and the CNFD method is the most expensive one.

2.2 Linear Stability Analysis

In order to carry out the linear stability analysis for the FDTD methods via the von Neumann
method [71], we assume that A1(t, x) ≡ A0

1 and V (t, x) ≡ V 0 with A0
1 and V 0 being two

real constants in the Dirac equation (2.1). Then we have the following results for the FDTD
methods:

Lemma 2.1 (i) The LFFD method (2.6) is stable under the stability condition

0 < τ ≤ ε2h

|V 0|ε2h +
√
h2 + ε2(1 + εh|A0

1|)2
, h > 0, 0 < ε ≤ 1. (2.13)

(ii) The SIFD1 method (2.7) is stable under the stability condition

0 < τ ≤ εh, h > 0, 0 < ε ≤ 1. (2.14)
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(iii) The SIFD2 method (2.8) is stable under the stability condition

0 < τ ≤ 1

|V 0| + |A0
1|

, h > 0, 0 < ε ≤ 1. (2.15)

(iv) The CNFD method (2.9) is unconditionally stable, i.e. it is stable for any τ, h > 0 and
0 < ε ≤ 1.

Proof (i) Plugging

Φn
j =

M/2−1∑
l=−M/2

ξnl (̃Φ0)l e
iμl (x j−a) =

M/2−1∑
l=−M/2

ξnl (̃Φ0)l e
2i jlπ/M , 0 ≤ j ≤ M, (2.16)

with ξl ∈ C and (̃Φ0)l being the amplification factor and the Fourier coefficient at n = 0,
respectively, of the l-th mode in the phase space into (2.6), using the orthogonality of the
Fourier series, we obtain for l = −M

2 , . . . , M
2 − 1,

∣∣∣∣(ξ2
l − 1)I2 − 2iτξl

(
A0

1σ1 − V 0 I2 − 1

ε2 σ3 − sin(μl h)

εh
σ1

)∣∣∣∣ = 0. (2.17)

Substituting (1.3) into (2.17), we get that the amplification factor ξl satisfies

ξ2
l − 2iτθlξl − 1 = 0, l = −M

2
, . . . ,

M

2
− 1, (2.18)

where

θl = −V 0 ± 1

ε2h

√
h2 + ε2

(
A0

1εh − sin(μl h)
)2

, l = −M

2
, . . . ,

M

2
− 1.

Then the stability condition for the LFFD method (2.6) becomes

|ξl | ≤ 1 ⇐⇒ |τθl | ≤ 1, l = −M

2
, . . . ,

M

2
− 1, (2.19)

which immediately implies the condition (2.13).
(ii) Similarly to (i), plugging (2.16) into the SIFD1 method (2.7), we have for l =

−M
2 , . . . , M

2 − 1,
∣∣∣∣(ξ2

l − 1)I2 − iτ(ξ2
l + 1)

(
A0

1σ1 − V 0 I2 − 1

ε2 σ3

)
+ 2iτξl sin(μl h)

εh
σ1

∣∣∣∣ = 0. (2.20)

Noticing (1.3), under the condition (2.14), we can get |ξl | ≤ 1 for l = −M
2 , . . . , M

2 − 1, and
thus it is stable.

(iii) Similarly to (i), plugging (2.16) into the SIFD2 method (2.8), we have for l =
−M

2 , . . . , M
2 − 1,

∣∣∣∣(ξ2
l − 1)I2 + iτ(ξ2

l + 1)

(
1

ε2 σ3 + sin(μl h)

εh
σ1

)
− 2iτξl(A

0
1σ1 − V 0 I2)

∣∣∣∣ = 0. (2.21)

Noticing (1.3), under the condition (2.15), we obtain

|ξl | ≤ 1, l = −M

2
, . . . ,

M

2
− 1,

and thus it is stable.
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(iv) Similarly to (i), plugging (2.16) into the CNFD method (2.9), we obtain for l =
−M

2 , . . . , M
2 − 1,

∣∣∣∣(ξl − 1)I2 + iτ

2
(ξl + 1)

(
1

ε2 σ3 − A0
1σ1 − V 0 I2 + sin(μl h)

εh
σ1

)∣∣∣∣ = 0. (2.22)

Noticing (1.3), we have for l = −M
2 , . . . , M

2 − 1,

|ξl | =
∣∣∣∣
2 + iτθl

2 − iτθl

∣∣∣∣ = 1, θl = V 0 ± 1

ε2h

√
h2 + ε2

(
A0

1εh − sin(μl h)
)2

. (2.23)

Thus it is unconditionally stable. ��
2.3 Mass and Energy Conservation

For the CNFD method (2.9), we have the following conservative properties.

Lemma 2.2 The CNFD (2.9) conserves the mass in the discretized level, i.e.

‖Φn‖2
l2 := h

M−1∑
j=0

|Φn
j |2 ≡ h

M−1∑
j=0

|Φ0
j |2 = ‖Φ0‖2

l2 = h
M−1∑
j=0

|Φ0(x j )|2, n ≥ 0. (2.24)

Furthermore, if V (t, x) = V (x) and A1(t, x) = A1(x) are time independent, the CNFD
(2.9) conserves the energy as well,

En
h =h

M−1∑
j=0

[
− i

ε
(Φn

j )
∗σ1δxΦ

n
j + 1

ε2 (Φn
j )

∗σ3Φ
n
j + Vj |Φn

j |2 − A1, j (Φ
n
j )

∗σ1Φ
n
j

]

≡E0
h , n ≥ 0, (2.25)

where Vj = V (x j ) and A1, j = A1(x j ) for j = 0, 1, . . . , M.

Proof (i) Firstly, we prove the mass conservation (2.24). Multiplying both sides of (2.9) from
left by hτ (Φ

n+1/2
j )∗ and taking the imaginary part, we have for j = 0, 1, . . . , M − 1,

h|Φn+1
j |2 = h|Φn

j |2 − τh

2ε

[
(Φ

n+1/2
j )∗σ1δxΦ

n+1/2
j + (Φ

n+1/2
j )T σ1δxΦ

n+1/2
j

]
. (2.26)

Summing (2.26) for j = 0, 1, . . . , M − 1 and noticing (1.3), we get

‖Φn+1‖2
l2 = ‖Φn‖2

l2 − τh

2ε

M−1∑
j=0

[
(Φ

n+1/2
j )∗ σ1δxΦ

n+1/2
j + (Φ

n+1/2
j )T σ1δxΦ

n+1/2
j

]

= ‖Φn‖2
l2 − τ

2ε

M−1∑
j=0

[
(Φ

n+1/2
j )∗ σ1Φ

n+1/2
j+1 + (Φ

n+1/2
j )T σ1Φ

n+1/2
j+1

−(Φ
n+1/2
j+1 )∗ σ1Φ

n+1/2
j − (Φ

n+1/2
j+1 )T σ1Φ

n+1/2
j

]

= ‖Φn‖2
l2 , n ≥ 0, (2.27)

which immediately implies (2.24) by induction.
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(ii) Secondly, we prove the energy conservation (2.25). Multiplying both sides of (2.9)
from left by 2h (Φn+1

j − Φn
j )

∗ and taking the real part, we have

− h Re

[
i

ε
(Φn+1

j − Φn
j )

∗σ1δx (Φ
n+1
j + Φn

j )

]
+ h

ε2

[
(Φn+1

j )∗σ3Φ
n+1
j − (Φn

j )
∗σ3Φ

n
j

]

+ hVj (|Φn+1
j |2 − |Φn

j |2) − hA1, j

[
(Φn+1

j )∗σ1Φ
n+1
j − (Φn

j )
∗σ1Φ

n
j

]
= 0. (2.28)

Summing (2.28) for j = 0, 1, . . . , M − 1 and noticing the summation by parts formula, we
have

h
M−1∑
j=0

Re

(
i

ε
(Φn+1

j − Φn
j )

∗σ1δx (Φ
n+1
j + Φn

j )

)

= ih

ε

M−1∑
j=0

(Φn+1
j )∗σ1δxΦ

n+1
j − ih

ε

M−1∑
j=0

(Φn
j )

∗σ1δxΦ
n
j ,

and

− ih

ε

M−1∑
j=0

(Φn+1
j )∗σ1δxΦ

n+1
j + ih

ε

M−1∑
j=0

(Φn
j )

∗σ1δxΦ
n
j

+ h

ε2

M−1∑
j=0

(
(Φn+1

j )∗σ3Φ
n+1
j − (Φn

j )
∗σ3Φ

n
j

)
+ h

M−1∑
j=0

Vj (|Φn+1
j |2 − |Φn

j |2)

− h
M−1∑
j=0

A1, j

(
(Φn+1

j )∗σ1Φ
n+1
j − (Φn

j )
∗σ1Φ

n
j

)
= 0, (2.29)

which immediately implies (2.25). ��
2.4 Error Estimates

Let 0 < T < T ∗ with T ∗ being the maximal existence time of the solution, and
denote ΩT = [0, T ] × Ω . Motivated by the nonrelativistic limit of the Dirac equation
[18] and the dispersion relation (1.26), we assume that the exact solution of (2.1) satis-
fies Φ ∈ C3([0, T ]; (L∞(Ω))2) ∩ C2([0, T ]; (W 1,∞

p (Ω))2) ∩ C1([0, T ]; (W 2,∞
p (Ω))2) ∩

C([0, T ]; (W 3,∞
p (Ω))2) and

(A)

∥∥∥∥
∂r+s

∂tr∂xs
Φ

∥∥∥∥
L∞([0,T ];(L∞(Ω))2)

� 1

ε2r , 0 ≤ r ≤ 3, 0 ≤ r + s ≤ 3, 0 < ε ≤ 1, (2.30)

where Wm,∞
p (Ω) = {u | u ∈ Wm,∞(Ω), ∂ lx u(a) = ∂ lx u(b), l = 0, . . . ,m − 1} for m ≥ 1

and here the boundary values are understood in the trace sense. In the subsequent discussion,
we will omit Ω when referring to the space norm taken on Ω . In addition, we assume the
electromagnetic potentials V ∈ C(ΩT ) and A1 ∈ C(ΩT ) and denote

(B) Vmax := max
(t,x)∈ΩT

|V (t, x)|, A1,max := max
(t,x)∈ΩT

|A1(t, x)|. (2.31)

Remark 2.1 From the analysis point of view, if V (t, x), A1(t, x) and initial data Φ0

are sufficiently smooth, e.g. V (t, x), A(t, x) ∈ C([0, T ];W 4,2
p ) ∩ C1([0, T ];W 2,2

p ) ∩
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C2([0, T ];W 1,2
p ) and Φ0 ∈ (W 4,2

p )2, the assumption (A) would hold [18]. In practice, if
the exact solution Φ(t, x) remains well localized for t < T and the errors due to the periodic
truncation of V (t, x)Φ(t, x) and A1(t, x)Φ(t, x) onto the bounded domain Ω are negligible,
the error estimates presented below would still hold without the periodicity assumptions on
V (t, x), A1(t, x) and Φ0. It is worth noticing that the honeycomb lattice potential [3] and
many other external electromagnetic potentials have the desired smoothness.

