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Abstract In this paper, an innovative and effective numerical algorithm by the use of weak
Galerkin (WG) finite element methods is proposed for a type of fourth order problem arising
from fluorescence tomography. Fluorescence tomography is emerging as an in vivo non-
invasive 3D imaging technique reconstructing images that characterize the distribution of
molecules tagged byfluorophores.Weak second order elliptic operator and its discrete version
are introduced for a class of discontinuous functions defined on a finite element partition of
the domain consisting of general polygons or polyhedra. An error estimate of optimal order
is derived in an H2

κ -equivalent norm for the WG finite element solutions. Error estimates
of optimal order except the lowest order finite element in the usual L2 norm are established
for the WG finite element approximations. Numerical tests are presented to demonstrate the
accuracy and efficiency of the theory established for the WG numerical algorithm.
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1 Introduction

In this paper, we are concerned with the efficient numerical methods for a type of fourth
order problem with Dirichlet and Neumann boundary conditions. The model problem seeks
an unknown function u = u(x) satisfying

(−∇ · (κ∇) + μ)2u = f, in �,

u = ξ, on ∂�,

κ∇u · n = ν, on ∂�, (1.1)

where � is an open bounded domain in R
d (d = 2, 3) with a Lipschitz continuous boundary

∂�, n is the unit outward normal direction to ∂�, κ is a symmetric and positive definite
matrix-valued function, μ is a nonnegative real-valued function, and the functions f , ξ , and
ν are given in the domain or on its boundary, as appropriate. For convenience, denote the
second order elliptic operator ∇ · (κ∇) as E . For simplicity and without loss of generality,
we assume that κ is a piecewise constant matrix and μ is a non-negative constant.

The fourth order model problem (1.1) arises from fluorescence tomograph(FT) [5,8,10,
13,17,28,29,31], which emerges as an in vivo noninvasive 3D imagingmodality. FT captures
the specific information of molecules by the use of highly specific fluorescent probes and
nonionizing NIR radiation instead of X-ray or other powerful magnetic fields [12]. Thus,
FT is considered to be a potentially less harmful medical imaging modality compared to
other medical imaging modalities, such as CT and MRI. The aim of FT is to reconstruct
the distribution of fluorophores tagged with targetted molecules from the information of
the boundary measurements. Therefore, FT has been regarded as a promising and feasible
method in the early detection of cancer and the monitoring of drug nowadays [2,11,30].

Introduce the following space

H2
κ (�) = {v : v ∈ H1(�), κ∇v ∈ H(div;�)},

which is equipped with the following norm

‖v‖κ,2 = (‖v‖21 + ‖∇ · (κ∇v)‖2) 1
2 .

A variational formulation for the fourth order model problem (1.1) is given by seeking

u ∈ H2
κ (�) satisfying u|∂� = ξ ∈ H

1
2 (∂�), κ∇u · n|∂� = ν ∈ H− 1

2 (∂�), such that

(Eu, Ev) + 2μ(κ∇u,∇v) + μ2(u, v) = ( f, v), ∀v ∈ V, (1.2)

where (·, ·) stands for the usual inner product in L2(�), and the test space V is defined as

V = {v ∈ H2
κ (�) : v|∂� = 0, κ∇v · n|∂� = 0}.

The conforming finite element methods have been proposed for a general fourth order
elliptic problem, such as the biharmonic equation, by the use of the subspaces of H2(�)

as the finite element spaces. The H2-conforming finite element methods make use of the
C1-continuity for the corresponding piecewise polynomials on a prescribed finite element
partition [3]. The C1-continuity leads to an enormous difficulty and complexity in construct-
ing the corresponding finite element functions due to the high degrees of freedom of the
C1-continuous elements in practical computations. For example, the Argyris element has 21
degrees of freedom, and the Bell element has 18 degrees of freedom. Thus, H2-conforming
finite element methods are not popular in solving the biharmonic equation in practice. Non-
conforming as well as discontinuous Galerkin finite element methods have been developed as
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the alternative numerical approaches for solving the biharmonic equation over the last several
decades. One of the well-known nonconforming finite elements for solving the biharmonic
equation is the Morley element [19] which uses piecewise quadratic polynomials. Recently,
a C0 interior penalty method has been proposed in [4,6]. A hp-version interior-penalty dis-
continuous Galerkin method was proposed for the biharmonic equation in [20]. The mixed
methods have been developed for the biharmonic equation to avoid the use ofC1-elements by
reducing the fourth order problem to a system of two second order equations [1,7,9,14,18].

The difference between (1.2) and the standard bi-harmonic equation is significant. First,
the usual H2 conforming elements designed for the bi-harmonic equation are no longer
H2

κ -conforming, and thus are not applicable to the problem (1.2). For some well-known non-
conforming finite elements, such as the Morley element [19], for the biharmonic equation,
the corresponding variational formulation involves the full Hessian. Since it is not clear if
the problem (1.2) can be re-formulated in a Hessian-like equivalent form, the applicability
of such non-conforming finite elements is highly questionable, if not impossible. In fact, we
believe that they can not be directly applied to the problem (1.2). The problem (1.2) can also
be formulated in a mixed form by using an auxiliary variable w = −∇ · (κ∇u) + μu. The
exact mixed formulation seeks u, w ∈ H1(�) such that u|∂� = ξ and satisfying

(w, φ) − (κ∇u,∇φ) − (μu, φ) = −〈ν, φ〉∂�, ∀φ ∈ H1(�),

(κ∇w,∇v) + (μw, v) = ( f, v), ∀v ∈ H1
0 (�).

(1.3)

Most of the existing finite elementmethods are applicable to themixed formulation (1.3). One
drawback with the mixed formulation is the saddle-point nature of the problem, which causes
extra difficulty in the design of fast solution techniques for the corresponding discretizations.

Recently, weak Galerkin (WG) finite element method is emerging as a new and efficient
numerical method for solving partial differential equations, which was first proposed in 2011
by Junping Wang and Xiu Ye for solving second order elliptic problem in [25], and was
further developed in solving many other PDEs [16,21–24,26,27]. The central idea of WG is
to interpret partial differential operators as generalized distributions, called weak differential
operators, over the space of discontinuous functions including boundary information. The
weak differential operators are further discretized and applied to the corresponding varia-
tional formulations of the underlying PDEs. In order to overcome the barrier in constructing
“smooth” finite element functions, WG makes use of the generalized and/or discontinuous
approximating functions on general meshes. The current research indicates that the concept
of discrete weak differential operators offers a new paradigm in numerical methods for partial
differential equations.

