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Abstract The performance of the classic upwind-type residual distribution (RD) methods
on skewed triangular grids are rigorously investigated in this paper. Based on an improved
signals distribution, an improved second order RD method based on the LDA approach
is proposed to faithfully replicate the flow physics on skewed triangular grids. It will be
mathematically and numerically shown that the improved LDA method is found to have
minimal accuracy variations when grids are skewed compared to classic RD and cell vertex
finite volume methods on scalar equations and system of Euler equations.

Keywords Residual distribution · LDA · Skewed triangular grids · Cell-vertex finite
volume · Hyperbolic conservation laws

1 Introduction

Historically, the residual distribution concept developed in two different research paths. The
first was the study by Hall, Morton and collaborators in 1980’s which focused on the cell-
vertex finite volume methods [1–3]. The second path was concerned with the physics of the
PDE by Roe [4]. In 1982, Roe [4] proposed a framework of an multidimensional upwind
residual distribution (RD) but merely for the scalar convection problem. The generalization
for a system of equation in two dimensions was done by Abgrall [5,6], implementing the idea
on the Euler equations. The current status and future trends of the RD methods are described
in details by Abgrall [7,8] and the references therein.

One of the purposes of using RD methods was to obtain more accurate solutions on
unstructured triangular grids. Among the motivations of developing the RD methods are
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to faithfully mimic multidimensional physics and keep a compact stencil compared to the
finite volume (FV) methods. These include the work of [9] and it was briefly shown that RD
methods are insensitive to randomized grids [10,11]. The works of [12] provide a rigorous
analytical discussion of the performance of RD and FV on structured triangular grids but
limited to only the scalar problems. [13] provided the comparison on the system of Euler
equations but merely demonstrated through the numerical results. Both works noted that
RD methods are affected by grid deterioration but at a much lesser rate compared to FV
methods. An attempt to accurately develop an RD method on skewed triangular grids is
almost non-existent in the literature. Most of the developments for RD methods are based on
ideal or regular grids [6,14,15] although most recently there have been some developments
of Streamline-Upwind-Petrov–Galerkin (SUPG) RD methods on stretched triangular grids
[16] solving the advection–diffusion and potential flow equations.

In this paper, we intend to analyze in-depth the performance of RD methods on skewed
triangular grids. Then we aim to develop an RD method based on the LDA approach which
would include a more accurate signal distribution to the nodes when the grids are skewed.
This newly proposed LDA approach is intended to preserve accuracy for a large range of
grid skewness on isotropic and anisotropic grids. For a start, the focus of this paper would
be on two dimensional steady state equations. The analysis begins with the scalar equations
followed by the system of Euler equations. The fully unstructured (anisotropic) grids will be
used for the Euler test case, particularly for the Ringleb flow and the subsonic flow over a
two-dimensional circular cylinder.

2 Classic RD Methods for Scalar Equations

Consider the general two dimensional hyperbolic scalar equation.

ut + �∇ · �F = 0, (1)

where t is time, F is the flux as a function of u which is the dependent variable. The total
(φτ

T ) residual in cell τ is defined as,

φτ
T =

∮
∂τ

�F · n̂dS (2)

where the n̂ is the inward unit normal vector and dS is the differential length of the element
along the border of the cell (Fig. 1). Applying the trapezoidal integration rule in a cell,

φτ
T = 1

2

∑
p

�Fp · �Np, p = i, j, k (3)

where �Ni is the inward normal of each edge scaled with the length and, �Fi is the flux vector
of the node in front of the i th edge. In the RD methods, the total residual is spread to points
(nodes) and the approaches will be discussed in the following subsections. We start with
the classic RD methods followed by the new distribution approach. The scope will be on
first and second order upwind-type methods since this is a proof-of-concept paper. Herein,
the governing models for Eq. (1) are �F = (a, b)u for the linear and �F = (u2/2, u) for the
nonlinear scalar equations. Define,

ki = 1

2
�λave · �Ni (4)
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Fig. 1 The total cell residual (τ
in the cell domain for integration)
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And,

k+
i =

{
ki ki ≥ 0
0 ki < 0

, k−
i =

{
0 ki ≥ 0
ki ki < 0

(5)

where �λave is the average characteristic vectorwithin the cell. For a linear case, �λave is constant
but our formulation will also cater for the nonlinear case.

2.1 N-scheme

The classic N-scheme formulation [7] is shown in Eq. (6). It should be mentioned that the ki
is referring to edge i within an element (τ ) and, ui refers to the values of point i in front of
the edge i . According to Eq. (4),

φτ
i = k+

i

(
ui − û

)
, û =

(∑
p

k−
p

)−1∑
p

k−
p u p, p = i, j, k (6)

Note that the averaging type in Eq. (4) has to be specific in order to achieve conservation.
For instance, in the Burgers’ equation it should be the arithmetic average of u [17].

2.2 LDA

The LDA formulation for scalar equation is,

φτ
i = βiφ

τ
T , βi = k+

i

(∑
p

k+
p

)−1

, p = i, j, k (7)

where φτ
T is the total residual of the cell. Therefore, the averaging type in Eq. (4) would not

affect the conservation because of the following fact.

∑
p

βp = 1 (8)

There are two scenarios in LDA; the 1-target and 2-target cell which are distinguished by the
k+
i, j,k . If a cell has one (two) non-zero k

+
i, j,k then it will be 1-target (2-target).
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2.3 Lax–Wendroff

For the Lax–Wendroff scheme like the LDA is also Linearity Preserving (LP) in which the
signals are in the following form.

φτ
i = βiφ

τ
T , βi = 1

3
+ �t

2Aτ
ki (9)

Aτ is the element area and, �t is element delta time. Based on [17],

�t = νc

(
2Aτ∑
p |kp|

)
, p = i, j, k (10)

which leads to,

βi = 1

3
+ νc

ki∑
p |kp| (11)

The νc is the cell CFL number.

3 Weighted RD Approach

3.1 Geometrical Aspects on Skewed Grids for Scalar

In the classic signal distribution, the projections of the characteristic vector normal to each
edge is required to find the signal portion. Define,

�λp =
(�λ · n̂ p

)
n̂ p, p = i, j, k (12)

where �λp shows the vector projection of the characteristic vector (�λ) along the inward nor-
mal of edge p. If the length of this projection (�λ · n̂ p) becomes positive it means that the
characteristic is coming into the cell and vice versa. Hence, number of the positive lengths
in a cell will illustrate the 1-target or 2-target cell type. Thus, similar to the definition of k+,
one can define,

�λ+
p =

{ �λp �λ · n̂ p ≥ 0
0 �λ · n̂ p < 0

(13)

3.1.1 Case: 1-Target

Assume the 1-target case for a triangle (Fig. 2a). According to the definition of �λ+
p , only one

of them will be non-zero for a 1-target cell. As it can be seen from the Fig. 2a, even though
the �λ+

k is pointing into a midpoint along the edge somewhere in between points i and k for a
skewed grid nonetheless, all the residual is going to point k. This may not be the best way to
distribute the signals. We propose that the signals be distributed to points i and k as shown
in Fig. 2b. As a result, the 1-target now becomes a 2-target cell with this new approach. It is
obvious that for an equilateral element the point m will be identical to the k, hence we can
deduce that the new approach would recover the classic 1-target for equilateral triangles (and
for lowly skewed triangles). Note that �λ is based on some form of averaging within the cell
and located at the geometrical center of the triangle ensure that this idea can also be extended
to nonlinear Burgers’ equation.