Define the grid error function en = (en0, en1, . . . , enM )T ∈ XM as:

enj = Φ(tn, x j ) − Φn
j , j = 0, 1, . . . , M, n ≥ 0, (2.32)

with Φn
j being the approximations obtained from the FDTD methods.

For the LFFD (2.6), we assume the stability condition

0 < τ ≤ ε2h

ε2hVmax +√h2 + ε2(1 + εhA1,max)2
, h > 0, 0 < ε ≤ 1, (2.33)

and establish the following error estimate (see its proof in “Appendix 1”).

Theorem 2.1 Under the assumptions (A) and (B), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤ h0 and
0 < τ ≤ τ0 and under the stability condition (2.33), we have the following error estimate
for the LFFD (2.6) with (2.10) and (2.11)

‖en‖l2 � h2

ε
+ τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.34)

Similar to the proof of the LFFD method, error estimates for the CNFD (2.9), SIFD1 (2.7)
and SIFD2 (2.8) under the stability condition

0 < τ ≤ 1

Vmax + A1,max
, h > 0, 0 < ε ≤ 1, (2.35)

can be derived and the details are omitted here for brevity.

Theorem 2.2 Under the assumptions (A) and (B), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, 0 < h ≤ h0 and
0 < τ ≤ τ0, we have the following error estimate for the CNFD (2.9) with (2.10)

‖en‖l2 � h2

ε
+ τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.36)

Theorem 2.3 Under the assumptions (A) and (B), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤ h0 and
0 < τ ≤ τ0 and under the stability condition (2.14), we have the following error estimate
for the SIFD1 (2.7) with (2.10) and (2.11)

‖en‖l2 � h2

ε
+ τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.37)

Theorem 2.4 Under the assumptions (A) and (B), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤ h0 and
0 < τ ≤ τ0 and under the stability condition (2.35), we have the following error estimate
for the SIFD2 (2.8) with (2.10) and (2.11)

‖en‖l2 � h2

ε
+ τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.38)
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Based on Theorems 2.2–2.4, the four FDTD methods studied here share the same tempo-
ral/spatial resolution capacity in the nonrelativistic limit regime. In fact, given an accuracy
bound δ > 0, the ε-scalability of the four FDTD methods is:

τ = O
(
ε3

√
δ
)

= O(ε3), h = O
(√

δε
)

= O
(√

ε
)
, 0 < ε � 1. (2.39)

3 A sEWI-FP Method and Its Analysis

In this section, we propose a symmetric exponential wave integrator Fourier pseudospectral
(sEWI-FP) method to solve the Dirac equation (1.9) (or 1.21) and establish its stability
and convergence in the nonrelativistic limit regime. Again, for simplicity of notations, we
shall only present the numerical method and its analysis for (2.1) in 1D. Generalization
to (1.9) and/or higher dimensions is straightforward and the results remain valid without
modifications (see generalizations in “Appendix 3”).

3.1 The sEWI-FP Method

Denote

YM = ZM × ZM , ZM = span

{
φl(x) = eiμl (x−a), l = −M

2
, . . . ,

M

2
− 1

}
.

Let [Cp(Ω)]2 be the function space consisting of all periodic vector function U (x) : Ω =
[a, b] → C

2. For any U (x) ∈ [Cp(Ω)]2 and U ∈ XM , define PM : [L2(Ω)]2 → YM as
the standard projection operator [70], IM : [Cp(Ω)]2 → YM and IM : XM → YM as the
standard interpolation operator [70], i.e. for a ≤ x ≤ b

(PMU )(x) =
M/2−1∑
l=−M/2

Ûl e
iμl (x−a), (IMU )(x) =

M/2−1∑
l=−M/2

Ũl e
iμl (x−a), (3.1)

with

Ûl = 1

b − a

∫ b

a
U (x) e−iμl (x−a) dx, Ũl = 1

M

M−1∑
j=0

Uj e
−2i jlπ/M , (3.2)

where l = −M
2 ,−M

2 + 1, . . . , M
2 − 1 and Uj = U (x j ) when U is a function.

The Fourier spectral discretization for the Dirac equation (2.1) is as follows:
Find ΦM (t, x) ∈ YM , i.e.

ΦM (t, x) =
M/2−1∑
l=−M/2

(̂ΦM )l(t) e
iμl (x−a), a ≤ x ≤ b, t ≥ 0, (3.3)

such that, for a < x < b and t > 0, ΦM := ΦM (t, x) satisfies

i∂tΦM =
[
− i

ε
σ1∂x + 1

ε2 σ3

]
ΦM + PM (VΦM )(t, x) − σ1PM (A1ΦM ). (3.4)

Substituting (3.3) into (3.4), noticing the orthogonality of φl(x), we get for l = −M
2 , . . . , M

2 −
1 and t ≥ 0

i
d

dt
(̂ΦM )l(t) =

[
μl

ε
σ1 + 1

ε2 σ3

]
(̂ΦM )l(t) + ̂(VΦM )l(t) − σ1 ̂(A1ΦM )l(t) = 0. (3.5)
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For each l (l = −M
2 ,−M

2 + 1, . . . , M
2 − 1), when t is near t = tn (n ≥ 0), we rewrite the

above ODEs as

i
d

ds
(̂ΦM )l(tn + s) = 1

ε2 Γl (̂ΦM )l(tn + s) + F̂n
l (s), s ∈ R, (3.6)

where

F̂n
l (s) = ̂(GΦM )l(tn + s), G(t, x) = V (t, x)I2 − σ1A1(t, x), s, t ∈ R, (3.7)

and Γl = μlεσ1 + σ3 = Ql Dl (Ql)
∗ with δl =

√
1 + ε2μ2

l and

Γl =
(

1 μlε

μlε −1

)
, Ql =

( 1+δl√
2δl (1+δl )

− εμl√
2δl (1+δl )

εμl√
2δl (1+δl )

1+δl√
2δl (1+δl )

)
, Dl =

(
δl 0
0 −δl

)
. (3.8)

Solving the above ODE (3.6) via the integrating factor method, we obtain

(̂ΦM )l(tn + s) = e−isΓl/ε
2
(̂ΦM )l(tn) − i

∫ s

0
ei(w−s)Γl/ε

2
F̂n
l (w) dw, s ∈ R. (3.9)

We note here that eisΓl = cos(sΓl) + i sin(sΓl) (s ∈ R, l = −M
2 , . . . , M − 1) and

sin(sΓl) = Ql

(
sin(sδl) 0

0 − sin(sδl)

)
Q∗

l , cos(sΓl) = cos(sδl)I2. (3.10)

Setting n = 0 and s = τ , we get

(̂ΦM )l(τ ) = e−isΓl/ε
2
(̂ΦM )l(0) − i

∫ τ

0
ei(w−τ)Γl/ε

2
F̂0
l (w) dw. (3.11)

For n ≥ 1, taking s = τ and s = −τ in (3.9), respectively, and subtracting one from the
other, we have

(̂ΦM )l(tn+1) =(̂ΦM )l(tn−1) − 2i sin(τΓl/ε
2)(̂ΦM )l(tn)

− i
∫ τ

0
cos

(
(w − τ)δl

ε2

) (
F̂n
l (w) + F̂n

l (−w)
)
dw

+
∫ τ

0
sin

(
(w − τ)Γl

ε2

) (
F̂n
l (w) − F̂n

l (−w)
)
dw, (3.12)

To obtain an explicit numerical method with second order accuracy in time, we approx-
imate the integrals in (3.11) and (3.12) via the Gautschi-type/trapezoidal rules [42,50,51],
which have been widely used for integrating highly oscillatory ODEs [6,12,42,50,51,55,56],
as

∫ τ

0
e
i(w−τ)

ε2 Γl F̂0
l (w) dw ≈

∫ τ

0
e
i(w−τ)

ε2 Γl dw F̂0
l (0)

= −iε2Γ −1
l

[
I2 − e

− iτ
ε2 Γl

]
F̂0
l (0), (3.13)
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and for n ≥ 1
∫ τ

0
cos

(
(w − τ)

ε2 δl

) (
F̂n
l (w) + F̂n

l (−w)
)
dw

≈
∫ τ

0
cos

(
(w − τ)

ε2 δl

) (
2F̂n

l (0) + ∂t F̂
n
l (0)(w − w)

)
dw = 2ε2

δl
sin(τδl/ε

2)F̂n
l (0),

(3.14)∫ τ

0
sin((w − τ)Γl/ε

2)
(
F̂n
l (w) − F̂n

l (−w)
)
dw

≈ τ

2

[
sin

(−τΓl

ε2

)
0 + sin

(
0Γl

ε2

) (
F̂n
l (τ ) − F̂n

l (−τ)
)] = 0. (3.15)

Now, we are ready to describe our scheme. Let Φn
M (x) be the approximation of ΦM (tn, x)

(n ≥ 0). Choosing Φ0
M (x) = (PMΦ0)(x), a symmetric exponential wave integrator Fourier

spectral (sEWI-FS) discretization for the Dirac equation (2.1) is to update the numerical
approximation Φn+1

M (x) ∈ YM (n = 0, 1, . . .) as

Φn+1
M (x) =

M/2−1∑
l=−M/2

̂
(Φn+1

M )l e
iμl (x−a), a ≤ x ≤ b, n ≥ 0, (3.16)

where for l = −M
2 , . . . , M

2 − 1,

̂
(Φn+1

M )l =

⎧⎪⎨
⎪⎩
e−iτΓl/ε

2 ̂(Φ0
M )l − ε2Γ −1

l

[
I2 − e

− iτ
ε2 Γl

]
̂(G(t0)Φ0

M )l , n = 0,

−2i sin(τΓl/ε
2) (̂Φn

M )l + ̂
(Φn−1

M )l − i 2ε2

δl
sin(

τδl
ε2 ) ̂(G(tn)Φn

M )l , n ≥ 1,

(3.17)
with G(t) := G(t, x). Notice that the above scheme for n ≥ 1 is unchanged if we interchange
n + 1 ↔ n − 1 and τ ↔ −τ .