The proposed WG finite element algorithm for the fourth order problem (1.1) is based on
two new ideas: (1) the computation of a discrete weak second order elliptic operator locally
on each element that takes into account the coefficient matrix from applications; and (2)
a stabilizer that takes into account the jump of the coefficient matrix from applications. In
addition, our weak Galerkin finite element method is based on the variational formulation
(1.2) which proves to be convergent in optimal order. The result is innovative in that the
proposed algorithm is the first ever finite element method for the primal variable that works
for the fourth order problem (1.1).

The design of WG algorithms for the fourth order problem (1.1) is not as easy as it
appears. Different formulations for (1.1) may lead to numerical solutions that are not stable
with respect to the parameters in the modeling equation. For example, a more straightforward
variational formulation than (1.2) for the fourth order problem (1.1) would seek u ∈ H2

κ (�)
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satisfying u|∂� = ξ and κ∇u · n|∂� = ν such that

(Fu, Fv) = ( f, v), ∀v ∈ V, (1.4)

where F = −∇ ·(κ∇)+μI . A naive weak Galerkin finite element method could be designed
by introducing a discrete weak version for the second order elliptic operator F . However,
according to our numerical experiments, this naive weak Galerkin method based on the
variational formulation (1.4) does not provide reliable numerical approximations for (1.1),
particularly when the parameter μ becomes large. Although it is unclear what the causes are
for the observed numerical instability, it is clear that the formulation (1.4) does not have a
good handling on the second order elliptic term which is believed to play an important role
in the algorithm design. On the theoretical side, the missing of the second order term leads to
the fact that the convergence analysis for the correspondingWGmethod cannot pass through
based on the variational formulation (1.4).

We briefly introduce the organization of this paper. Section 2 is devoted to a discussion of
weak second order elliptic operator, and weak gradient as well as their discrete versions. In
Sect. 3, a weak Galerkin algorithm is proposed for solving the fourth order model problem
(1.1) arising from FT based on the variational formulation (1.2). In Sect. 4, some approxi-
mation properties are derived for the local L2 projection operators which play a critical role
in the convergence analysis. Section 5 aims to derive an error equation for the WG finite
element approximation. In Sect. 6, some error estimates are established for the WG finite
element approximation in a H2

κ -equivalent discrete norm and the usual L2-norm. In Sect. 7,
some numerical results are presented to verify the effectiveness of the theory established in
the previous sections.

2 Weak Derivatives and Discrete Weak Derivatives

The principle differential operators in the variational form (1.2) of the fourth order model
problem (1.1) are the second order elliptic operator E and the usual gradient operator. Thus,
we shall define the weak second order elliptic operator and review the definition for the weak
gradient operator introduced in [26]. For the purpose of numerical implementation, we shall
also introduce a discrete version for the weak second order elliptic operator and review the
discrete weak gradient operator as discussed in [26].

Let Th be a partition of the domain � into polygons in 2D or polyhedra in 3D which is
shape regular as defined in [26]. Denote by Eh the set of all edges or flat faces in Th , and
let E0

h = Eh \ ∂� be the set of all interior edges or flat faces in Th . By a weak function on
the region T , we mean a function v = {v0, vb, vg} such that v0 ∈ L2(T ), vb ∈ L2(∂T ) and
vg ∈ L2(∂T ). The first and second components v0 and vb are used to represent the value of v
in the interior and on the boundary of T . The third component vg is reserved to represent the
normal derivative κ∇v · n on the boundary of T , where n stands for the unit outward normal
direction on the boundary of T . On each interior edge or flat face e ∈ E0

h shared by two
elements TL and TR , vg has two copies of value: one as seen from the left-hand side element
TL denoted by vL

g , and the other as seen from the right-hand side element TR denoted by vR
g .

It is clear that vL
g + vR

g = 0.
Denote by W (T ) the space of all weak functions on the element T ∈ Th ; i.e.,

W (T ) = {v = {v0, vb, vg} : v0 ∈ L2(T ), vb ∈ L2(∂T ), vg ∈ L2(∂T )}.

123



J Sci Comput (2017) 71:897–918 901

Definition 2.1 For any weak function v ∈ W (T ), the action of the second order elliptic
operator E on v = {v0, vb, vg}, denoted by Ewv, is defined as a linear functional in H2(T )

whose action on each ϕ ∈ H2(T ) is given by

(Ewv, ϕ)T = (v0, Eϕ)T − 〈vb, κ∇ϕ · n〉∂T + 〈vg, ϕ〉∂T . (2.1)

Here, 〈·, ·〉∂T stands for the usual inner product in L2(∂T ).

For computational purpose, we introduce a discrete version of the weak second order
elliptic operator by approximating Ew in a polynomial subspace of the dual of H2(T ). To
this end, for any non-negative integer r ≥ 0, denote by Pr (T ) the set of polynomials on T with
degree no more than r . A discrete weak second order elliptic operator, denoted by Ew,r,T , is
defined as the unique polynomial Ew,r,T v ∈ Pr (T ) satisfying the following equation

(Ew,r,T v, ϕ)T = (v0, Eϕ)T − 〈vb, κ∇ϕ · n〉∂T + 〈vg, ϕ〉∂T , ∀ϕ ∈ Pr (T ). (2.2)

For sufficiently smooth v0 ∈ H2(T ), we have from the usual integration by parts that

(Ew,r,T v, ϕ)T = (Ev0, ϕ)T + 〈v0 − vb, κ∇ϕ · n〉∂T − 〈κ∇v0 · n − vg, ϕ〉∂T (2.3)

for all ϕ ∈ Pr (T ).