123



J Sci Comput (2017) 71:839–874 843

ji

k

n̂k

φT

λ
λ+
k

ji

k

m

n̂k

βW
k φT

βW
i φT

λ
λ+
k

w
e=

k

im
→k

w
e=

k

im
→k

(a) (b)

Fig. 2 Classic 1-target element (�λ+
i, j = 0) with two signal distribution. Note that the signals are distributed

to point i (βW
i φT ) and point k (β

W
k φT ) accordingly for which the weights βW

i,k are to be determined. a Classic
signal distribution, b Weighted signal distribution

Fig. 3 Classic 2-target element
(�λ+

k = 0) with classic signal
distribution
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3.1.2 Case: 2-Target

For the 2-target scenario the same approach is applied. The pivot point of the cell will be the
geometrical center and from there the residual is distributed based on the upwind idea. Again,
we use some kind of an averaging for the cell. Note that for an equilateral grid the weighted
approach will recover the classic upwind approach thus, we merely discuss a skewed grid
condition here. In Fig. 3, the classic distribution is shown for a skewed grid. Similar to the
1-target case, the projections of the characteristic vector are not pointing at the main points
i, j, k, yet the signals are solely going to the respective 2-target points. However, in the
weighted approach (Fig. 4) each of the two-target signals will be distributed to the nodes
that share the element edge for which the projected characteristic vector are pointing at. This
will cause the 2-target case to be a 3-target case (loss of upwind) for highly skewed grids.
However, for an equilateral grids a or a minimally skewed grids, the 2-target case would
remain 2-target.
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Fig. 4 Classic 2-target element (�λ+
k = 0) with weighted signal distribution

3.2 Weighted Distribution

In this section, we are address precise aspects of the weighted approach. In order to construct
a less sensitive signal distribution, according to Figs. 2b and 4, the ratios of

w
e=(edge number)
(distance ratio)→(point of interest), point of intreset = i, j, k (14)

are required. Note that the edge number e is defined as i, j, k which are the edges in front
of i, j, k points, respectively. For a skewed grid, the first point of interest of the inward
normal direction (point m) will be on some edge which is not a nodal point, necessarily.
This will require a weighted distribution between the nodes that connect the particular edge.
Distributing with weighted idea will produce more accurate distribution of the signals.

It is clear that for all three edges the w should be calculated. Thus, we have nine values
for w in one element but some of them maybe zeros depending on the grid orientation. The
zero weights are discussed after Lemma 3.1 and 3.2. In order to find the weights (w) we have
to first construct the geometrical foundation.

Lemma 3.1 Consider an arbitrary vector �d starts from a geometrical center of a triangle
(Fig. 5). Assume the total area is Aτ , the area ratios could be shown as,

Ap

Aτ
= 1

3
+ �d · �Np

2Aτ
, p = i, j, k (15)

where Ai = Ao′ jk, A j = Aio′k and Ak = Ai jo′ . Note that �Ni jk are the scaled inward normals
[18].

Proof Consider Fig. 5, assume �d is a vector. And, point o is the geometrical center of the
triangle i jk; hence, the summation of dark and light shaded domains will be 1

3 A
τ . Based on

the weighted idea,

Ai

Aτ
= A jko − A joko′

Aτ
= 1

3
− A joko′

Aτ
(16)

123



J Sci Comput (2017) 71:839–874 845

Fig. 5 Determining the area
ratios for an arbitrary �d
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Fig. 6 Moving the OO ′ in order
to find AOBO ′C . a Before
moving OO ′, b after moving
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By moving the oo′ assuming its alignment remains the same, the A joko′ will be constant
because the perpendicular distance of the points j and k from oo′ is the same. Therefore, the
oo′ is moved along its direction until point o′ intersects with jk. Note that li = j̄ k. The dot
product of n̂ A and �d will provide the height of the ojk in Fig. 6b. Therefore,

A joko′ = −1

2

(
n̂i · �d

)
li = −1

2
�d · �Ni (17)

Adding to the Eq. 16,

Ai

Aτ
= 1

3
− A joko′

Aτ
= 1

3
− 1

Aτ

(
−1

2
�d · �Ni

)
= 1

3
+ �d · �Ni

2Aτ
(18)

��

Lemma 3.2 Consider an inward vector �D starting from a geometrical center of a triangle
and ends exactly on the edge i as shown in Fig. 7. The area ratios could be written as,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ai
Aτ = 1

3 − �Ni · �Ni

3min
( �Ni · �Np

)
A j
Aτ = 1

3 − �Ni · �N j

3min
( �Ni · �Np

)
Ak
Aτ = 1

3 − �Ni · �Nk

3min
( �Ni · �Np

)
, p = i, j, k (19)

where the �Ni jk are the scaled inward normals.

Proof Since �D is in the same direction of inward normal, assume

�D = S �Ni , S > 0 (20)
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Fig. 7 Determining the area
ratios for an inward normal �D
which ends on the edge in front
(Ak = 0). m is the intersection
point
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D

where S is a positive scalar value which make the �D ends on point m. Based on Eq. 18,⎧⎪⎪⎨
⎪⎪⎩

Ai
Aτ = 1

3 + �D· �Ni
2Aτ = 1

3 + S �Ni · �Ni
2Aτ

A j
Aτ = 1

3 + �D· �N j
2Aτ = 1

3 + S �Ni · �N j
2Aτ

Ak
Aτ = 1

3 + �D· �Nk
2Aτ = 1

3 + S �Ni · �Nk
2Aτ

(21)

Because the endpoint of �D is on one of the edges, at least one of the area ratios should be
zero. Therefore,⎧⎪⎨

⎪⎩
Ai
Aτ = 0

or
A j
Aτ = 0

or Ak
Aτ = 0

⇒ S = −2Aτ

3min
( �Ni · �Np

) , p = i, j, k (22)

Since min
( �Ni · �Np

)
is always negative therefore, S will be positive. Substituting S into the

area ratio equations we get the following equations.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ai
Aτ = 1

3 − �Ni · �Ni

3min
( �Ni · �Np

)
A j
Aτ = 1

3 − �Ni · �N j

3min
( �Ni · �Np

)
Ak
Aτ = 1

3 − �Ni · �Nk

3min
( �Ni · �Np

)
, p = i, j, k (23)

��
All the geometrical analysis is required to determine weights w. Despite the tedious

mathematical procedures, the general formulation of the weighted approach could be written
in a simple and similar form like the Lax–Wendroff method.

w
e(edge number)
i(point of intreset) = 1

3
− �Ne · �Ni

3min
( �Ne · �Np

) , p = i, j, k (24)

Note that we have simplified the notation. It should be mentioned that the summation of w

for a specific edge number e will be always one and at least one of the w values should be
zero (“Showing Zero Weight For One Characteristic Projection” section of “Appendix 5”.).
It should be mentioned that e is the repeated index and details will be presented in the next
section.