The above procedure is not suitable in practice due to the difficulty in computing the
Fourier coefficients through integrals in (3.2). Here we present an efficient implementation
by choosing Φ0

M (x) as the interpolant of Φ0(x) on the grids
{
x j , j = 0, 1, . . . , M

}
and

approximate the integrals in (3.2) by a quadrature rule.
Let Φn

j be the numerical approximation of Φ(tn, x j ) for j = 0, 1, 2, . . . , M and n ≥ 0,

and denote Φn ∈ XM as the vector with components Φn
j . Choosing Φ0

j = Φ0(x j ) ( j =
0, 1, . . . , M), the sEWI Fourier pseudospectral (sEWI-FP) method for computing Φn+1 for
n ≥ 0 reads

Φn+1
j =

M/2−1∑
l=−M/2

˜(Φn+1)l e
2i jlπ/M , j = 0, 1, . . . , M, (3.18)

where

˜(Φn+1)l =

⎧⎪⎨
⎪⎩
e−iτΓl/ε

2
(̃Φ0)l − ε2Γ −1

l

[
I2 − e

− iτ
ε2 Γl

]
˜(G(t0)Φ0)l , n = 0,

−2i sin(τΓl/ε
2) (̃Φn)l + ˜(Φn−1)l − i 2ε2

δl
sin(

τδl
ε2 ) ˜(G(tn)Φn)l , n ≥ 1.

(3.19)
The sEWI-FP (3.18–3.19) is explicit, and can be computed efficiently by the fast Fourier
transform (FFT). The memory cost is O(M) and the computational cost per time step is
O(M log M).

123



J Sci Comput (2017) 71:1094–1134 1111

3.2 Linear Stability Analysis

To consider the linear stability, we assume that in the Dirac equation (2.1), the external
potential fields are constants, i.e. A1(t, x) ≡ A0

1 and V (t, x) ≡ V 0 with A0
1 and V 0 being

two real constants. Then we have

Lemma 3.1 The sEWI-FP method (3.18)–(3.19) and sEWI-FS method (3.16)–(3.17) are
stable under the condition

0 < τ ≤ min

{
hε2π

3
√
h2 + ε2π2

,
2 − √

3

2(|V 0| + |A0
1|)

}
, 0 < ε ≤ 1. (3.20)

Proof We shall only prove the sEWI-FP case (3.19), as the sEWI-FP method case (3.16–3.17)
is quite the same.

Similarly to the proof of Lemma 2.1, noticing (3.17), (3.7), (3.12) and (3.14), we find that

ξ2
l (Φ̃0)l = −2iξl sin(τΓl/ε

2)(Φ̃0)l + (Φ̃0)l − 2iξlε
2δ−1

l sin(τδl/ε
2)(V 0 I2 − A0

1σ1)(Φ̃0)l .

(3.21)
Multiplying both sides of (3.21) by ξl(Φ̃0)∗l and then taking the real part and dividing both

sides by (Φ̃0)∗l (Φ̃0)l , in view of Hermitian matrices Γl , σ1, we get

|ξl |2Re(ξl) = Re(ξl), (3.22)

which implies |ξl | = 1 if Re(ξl) �= 0. On the other hand, if Re(ξl) = 0, we can take ξl = icl
with cl ∈ R, and (3.21) leads to

− c2
l (Φ̃

0)l = 2cl sin(τΓl/ε
2)(Φ̃0)l + (Φ̃0)l + 2clε

2δ−1
l sin(τδl/ε

2)(V 0 I2 − A0
1σ1)(Φ̃0)l .

(3.23)
Denoting C = |V 0| + |A0

1|, multiplying both sides of (3.23) by (Φ̃0)∗l and then dividing

both sides by (Φ̃0)∗l (Φ̃0)l , noticing sin(τδl/ε
2) ≤

√
3

2 under the stability constraint and
|ε2δ−1

l sin(τδl/ε
2)| ≤ τ , we obtain

c2
l + 1 ≤ √

3|cl | + 2τC |cl |, (3.24)

where no real number cl can satisfy the above inequality if τ < 2−√
3

2C . It follows that the
sEWI-FS (3.16–3.17) is stable under the constraint (3.20). ��
3.3 Error Estimates

In order to obtain an error estimate for the sEWI methods (3.16–3.17) and (3.18–3.19),
motivated by the results in [19,24], we assume that there exists an integer m0 ≥ 2 such that
the exact solution Φ(t, x) of the Dirac equation (2.1) satisfies

(C) ‖Φ‖L∞([0,T ];(Hm0
p )2)

� 1, ‖∂st Φ‖L∞([0,T ];(L2)2) � 1

ε2s , s = 1, 2,

where Hk
p(Ω) = {u | u ∈ Hk(Ω), ∂ lx u(a) = ∂ lx u(b), l = 0, . . . , k − 1}. In addition, we

assume the electromagnetic potentials satisfy

(D) ‖V ‖W 2,∞([0,T ];L∞) + ‖A1‖W 2,∞([0,T ];L∞) � 1.

The following estimate can be established (see its proof in “Appendix 2”).
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Theorem 3.1 Let Φn
M (x) be the approximation obtained from the sEWI-FS (3.16)–(3.17).

Under the assumptions (C) and (D), there exists h0 > 0 and τ0 > 0 sufficiently small and
independent of ε such that, for any 0 < ε ≤ 1 under the stability constraint

0 < τ ≤ hε2π

3
√
h2 + ε2π2

, (3.25)

when 0 < h ≤ h0 and 0 < τ ≤ τ0 satisfying the stability condition (3.25), we have the
following error estimate

‖Φ(tn, x) − Φn
M (x)‖L2 � τ 2

ε4 + hm0 , 0 ≤ n ≤ T

τ
. (3.26)

Remark 3.1 If we apply a filter in sEWI-FS (3.16–3.17), where we modify the coefficients

in front of (̂Φn
M )l as −2i sin(τΓl/ε

2) → −2i cos(τδl/ε
2) sin(τΓl/ε

2), the resulting scheme
will be stable for τ � 1, i.e. the stability will be independent of ε and h. Accordingly, the
error estimates will become τ 2/ε6 + hm0 under proper regularity assumptions on the exact
solution.

Remark 3.2 The same error estimate in Theorem 3.1 holds for the sEWI-FP (3.18–3.19) and
the proof is quite similar to that of Theorem 3.1.

4 A TSFP Method and Its Analysis

In this section, we present a time-splitting Fourier pseudospectral (TSFP) method to solve the
Dirac equation(1.9) (or 1.21) which has been proposed and studied for the Maxwell–Dirac
equation [17,53]. Again, for simplicity of notations, we shall only present the numerical
method and its analysis for (2.1) in 1D. Generalization to (1.9) and/or higher dimensions
is straightforward and results remain valid without modifications (see generalizations in
“Appendix 3”).

From time t = tn to time t = tn+1, the Dirac equation (2.1) is split into two steps. One
solves first

i∂tΦ(t, x) =
[
− i

ε
σ1∂x + 1

ε2 σ3

]
Φ(t, x), x ∈ Ω, (4.1)

with the periodic boundary condition (2.2) for the time step of length τ , followed by solving

i∂tΦ(t, x) = [−A1(t, x)σ1 + V (t, x)I2] Φ(t, x), x ∈ Ω, (4.2)

for the same time step. Equation (4.1) will be first discretized in space by the Fourier spectral
method and then integrated (in phase or Fourier space) in time exactly [17]. For the ODEs
(4.2), we can integrate analytically in time as

Φ(t, x) = e−i
∫ t
tn

[V (s,x) I2−A1(s,x) σ1]ds
Φ(tn, x), a ≤ x ≤ b, tn ≤ t ≤ tn+1. (4.3)

In practical computation, from time t = tn to t = tn+1, one often combines the splitting steps
via the standard Strang splitting [73]—which results in a second order time-splitting Fourier
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pseudospectral (TSFP) method—as

Φ
(1)
j =

M/2−1∑

l=− M
2

e
−i

τΓl
2ε2 (̃Φn)l e

iμl (x j−a) =
M
2 −1∑

l=− M
2

Ql e
−i

τDl
2ε2 (Ql)

∗ (̃Φn)l e
2i jlπ
M ,

Φ
(2)
j = e−i

∫ tn+1
tn G(t,x j ) dt Φ

(1)
j = Pj e

−iΛ j P∗
j Φ

(1)
j , 0 ≤ j ≤ M, n ≥ 0, (4.4)

Φn+1
j =

M
2 −1∑

l=− M
2

e
−i

τΓl
2ε2 ˜(Φ(2))l e

iμl (x j−a) =
M
2 −1∑

l=− M
2

Ql e
−i

τDl
2ε2 (Ql)

∗ ˜(Φ(2))l e
2i jlπ
M ,

where
∫ tn+1
tn

G(t, x j )dt = V (1)
j I2 − A(1)

1, j σ1 = Pj Λ j P∗
j with V (1)

j = ∫ tn+1
tn

V (t, x j )dt ,

A(1)
1, j = ∫ tn+1

tn
A1(t, x j )dt , Λ j = diag(Λ j,+,Λ j,−) with Λ j,± = V (1)

j ± A(1)
1, j , and Pj = I2

if A(1)
1, j = 0 and otherwise

Pj = P(0) :=
(

1√
2

− 1√
2

1√
2

1√
2

)
. (4.5)

Remark 4.1 Again, if the definite integrals in
∫ tn+1
tn

Λ(t, x j ) dt cannot be evaluated analyti-
cally, we can evaluate them numerically via the Simpson’s quadrature rule as

∫ tn+1

tn
A1(t, x j ) dt ≈ τ

6

[
A1(tn, x j ) + 4A1

(
tn + τ

2
, x j
)

+ A1(tn+1, x j )
]
,

∫ tn+1

tn
V (t, x j ) dt ≈ τ

6

[
V (tn, x j ) + 4V

(
tn + τ

2
, x j
)

+ V (tn+1, x j )
]
.

Lemma 4.1 The TSFP (4.4) conserves the mass in the discretized level, i.e.

‖Φn‖2
l2 := h

M−1∑
j=0

|Φn
j |2 ≡ h

M−1∑
j=0

|Φ0
j |2 = ‖Φ0‖2

l2 = h
M−1∑
j=0

|Φ0(x j )|2, n ≥ 0. (4.6)

Proof The proof is quite standard and similar to that of Lemma 2.2. We omit it here. ��
From Lemma 4.1, we conclude that the TSFP (4.4) is unconditionally stable. In addition,

under proper assumptions of the exact solution Φ(t, x) and electromagnetic potentials, it is
easy to show the following error estimate via the formal Lie calculus introduced in [58],

‖Φ(tn, x) − IM (Φn)‖L2 � hm0 + τ 2

ε4 , 0 ≤ n ≤ T

τ
, (4.7)

where m0 depends on the regularity of Φ(t, x). We omit the details here for brevity.