Definition 2.2 [26] The weak gradient of any v ∈ W (T ), denoted by ∇wv, is defined as
a linear vector functional in the dual of [H1(T )]d whose action on each ψ ∈ [H1(T )]d is
given by

(∇wv,ψ)T = −(v0,∇ · ψ)T + 〈vb,ψ · n〉∂T . (2.4)

The discrete weak gradient operator in [Pr (T )]d , denoted by∇w,r,T , is given as the unique
vector polynomial ∇w,r,T v ∈ [Pr (T )]d satisfying the following equation

(∇w,r,T v,ψ)T = −(v0,∇ · ψ)T + 〈vb,ψ · n〉∂T , ∀ψ ∈ [Pr (T )]d . (2.5)

For v0 ∈ H1(T ), we have from the usual integration by parts that

(∇w,r,T v,ψ)T = (∇v0,ψ)T − 〈v0 − vb,ψ · n〉∂T , ∀ψ ∈ [Pr (T )]d . (2.6)

3 Weak Galerkin Finite Element Methods

Let k ≥ 2. Denote by Wk(T ) the local discrete weak function space; i.e.,

Wk(T ) = {
v = {v0, vb, vg} : v0 ∈ Pk(T ), vb ∈ Pk(e), vg ∈ Pk−1(e), e ⊂ ∂T

}
.

Patching Wk(T ) over all the elements T ∈ Th through the interior interface E0
h gives rise to

a global weak finite element space, denoted by Vh ; i.e.,

Vh = {
v = {v0, vb, vg} : {v0, vb, vg}|T ∈ Wk(T ),∀T ∈ Th

}
.

Note that vb is single-valued on each interior edge e ∈ E0
h , and vg has two values vL

g and vR
g

on each e ∈ E0
h satisfying vL

g + vR
g = 0.

Denote by V 0
h the subspace of Vh with vanishing values on the boundary ∂�; i.e.,

V 0
h = {v = {v0, vb, vg} ∈ Vh, vb|e = 0, vg|e = 0, e ⊂ ∂T ∩ ∂�}.
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Denote by Ew,k−2 and ∇w,k−1 the discrete weak second order elliptic operator and the
discrete weak gradient operator on the weak finite element space Vh computed by using (2.2)
and (2.5) on each element T ∈ Th for k ≥ 2, respectively; i.e.,

(Ew,k−2v)|T = Ew,k−2,T (v|T ), v ∈ Vh,

(∇w,k−1v)|T = ∇w,k−1,T (v|T ), v ∈ Vh .

For simplicity, the subscripts k − 2 and k − 1 will be dropped from the notations Ew,k−2

and ∇w,k−1, respectively. For any u = {u0, ub, ug} and v = {v0, vb, vg} in Vh , we introduce
the following two bilinear forms

(Ewu, Ewv)h =
∑

T∈Th

(Ewu, Ewv)T ,

(κ∇wu,∇wv)h =
∑

T∈Th

(κ∇wu,∇wv)T ,

(u, v)h =
∑

T∈Th

(u0, v0)T ,

and a stabilizer

s(u, v) =
∑

T∈Th

h−1
T 〈κ∇u0 · n − ug, κ∇v0 · n − vg〉∂T +

∑

T∈Th

h−3
T 〈u0 − ub, v0 − vb〉∂T .

For each element T , denote by Q0 the L2 projection onto Pk(T ). For each edge or face
e ⊂ ∂T , denote by Qb and Qg the L2 projections onto Pk(e) and Pk−1(e), respectively. Let
H2(Th) be the space of H2 -functions subordinated to the finite element partition Th ; i.e.,

H2(Th) = {φ ∈ L2(�) : φ|T ∈ H2(T ), ∀T ∈ Th}. (3.1)

Now, for any u ∈ H2
κ (�) ∩ H2(Th), we can define a projection onto the weak finite element

space Vh such that on each element T ,

Qhu = {Q0u, Qbu, Qg(κ∇u · n)}.
Weak Galerkin Algorithm 1. Find uh = {u0, ub, ug} ∈ Vh satisfying ub = Qbξ

and ug = Qgν on ∂�, such that

(Ewuh, Ewv)h + 2μ(κ∇wuh,∇wv)h + μ2(uh, v)h + s(uh, v) = ( f, v0),∀v ∈ V 0
h .(3.2)

Lemma 3.1 For any v ∈ V 0
h , define |||v||| by

|||v|||2 = (Ewv, Ewv)h + 2μ(κ∇wv,∇wv)h + μ2(v, v)h + s(v, v). (3.3)

Then, ||| · ||| defines a norm in the linear space V 0
h .

Proof It is easily seen that |||v||| defines a semi norm in the finite element space V 0
h when we

write the term 2μ(κ∇wv,∇wv)h as 2μ(κ
1
2 ∇wv, κ

1
2 ∇wv)h .We shall only verify the positivity

property for ||| · |||. To this end, assume that |||v||| = 0 for some v ∈ V 0
h . It follows from (3.3)

and the assumption μ ≥ 0 that Ewv = 0 on each element T , κ∇v0 · n = vg and v0 = vb on
each ∂T . Thus, for any ϕ ∈ Pk−2(T ), from (2.3), we obtain

0 = (Ewv, ϕ)T

= (Ev0, ϕ)T + 〈v0 − vb, κ∇ϕ · n〉∂T − 〈κ∇v0 · n − vg, ϕ〉∂T
= (Ev0, ϕ)T ,
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which implies that Ev0 = 0 on each element T . Thus, from integration by parts, we obtain

0 =
∑

T∈Th

(Ev0, v0)T

=
∑

T∈Th

−(κ∇v0,∇v0)T + 〈κ∇v0 · n, v0〉∂T

=
∑

T∈Th

−(κ∇v0,∇v0)T + 〈κ∇v0 · n − vg, v0〉∂T

=
∑

T∈Th

−(κ∇v0,∇v0)T ,

where we have used the fact that the sum for the terms related to vg vanishes (note that vg
vanishes on ∂T ∩ ∂�). This implies that ∇v0 = 0 on each element T . Thus, v0 is a constant
on each element T , which, together with the fact that v0 = vb on each ∂T , indicates that v0
is continuous over the whole domain�. Thus, we obtain that v0 = C in�. Together with the
facts that v0 = vb on ∂T and vb|∂T∩∂� = 0, we obtain v0 = 0 in �, which, combining with
the facts that v0 = vb on each ∂T and vb|∂T∩∂� = 0 indicates that vb = 0 in�. Furthermore,
the facts that κ∇v0 · n = vg on each ∂T and vg|∂T∩∂� = 0 yield vg = 0 in �. Thus, v = 0
in �. This completes the proof. ��

Lemma 3.2 The weak Galerkin algorithm (3.2) has a unique solution.