3.3 Weighted LDA

We shall now implement the weighted approach shown in Eq. 24 to the LDA method. We
could also apply it to other methods such the SUPG approach but will not do so herein. We
shall define the new LDA method as the weighted-LDA approach.
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φτ
i = βW

i φτ
T (25)

where,

βW
i =

∑
e

we
i βe, e = i, j, k (26)

and,

we
i =

(
Ai

Aτ

)
edge:e

= 1

3
− �Ne · �Ni

3min
( �Ne · �Np

) , p = i, j, k (27)

Note that βe is calculated from the classic LDA.

Lemma 3.3 The classic 1-target element in classic LDA might become 2-target in the
weighted LDA in skewed grid.

Proof Based on Fig. 2a, if the element is not isosceles (ik 
= k j) element then the intersection
of �λ+

k extension with ik or jk will not be at the point k. Therefore, the residual is going to
two points (Fig. 2b). ��
Lemma 3.4 The classic 2-target element in classic LDA might become 3-target in the
weighted LDA in skewed grid.

Proof Based on Fig. 3, if the element is not equilateral (ik 
= k j 
= k j) element then the
intersection of �λ+

i extension with ik or j i will not be at the point i and, the same is applied
for the �λ+

j . Therefore, the residual might be going to three points (Fig. 4). ��
Lemma 3.5 The weighted LDA approach for scalar equation is conservative.

Proof According to Eq. 25,

φτ
i + φτ

j + φτ
k =

(∑
e

(
Ai
Aτ

)
edge:e

βe +∑
e

(
A j
Aτ

)
edge:e

βe

+ ∑
e

(
Ak
Aτ

)
edge:e

βe

)
φτ
T

=

⎛
⎜⎜⎜⎝
∑

e

(
Ai + A j + Ak

Aτ

)
edge:e︸ ︷︷ ︸

1

βe

⎞
⎟⎟⎟⎠φτ

T

=
(∑

e

βe

)

︸ ︷︷ ︸
1

φτ
T = φτ

T

(28)

Hence, conservation is achieved. ��
Lemma 3.6 The weighted LDA approach is LP (Linearity Preserving) for the scalar equa-
tions.

Proof The signals of weighted LDA are,⎧⎨
⎩

φτ
i = βW

i φτ
T

φτ
j = βW

j φτ
T

φτ
k = βW

k φτ
T

∧ φτ
T → 0 ⇒

⎧⎨
⎩

φτ
i → 0

φτ
j → 0

φτ
k → 0

(29)
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Note that βW
i, j,k > 0. Thus, the LP is satisfied. It will be shown in the next section that

the weighted LDA retains second order accuracy (Eq. 40) based on truncation error (TE)
analysis. ��
3.4 Weighted Blended Approach

Based on [19–21], a blended approach is used to circumvent Godunov’s theorem. Because of
the fact that the weighted N-scheme is not positive (“Appendix 3”), we shall use the classic
N-scheme as the first order of the blending approach. For the second order, the classic and
weighted LDA will be used. The original formulation is given by,

φB
i = θφN

i + (1 − θ) φLDA
i , θ = |φT |∑

p

∣∣∣φN
p

∣∣∣ (30)

In order to make the blending approach consistent, the averaging in N should be implemented
in a way that the total residual for one specific cell should be same as the total residual for
the LDA.

4 Truncation Error Analysis for the Linear Case

Although the Taylor series expansionmay not be best suited to analyze errors on unstructured
anisotropic grids, but we shall use it to perform an analytical error to study the numerical
methods on uniform (isotropic) grids. The grid skewness on isotropic grids is controlled by
varying the height (h) and width (k) of the element in-which k = hs. The s is the stretching
parameter to control the skewness (details are in “Appendix 5”). By doing so, we could now
perform an analytical truncation error analysis on skewed isotropic grids to provide initial
insights of the performance of various numerical methods.

In the truncation error analysis, only the isotropic grids are considered for the reasons
mentioned before. The procedure of calculating the general equation are performed based on
the main point u0 which more details could be found in [12]. Thus,

TE = w0u0 +
∑
j

w j u j (31)

where j stands for neighboring points. For an isotropic grid, there are two grid types as
shown in Fig. 8. In order to make the calculation easier these two are combined and all the
Taylor series analysis will be based on the main point (0) including the calculation for point
1. For instance, in the N-scheme all of the signals which are going to the main point from
the neighboring cells is shown in the following.

φτ
0 = φτ

i + φτ
i i + φτ

i i i + φτ
iv + φτ

v + φτ
vi + φτ

vi i + φτ
vi i i (32)

Consider b
a < k

h ; therefore,

φτ
i = φτ

i i = φτ
i i i = φτ

vi i i = 0, (33)

and,

φτ
iv = ak

2 (u0 − u5), φτ
v = 1

2 (ak(u0 − u5) + bh(u5 − u6)),
φτ

vi = bh
2 (u0 − u6), φτ

vi i = bh
2 (u0 − u7),

(34)
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Fig. 8 The isotropic grid points
and cell numbers. The s is the
ratio of k/h. The �λ is the
characteristic vector

Characteristic Line

λ = (a, b)0
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7 8
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11

iiiiii

iv

v

vi vii

viii ix

xk = hs

h

Table 1 Normal distance of the
neighbor points from the
characteristic going through main
point for isotropic grid

Point Distance

1 − bh
r

2 ak−bh
r

3 ak
r

4 ak+bh
r

5 bh
r

6 − ak−bh
r

7 − ak
r

8 − ak+bh
r

9 −ak−2bh
r

10 − 2bh
r

11 ak−2bh
r

thus,

φτ
0 = ak(u0 − u5) + bh

2
(2u0 + u5 − 2u6 − u7). (35)

And for the point 1,

φτ
1 = φτ

i + φτ
vi i i + φτ

i x + φτ
x (36)

where,

φτ
i x = φτ

x = 0, φτ
i = 1

2 (bh − ak)(u0 − u1),
φτ

vi i i = 1
2 (ak(−u0 + u1) + bh(u1 − u8)),

(37)

therefore,

φτ
1 = 1

2
(2ak(−u0 + u1) + bh(u0 − u8)). (38)

By combining φτ
0 and φτ

1 the general equation (total truncation error) for classic N-scheme
will be,

TE = φτ
0 + φτ

1

2hk
= 2ak(u1 − u5) + bh(3u0 + u5 − 2u6 − u7 − u8)