5 Numerical Comparison and Applications

In this section, we compare the accuracy of different numerical methods including the FDTD,
sEWI-FP and TSFP methods for the Dirac equation (1.21) in 1D in terms of the mesh size h,
time step τ and the parameter 0 < ε ≤ 1. We will pay particular attention to the ε-scalability
of different methods in the nonrelativistic limit regime, i.e. 0 < ε � 1. Then we simulate
the dynamics of the Dirac equation (1.21) in 2D with a honeycomb lattice potential by the
TSFP method.
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5.1 Comparison of Spatial/Temporal Resolution

To test the accuracy, we choose the electromagnetic potentials in the Dirac equation (1.21)
with d = 1 as

A1(t, x) = (x + 1)2

1 + x2 , V (t, x) = 1 − x

1 + x2 , x ∈ R, t ≥ 0, (5.1)

and the initial data as

φ1(0, x) = e−x2/2, φ2(0, x) = e−(x−1)2/2, x ∈ R. (5.2)

The problem is solved numerically on an interval Ω = (−16, 16) with periodic bound-
ary conditions on ∂Ω . The ‘reference’ solution Φ(t, x) = (φ1(t, x), φ2(t, x))T is obtained
numerically by using the TSFP method with a small time step and a very fine mesh size, e.g.
τe = 10−7 and he = 1/16 or he = 1/4096 for the comparison of the sEWI-FP/TSFP meth-
ods or the FDTD methods, respectively. Denote Φn

h,τ as the numerical solution obtained by
a numerical method with mesh size h and time step τ . In order to quantify the convergence,
we introduce

eh,τ (tn) = ‖Φn − Φ(tn, ·)‖l2 =
√√√√h

M−1∑
j=0

|Φn
j − Φ(tn, x j )|2.

Table 1 lists spatial errors eh,τe (t = 2) with different h (upper part) and temporal errors
ehe,τ (t = 2) with different τ (lower part) for the LFFD method (2.6). Tables 2, 3, 4, 5 and 6
show similar results for the SIFD1 method (2.7), SIFD2 method (2.8), CNFD method (2.9),
sEWI-FP method (3.18–3.19) and TSFP method (4.4), respectively. For the LFFD and SIFD1
methods, due to the stability condition and accuracy requirement, we take

δ j (ε) =
{

ε2, ε0/2 j ≤ ε ≤ 1,

ε2
0/4 j , 0 < ε < ε0/2 j ,

j = 0, 1, . . .

in Tables 1 and 2. For comparison, Table 7 depicts temporal errors of different numerical
methods when ε = 1 for different τ , Table 8 depicts temporal errors of different numerical
methods under different ε-scalability.

From Tables 1, 2, 3, 4, 5, 6, 7, and 8, and additional numerical results not shown here
for brevity, we can draw the following conclusions for the Dirac equation by using different
numerical methods:

(i). For the discretization error in space, for any fixed ε = ε0 > 0, the FDTD methods
are second-order accurate, and resp., the sEWI-FP and TSFP methods are spectrally accurate
(cf. each row in the upper parts of Tables 1, 2, 3, 4, 5, 6 and 7). For 0 < ε ≤ 1, the errors are
independent of ε for the sEWI-FP and TSFP methods (cf. each column in the upper parts of
Tables 5, 6), and resp., are almost independent of ε for the FDTD methods (cf. each column
in the upper parts of Tables 1, 2, 3, 4). In general, for any fixed 0 < ε ≤ 1 and h > 0,
the sEWI-FP and TSFP methods perform much better than the FDTD methods in spatial
discretization.

(ii). For the discretization error in time, in the O(1) speed-of-light regime, i.e. ε = O(1),
all the numerical methods including FDTD, sEWI-FP and TSFP are second-order accurate
(cf. the first row in the lower parts of Tables 1, 2, 3, 4, 5, 6). In general, the sEWI-FP and
TSFP methods perform much better than the FDTD methods in temporal discretizations for
a fixed time step. In the non-relativistic limit regime, i.e. 0 < ε � 1, for the FDTD methods,
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Table 1 Spatial and temporal error analysis of the LFFD method for the Dirac equation (1.21) in 1D

Spatial errors h0 = 1/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.06E−1 2.65E−2 6.58E−3 1.64E−3 4.10E−4

Order – 2.00 2.01 2.00 2.00

ε0/2 9.06E−2 2.26E−2 5.64E−3 1.41E−3 3.51E−4

Order – 2.00 2.00 2.00 2.01

ε0/22 8.03E−2 2.02E−2 5.04E−3 1.25E−3 3.05E−4

Order – 1.99 2.00 2.01 2.04

ε0/23 9.89E−2 2.47E−2 6.17E−3 1.54E−3 3.85E−4

Order – 2.00 2.00 2.00 2.00

ε0/24 9.87E−2 2.48E−2 6.18E−3 1.54E−3 3.83E−4

Order – 1.99 2.00 2.00 2.01

Temporal errors
τ0 = 0.1
h0 = 1/8

τ0/8
h0/8δ1(ε)

τ0/82

h0/82δ2(ε)

τ0/83

h0/83δ3(ε)

τ0/84

h0/84δ4(ε)

ε0 = 1 1.38E−1 1.99E−3 3.11E−5 4.86E−7 7.59E−9

Order – 2.04 2.00 2.00 2.00

ε0/2 Unstable 1.14E−2 1.77E−4 2.77E−6 4.32E−8

Order – – 2.00 2.00 2.00

ε0/22 Unstable 4.59E−1 7.01E−3 1.05E−4 1.64E−6

Order – – 2.01 2.02 2.00

ε0/23 Unstable Unstable 4.14E−1 6.42E−3 1.00E−4

Order – – – 2.00 2.00

ε0/24 Unstable Unstable Unstable 4.04E−1 6.00E−3

Order – – – – 2.02

Table 2 Spatial and temporal error analysis of the SIFD1 method for the Dirac equation (1.21) in 1D

Spatial errors h0 = 1/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.06E−1 2.65E−2 6.58E−3 1.64E−3 4.10E−4

Order – 2.00 2.01 2.00 2.00

ε0/2 9.06E−2 2.26E−2 5.64E−3 1.41E−3 3.51E−4

Order – 2.00 2.00 2.00 2.01

ε0/22 8.03E−2 2.02E−2 5.04E−3 1.25E−3 3.05E−4

Order – 1.99 2.00 2.01 2.04

ε0/23 9.89E−2 2.47E−2 6.17E−3 1.54E−3 3.85E−4

Order – 2.00 2.00 2.00 2.00

ε0/24 9.87E−2 2.48E−2 6.18E−3 1.54E−3 3.83E−4

Order – 1.99 2.00 2.00 2.01
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Table 2 continued

Temporal errors
τ0 = 0.1
h0 = 1/8

τ0/8
h0/8δ1(ε)

τ0/82

h0/82δ2(ε)

τ0/83

h0/83δ3(ε)

τ0/84

h0/84δ4(ε)

ε0 = 1 1.44E−1 2.09E−3 3.27E−5 5.11E−7 7.98E−9

Order – 2.03 2.00 2.00 2.00

ε0/2 Unstable 2.99E−2 4.67E−4 7.30E−6 1.14E−7

Order – – 2.00 2.00 2.00

ε0/22 Unstable 8.18E−1 1.54E−2 2.41E−4 3.77E−6

Order – – 1.91 2.00 2.00

ε0/23 Unstable Unstable 7.99E−1 1.31E−2 2.05E−4

Order – – – 1.98 2.00

ε0/24 Unstable Unstable 4.19E−1 7.97E−1 1.26E−2

Order – – – −0.31 1.99

Table 3 Spatial and temporal error analysis of the SIFD2 method for the Dirac equation (1.21) in 1D

Spatial errors h0 = 1/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.06E−1 2.65E−2 6.58E−3 1.64E−3 4.10E−4

Order – 2.00 2.01 2.00 2.00

ε0/2 9.06E−2 2.26E−2 5.64E−3 1.41E−3 3.51E−4

Order – 2.00 2.00 2.00 2.01

ε0/22 8.03E−2 2.02E−2 5.04E−3 1.25E−3 3.05E−4

Order – 1.99 2.00 2.01 2.04

ε0/23 9.89E−2 2.47E−2 6.17E−3 1.54E−3 3.85E−4

Order – 2.00 2.00 2.00 2.00

ε0/24 9.87E−2 2.48E−2 6.18E−3 1.54E−3 3.83E−4

Order – 1.99 2.00 2.00 2.01

Temporal errors τ0=0.1 τ0/8 τ0/82 τ0/83 τ0/84

ε0 = 1 1.72E−1 2.59E−3 4.05E−5 6.33E−7 9.89E−9

Order – 2.01 2.00 2.00 2.00

ε0/2 1.69 3.57E−2 5.58E−4 8.72E−6 1.36E−7

Order – 1.86 2.00 2.00 2.00

ε0/22 2.59 8.66E−1 1.63E−2 2.55E−4 3.98E−6

Order – 0.52 1.91 2.00 2.00

ε0/23 2.67 2.89 8.43E−1 1.37E−2 2.14E−4

Order – −0.04 0.59 1.98 2.00

ε0/24 3.07 3.56 5.19E−1 8.37E−1 1.28E−2

Order – −0.07 0.93 −0.23 2.01
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Table 4 Spatial and temporal error analysis of the CNFD method for the Dirac equation (1.21) in 1D

Spatial errors h0=1/8 h0/2 h0/22 h0/23 h0/23

ε0 = 1 1.06E−1 2.65E−2 6.58E−3 1.64E−3 4.10E−4

Order – 2.00 2.01 2.00 2.00

ε0/2 9.06E−2 2.26E−2 5.64E−3 1.41E−3 3.51E−4

Order – 2.00 2.00 2.00 2.01

ε0/22 8.03E−2 2.02E−2 5.04E−3 1.25E−3 3.05E−4

Order – 1.99 2.00 2.01 2.04

ε0/23 9.89E−2 2.47E−2 6.17E−3 1.54E−3 3.85E−4

Order – 2.00 2.00 2.00 2.00

ε0/24 9.87E−2 2.48E−2 6.18E−3 1.54E−3 3.83E−4

Order – 1.99 2.00 2.00 2.01

Temporal errors τ0=0.1 τ0/8 τ0/82 τ0/83 τ0/84

ε0 = 1 5.48E−2 8.56E−4 1.34E−5 2.09E−7 3.27E−9

Order – 2.00 2.00 2.00 2.00

ε0/2 3.90E−1 6.63E−3 1.77E−4 2.77E−6 4.32E−8

Order – 1.96 1.74 2.00 2.00

ε0/22 1.79 2.27E−1 3.55E−3 1.56E−5 2.44E−7

Order – 0.99 2.00 2.61 2.00

ε0/23 3.10 4.69E−1 2.06E−1 3.22E−3 5.03E−5

Order – 0.91 0.40 2.00 2.00

ε0/24 2.34 1.83 8.05E−1 2.04E−1 3.19E−3

Order – 0.12 0.39 0.66 2.00

Table 5 Spatial and temporal error analysis of the sEWI-FP method for the Dirac equation (1.21) in 1D