Proof The proof is similar to the proof of Lemma 4.2 in [21], and therefore the details are
omitted here. ��

4 L2 Projections

In this section, we aim to establish several valuable properties for the L2 projections, which
will play an important role in the error analysis of the weak Galerkin scheme (3.2).

Lemma 4.1 For each element T ∈ Th, defineQh the local L2 projection onto Pk−2(T ) and
Q1 the local L2 projection onto Pk−1(T ). The L2 projections Qh, Q1 and Qh satisfy the
following commutative properties:

Ew(Qhw) = Qh(Ew), ∀w ∈ H2
κ (T ), (4.1)

∇w(Qhw) = Q1(∇w), ∀w ∈ H1(T ). (4.2)

Proof To derive (4.1), for any ϕ ∈ Pk−2(T ) and w ∈ H2
κ (T ), it follows from the definition

(2.2) of Ew and the usual integration by parts that

(Ew(Qhw), ϕ)T = (Q0w, Eϕ)T − 〈Qbw, κ∇ϕ · n〉∂T + 〈Qg(κ∇w · n), ϕ〉∂T
= (w, Eϕ)T − 〈w, κ∇ϕ · n〉∂T + 〈κ∇w · n, ϕ〉∂T
= (ϕ, Ew)T

= (ϕ,Qh(Ew))T .

Similarly, (4.2) can be derived by the definition (2.5) of∇w and the usual integration. This
ends the proof. ��
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For any element T ∈ Th , denote by ϕ a regular function in H1(T ). The trace inequality
holds true [26]:

‖ϕ‖2e ≤ C(h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T ). (4.3)

If ϕ is a polynomial on the element T , it follows from the inverse inequality that [26]

‖ϕ‖2e ≤ Ch−1
T ‖ϕ‖2T . (4.4)

Remark 4.1 Note that the trace inequality (4.3) is employed for regular functions on each ele-
ment T ∈ Th thoughout the paper. Therefore, there is no need to establish the corresponding
trace inequality with regard to the whole domain in the Sobolev space H2

κ (�).

Lemma 4.2 [15,26] Let Th be a finite element partition of � which satisfies the shape
regularity assumption defined in [26]. For any 0 ≤ s ≤ 2, the following estimates hold true:

∑

T∈Th

h2sT ‖u − Q0u‖2s,T ≤ Ch2(m+1)‖u‖2m+1, 0 ≤ m ≤ k, (4.5)

∑

T∈Th

h2sT ‖Eu − Qh Eu‖2s,T ≤ Ch2(m−1)‖u‖2m+1, 1 ≤ m ≤ k, (4.6)

∑

T∈Th

h2sT ‖κ∇u − Q1(κ∇u)‖2s,T ≤ Ch2m‖u‖2m+1, 0 ≤ m ≤ k. (4.7)

Lemma 4.3 Assume u ∈ Hmax{m+1,4}(�). Denote by δi, j the Kronecker’s delta which takes
value 1 for i = j and takes value 0 otherwise. The following estimates hold true:

( ∑

T∈Th

hT ‖Eu − Qh(Eu)‖2∂T
) 1

2 ≤ Chm−1‖u‖m+1, 2 ≤ m ≤ k, (4.8)

( ∑

T∈Th

h3T ‖κ∇(Eu − Qh(Eu)) · n‖2∂T
) 1

2

≤ Chm−1(‖u‖m+1 + hδm,2‖u‖4), 2 ≤ m ≤ k, (4.9)
( ∑

T∈Th

h−1
T ‖κ∇(Q0u) · n − Qg(κ∇u · n)‖2∂T

) 1
2

≤ Chm−1‖u‖m+1, 1 ≤ m ≤ k, (4.10)
( ∑

T∈Th

h−3
T ‖Q0u − Qbu‖2∂T

) 1
2 ≤ Chm−1‖u‖m+1, 0 ≤ m ≤ k, (4.11)

( ∑

T∈Th

h3T ‖(κ∇u − Q1(κ∇u)) · n‖2∂T
) 1

2 ≤ Chm+1‖u‖m+1, 1 ≤ m ≤ k. (4.12)

Proof To prove (4.8), it follows from the trace inequality (4.3) and the estimate (4.6) that
∑

T∈Th

hT ‖Eu − Qh(Eu)‖2∂T ≤ C
∑

T∈Th

‖Eu − Qh(Eu)‖2T + h2T |Eu − Qh(Eu)|21,T

≤ Ch2m−2‖u‖2m+1.

Similarly, using the trace inequality (4.3) and the estimates (4.5)- - (4.7) complete the
proof of (4.9) - (4.12). ��
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5 Error Equations

Let u and uh = {u0, ub, ug} ∈ Vh be the solutions of (1.1) and its finite element discretization
scheme (3.2), respectively. Assume that the exact solution is H2-regular on each element T ;
i.e., u ∈ H2

κ (�) ∩ H2(Th). Denote by

eh = Qhu − uh (5.1)

the error function between the L2 projection of the exact solution u and its weak Galerkin
finite element approximation uh . By error equationwe mean an equation for which the error
function eh must satisfy. Error equations are usually employed in the derivation of error
estimates for finite element solutions. The goal of this section is to derive an error equation
for the error function eh arising from the weak Galerkin finite element scheme (3.2).