4hk
(39)

The normal distance of the streamline with each point will be used to construct the Taylor
series (Table 1). All the coefficients for the isotropic grid are demonstrated in Tables 2 and 3.
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Table 2 The coefficients of first
order methods in general
equation for isotropic grid

Method FV 1st LxF N

w0
a
2h

a
h + 7b

12hs
b
4hs

w1
a
2h

8as+3b
12hs

as+b
2hs

w2
2b−as
12hs

2b−3as
12hs 0

w3
2b−as
12hs

b−2as
12hs 0

w4
b−as
6hs − 3as+b

12hs 0

w5 − a
3h − 4as+b

12hs
b−2as
4hs

w6 − as+b
6hs − 3as+b

12hs 0

w7 − as+2b
12hs − 2as+3b

12hs − 3b
4hs

w8 − as+2b
12hs − as+2b

4hs − b
4hs

w9 0 0 0

w10 0 − b
12hs 0

w11 0 0 0

Table 3 The coefficients of second order methods in general equation for isotropic grid

Method FV 2nd LDA LDA(W) L × W

w0
17a
72h

3ab2s+b3

4a2hs3+4abhs2

−2a3s3−a2bs2+ab2s
(
3s2+2

)
+b3

(
s2+1

)

12ahs4(as+b)
2a3s3−a2bs2+15ab2s+6b3

24a2hs3+24abhs2

w1
73a
144h

2a2s2−abs+b2

4ahs2

2a2s2
(
2s2+1

)
−abs

(
s2+1

)
+b2

(
s2+1

)

12ahs4
10a2s2−3abs+6b2

24ahs2

w2
140b−29as

432hs
b(as−b)
4ahs2

a2s4+ab
(
2s3+s

)
−b2

(
s2+1

)

12ahs4

2a2− 3b2

s2
24ah

w3
106b−43as

432hs 0 − as−2bs2+b
12hs3

b(4as−3b)
24ahs2

w4
86b−79as
432hs

ab
4ahs+4bh

a2
(
s−s3

)
+ab

(
s2+1

)
+b2s

12hs2(as+b)
−a2s2+3abs+b2

12ahs2+12bhs

w5 − 83a
216h

b−2as
4hs

b−4as
12hs

3b−10as
24hs

w6 − 79as+86b
432hs − b

2hs − a
(
s2−1

)
s+3bs2+b

12hs3
− as+4b

12hs

w7 − 43as+106b
432hs − b2

4ahs2
− a2s2+2abs

(
s2−1

)
+b2

(
s2+1

)

12ahs4
− b(4as+3b)

24ahs2

w8 − 29as+140b
432hs − b2

4ahs2+4bhs
−−a2s4+abs+b2

(
2s2+1

)

12hs3(as+b)
2a3s3+2a2bs2−9ab2s−3b3

24ahs2(as+b)

w9
as+2b
432hs 0 0 0

w10
31a
432h 0 0 3b−2as

24hs

w11
as−2b
432hs 0 0 0

Note that for the FV 2nd, the coefficients are not all included since the neighboring points of these 11 nodes
also are required
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Moreover, the stencil (dependency of points) of each method is shown in Fig. 9. As it can
be seen, the domain of dependency for RD methods are more compact relative to the finite
volume leading to an early hypothesis that the RD methods are perhaps less sensitive to grid
skewness. To find the truncation error, the first step is to expand the neighboring values based
on the main point using Taylor series. Note that the solution is constant along the streamline
direction. Thus, the Taylor series should expand only in the normal direction to the streamline.
The normal distance of the streamline with each point will be used to construct the Taylor
series (Table 1). Consequently, for different methods the global truncation error equation will
be provided in Eq. 40. The Lax–Friedrich RD approach of [22] will also be included.

The weighted LDA method has a slightly larger computational stencil compared to the
original LDA due to the nature of its signals distribution as shown in Fig. 9 but still has much
smaller stencil relative to the second order finite volume approach. This is a small sacrifice
to be made to model a more physical wave propagation on skewed grids.

Although the spatial order-of-accuracy of the LDA, Lax–Wendroff and weighted LDA
are formally second order accurate but each has different coefficients multiplied to the error
terms. We shall demonstrate that this terms would affect the performance of the methods on
skewed triangular grids.

TEN =
(
b(b−2as)(as+b)

4r2s

)
hunn +

(
ab(as+b)(4as−b)

24r3

)
h2unnn + O

(
h3
)

TELxF =
(
− 2a3s3+a2bs2+3ab2s+b3

3r2s

)
hunn +

(
b(2as+b)

(
a2s2+b2

)
12r3s

)
h2unnn + O

(
h3
)

TELDA =
(

b
(
4a3s3−6a2bs2+11ab2s−3b3

)
24r3s

)
h2unnn

+
(
b2(b−2as)(b−as)(as+b)

48r4s

)
h3unnnn + O

(
h4
)

TEFV(1st ) =
(

− a
(
2a2s2+b2

)
6r2

)
hunn +

(
a3bs2+2ab3

12r3

)
h2unnn + O(h3)

TEFV(2nd) =
(
− a3bs2+8ab3

72r3

)
h2unnn +

(
36a5s4+77a3b2s2+22ab4

432r4

)
h3unnnn + O

(
h4
)

TELDA(W) =
(

ab
(
2a2+5b2

)
24r3

− b4

24r3s3
+ ab3

6r3s2
+ −a2b2−b4

24r3s
− a2b2s

12r3

)
h2unnn

+
(

ab2
(
3a2−2b2

)
144r4

− ab4

48r4s2
+ b5

144r4s3
+ a3b2s2

72r4
− a2b3s

144r4
+ b5−a2b3

144r4s

)
h3unnnn

+O
(
h4
)

TELxW =
(
− b3(b−3as)

8r3s

)
h2unnn +

(
b2(9b−10as)(b−as)(as+b)

144r4s

)
h3unnnn + O

(
h4
)

(40)

where,

r =
√
a2 + b2

Note that s is the stretching parameter which is connected to the skewness Q as it was
mentioned in Eq. 71. The TE of each method depends on the grid skewness, the characteristic
vector and the high order derivatives of the variables. The last two factors are problem
dependent but the focus would be on the grid skewness dependency.

4.1 Analytical Case Study

We have selected a specific case study to analyze the truncation error of each method. The
exact solution of this case study is given by,

uE(x, y) = − cos (2π(bx − ay)) , a, b > 0 (41)
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Fig. 9 The stencil for isotropic grid for different methods

In the current test case a = b = 1 is chosen. Note that there is more than one possibility
for a and b (for instance, for finite volume cell vertex in the isotropic grid it is 24 conditions).
For simplicity we just explore one condition. Based on Eq. 40 the truncation error (TE) for
the RD and FV methods are shown in Eq. 42.