Spatial errors h0=2 h0/2 h0/22 h0/23 h0/24

ε0 = 1 8.79E−1 3.07E−1 3.73E−2 4.35E−5 4.12E−10

Order – 1.52 3.04 9.74 16.69

ε0/2 7.68E−1 1.89E−1 4.36E−3 3.83E−6 4.17E−10

Order – 2.02 5.44 10.15 13.17

ε0/22 6.35E−1 1.23E−1 1.28E−3 8.18E−7 3.98E−10

Order – 2.37 6.59 10.61 11.01

ε0/23 6.39E−1 1.17E−1 8.12E−4 3.62E−7 3.87E−10

Order – 2.45 7.17 11.13 9.87

ε0/24 6.28E−1 1.18E−1 7.36E−4 2.82E−7 6.18E−9

Order – 2.41 7.32 11.35 5.51

ε0 = 1 6.02E−2 2.76E−3 1.72E−4 1.07E−5 6.71E−7

Order – 2.22 2.00 2.00 2.00
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Table 5 continued

Temporal errors τ0=0.1 τ0/4 τ0/42 τ0/43 τ0/44

ε0/2 9.33 9.16E−3 5.66E−4 3.53E−5 2.21E−6

Order – 5.00 2.01 2.00 2.00

ε0/22 Unstable 14.68 4.38E−3 2.72E−4 1.70E−5

Order – – 5.86 2.00 2.00

ε0/23 8.77E−1 Unstable Unstable 3.47E−3 2.16E−4

Order – – – – 2.00

ε0/24 8.45E−1 8.47E−1 Unstable 5.46E−2 3.21E−3

Order – 0.00 – – 2.04

Table 6 Spatial and temporal error analysis of the TSFP method for the Dirac equation (1.21) in 1D

Spatial error h0 = 2 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.10 2.43E−1 2.99E−3 2.79E−6 9.45E−9

Order – 2.17 6.34 10.07 8.21

ε0/2 1.06 1.46E−1 1.34E−3 9.61E−7 5.57E−9

Order – 2.86 6.77 10.45 7.43

ε0/22 1.11 1.43E−1 9.40E−4 5.10E−7 6.50E−9

Order – 2.96 7.25 10.85 6.29

ε0/23 1.15 1.44E−1 7.89E−4 3.62E−7 6.84E−9

Order – 3.00 7.51 11.09 5.73

ε0/24 1.18 1.45E−1 7.62E−4 2.88E−7 7.49E−9

Order – 3.02 7.57 11.37 5.27

ε0/25 1.19 1.46E−1 7.53E−4 2.59E−7 7.96E−9

Order – 3.03 7.60 11.51 5.02

ε0/26 1.20 1.47E−1 7.49E−4 2.63E−7 6.90E−9

Order – 3.03 7.62 11.48 5.25

Temporal error τ0=0.4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε0 = 1 2.17E−1 1.32E−2 8.22E−4 5.13E−5 3.21E−6 2.01E−7 1.26E−8

Order – 2.02 2.00 2.00 2.00 2.00 2.00

ε0/2 1.32 6.60E−2 4.07E−3 2.54E−4 1.59E−5 9.92E−7 6.20E−8

Order – 2.16 2.00 2.00 2.00 2.00 2.00

ε0/22 2.50 3.33E−1 1.68E−2 1.04E−3 6.49E−5 4.06E−6 2.54E−7

Order – 1.45 2.15 2.00 2.00 2.00 2.00

ε0/23 1.79 1.97 8.15E−2 4.15E−3 2.57E−4 1.60E−5 1.00E−6

Order – -0.07 2.30 2.14 2.01 2.00 2.00

ε0/24 1.35 8.27E−1 8.85E−1 2.01E−2 1.03E−3 6.35E−5 3.97E−6

Order – 0.35 −0.05 2.73 2.14 2.01 2.00

ε0/25 8.73E−1 2.25E−1 2.33E−1 2.49E−1 4.98E−3 2.55E−4 1.58E−5

Order – 0.98 −0.03 −0.05 2.82 2.14 2.01
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Table 7 Comparison of temporal errors of different methods for the Dirac equation (1.21) with ε = 1

ε = 1 τ0=0.1 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

LFFD 1.38E−1 8.00E−3 4.98E−4 3.11E−5 1.94E−6 1.21E−7

Order – 2.05 2.00 2.00 2.00 2.00

SIFD1 1.44E−1 8.85E−3 5.53E−4 3.27E−5 2.16E−6 1.35E−7

Order – 2.01 2.00 2.04 1.96 2.00

SIFD2 1.72E−1 1.17E−2 7.30E−4 4.05E−5 2.85E−6 1.78E−7

Order – 1.94 2.00 2.09 1.91 2.00

CNFD 5.48E−2 3.49E−3 2.18E−4 1.34E−5 8.38E−7 5.23E−8

Order – 1.99 2.00 2.01 2.00 2.00

sEWI-FP 6.02E−2 2.76E−3 1.72E−4 1.07E−5 6.71E−7 4.19E−8

Order – 2.22 2.00 2.00 2.00 2.00

TSFP 1.32E−2 8.22E−4 5.13E−5 3.21E−6 2.01E−7 1.26E−8

Order – 2.00 2.00 2.00 2.00 2.00

Table 8 Comparison of temporal errors of different numerical methods for the Dirac equation (1.21) under
proper ε-scalability

τ = O(ε3)

h = O(ε)

ε0 = 1
h0 = 1/8
τ0 = 0.1

ε0/2
h0/2
τ0/8

ε0/22

h0/22

τ0/82

ε0/23

h0/23

τ0/83

ε0/24

h0/24

τ0/84

LFFD 1.38E−1 1.14E−2 7.01E−3 6.42E−3 6.00E−3

SIFD1 1.44E−1 2.99E−2 1.54E−2 1.31E−2 1.26E−2

τ = O(ε3)
ε0 = 1

τ0 = 0.1
ε0/2
τ0/8

ε0/22

τ0/82
ε0/23

τ0/83
ε0/24

τ0/84

SIFD2 1.72E−1 3.57E−2 1.63E−2 1.37E−2 1.28E−2

CNFD 5.48E−2 6.63E−3 3.55E−3 3.22E−3 3.19E−3

τ = O(ε2)
ε0 = 1

τ0 = 0.1
ε0/2
τ0/4

ε0/22

τ0/42
ε0/23

τ0/43
ε0/24

τ0/44

sEWI-FP 6.02E−2 9.16E−3 4.38E−3 3.47E−3 3.21E−3

TSFP 1.32E−2 4.07E−3 1.04E−3 2.57E−4 6.35E−5

the ‘correct’ ε-scalability is τ = O(ε3) which verifies our theoretical results; for the sEWI-
FP and TSFP methods, the ‘correct’ ε-scalability is τ = O(ε2) which again confirms our
theoretical results. In fact, for 0 < ε ≤ 1, one can observe clearly second-order convergence
in time for the FDTD methods only when τ � ε3 (cf. upper triangles above the diagonal
labelled by bold letters in the lower parts of Tables 1, 2, 3, 4), and resp., for the sEWI-FP and
TSFP methods when τ � ε2 (cf. upper triangles above the diagonal labelled by bold letters
in the lower parts of Tables 5 and 6). In general, for any fixed 0 < ε ≤ 1 and τ > 0, the TSFP
method performs the best, and the sEWI-FP method performs much better than the FDTD
methods in temporal discretization (cf. Table 8).

123



1120 J Sci Comput (2017) 71:1094–1134

Table 9 Spatial error analysis of the CNFD method for the free Dirac equation with different h

ε ε0 = 1 ε0/2 ε0/22 ε0/23 ε0/24

h0 = 1/256 1.61E−1 3.21E−1 6.35E−1 1.21 2.07

h0/2 4.03E−2 8.05E−2 1.59E−1 3.07E−1 5.43E−1

h0/22 1.01E−2 2.01E−2 3.99E−2 7.69E−2 1.36E−1

h0/23 2.52E−3 5.03E−3 9.97E−3 1.92E−2 3.41E−2

h0/24 6.30E−4 1.26E−3 2.47E−3 4.95E−3 8.64E−3

(iii). From Table 6, our numerical results suggest the following error bound for the TSFP
method when τ � ε2,

‖Φ(tn, ·) − IM (Φn)‖L2 � hm0 + τ 2

ε2 , 0 ≤ n ≤ T

τ
, (5.3)

which is much better than (4.7) for the TSFP method in the nonrelativistic limit regime.
Rigorous mathematical justification for (5.3) is on-going.

From Tables 1, 2, 3, and 4, in the numerical example, we could not observe numerically
the ε-dependence in the spatial discretization error for the FDTD methods, i.e. 1

ε
in front of

h2, which was proven in Theorems 2.2–2.4. In order to investigate the spatial ε-resolution
of the FDTD methods, we consider the Dirac equation (2.1) on Ω = (−1, 1) with no
electromagnetic potential—the free Dirac equation, i.e.

A1(t, x) ≡ 0, V (t, x) ≡ 0, x ∈ (−1, 1), t ≥ 0. (5.4)

The initial data in (2.2) is taken as

φ1(0, x) = e9π i(x+1), φ2(0, x) = e9π i(x+1), −1 ≤ x ≤ 1. (5.5)

Table 9 shows the spatial errors eh,τe (t = 2) of the CNFD method with different h. The results
for the LFFD, SIFD1 and SIFD2 methods are similar and they are omitted here for brevity.
From Table 9 where the error is of order h2/ε (each row of the table), we can conclude that
the error bounds in the Theorems 2.1–2.4 are sharp.

Based on the above comparison, in view of both temporal and spatial accuracies and reso-
lution capacity, we conclude that the sEWI-FP and TSFP methods perform much better than
the FDTD methods for the discretization of the Dirac equation, especially in the nonrela-
tivistic limit regime. For the reader’s convenience, we summarize the properties of different
numerical methods in Table 10.