Lemma 5.1 The error function eh ∈ V 0
h defined in (5.1) satisfies

(Eweh, Ewv)h + 2μ(κ∇weh,∇wv)h + μ2(eh, v)h + s(eh, v) = φu(v), ∀v ∈ V 0
h ,

(5.2)

where

φu(v) = −
∑

T∈Th

〈κ∇(Eu − Qh(Eu)) · n, v0 − vb〉∂T

+
∑

T∈Th

〈κ∇v0 · n − vg, Eu − Qh Eu〉∂T

+
∑

T∈Th

2μ〈v0 − vb, (κ∇u − Q1(κ∇u)) · n〉∂T + s(Qhu, v). (5.3)

Proof Letting ϕ = Ew(Qhu) in (2.3), from (4.1), we obtain

(Ewv, Ew(Qhu))T = (Ev0,Qh(Eu))T + 〈v0 − vb, κ∇(Qh(Eu)) · n〉∂T
−〈κ∇v0 · n − vg,Qh Eu〉∂T

= (Ev0, Eu)T + 〈v0 − vb, κ∇(Qh(Eu)) · n〉∂T
−〈κ∇v0 · n − vg,Qh Eu〉∂T ,

which implies that

(Ev0, Eu)T = (Ew(Qhu), Ewv)T − 〈v0 − vb, κ∇(Qh(Eu)) · n〉∂T
+〈κ∇v0 · n − vg,Qh Eu〉∂T . (5.4)

Next, it follows from the integration by parts that

∑

T∈Th

(Eu, Ev0)T =
∑

T∈Th

(E2u, v0)T − 〈κ∇(Eu) · n, v0〉∂T + 〈κ∇v0 · n, Eu〉∂T . (5.5)
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Letting ψ = ∇w(Qhu) in (2.6), from (4.2) and the integration by parts, we have

∑

T∈Th

2μ(κ∇w(Qhu),∇wv)T

=
∑

T∈Th

2μ(κ∇v0,Q1∇u)T − 2μ〈v0 − vb,Q1κ∇u · n〉∂T

=
∑

T∈Th

2μ(∇v0, κ∇u)T − 2μ〈v0 − vb,Q1κ∇u · n〉∂T

=
∑

T∈Th

−2μ(v0,∇ · (κ∇u))T + 2μ〈v0, κ∇u · n〉∂T − 2μ〈v0 − vb,Q1κ∇u · n〉∂T

=
∑

T∈Th

−2μ(v0, Eu)T + 2μ〈v0 − vb, (κ∇u − Q1(κ∇u)) · n〉∂T , (5.6)

where we have used the fact that the sum for the terms related to vb vanishes (note that vb
vanishes on ∂T ∩ ∂�).

From the definition of the projection, we get

μ2(Qhu, v)h = μ2
∑

T∈Th

(Q0u, v0)T =
∑

T∈Th

μ2(u0, v0)T . (5.7)

Adding (5.5)–(5.7) together and using the identity that

∑

T∈Th

(E2u, v0)T − 2μ(Eu, v0)T + μ2(u0, v0)T = ( f, v0),

we obtain
∑

T∈Th

(Eu, Ev0)T + 2μκ(∇w(Qhu),∇wv)T + μ2(Qhu, v)h

= ( f, v0) −
∑

T∈Th

(
〈κ∇(Eu) · n, v0 − vb〉∂T + 〈κ∇v0 · n − vg, Eu〉∂T

+2μ〈v0 − vb, (κ∇u − Q1(κ∇u)) · n〉∂T
)
,

where we have used the fact that the sum for the terms related to vb and vg vanishes (note that
both vb and vg vanish on ∂T ∩ ∂�). Combining the above equation with (5.4) and adding
s(Qhu, v) to both sides of the equation yield

∑

T∈Th

(Ew(Qhu), Ewv)T + 2μκ(∇w(Qhu),∇wv)T + μ2(Qhu, v)T

+s(Qhu, v)

= ( f, v0) −
∑

T∈Th

(
〈κ∇(Eu − Qh(Eu)) · n, v0 − vb〉∂T

+〈κ∇v0 · n − vg, Eu − Qh Eu〉∂T
+2μ〈v0 − vb, (κ∇u − Q1(κ∇u)) · n〉∂T

)
+ s(Qhu, v),

which, by subtracting (3.2), yields the error equation (5.2). This completes the proof. ��
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6 Error Estimates in H2
κ and L2

This section is concerned with the error estimates for the finite element approximation uh of
the weak Galerkin algorithm (3.2) in both the H2

κ -equivalent norm and the usual L2 norm.

Theorem 6.1 Assume k ≥ 2 and the exact solution u of (1.1) is sufficiently regular satisfying
u ∈ Hmax{k+1,4}(�). Let uh be the weak Galerkin finite element approximation arising from
(3.2). There exists a constant C such that

|||uh − Qhu||| ≤ Chk−1
(
‖u‖k+1 + hδk,2‖u‖4

)
. (6.1)

Proof Letting v = eh in the error equation (5.2) gives rise to

|||eh |||2 = −
∑

T∈Th

〈κ∇(Eu − Qh(Eu)) · n, e0 − eb〉∂T

+
∑

T∈Th

〈κ∇e0 · n − eg, Eu − Qh Eu〉∂T

+
∑

T∈Th

2μ〈e0 − eb, (κ∇u − Q1(κ∇u)) · n〉∂T

+
∑

T∈Th

h−1
T 〈κ∇Q0u · n − Qg(κ∇u · n), κ∇e0 · n − eg〉∂T

+
∑

T∈Th

h−3
T 〈Q0u − Qbu, e0 − eb〉∂T . (6.2)

We estimate the terms on the right-hand side of (6.2) as follows. As to the first term, using
the Cauchy-Schwarz inequality and the estimate (4.9) gives

∣
∣
∣

∑

T∈Th

〈κ∇(Eu − Qh Eu) · n, e0 − eb〉∂T
∣
∣
∣

≤
( ∑

T∈Th

h3T ‖κ∇(Eu − Qh Eu) · n‖2∂T
) 1

2
( ∑

T∈Th

h−3
T ‖e0 − eb‖2∂T

) 1
2

≤ Chk−1(‖u‖k+1 + hδk,2‖u‖4)|||eh |||.
Similarly, using the Cauchy-Schwarz inequality and the estimates (4.8), (4.10)- (4.12)

yields
∣
∣
∣

∑

T∈Th

〈κ∇e0 · n − eg, Eu − Qh Eu〉∂T
∣
∣
∣ ≤ Chk−1‖u‖k+1|||eh |||,

∣
∣
∣

∑

T∈Th

2μ〈e0 − eb, (κ∇u − Q1(κ∇u)) · n〉∂T
∣
∣
∣ ≤ Chk+1‖u‖k+1|||eh |||,

∣
∣
∣

∑

T∈Th

h−1
T 〈κ∇Q0u · n − Qg(κ∇u · n), κ∇e0 · n − eg〉∂T

∣
∣
∣ ≤ Chk−1‖u‖k+1|||eh |||,

∣
∣
∣

∑

T∈Th

h−3
T 〈Q0u − Qbu, e0 − eb〉∂T

∣
∣
∣ ≤ Chk−1‖u‖k+1|||eh |||.
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Combining all the above five estimates with (6.2), one arrives at

|||eh |||2 ≤ Chk−1(‖u‖k+1 + hδk,2‖u‖4)|||eh |||,

which completes the proof of the theorem. ��

The rest of this section aims to derive some L2-error estimates for the components e0, eb
and eg of the error function eh by using the usual duality argument. We consider the dual
problem: Find ψ ∈ H2