TEFV(1st ) = h
(
− 2s2+1

12

)
unn + h2

(
s2+2
24

√
2

)
unnn + O

(
h3
)

TELxF = h

(
−
(
s
(
2s2+s+3

)+1
)

6s

)
unn + h2

(
(2s+1)

(
s2+1

)
24

√
2s

)
unnn + O

(
h3
)

TEN = h

(
−
(
2s2+s−1

)
8s

)
unn + h2

(
(s+1)(4s−1)

48
√
2

)
unnn + O

(
h3
)

TEFV(2nd) = h2
(

s2+8
144

√
2

)
unnn + h3

(
36s4+71s2−26

1728

)
unnnn + O

(
h4
)

TELDA = h2
(

s
(
4s2−6s+11

)−3

48
√
2s

)
unnn + h3

(
(s−1)(s+1)(2s−1)

192s

)
unnnn + O

(
h4
)

TELDA(W) = h2
(−2s4+7s3−2s2+4s−1

48
√
2s3

)
unnn

+h3
(

(s+1)
(
2s4−3s3+4s2−4s+1

)
576s3

)
unnnn + O

(
h4
)

TELxW = h2
(

3s−1
16

√
2s

)
unnn + h3

(
(s−1)(s+1)(10s−9)

576s

)
unnnn + O

(
h4
)

(42)

The truncation error (TE) plots over skewness are demonstrated in Fig. 10. Note that we
consider the linear advection case in order to calculate the derivatives inside the truncation
error based on test case 4.1. The analytical errors shows that there is a difference between first
ordermethods aswevary the skewness. In addition, the amount of the error is different. TheN-
scheme is the best (both in terms of magnitude and minimal error increment) followed by the
first order finite volume and lastly the Lax Friedrich method. This is expected because of the
high amount of diffusion for the Lax Friedrich method. The N-scheme errors grow somewhat
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Fig. 10 Truncation error (TE) for linear case with Q = 0.3 − 0.9

of linear to the grid skewness whereas the other first order methods have a quadratic rate.
This provides another justification to utilize the classic N-scheme for the first order scheme
when using the blended approach with weighted LDA.

The analytical results for the second order methods are hugely different as shown in Fig.
10. For the best grid setting, the second order finite volumemethod produces the least error but
the errors rapidly grow as we increase the skewness. The classic and weighted LDA is quite
close to each other for the best grid. As the skewness is increased, the difference between TE
grows larger but is much less than the second order finite volume. The weighted LDA has an
almost a constant error value (or linearly increasing) when the grids are skewed, preserving
accuracy even for very large skewness, unlike the original LDA which has a quadratic error
increase. This analytically demonstrates that having a more physical signals distribution for
a skewed element reduces the dependency on grid changes. The Lax–Wendroff performs
similar to the LDA(W).

4.2 Numerical Results for Linear Case

The scalar equation will be solved in a 1×1 area with residual distribution and finite volume
methods “Appendix 2” using the same problem presented in the truncation error analysis.
The wave is coming from the bottom and left sides of the domain and going out from the top
and right sides (λ = aî + b ĵ).

The order of accuracy for some of the methods on the best grid (Q = 0.3) are depicted in
Fig. 11. The numerical L2 error results are remarkably similar to the analytical TE as shown
in Fig. 12 with the highlight of weighted LDA preserving accuracy even for Q = 0.8. Note
that the weighted LDA preserves second order accuracy for skewed isotropic grids within the
range of Q = 0.3 until Q = 0.9 for this scalar problem, both analytically and numerically
but results are omitted for brevity. As in the analytical part, the Lax–Wendroff approach also
performs admirably and comparable to the weighted LDA method.

It has to be mentioned that the L2 error is decreasing in the numerical results. However,
in the TE in Fig. 10 shows an error increment or remaining constant. The main reason is
coming from the numerical limitations. In the numerical experiments, there would be a grid
refinement in one direction (and coarsening in the orthogonal direction) as the grid skewness
is increased since the total number of elements is fixedwithin the domain. This is unavoidable
for the grid choice that we use and also not present in the analytical TE analysis. Overall,
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Fig. 11 Numerical L2 error versus the grid distance in logarithmic scale for the best grid (Q = 0.3)
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Fig. 12 Numerical L2 error for linear case with Q = 0.3 − 0.9

there would be a downward shift of the error curves for the different methods, relative to
the analytical one. Since the weighted LDA and Lax Wendroff methods are pretty much a
constant error curve in the analytical part, the downward shifting causes them both to appear
to have errors decrease when skewness is increased in the numerical part.

Furthermore, in the Figs. 13, 14 and 15, the error contours are included. As it can be
seen, the errors increase as skewness is increased for the first order methods. For the second
order methods, the results are almost similar on good grids. As the skewness is increased, the
second order FV is the worst followed by the LDA. The weighted LDA demonstrates very
little differences in the results when the grids are skewed.

5 Extension of Weighted Approach to the Nonlinear Burgers Equations

Consider the Burgers equation

∂u

∂t
+ �∇ · �F = 0, �F = u2

2
î + u ĵ (43)
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Fig. 13 The error contours on the isotropic grid for Q = 0.3

Based on Eq. 1, the characteristic speed is (a, b) = (u, 1). The solution will be solved in a
square area ([−1, 0] × [0, 1]).
5.1 Nonlinear Burgers Equation

For a nonlinear scalar case, the main idea remains the same. The calculation of signals for
weighted LDA has two steps,

• Calculating βi, j,k and the total residual from the classic LDA (Eq. 7).
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Fig. 14 The error contours on the isotropic grid for Q = 0.6

• Determining all the weights from the Eq. 27.
• Use Eq. 25 in order to find weighted LDA signals.

5.2 Numerical Results for Nonlinear Cases

5.2.1 Expansion Wave

For the expansion case, the bottom edge is the inlet wave,
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Fig. 15 The error contours on the isotropic grid for Q = 0.9

ubottom = Ur + x(Ur −Ul)

1 + y(Ur −Ul)
, Ur > Ul (44)

whereUr andUl are the right and left side of the values. The conditionUr > Ul ensures that
the solution will expand without any shock waves. In this study, Ur = 1.5 and Ul = −0.5
are chosen. In order to compare the numerical results, the cross section of y = 0.5 are shown
for different methods in Figs. 16, 17 and 18.

As demonstrated in Fig. 19, the most accurate and least sensitive method for non linear
smooth case is the weighted LDA. The LDAmethod performs reasonably well on grids with
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Fig. 16 The cross section profiles for expansion case (Q = 0.3)
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Fig. 17 The cross section profiles for expansion case (Q = 0.5)
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Fig. 18 The cross section profiles for expansion case (Q = 0.8)

low skewness. Nonetheless, its L2 error is increases when skewnesss is increased unlike the
weighted LDA. The second order finite volume method is the worst second order method.