As observed in [15,16], the time-splitting spectral (TSSP) method for the Schrödinger
equation performs much better for the physical observable, e.g. density and current, than
for the wave function, in the semiclassical limit regime with respect to the scaled Planck
constnat 0 < ε � 1. In order to see whether this is still valid for the TSFP method for the
Dirac equation in the nonrelativistic limit regime, let ρn = |Φn

h,τ |2, Jn = 1
ε
(Φn

h,τ )
∗σ1Φ

n
h,τ

with Φn
h,τ the numerical solution obtained by the TSFP method with mesh size h and time

step τ , and define the errors
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Table 10 Comparison of properties of different numerical methods for solving the Dirac equation with M
being the number of grid points in space

Method LFFD SIFD1 CNFD sEWI-FP TSFP

Time symmetric Yes Yes Yes Yes Yes

Mass conservation No No Yes No Yes

Energy conservation No No Yes No No

Dispersion relation No No No No Yes

Unconditionally stable No No Yes No Yes

Explicit scheme Yes No No Yes Yes

Temporal accuracy 2nd 2nd 2nd 2nd 2nd

Spatial accuracy 2nd 2nd 2nd Spectral Spectral

Memory cost O(M) O(M) O(M) O(M) O(M)

Computational cost O(M) O(M ln M) � O(M) O(M ln M) O(M ln M)

Resolution
when 0 < ε � 1

h = O(
√

ε)

τ = O(ε3)

h = O(
√

ε)

τ = O(ε3)

h = O(
√

ε)

τ = O(ε3)

h = O(1)

τ = O(ε2)

h = O(1)

τ = O(ε2)

SIFD2 is the same as SIFD1 and is omitted

eh,τ
ρ (tn) := ‖ρn − ρ(tn, ·)‖l1 = h

N−1∑
j=0

|ρn
j − ρ(tn, x j )|,

eh,τ
J (tn) := ‖Jn − J(tn, ·)‖l1 = h

N−1∑
j=0

|Jnj − J(tn, x j )|.

Table 11 lists temporal errors eh,τ
ρ (t = 2) and eh,τ

J (t = 2) with different τ for the TSFP
method (4.4). From this Table, we can see that the approximations of the density and current
are at the same order as for the wave function by using the TSFP method. The reason that
we can speculate is that ρ = O(1) and J = O(ε−1) (see details in Eqs. 1.11 or 1.23) in the
Dirac equation, where in the Schrödinger equation both density and current are all at O(1),
when 0 < ε � 1.

5.2 Dynamics of the Dirac Equation in 2D

Here we study numerically the dynamics of the Dirac equation (1.21) in 2D with a honeycomb
lattice potential, i.e. we take d = 2, A1(t, x) = A2(t, x) ≡ 0 and

V (t, x) = cos

(
4π√

3
e1 · x

)
+ cos

(
4π√

3
e2 · x

)
+ cos

(
4π√

3
e3 · x

)
, (5.6)

with
e1 = (−1, 0)T , e2 = (1/2,

√
3/2)T , e3 = (1/2,−√

3/2)T . (5.7)

The initial data in (1.22) is taken as

φ1(0, x) = e− x2+y2

2 , φ2(0, x) = e− (x−1)2+y2

2 , x = (x, y)T ∈ R
2. (5.8)

The problem is solved numerically onΩ = [−10, 10]2 by the TSFP method with mesh size
h = 1/16 and time step τ = 0.01. Figures 2 and 3 depict the densities ρ j (t, x) = |φ j (t, x)|2
( j = 1, 2) for ε = 1 and ε = 0.2, respectively.
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Table 11 Temporal errors for density and current of the TSFP for the Dirac equation (1.21) in 1D

eh,τ
ρ (t = 2) τ0=0.4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε0 = 1 2.50E−1 1.54E−2 9.61E−4 6.01E−5 3.75E−6 2.34E−7 1.43E−8

Order – 2.01 2.00 2.00 2.00 2.00 2.01

ε0/2 1.22 5.27E−2 3.21E−3 2.01E−4 1.25E−5 7.84E−7 4.92E−8

Order – 2.27 2.02 2.00 2.00 2.00 2.01

ε0/22 1.75 1.86E−1 1.00E−2 6.20E−4 3.87E−5 2.42E−6 1.52E−7

Order – 1.62 2.11 2.01 2.00 2.00 2.00

ε0/23 1.11 1.39 2.95E−2 1.53E−3 9.47E−5 5.92E−6 3.72E−7

Order – −0.16 2.78 2.13 2.01 2.00 2.00

ε0/24 1.58 7.58E−1 7.81E−1 5.46E−3 3.01E−4 1.87E−5 1.17E−6

Order – 0.53 -0.02 3.58 2.09 2.00 2.00

ε0/25 9.59E−1 1.96E−1 2.29E−1 2.33E−1 1.20E−3 6.76E−5 4.21E−6

Order – 1.15 −0.11 −0.01 3.8 2.07 2.00

eh,τ
J (t = 2) τ0=0.4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε0 = 1 1.70E−1 1.09E−2 6.83E−4 4.27E−5 2.67E−6 1.67E−7 1.02E−8

Order – 1.98 2.00 2.00 2.00 2.00 2.01

ε0/2 9.15E−1 6.39E−2 4.00E−3 2.50E−4 1.56E−5 9.76E−7 6.08E−8

Order – 1.92 2.00 2.00 2.00 2.00 2.00

ε0/22 1.58 3.45E−1 1.69E−2 1.04E−3 6.50E−5 4.06E−6 2.54E−7

Order – 1.10 2.18 2.01 2.00 2.00 2.00

ε0/23 1.06 1.26 5.83E−2 2.87E−3 1.76E−4 1.11E−5 6.94E−7

Order – −0.12 2.22 2.17 2.01 2.00 2.00

ε0/24 1.11 9.78E−1 1.05 2.28E−2 1.18E−3 7.33E−5 4.58E−6

Order – 0.09 −0.05 2.76 2.13 2.00 2.00

ε0/25 4.98E−1 1.55E−1 2.22E−1 2.39E−1 4.04E−3 2.09E−4 1.29E−5

Order – 0.84 −0.30 −0.05 2.94 2.13 2.01

From Figs. 2 and 3, we find that the dynamics of the Dirac equation depends significantly
on ε. For ε = 1, the dynamics is strange and the densities are fluctuating in a random pattern,
featured as quantum Zitterbewegung [30], well-known for the relativistic Dirac dynamics. As
ε → 0+, the relativistic effects will vanish and the Dirac equation will reduce to Schrödinger
equations. Indeed, from Fig. 3 where ε = 0.2, we find the dynamics is more like Schrödinger
dynamics and the densities spread over the lattice potential in a smoother way. In addition,
the TSFP method can capture the dynamics very accurately and efficiently.

6 Conclusion

Three types of numerical methods based on different time integrations were analyzed rigor-
ously and compared numerically for simulating the Dirac equation in the nonrelativistic limit
regime, i.e. 0 < ε � 1 or the speed of light goes to infinity. The first class consists of the
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Fig. 2 Dynamics of the densities ρ1(t, x) = |φ1(t, x)|2 (left) and ρ2(t, x) = |φ2(t, x)|2 (right) of the Dirac
equation in 2D with a honeycomb lattice potential when ε = 1

second order standard FDTD methods, including energy conservative/ nonconservative and
implicit/semi-implicit/explicit ones. In the nonrelativistic limit regime, the error estimates
of the FDTD methods were rigorously analyzed, which suggest that the ε-scalability of the
FDTD methods is τ = O(ε3) and h = O(

√
ε). The second class applies the Fourier spec-

tral discretization in space and Gautschi-type integration in time, resulting in an sEWI-FP
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Fig. 3 Dynamics of the densities ρ1(t, x) = |φ1(t, x)|2 (left) and ρ2(t, x) = |φ2(t, x)|2 (right) of the Dirac
equation in 2D with a honeycomb potential when ε = 0.2

method. Rigorous error bounds for the sEWI-FP method were derived, which show that the
ε-scalability of the sEWI-FP method is τ = O(ε2) and h = O(1). The last class combines
the Fourier spectral discretization in space and splitting technique in time, which leads to a
TSFP method. Based on the rigorous error analysis, the ε-scalability of the TSFP method is
τ = O(ε2) and h = O(1), which is similar to the sEWI-FP method. From the error analysis
and numerical results, the sEWI-FP and TSFP methods perform much better than the FDTD
methods, especially in the nonrelativistic limit regime. Extensive numerical results indicate
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that the TSFP method is superior than the sEWI-FP in terms of accuracy and efficiency, and
thus the TSFP method is favorable for solving the Dirac equation directly, especially in the
nonrelativistic limit regime. Finally, we studied the dynamics of the Dirac equation in 2D
with a honeycomb lattice potential and observed some interesting dynamics for different ε.

Acknowledgements Part of this work was done when the authors were visiting the Institute for Mathematical
Sciences at the National University of Singapore in 2015.

Appendix 1

Proof of Theorem 2.1 for the LFFD method
Define the local truncation error ξ̃n = (ξ̃n0 , ξ̃n1 , . . . , ξ̃nM )T ∈ XM of the LFFD (2.6) with

(2.10) and (2.11) as follows, for 0 ≤ j ≤ M − 1 and n ≥ 1,

ξ̃nj : =
[
iδtΦ + i

ε
σ1δxΦ − 1

ε2 σ3Φ +
(
An

1, jσ1 − V n
j I2
)

Φ

]

t=tn ,x=x j

, (6.1)

ξ̃0
j : = iδ+

t Φ(0, x j ) + i

ε
σ1δxΦ0(x j ) −

(
1

ε2 σ3 + V 0
j I2 − A0

1, jσ1

)
Φ0(x j ). (6.2)

Applying the Taylor expansion in (6.1) and (6.2) we obtain for j = 0, 1, . . . , M − 1 and
n ≥ 1,

ξ̃0
j = iτ∂t tΦ(τ ′, x j ) + i

ε
h2∂xxxΦ0(x

′), ξ̃nj = iτ 2∂t t tΦ(t ′, x j ) + i

ε
h2∂xxxΦ(tn, x

′′),

where t ′ ∈ (0, τ ), t ′′ ∈ (tn−1, tn+1), x ′, x ′′ ∈ (x j−1, x j+1). Noticing (2.1) and the assump-
tions (A) and (B), we have

|ξ̃0
j | � τ

ε4 + h2

ε
, |ξ̃nj | � τ 2

ε6 + h2

ε
, j = 0, 1, . . . , M − 1, n ≥ 1, (6.3)

which immediately implies

‖ξ̃n‖l∞ = max
0≤ j≤M−1

|ξ̃nj | � τ 2

ε6 + h2

ε
, ‖ξ̃n‖l2 � ‖ξ̃n‖l∞ � τ 2

ε6 + h2

ε
, n ≥ 1. (6.4)