κ (�) satisfying

F2ψ = e0, in �,

ψ = 0, on ∂�,

κ∇ψ · n = 0, on ∂�. (6.3)

Assume the dual problem (6.3) has the H4-regularity estimate; i.e.,

‖ψ‖4 ≤ C‖e0‖, (6.4)

which holds true when the domain is convex and the coefficient κ is sufficiently smooth.

Theorem 6.2 Assume k ≥ 2. Let t0 = min{k, 3}. Assume that the exact solution of (1.1)
is sufficiently regular satisfying u ∈ Hmax{k+1,4}(�), and the dual problem (6.3) has the
H4-regularity estimate (6.4). Let uh be the weak Galerkin finite element solution arising
from (3.2). There exists a constant C such that

‖Q0u − u0‖ ≤ Chk+t0−2
(
‖u‖k+1 + hδk,2‖u‖4

)
. (6.5)

In other words, we arrive at a sub-optimal order of convergence for the lowest order k = 2
and optimal order of convergence for k ≥ 3.

Proof Testing the first equation of (6.3) against e0 for each element T ∈ Th , it follows from
the usual integration by parts that

‖e0‖2 = (F2ψ, e0)

=
∑

T∈Th

{
(Eψ, Ee0)T − 〈Eψ, κ∇e0 · n〉∂T + 〈κ∇(Eψ) · n, e0〉∂T

+(−2μEψ + μ2ψ, e0)T
}

=
∑

T∈Th

{
(Eψ, Ee0)T − 〈Eψ, κ∇e0 · n − eg〉∂T + 〈κ∇(Eψ) · n, e0 − eb〉∂T

+(−2μEψ + μ2ψ, e0)T
}
,

where we used that the added terms related to eb and eg vanish because of the cancelation
for interior edges as well as the fact that eb and eg vanish on ∂�. Replacing u and v in (5.4)
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with ψ and eh respectively gives rise to

‖e0‖2 =
∑

T∈Th

{
(Ew(Qhψ), Eweh)T − 〈e0 − eb, κ∇(Qh(Eψ)) · n〉∂T

+〈κ∇e0 · n − eg,Qh Eψ〉∂T
−〈Eψ, κ∇e0 · n − eg〉∂T + 〈κ∇(Eψ) · n, e0 − eb〉∂T
+(−2μEψ + μ2ψ, e0)T

}

=
∑

T∈Th

{
(Ew(Qhψ), Eweh)T − 〈e0 − eb, κ∇(Qh(Eψ) − Eψ) · n〉∂T

+〈κ∇e0 · n − eg,Qh Eψ − Eψ〉∂T + (−2μEψ + μ2ψ, e0)T
}
. (6.6)

Letting v = Qhψ in the error equation (5.2) gives

(Eweh, EwQhψ)h

= −2μ(κ∇weh,∇wQhψ)h − μ2(eh, Qhψ)h − s(eh, Qhψ) + φu(Qhψ). (6.7)

Substituting (6.7) into (6.6) and letting ψ = ∇wQhψ in (2.5), it follows from (4.2) that

‖e0‖2 = −2μ(κ∇weh,∇wQhψ)h − μ2(eh, Qhψ)h − s(eh, Qhψ)

−
∑

T∈Th

{
〈κ∇(Eu − Qh(Eu)) · n, Q0ψ − Qbψ〉∂T

+〈κ∇Q0ψ · n − Qg(κ∇ψ · n), Eu − Qh Eu〉∂T
+2μ〈Q0ψ − Qbψ, (κ∇u − Q1(κ∇u)) · n〉∂T
−〈e0 − eb, κ∇(Qh(Eψ) − Eψ) · n〉∂T
+〈κ∇e0 · n − eg,Qh Eψ − Eψ〉∂T + (−2μEψ + μ2ψ, e0)T

}
+ s(Qhu, Qhψ)

=
∑

T∈Th

{
(μ2(ψ − Q0ψ) − 2μ∇ · (κ∇ψ − Q1(κ∇ψ)), e0)T

−2μκ〈eb,Q1(∇ψ) · n〉∂T − 〈κ∇(Eu − Qh(Eu)) · n, Q0ψ − Qbψ〉∂T
+〈κ∇Q0ψ · n − Qg(κ∇ψ · n), Eu − Qh Eu〉∂T
+2μ〈Q0ψ − Qbψ, (κ∇u − Q1(κ∇u)) · n〉∂T
−〈e0 − eb, κ∇(Qh(Eψ) − Eψ) · n〉∂T
+〈κ∇e0 · n − eg,Qh Eψ − Eψ〉∂T

}
− s(eh, Qhψ) + s(Qhu, Qhψ)

=
∑

T∈Th

{
(μ2(ψ − Q0ψ) − 2μ∇ · (κ∇ψ − Q1(κ∇ψ)), e0)T

−〈κ∇(Eu − Qh(Eu)) · n, Q0ψ − Qbψ〉∂T
+〈κ∇Q0ψ · n − Qg(κ∇ψ · n), Eu − Qh Eu〉∂T
+2μ〈Q0ψ − Qbψ, (κ∇u − Q1(κ∇u)) · n〉∂T
−〈e0 − eb, κ∇(Qh(Eψ) − Eψ) · n〉∂T
+〈κ∇e0 · n − eg,Qh Eψ − Eψ〉∂T

}
− s(eh, Qhψ) + s(Qhu, Qhψ), (6.8)
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where we have used the third equation of (6.3) to obtain
∑

T∈Th

2μκ〈eb,Q1(∇ψ) · n〉∂T = 2μκ〈eb,Q1(∇ψ) · n〉∂� = 2μ〈eb, κ∇ψ · n〉∂� = 0.