The N scheme is the most dependable first order method. The first order finite volume
method performs really good on the best grids but rapidly deteriorates as grid skewness is
increase. Moreover, the Lax–Friedrichs method is the worst. Like the second order finite
volume, the first order version is also showing the most grid-dependent result and even more
than the Lax Friedrichs RD method.
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Fig. 19 Numerical L2 error for non-linear expansion case with Q = 0.3 − 0.9

5.2.2 Shock-Tree Problem

Recall the Burgers’ equation (Eq. 43), with the inflow boundary at the bottom,

u(x, 0) = 1.5 − 2x (45)

The steady state exact solution is,

u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.5 y ≤ 1
2 &

x− 3
4

y− 1
2

< 1
2

1.5 y ≤ 1
2 &

x− 3
4

y− 1
2

> 1
2

max

(
−0.5,min

(
1.5,

x− 3
4

y− 1
2

))
elsewhere

(46)

The initial condition is set to u = 0. We represent the solutions computed for the isotropic
grid a discussed in section “Appendix 5”. Furthermore, the cross sectional results of each
method are shown in Figs. 20, 21 and 22. The contour plots for the best grid is demonstrated
in Fig. 24. Note that the Lax–Wendroff and the LDA(W) results are very similar therefore,
we only show LDA(W) for the most part.

There is small difference in the results of the second order methods near the shock as the
grids are skewed.TheweightedLDAproduces oscillations around the shock due toGodunov’s
theorem similar to other second ordermethods. However, monotone results are achieved once
a blended (limited) LDA and blended weighted LDA are being used.

Moreover, the blending and the PSI approaches are tested in order to show the behavior
of these methods in Fig. 23. As it can be seen, the blending approaches and the PSI are
producing a monotone results.
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Fig. 20 The cross section profiles for shock-tree case (Q = 0.3)
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Fig. 21 The cross section profiles for shock-tree case (Q = 0.5)
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Fig. 22 The cross section profiles for shock-tree case (Q = 0.8)

123



J Sci Comput (2017) 71:839–874 861

−1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.5

0

0.5

1

1.5

x

u

Exact
PSI

Blending-N-LDA
Blending-N-LDA(W)

Fig. 23 The cross section profiles for shock-tree case (Q = 0.8) for the blended approaches

6 Extension of Weighted Approach to the System of Euler Equations

The system of ideal Euler equations with the conserved variables u = (ρ, ρu, ρv, ρE)T

satisfy the following.

ut + ∇ · �F = 0 (47)

or in integral form
∮

(ud A − �Fdt) = 0 (48)

with the fluxes defined as �F = ( f (u), g(u)).

f (u) =

⎡
⎢⎢⎣

ρu
ρu2 + P

ρuv

ρuH

⎤
⎥⎥⎦ , g(u) =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + P
ρvH

⎤
⎥⎥⎦ (49)

where the total energy and total enthalpy are defined as E = e + u2+v2

2 and H = E + P
ρ
.

The compatibility relation between pressure and internal energy e is used for closure, P =
ρe(γ − 1) and γ is the fluids ratio of specific heats. The Jacobian matrix is defined as the
following.

J = RR−1 (50)

where the right eigenvectors are written as follows.

R =

⎡
⎢⎢⎣

1 1 0 1
u − anx u −ny u + anx

v − any v nx v + any

h − aq u2+v2

2 r h + aq

⎤
⎥⎥⎦ (51)

where nx and ny is a unique vector that is illustrating the direction of the decomposition.
We define, r = −uny + vnx and q = unx + vny are the velocity along and normal to the
decomposition direction. And,
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Fig. 24 The contours of the shock tree case on the isotropic grid for Q = 0.3

 =

⎡
⎢⎢⎣
q − a 0 0 0
0 q 0 0
0 0 q 0
0 0 0 q + a

⎤
⎥⎥⎦ (52)

where,

a =
√

γ P

ρ
(53)
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6.1 Classic LDA

In the classic LDA the signal distribution is,

φi = βiφT (54)

where,

βi = K+
i

(∑
p

K+
p

)−1

, p = i, j, k (55)

The definition of K+
i is,

K+
i = 1

2
Ri

( � · �N
)+
i
Li (56)

where,

(c)+ =
{
c c > 0
0 c ≤ 0

(57)

Note that the ¯(.) variables are calculated based on the arithmetic average of a cell. ¯(.)i
represents the cell average value using a specific edge (i, j, k) inward normal.

6.2 Lax–Wendroff

The Lax–Wendroff for the system of equations discussed in [17] which is given by,

φi = βLxW
i φT (58)

where,

βLxW
i = 1

3
I + νcKi

(∑
p

∣∣Kp
∣∣
)−1

, p = i, j, k (59)

The νc is the cell CFL number.

6.3 Weighted LDA

6.3.1 Geometrical Aspects on Skewed Grids for System of Equations

In the system of equations the eigenvalues could not be implemented as the scalar since the
acousticwaves have omni direction. Instead, another parameter is defined to show the residual

portion coming from a specific edge. Consider Eq. (56), the
( � · �n

)+
i
is a scalar quantity.

However, it shows the projection of the characteristic vector along the inward normal of an
edge. Therefore, one could reconstruct a vector based on

��ni
i =

( � · �n
)+
i

�ni (60)

If
( � · �n

)
i
is positive (negative), the direction of this vector will be inward (outward) normal

of the edge.
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Fig. 25 General signal distribution on two elements. a Equilateral element, b Skewed element

In the classic approaches, all the residual portion that is coming form positive ��ni
i will be

going to point i that is suitable for equilateral grids (Fig. 25a). On the other hand, for a skewed
grid as it is illustrated in Fig. 25, we are using the weighted idea to distribute the residual.
Consequently, even though the RD methods are compact and less sensitive to the grid, the
distribution in classic RD approaches could be improved in order to generate a method that
is distributing the signals considering. The geometrical aspects here is same as scalar base on
the formulation. Nevertheless, the difference is lying in the fact that for system of equations
there are three inward normal directions that we have to take into account instead of one
single characteristic vector. Recall Eq. 24,

w
e(edge number)
i(point of interest) =

(
Ai

Aτ

)
edge:e

= 1

3
− �Ne · �Ni

3min
( �Ne · �Np

) , p = i, j, k (61)

where Aτ is the total area of the element.

6.3.2 Formulation

In the Euler system of equations, the formulation of weighted LDA is the same as the scalar
Eq. 25 but the signals φi are now vectors. Thus,

φτ
i =

(∑
e

we
i βe

)
φτ
T , e = i, j, k (62)

The βi, j,k is determined exactly like the classic LDA in Eq. 55. Note that,

we
i =

(
Ai

Aτ

)
edge:e

= 1

3
− �Ne · �Ni

3min
( �Ne · �Np

) , p = i, j, k (63)
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Lemma 6.1 The weighted LDA approach for system of equations is conservative.