Subtracting (2.6) from (6.1), noticing (2.32), we get for 0 ≤ j ≤ M − 1 and n ≥ 1,

iδtenj = − i

ε
σ1δxenj + 1

ε2 σ3enj +
(
V n
j I2 − An

1, jσ1

)
enj + ξ̃nj , (6.5)

where the boundary and initial conditions are given as

en0 = enM , en−1 = enM−1, n ≥ 0, e0
j = 0, j = 0, 1, . . . , M. (6.6)

For the first step, we have

‖e1‖l2 = τ‖ξ̃0‖l2 � τ 2

ε4 + τh2

ε
� h2

ε
+ τ 2

ε6 . (6.7)
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Denote En+1 for n = 0, 1, . . . as

En+1 =‖en+1‖2
l2 + ‖en‖2

l2 + 2 Re

⎛
⎝τh

M−1∑
j=0

(en+1
j )∗σ1δxenj

⎞
⎠

− 2 Im

⎛
⎝τh

ε2

M−1∑
j=0

(en+1
j )∗σ3enj

⎞
⎠ ; (6.8)

and under the stability condition (2.33), e.g., τ ≤ ε2τ1h

ε2hVmax+
√

h2+ε2(1+εhA1,max)2
with τ1 = 1

4 ,

which implies τ
h ≤ 1

4 and τ
ε2 ≤ 1

4 , using Cauchy inequality, we can get that

1

2

(‖en+1‖2
l2 + ‖en‖2

l2
) ≤ En+1 ≤ 3

2

(‖en+1‖2
l2 + ‖en‖2

l2
)
, n ≥ 0. (6.9)

It follows from (6.7) that

E1 �
(
h2

ε
+ τ 2

ε6

)2

. (6.10)

Multiplying (6.5) from the left by 2hτ(en+1
j +en−1

j )∗, taking the imaginary part, then summing
for j = 0, 1, . . . , M − 1, using Cauchy inequality, noting (6.4) and (6.9), we get for n ≥ 1,

En+1 − En �hτ

M−1∑
j=0

(
(A1,max + Vmax)|enj | + |ξ̃nj |

)
(|en+1

j | + |en−1
j |)

�τ(En+1 + En) + τ

(
h2

ε
+ τ 2

ε6

)2

, n ≥ 0.

Summing the above inequality for n = 1, 2, . . . ,m − 1, we get

Em − E1 � τ

m∑
k=1

Ek + mτ

(
h2

ε
+ τ 2

ε6

)2

, 1 ≤ m ≤ T

τ
. (6.11)

Taking τ0 sufficiently small, using the discrete Gronwall’s inequality and noticing (6.10), we
obtain from the above equation that

Em �
(
h2

ε
+ τ 2

ε6

)2

, 1 ≤ m ≤ T

τ
, (6.12)

which immediately implies the error bound (2.34) in view of (6.9). ��

Appendix 2

Proof of Theorem 3.1 for the sEWI-FP method
Define the error function en(x) for n = 0, 1, . . . as

en(x) =
(
en1(x)
en2(x)

)
:= PMΦ(tn, x) − Φn

M (x) =
M/2−1∑
l=−M/2

ênl e
iμl (x−a), a ≤ x ≤ b. (6.13)
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Using the triangular inequality and standard interpolation result, we get

‖Φ(tn, x) − Φn
M (x)‖L2 ≤ ‖Φ(tn, x) − PMΦ(tn, x)‖L2 + ‖en(x)‖L2

≤ hm0 + ‖en(x)‖L2 , (6.14)

where 0 ≤ n ≤ T
τ

, and the above result means that we only need estimate ‖en(x)‖L2 .

Define the local truncation error ξn(x) = ∑M/2−1
l=−M/2 ξ̂nl e

iμl (x−a) ∈ YM of the sEWI-FP
(3.17) for n ≥ 1 as

ξ̂nl = ̂(Φ(tn+1))l+2i sin(
τΓl

ε2 ) ̂(Φ(tn))l− ̂(Φ(tn−1)l+2i
ε2

δl
sin(

τδl

ε2 ) ̂(G(tn)Φ(tn))l , (6.15)

and for n = 0 as

ξ̂0
l = (̂Φ(τ))l − e−iτΓl/ε

2
(̂Φ(0))l + ε2Γ −1

l

[
I2 − e

− iτ
ε2 Γl

]
̂(G(0)Φ(0))l , (6.16)

where we write Φ(t) and G(t) in short for Φ(t, x) and G(t, x), respectively.
Firstly, we estimate the local truncation error ξn(x). Multiplying both sides of the Dirac

equation (2.1) by eiμl (x−a) and integrating over the interval (a, b), we easily recover the
equations for (Φ̂(t))l , which are exactly the same as (3.6) with ΦM being replaced by Φ(t, x).
Replacing ΦM with Φ(t, x), we use the same notations F̂n

l (s) as in (3.7) and the time
derivatives of F̂n

l (s) enjoy the same properties of time derivatives of Φ(t, x). Thus, the same

representation (3.12) holds for (Φ̂(tn))l with n ≥ 1. From the derivation of the EWI method,
it is clear that the error ξn(x) comes from the approximations for the integrals in (3.13) and
(3.14), and we have

ξ̂0
l = −i

∫ τ

0
e
i(s−τ)

ε2 Γl (F̂0
l (s) − F̂0

l (0))ds = −i
∫ τ

0

∫ s

0
e
i(s−τ)

ε2 Γl ∂s1 F̂
0
l (s1) ds1ds,

and for n ≥ 1

ξ̂nl = − i
∫ τ

0
cos((s − τ)δl/ε

2)

∫ s

0

∫ s1

−s1

∂s2s2 F̂
n
l (s2) ds2ds1ds

+
∫ τ

0
sin

(
(s − τ)Γl

ε2

)∫ s

−s
∂s1 F̂

n
l (s1) ds1 ds. (6.17)

For n = 0, the above equalities imply |̂ξ0
l | �

∫ τ

0

∫ s
0 |∂s1 F̂

0
l (s1)|ds1ds and by the Bessel

inequality and assumptions (C) and (D), we find

‖ξ0(x)‖2
L2 =(b − a)

M/2−1∑
l=−M/2

|̂ξ0
l |2 � (b − a)τ 2

∫ τ

0

∫ s

0

M/2−1∑
l=−M/2

|∂s1 F̂
0
l (s1)|2 ds1ds

�τ 2
∫ τ

0

∫ s

0
‖∂s1(G(s1)Φ(s1))‖2

L2 ds1ds � τ 4

ε4 .
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Similarly, for n ≥ 1, we obtain

‖ξn(x)‖2
L2 = (b − a)

M/2−1∑
l=−M/2

|̂ξnl |2

� τ 3
∫ τ

0

∫ s

0

∫ s1

−s1

M
2 −1∑

l=− M
2

|∂s2s2 F̂
n
l (s2)|2 ds2ds1ds

+ τ 2
∫ τ

0

∫ s

−s

(τ − s)2

ε4

M
2 −1∑

l=− M
2

|∂θ1 F̂
n−1
l (θ1)|2 dθ1 dθ ds

� τ 6‖∂t t (G(t)Φ(t))‖2
L∞([0,T ];(L2)2)

+ τ 6

ε4 ‖∂t (G(t)Φ(t))‖2
L∞([0,T ];(L2)2)

� τ 6

ε8 ,

where we have used the assumptions (C) and (D). Hence, we derive that

‖ξ0(x)‖L2 � τ 2

ε2 , ‖ξn(x)‖L2 � τ 3

ε4 , n ≥ 1. (6.18)

Now, we look at the error equations. For each fixed l = −M/2, . . . , M/2−1, subtracting
(3.17) from (6.15), we obtain the equation for the error vector function as

ê0
l = 0, ê1

l = ξ̂0
l ; ên+1

l − ên−1
l = −2i sin(τΓl/ε

2 )̂enl + R̂n
l + ξ̂nl , (6.19)

where 1 ≤ n ≤ T
τ

− 1, and Rn(x) =
M/2−1∑
l=−M/2

R̂n
l e

iμl (x−a) ∈ YM for n ≥ 1 is given by

R̂n
l = 2iε2δ−1

l sin(τδl/ε
2)
(

̂(G(tn)Φ(tn))l − ̂(G(tn)Φn
M )l

)
. (6.20)

Since |ε2δ−1
l sin(τδl/ε

2)| ≤ τ , from (6.20) and the assumption (D), we get

‖Rn(x)‖2
L2 =(b − a)

M/2−1∑
l=−M/2

|R̂n
l |2

�(b − a)τ 2
M/2−1∑
l=−M/2

∣∣∣ ̂(G(tn)Φ(tn))l − ( ̂G(tn)Φn
M )l

∣∣∣2

�τ 2‖G(tn)Φ(tn, x) − G(tn)Φ
n
M (x)‖2

L2 � τ 2‖Φ(tn, x) − Φn
M (x)‖2

L2

�τ 2h2m0 + τ 2‖en(x)‖2
L2 . (6.21)

Multiplying both sides of (6.19) by
(̂
enl
)∗ from left, taking the real parts, we obtain

Re
(
(̂enl )

∗̂en+1
l

)
− Re

(
(̂enl )

∗̂en−1
l

)
= Re

(
(̂enl )

∗(R̂n
l + ξ̂nl )

)
,

which implies

|̂en+1
l |2 + |̂enl |2 − |̂en+1

l − ênl |2 = |̂enl |2 + |̂en−1
l |2 − |̂enl − ên−1

l |2
+2 Re

(
(̂enl )

∗(R̂n
l + ξ̂nl )

)
. (6.22)
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Multiplying both sides of (6.19) by
(
ên+1
l − 2̂enl + ên−1

l

)∗
from left, taking the real parts,

we have
∣∣∣̂en+1
l − ênl

∣∣∣2 −
∣∣∣̂enl − ên−1

l

∣∣∣2

=2 Im
(
(̂en+1

l )∗ sin(τΓl/ε
2 )̂enl

)
− 2 Im

(
(̂enl )

∗ sin(τΓl/ε
2 )̂en−1

l

)

+ Re
(
(̂en+1

l − 2̂enl + ên−1
l )∗(R̂n

l + ξ̂nl )
)

. (6.23)

Summing (6.22) and (6.23), then applying Cauchy inequality and triangle inequality, we get

|̂en+1
l |2 + |̂enl |2 − 2 Im

(
(̂en+1

l )∗ sin(τΓl/ε
2 )̂enl

)