The terms on the right-hand side of (6.8) can be bounded as follows. Note that t0 =
min{3, k} ≤ 3. As to the first term on the right-hand side of (6.8), it follows from the
Cauchy-Schwarz inequality, (6.4), the estimates (4.5) and (4.7) that

∣
∣
∣

∑

T∈Th

(μ2(ψ − Q0ψ) − 2μ∇ · (κ∇ψ − Q1(κ∇ψ)), e0)T
∣
∣
∣

≤
( ∑

T∈Th

‖ψ − Q0ψ‖2T
) 1

2
( ∑

T∈Th

‖e0‖2T
) 1

2

+
( ∑

T∈Th

‖∇ · (κ∇ψ − Q1(κ∇ψ)‖2T
) 1

2
( ∑

T∈Th

‖e0‖2T
) 1

2

≤
{
Ch‖ψ‖3‖e0‖, for k = 2,
Ch2‖ψ‖4‖e0‖, for k ≥ 3

≤
{
Ch‖e0‖2, for k = 2,
Ch2‖e0‖2, for k ≥ 3

≤ Cht0−1‖e0‖2.
Similarly, from the Cauchy-Schwarz inequality and the estimates (4.8) - (4.12), it is easy

to arrive at
∣
∣
∣

∑

T∈Th
2μ〈κ∇(Eu − Qh Eu) · n, Q0ψ − Qbψ〉∂T

∣
∣
∣ ≤ Chk+t0−2(‖u‖k+1 + hδk,2‖u‖4)‖ψ‖4,

∣
∣
∣

∑

T∈Th
〈κ∇Q0ψ · n − Qg(κ∇ψ · n), Eu − Qh Eu〉∂T

∣
∣
∣ ≤ Chk+t0−2‖u‖k+1‖ψ‖4,

∣
∣
∣2μ〈Q0ψ − Qbψ, (κ∇u − Q1(κ∇u)) · n〉∂T

∣
∣
∣ ≤ Chk+t0‖u‖k+1‖ψ‖4,

∣
∣
∣

∑

T∈Th
〈κ∇(Eψ − Qh Eψ) · n, e0 − eb〉∂T

∣
∣
∣ ≤ Cht0−1‖ψ‖4|||eh |||,

∣
∣
∣

∑

T∈Th
〈κ∇e0 · n − eg, Eψ − Qh Eψ〉∂T

∣
∣
∣ ≤ Cht0−1‖ψ‖4|||eh |||,

∣
∣
∣s(Qhψ, eh)

∣
∣
∣ ≤ Cht0−1‖ψ‖4|||eh |||,

∣
∣
∣s(Qhu, Qhψ)

∣
∣
∣ ≤ Chk+t0−2‖u‖k+1‖ψ‖4.

Substituting all the above estimates into (6.8) gives rise to

(1 − Ch)‖e0‖2 ≤ C
(
ht0−1|||eh ||| + hk+t0−2(‖u‖k+1 + hδk,2‖u‖4)

)‖ψ‖4,
which, together with the regularity estimate (6.4) and (6.1), gives rise to the desired L2 error
estimate (6.5). This completes the proof of the theorem. ��
Theorem 6.3 For v = {v0, vb, vg} ∈ Vh, define

‖v‖b =
( ∑

T∈Th

hT ‖vb‖2∂T
) 1

2
. (6.9)
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Under the same assumptions of Theorem 6.2, there exists a constant C such that

‖Qhu − uh‖b ≤ Chk+t0−2
(
‖u‖k+1 + hδk,2‖u‖4

)
. (6.10)

Proof Recall that eb = Qbu − ub on each element boundary ∂T . It follows that

‖Qbu − ub‖∂T = ‖eb‖∂T ≤ ‖eb − e0‖∂T + ‖e0‖∂T .

Using the trace inequality (4.4) we have

‖Qbu − ub‖∂T ≤ ‖eb − e0‖∂T + Ch
− 1

2
T ‖e0‖T ,

which, by summing over all the elements in Th , leads to
∑

T∈Th

hT ‖Qbu − ub‖2∂T ≤ C
∑

T∈Th

hT ‖eb − e0‖2∂T + C‖e0‖2

≤ Ch4|||uh − Qhu|||2 + C‖Q0u − u0‖2.
Now, substituting the error estimates (6.1) and (6.5) into the above inequality gives rise to
the desired estimate (6.10). This completes the proof. ��
Theorem 6.4 For v = {v0, vb, vg} ∈ Vh, define

‖v‖g =
( ∑

T∈Th

hT ‖vg‖2∂T
) 1

2
. (6.11)

Under the same assumptions of Theorem 6.2, there exists a constant C such that

‖Qhu − uh‖g ≤ Chk+t0−3
(
‖u‖k+1 + hδk,2‖u‖4

)
. (6.12)

Proof The same technique used in Theorem 6.3 can be applied to the proof of this theorem,
and the details are omitted here. ��

7 Numerical Tests

In this section, some numerical tests are implemented in order to demonstrate the effective-
ness of the weak Galerkin algorithm (3.2) for solving the fourth order model problem (1.1)
arising from FT. For simplicity, the weak finite element functions v = {v0, vb, vg} are chosen

Table 1 Numerical error and convergence order for the exact solution u = x2(1 − x)2y2(1 − y)2

1/n ‖u0 − Q0u‖ order in L2 norm |||uh − Qhu||| order in H2
κ norm

1 0.05458 0.09913

2 0.02163 1.33 0.06649 0.58

4 0.006307 1.78 0.03643 0.87

8 0.001716 1.88 0.01904 0.94

16 4.582e-04 1.91 0.009830 0.95

32 1.181e-04 1.96 0.004988 0.98

64 2.981e-05 1.99 0.002506 0.99
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as polynomials of degree k, k − 1 and k − 1, respectively. It should be pointed out that the
corresponding finite element scheme can be analyzed without any difficulty by following
the approaches presented in previous sections with some necessary modifications as demon-
strated in [32] for a different fourth order problem. Details are omitted here due to the length
of presentation.