Proof The summation of signals is,

φτ
i + φτ

j + φτ
k =

(∑
e

(
Ai
Aτ

)
edge:e

βe +∑
e

(
A j
Aτ

)
edge:e

βe

+ ∑
e

(
Ak
Aτ

)
edge:e

βe

)
φτ
T

=

⎛
⎜⎜⎜⎝
∑

e

(
Ai + A j + Ak

Aτ

)
edge:e︸ ︷︷ ︸

1

βe

⎞
⎟⎟⎟⎠φτ

T

=
(∑

e

βe

)

︸ ︷︷ ︸
I

φτ
T = φτ

T

(64)

Hence, the conservation is satisfied. ��
Lemma 6.2 The weighted LDA approach for system of equations is LP (Linearity Preserv-
ing).

Proof According to Eq. 62,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φτ
i =

(∑
e

(
Ai
Aτ

)
edge:e

βe

)
φτ
T

φτ
j =

(∑
e

(
A j
Aτ

)
edge:e

βe

)
φτ
T

φτ
k =

(∑
e

(
Ak
Aτ

)
edge:e

βe

)
φτ
T

∧ φτ
T → 0 ⇒

⎧⎨
⎩

φτ
i → 0

φτ
j → 0

φτ
k → 0

(65)

Thus, the LP condition is satisfied. ��
The Lax–Wendroff version for the systems of Euler equations can be readily found in
[17]. Note that, the weighted LDA is still an upwind-type method unlike the Lax–Wendroff
approach since only the positive (upwind) K+

i is considered for the signals distribution.

RG1 RG2 RG4

Fig. 26 The RG1, RG2 and RG4 grids
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Fig. 27 Histogram for different grid disturbances using in the Ringleb case
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Fig. 28 Numerical L2 error versus the grid distance in logarithmic scale for different grid types (RG1, RG2,
RG3 and RG4), respectively
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Fig. 29 Histogram for different grid disturbances using in the cylinder case;G1,G2 andG3which are defined
in “Anisotropic Grid” section of “Appendix 5”

G1 G2 G3

Fig. 30 The G1,G2 and G3 grids

6.4 Numerical Results for System of Euler Equations

6.4.1 Ringleb Flow

TheRingleb flow [23] is used to study the order of accuracy analysis for the Euler equation. In
this paper, the order of accuracyof the secondorder finite volume (“Appendix 2”), classicLDA
and weighted LDA are examined with Ringleb flow using different disturbance percentage
of the grid (Fig. 26). The distribution of grid skewness for each grid type is demonstrated in
Fig. 27. The RG1, RG2 and RG3 are showing the 20, 50 and 90% of disturbances. Moreover,
the RG4 stands for the 90% disturbances which is disturbed twice.

The order of accuracy for different methods are demonstrated in Fig. 28. The second order
FV shows a dramatic order of accuracy drop. Although it is second order for RG1, it drops
significantly to first order in RG2. More importantly, on RG3 grid, the results become erratic
in which the order of accuracy can not be measured. Finally, the second order finite volume
does not even have a converged solution for RG4. Overall, the LDA and weighted LDA
preserve the order of accuracy as the grid becomes highly skewed but the former has a larger
increment in error magnitude. This demonstrates that the weighted LDA is less sensitive to
grid changes.
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Fig. 31 2nd order finite volume, Lax–Wendroff, classic and weighted LDA for G1,G2 and G3

6.4.2 Subsonic Cylinder

The weighted LDA approach is evaluated on a subsonic flow over cylinder with incoming
free stream Mach number 0.3. In order to shed light on the reliability and solidness of the
methods, the grid will be disturbed and randomized by three steps which are 20, 50 and 90%
(G1,G2 and G3) demonstrated in Figs. 29 and 30.

There are three different grid sets in which the second order methods including 2nd order
finite volume (“Appendix 2”), classic and weighted LDA are tested. After disturbing the grid
point, the quality of the grid is measured by the percentage of the grid number’s skewness.
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In Fig. 29, the distribution of the skewness versus the percentage of number of the cells is
shown.

All the results are shown in Fig. 31. Clearly, the weighted LDA is much superior to the
originalLDAand secondorderfinite volumemethodsparticularly in recovering the stagnation
point at the back of the cylinder. In fact, the second order finite volume solution diverges for
the worst grid set up. It should be mentioned that the two LDA methods are not identical for
the best grid since around the cylinder the skewness is not absolutely zero (Q ∼ 0.0197).
The more disturbed the grid, the more the difference between classic and weighted LDAwill
be. The LDA(W) is very similar to the Lax–Wendroff as the whole concept is similar, except
for the fact that the LDA(W) is upwind method and Lax–Wendroff is a central scheme.

7 Conclusion

It is demonstrated in this paper that overall the finite volume methods are more susceptible
to results deterioration compared to the residual distribution methods. This is mainly due
to perhaps the use of non-compact stencils of the former relative to the latter. Changes in
grids skewness will have a much more detrimental effects to the orientation of the numerical
methods with non-compact stencils relative to a method with compact stencil.

However, the classic LDA method in this paper is only slightly better relative to second
order finite volumemethod in terms of preserving accuracy. Unlike the original LDA, the new
weighted LDA method preserves accuracy for almost all skewness and this is demonstrated
for the selected test problems herein using scalar equations and the system of Euler equations.
This is due to the weighted LDA not only depends on the local wave-characteristics to distrib-
ute the residuals from classic LDA but also actively adjusting based on the grid topology. For
an equilateral triangular element, the weighted LDA reduces to the original LDA. However,
the process of weight distribution being locally applied on each node will be triggered once
the elements deviate from equilateral triangles. This locally-adaptive process will cater for
changes in grids even though there is no change in the wave-characteristics. Although the
weighted LDA has a larger computational stencil compared to the original LDA but it still
remains compact, within one neighboring node to the main node of interest. Nevertheless,
the signals formulation of the weighted LDA is relatively simple and has a similar form to
the Lax–Wendroff method in a sense that it may lose upwinding properties for highly skewed
grid. This is the price to be paid for achieving less sensitivity on grid skewness.

Since the weighted LDA has a larger computational stencil yet remain compact, the
prospect of extending to higher order accuracy is more natural compared to classic LDA.
Various combination of the weights to each node can be explored to cancel out the low order
truncation error terms and the work is currently underway.

Acknowledgements Wewould like to thankUniversiti SainsMalaysia for financially supporting this research
work under the University Research Grant (NO: 1001/PAERO/814152) and to Malaysian Ministry of Higher
Education Fundamental Research Grant (NO: 203/PAERO/6071316).

Appendix 1: General Equation for First Order Finite Volume

According to Fig. 32, the scaled normal vector for each edge and the upwind first order value
for the edge are shown in Table 4. Therefore, the line integration of the first order finite
volume will be,
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Fig. 32 The isosceles grid
topology for two kinds (finite
volume cells are shaded)
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Thus,

TE = 3ak(2u0 − u3 − u4) + bh(2u0 + u3 − u4 − 2u5)

6hk
(67)

Appendix 2: Finite Volume Method Characteristics

The second order finite volume which is used in this paper is based on the following charac-
teristics:

• The node center (cell vertex) is used in order to maintain same computational points as
residual distribution approach.