≤|̂enl |2 + |̂en−1
l |2 − 2Im

(
(̂enl )

∗ sin(τΓl/ε
2 )̂en−1

l

)

+ τ(|̂en+1
l |2 + |̂en−1

l |2) + 1

τ
(|R̂n

l |2 + |̂ξnl |2). (6.24)

Denote

En = ∥∥en+1(x)
∥∥2
L2 + ∥∥en(x)∥∥2

L2 − 2(b − a)

M/2−1∑
l=−M/2

Im
(
(̂en+1

l )∗ sin(τΓl/ε
2 )̂enl

)
, (6.25)

and it follows from the stability constraint (3.25) that the matrix l2 norm satisfies
‖ sin(

τΓl
ε2 )‖l2 ≤ sin(τδl/ε

2) ≤ sin(π/3) = √
3/2, which yield the following conclusion

En ≥
n+1∑
k=n

∥∥∥ek(x)
∥∥∥2

L2
−

√
3

2
(b − a)

M/2−1∑
l=−M/2

(∣∣∣̂en+1
l

∣∣∣2 + ∣∣̂enl
∣∣2
)

=2 − √
3

2
(
∥∥en+1(x)

∥∥2
L2 + ∥∥en(x)∥∥2

L2). (6.26)

Multiplying (6.24) by b− a and summing together for l = −M/2, . . . , M/2 − 1, in view
of the Bessel inequality, we obtain

En − En−1 �τ(
∥∥en+1(x)

∥∥2
L2 + ∥∥en(x)∥∥2

L2 + ∥∥en−1(x)
∥∥2
L2)

+ 1

τ
‖Rn(x)‖2

L2 + 1

τ
‖ξn(x)‖2

L2 , n ≥ 1. (6.27)

Summing (6.27) for n = 1, . . . ,m − 1, using (6.21) and (6.18), we derive

Em−1 − E0 � τ

m∑
k=1

∥∥∥ek(x)
∥∥∥2

L2
+ mτ 5

ε8 + mτh2m0 , 1 ≤ m ≤ T

τ
. (6.28)

Since e0(x) = 0 and Em−1 is bounded from below (6.26), we have for 1 ≤ m ≤ T
τ

,

2 − √
3

2
(‖em(x)‖2

L2 + ‖em−1(x)‖2
L2) − ‖e1(x)‖2

L2 � τ

m∑
k=1

‖ek(x)‖2
L2 + mτ 5

ε8 + mτh2m0 .

(6.29)
Noticing ‖e1(x)‖L2 � τ 2

ε2 � τ 2

ε4 , the discrete Gronwall’s inequality will imply that for
sufficiently small τ ,

∥∥em(x)
∥∥2
L2 � h2m0 + τ 4

ε8 , 1 ≤ m ≤ T

τ
. (6.30)
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Combining (6.14) and (6.30), we draw the conclusion (3.26). ��

Appendix 3

Extensions of the sEWI-FS (3.16–3.17) and TSFP (4.4) in 2D and 3D
The sEWI-FS (3.16–3.17), sEWI-FP (3.18–3.19) and TSFP (4.4) can be easily extended

to 2D and 3D with tensor grids by modifying the matrices Γl in (3.8) and G(t, x) in (4.5) in
the TSFP case. For the reader’s convenience, we present the modifications of Γl in (3.8) and
G(t, x) in (4.5) in 2D and 3D as follows.

For the Dirac equation (1.21) in 2D, i.e. we take d = 2 in (1.21). The problem is truncated
on Ω = (a1, b1) × (a2, b2) with mesh sizes h1 = (b1 − a1)/M1 and h2 = (b2 − a2)/M2

(M1, M2 two even positive integers) in the x- and y-direction, respectively. The wave function
Φ is a two-component vector, and the matrix Γl in (3.8) will be replaced by

Γ jk =
(

1 εμ
(1)
j − iεμ(2)

k

εμ
(1)
j + iεμ(2)

k −1

)
, μ

(1)
j = 2 jπ

b1 − a1
, μ

(2)
k = 2kπ

b2 − a2
, (6.31)

where −M1
2 ≤ j ≤ M1

2 − 1, −M2
2 ≤ k ≤ M2

2 − 1, and the Schur decomposition Γ jk =
Q jk D jk Q∗

jk is given as

Q jk =

⎛
⎜⎜⎝

1+δ jk√
2δ jk (1+δ jk )

−εμ
(1)
j +iεμ(2)

k√
2δ jk (1+δ jk )

εμ
(1)
j +iεμ(2)

k√
2δ jk (1+δ jk )

1+δ jk√
2δ jk (1+δ jk )

⎞
⎟⎟⎠ , Djk =

(
δ jk 0
0 −δ jk

)
, (6.32)

where

δ jk =
√

1 + ε2(μ
(1)
j )2 + ε2(μ

(2)
k )2. (6.33)

The matrix
∫ tn+1
tn

G(t, x)dt in (4.5) becomes
∫ tn+1
tn

G(t, x)dt and the Schur decomposition∫ tn+1
tn

G(t, x)dt = PxΛxP∗
x with V (1)

x = ∫ tn+1
tn

V (t, x)dt , A(1)
l,x = ∫ tn+1

tn
Al(t, x)dt for l =

1, 2, λ
(1)
x =

√
|A(1)

1,x|2 + |A(1)
2,x|2, Λx = diag(Λx,+,Λx,−), Λx,± = V (1)

x ± λ
(1)
x , and Px = I2

if λ
(1)
x = 0 and otherwise

Px =
⎛
⎜⎝

1√
2

A(1)
1,x−i A(1)

2,x√
2λ

(1)
x

− A(1)
1,x+i A(1)

2,x√
2λ

(1)
x

1√
2

⎞
⎟⎠ . (6.34)

For the Dirac equation (1.9) in 3D, i.e. we take d = 3 in (1.9). The problem is truncated on
Ω = (a1, b1)× (a2, b2)× (a3, b3) with mesh sizes h1 = (b1 −a1)/M1, h2 = (b2 −a2)/M2

and h3 = (b3 − a3)/M3 (M1, M2, M3 three even positive integers) in x-, y- and z-direction,
respectively. The wave function Ψ is a four-component vector, and the matrix Γl in (3.8) will
be replaced by Γ jkl as:

Γ jkl =

⎛
⎜⎜⎜⎜⎝

1 0 εμ
(3)
l εμ

(1)
j − iεμ(2)

k

0 1 εμ
(1)
j + iεμ(2)

k −εμ
(3)
l

εμ
(3)
l εμ

(1)
j − iεμ(2)

k −1 0

εμ
(1)
j + iεμ(2)

k −εμ
(3)
l 0 −1

⎞
⎟⎟⎟⎟⎠

, (6.35)
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where −M1
2 ≤ j ≤ M1

2 − 1,−M2
2 ≤ k ≤ M2

2 − 1,−M3
2 ≤ l ≤ M3

2 − 1 and

μ
(1)
j = 2 jπ

b1 − a1
, μ

(2)
k = 2kπ

b2 − a2
, μ

(3)
l = 2lπ

b3 − a3
. (6.36)

The eigenvalues of Γ jkl are

δ jkl , δ jkl ,−δ jkl ,−δ jkl , with δ jkl =
√

1 + ε2
∣∣∣μ(1)

j

∣∣∣2 + ε2
∣∣∣μ(2)

k

∣∣∣2 + ε2
∣∣∣μ(3)

l

∣∣∣2.
The corresponding eigenvectors are

v(1)
jkl =

⎛
⎜⎜⎝

1 + δ jkl
0

εμ
(3)
l

εμ
(1)
j + iεμ(2)

k

⎞
⎟⎟⎠ , v(2)

jkl =

⎛
⎜⎜⎝

0
1 + δ jkl

εμ
(1)
j − iεμ(2)

k

−εμ
(3)
l

⎞
⎟⎟⎠ ,

and

v(3)
jkl =

⎛
⎜⎜⎝

−εμ
(3)
l

−εμ
(1)
j − iεμ(2)

k
1 + δ jkl

0

⎞
⎟⎟⎠ , v(4)

jkl =

⎛
⎜⎜⎝

−εμ
(1)
j + iεμ(2)

k

εμ
(3)
l

0
1 + δ jkl

⎞
⎟⎟⎠ .

Then the Schur decomposition Γ jkl = Q jkl D jkl Q∗
jkl is given as

Djkl = diag(δ jkl , δ jkl ,−δ jkl ,−δ jkl), Q jkl = 1√
2δ jkl(1 + δ jkl)

(
v(1)
jkl , v

(2)
jkl , v

(3)
jkl , v

(4)
jkl

)
.

The matrix
∫ tn+1
tn

G(t, x)dt in (4.5) becomes
∫ tn+1
tn

G(t, x)dt and the Schur decomposition∫ tn+1
tn

G(t, x)dt = PxΛxP∗
x with V (1)

x = ∫ tn+1
tn

V (t, x)dt , A(1)
l,x = ∫ tn+1

tn
Al(t, x)dt for l =

1, 2, 3, λ(1)
x =

√
|A(1)

1,x|2 + |A(1)
2,x|2 + |A(1)

3,x|2, Λx = diag(Λx,+,Λx,+,Λx,−,Λx,−), Λx,± =
V (1)
x ± λ

(1)
x , and Px = I4 if λ

(1)
x = 0 and otherwise Px = (u(1)

x ,u(2)
x ,u(3)

x ,u(4)
x ),

u(1)
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

−A(1)
1,x+i A(1)

2,x√
2λ

(1)
x

A(1)
3,x√

2λ
(1)
x

0
1√
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, u(2)
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

−A(1)
3,x√

2λ
(1)
x

−A(1)
1,x−i A(1)

2,x√
2λ

(1)
x

1√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

u(3)
x =

⎛
⎜⎜⎜⎜⎜⎝

0
1√
2

A(1)
1,x−i A(1)

2,x√
2λ

(1)
x−A3,x√

2λ
(1)
x

⎞
⎟⎟⎟⎟⎟⎠

, u(4)
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

0
A(1)

3,x√
2λ

(1)
x

A(1)
1,x+i A(1)

2,x√
2λ

(1)
x

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For the Dirac equation (1.9) in 2D, we simply let μ
(3)
l = 0, A3(t, x) ≡ 0 in the above 3D

case; and for the Dirac equation (1.9) in 1D, we let μ
(2)
k = μ

(3)
l = 0, A2(t, x) = A3(t, x) ≡

0 in the above 3D case. Then the sEWI-FP (3.18–3.19) and TSFP (4.4) can be designed
accordingly for the Dirac equation (1.9) in 2D and 1D.
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