In our numerical experiments, we implement the lowest order (i.e., k = 2) element for the
weak Galerkin algorithm (3.2). The weak finite element space used in our implementation is
as follows:

Vh,2 = {v = {v0, vb, vg}, v0 ∈ P2(T ), vb ∈ P1(e), vg ∈ P1(e), T ∈ Th, e ∈ Eh}.
For v = {v0, vb, vg} ∈ Vh,2, the discrete weak second order elliptic operator Ewv is

discretized as a constant locally on each element T satisfying

(Ewv, ϕ)T = (v0, Eϕ)T − 〈vb, κ∇ϕ · n〉∂T + 〈vg, ϕ〉∂T ,

for all ϕ ∈ P0(T ), which is simplified as

(Ewv, ϕ)T = 〈vg, ϕ〉∂T .

Table 1 shows the numerical results for the exact solution u = x2(1 − x)2y2(1 − y)2

implemented on the unit square domain � = (0, 1)2. This test case has homogeneous
boundary conditions for both Dirichlet and Neumann. We take the coefficient matrix
κ = [1/(3(1 + 0.01)), 0; 0, 1/(3(1 + 0.01))] and μ = 0.01 in the whole domain �. The
WG finite element scheme (3.2) was implemented on uniform triangular partitions, which
were obtained by partitioning the domain into n × n sub-squares and then dividing each
square element into two triangles by the diagonal line with a negative slope. The mesh size
is denoted by h = 1/n.

The numerical results indicate that the convergence rate for the solution of the weak
Galerkin algorithm (3.2) is of order O(h) in the discrete H2

κ norm, and is of order O(h2) in
the standard L2 norm. The numerical results are in great consistency with theory for the H2

κ

and L2 norms of the error. Figure 1 (left figure) illustrates the WG numerical solution for the
meshsize 1/64, which totals to 4096 elements.

Table 2 presents the numerical results when the exact solution is given by u =
sin(πx) sin(πy) on the unit square domain � = (0, 1)2, which corresponds to a nonho-
mogeneous Neumann boundary value. The coefficient matrix κ and the constant μ are taken
to be the same values as in the previous test. It shows that the convergence rates for the
solution of the weak Galerkin algorithm (3.2) in the H2

κ and L2 norms are of order O(h) and

Table 2 Numerical error and convergence order for the exact solution u = sin(πx) sin(πy)

1/n ‖u0 − Q0u‖ order in L2 norm |||uh − Qhu||| order in H2
κ norm

1 5.587 10.20

2 2.143 1.38 6.590 0.63

4 0.6017 1.83 3.526 0.90

8 0.1549 1.96 1.793 0.98

16 0.03904 1.99 0.9005 0.99

32 0.009783 2.00 0.4508 1.00

64 0.002447 2.00 0.2255 1.00
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O(h2), respectively, which are in consistency with theory for the L2 and H2
κ norms of the

error. Figure 1 (right figure) gives the WG numerical solution for the meshsize 1/64.
In the rest of this section, we shall conduct three different types of numerical tests arising

from the FT model. Firstly, we take κ = [1, 0; 0, 1] in the subdomain �0 = (1/4, 3/8)2 and
κ = [10−5, 0; 0, 10−5] in the rest of the whole domain � = (0, 1)2. We take μ to be 0 in
the whole domain �. The right-hand side f is taken to be zero. For the Dirichlet boundary
condition u = ξ , the boundary function ξ is taken to be 1 at the middle point on each
boundary segment and 0 at corners. As to the Neumann boundary condition κ∇u · n = ν,
we take ν = −ξ in the test. Figure 2 (left figure) illustrates the WG finite element solution
for the meshsize 1/64.

Secondly, we take the same configuration of κ , μ and f as in the previous test. The
Dirichlet boundary condition u = ξ is set as an approximate Dirac-δ function on each of the
four boundary edges. More precisely, this boundary data assumes value 1

|e| on the middle
edge of each boundary segment, and takes value 0 on all the other edges. As to the Neumann
boundary condition κ∇u ·n = ν, we take ν = −ξ in the test. Figure 2 (right figure) illustrates
the WG finite element solution for the meshsize 1/64.

At last, we consider a real problem arising from FT model which is implemented on
the domain � = (0, 50)2. There are two blocks in the domain �: one is at (25,15) with
radius 4; the other is at (35,20) with radius 3. The right hand side data f is the function
modeling the light source, and we use Gaussian function to model each point source (x0, y0),
with their centers locating around the boundary of the domain. More precisely, we set f =√
2πεe− (x−x0)2+(y−y0)2

2ε with ε = 100/64. The coefficient matrix κ is taken to be [1/(3(1 +
0.01)), 0; 0, 1/(3(1 + 0.01))] and μ is taken to be 0.01 in the whole domain � which arise
from the data of the real problem in FT. Figure 3 illustrate the WG finite element solution for
light sources with the mesh size 1/64, where the coordinates of light sources are (13.3065,
0.0730994) and (49.8272, 13.5234), respectively.

8 Conclusions

Fluorescence tomography is a potentially less harmful medical imaging modality which is
considered to be a promising method in the early cancer detection and drug monitoring. The
weak Galerkin finite element methods are proposed and analyzed for solving a type of fourth
order problem arising from fluorescence tomography. To this end, we introduce the weak
second order elliptic operator as well as its discrete version based on a class of discontinuous
functions defined on a finite element partition of the domain consisting of general polygons
or polyhedra. An error estimate of optimal order is derived in an H2

κ -equivalent norm for the
WG finite element solutions. Furthermore, optimal order error estimates except the lowest
order in the L2 norm are established for the WG finite element approximations. Applying
WG to solve the forth order Eq. (1.1) is only the first step towards image reconstructions in
FT, and there are much more to be investigated. For example, the algorithm studied in this
paper finds the orthogonal solution for the so called orthogonal solution and kernel correction
algorithms (OSKCA) proposed for FT in [5,31]. In the near future, we plan to further extend
WG to compute the kernel corrections in OSKCA, so that the entire image reconstructions
in FT can be performed using the framework of WG.
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