• The gradients are calculated based on Least Square approach for each point [17].
• The solver is also same as the residual distribution to ensure a true comparison. Hence,

the first order explicit is used [17].
• The local time step is implemented based on the specific local time step [24].
• The upwind discretization for the scalar equation is constructed by Roe’s flux. Also, for

the Euler equations in this study we use the Roe’s flux [25].

Appendix 3: Lax–Friedrichs

In the Lax–Friedrichs method the sub-residuals should be constructed to ensure the first order
accuracy and also L∞ stability.

φτ
i = φ̄τ + α (ui − ū) , α > max ||Ki || (68)

These choices guaranty that the scheme is L∞ stable [22]. Note that, the φ̄τ and ū are the
arithmetic average of φτ

i and ui for a cell.

Table 4 The scaled normal of the cell vertex finite volume cell; and, the upwind edge value ( ba < k
h )

Edge i i i i i i iv v vi vi i vi i i i x x xi xii

Nx
k
2

k
2 0 0 − k

2 − k
2 − k

2 − k
2 0 0 k

2
k
2

Ny
h
6

h
6

h
3

h
3

h
6

h
6 − h

6 − h
6 − h

3 − h
3 − h

6 − h
6

uEdge u0 u0 u0 u0 u3 u3 u4 u4 u5 u5 u0 u0
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Appendix 4: Non-positivity of Weighted N scheme

Lemma 7.1 The weighted N-scheme approach does NOT satisfy positivity for a skewed
element.

Proof Using Eq. 25 for the N-scheme to construct weighted N leads us to,

φ
N(W)
i =

(
1
3 − �Ni · �Ni

3min
( �Ni · �Np

)
)

φN
i +

(
1
3 − �N j · �Ni

3min
( �N j · �Np

)
)

φN
j

+
(

1
3 − �Nk · �Ni

3min
( �Nk · �Np

)
)

φN
k

φτ
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(
1
3 − �Ni · �N j

3min
( �Ni · �Np

)
)

φN
i +

(
1
3 − �N j · �N j

3min
( �N j · �Np

)
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φN
j

+
(

1
3 − �Nk · �N j

3min
( �Nk · �Np

)
)

φN
k

φτ
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(
1
3 − �Ni · �Nk

3min
( �Ni · �Np

)
)

φN
i +

(
1
3 − �N j · �Nk

3min
( �N j · �Np

)
)

φN
j

+
(

1
3 − �Nk · �Nk

3min
( �Nk · �Np

)
)

φN
k

(69)

where,

φN
i, j,k = k+

i, j,k(ui, j,k − û), û =
∑

p k
−
p u p∑

p k
−
p

(70)

to satisfy local positivity for a signal (φi ) all the coefficients of the main nodes ui should be
positive and all the coefficients for other points within the same element should be negative.
For instance in φi all the coefficients of ui must be positive. The other coefficients need to
be negative. While, K+

j , K+
k are positive; also, all the values of w are positive; the positivity

is lost according to the second and third term. Therefore, we shall abandon the weighted
N-scheme approach and will not discuss it further in the paper. However, the ’weighted’ idea
will be applied on the LDA. ��

Appendix 5: Grid Topology

Isotropic Grid

The isotropic grid is an unstructured-type grid with right triangular elements. In order to
control the skewness one could use the ratio of two right angle edges as shown in Fig. 33.
The relation between the stretching parameter (s = k

h ) and the skewness is shown in the next
equation, although its derivation is omitted here for brevity. The details can be found in [12].

Q = 2

π
arctan

( s
2

)
(71)

Note that the minimum value for s will be 1. Substituting s = 1, the minimum value for the
skewness will be Q � 0.3 which is for right triangles. In other words, the best condition for
isotropic grid would be having skewness of 0.3.
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Fig. 33 The isotropic grid
element and topology for RD and
FV methods (finite volume cells
are shaded)
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The grid skewness will be determined by setting the stretching parameter. In this grid
type there are two kinds of points, one with eight neighboring elements and one with four
neighbors. Note that, for the finite volume cell vertex the median points of the neighboring
cells and midpoints of the edges are used to demonstrate the cell. Thus, the outer of a finite
volume cell is depended on the arrangement of the neighboring cells. For the first and second
type of isotropic grids, the finite volume cell vertex element is shaded in Fig. 33. It is much
easier to handle the isotropic grids in terms of achieving a uniformly skewed grids over the
whole computational domain and also when doing the mathematical analyses. As such, the
isotropic grids are used for scalar problems where rigorous mathematical analyses would be
performed.

Anisotropic Grid

The Delaunay triangulation is used to generate a fully unstructured or anisotropic grid over a
cylinder. After generating the grid it would be randomized the in away that different quality of
the grids in terms of skewness could be built. This is where achieving a uniform grid skewness
over the complete domain would not be possible but rather the grid skewness would have a
range (or distribution). It should be mentioned that each randomization construct a different
skewness distribution. Since the elements are not necessarily right triangular elements (unlike
isotropic), the skewness ranges from 0 to 1.0.

According to Fig. 34, each point will move in fully randomize direction with a finite
maximum distance (R) which avoids grid overlapping.

• The randomization percentage: The maximum distance that a point can move from its
original place is R which we can be controlled in terms of percentage defined as α × R.
A suitable value for α is chosen to implement grid irregularity. Larger values of α denote
a higher percentage grid randomization.

• Randomization number: To build a much more realistic unstructured grid one could
perform the whole process (n) times, to build even more randomized grid.

The two options above might be written as (α, n). It should be mentioned that in this study,
we are using three different combination of randomization to cover the possibilities in the
engineering problems which are (20%, 2), (50%, 5) and (90%, 9). For simplicity, we are

Fig. 34 The randomize grid
element area with radius of the
minimum distance of the each
point from the surrounding edges

R
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calling these three randomization grids as G1, G2 and G3. The anisotropic grids will only
be used when solving the system of Euler equations.

Showing Zero Weight for One Characteristic Projection

Lemma 7.2 At least one of the ratios in Eq. 27 for a specific edge number e is zero but the
summation is always one.

Proof The minimum value of �Ni · �Np could be found by p = i, j, k. Consider p = i then,

Ai

Aτ
= 1

3
− �Ni · �Ni

3
( �Ni · �Ni

) = 0 (72)

If p = j , then,

A j

Aτ
= 1

3
− �Ni · �N j

3
( �Ni · �N j

) = 0 (73)

And, if p = k, then,

Ak

Aτ
= 1

3
− �Ni · �Nk

3
( �Ni · �Nk

) = 0 (74)

Moreover, it is obvious that,
∑
p

Ap

Aτ
= Ai

Aτ
+ A j

Aτ
+ Ak

Aτ
= 1, p = i, j, k. (75)

��
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