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Abstract A mixed-type Galerkin variational principle is proposed for a generalized nonlo-
cal elastic model. The solvability and regularity of its solution is naturally derived through
the Lax–Milgram lemma, from which a solvability criterion is inferred for a Fredholm inte-
gral equation of the first kind. A mixed-type finite element procedure is therefore developed
and the existence and uniqueness of the discrete solution is proved. This compensates the
lack of solvability proof for the collocation-finite difference scheme proposed in Du et al. (J
Comput Phys 297:72–83, 2015). Numerical error bounds for the unknown and the interme-
diate variable are proved. By carefully exploring the structure of the coefficient matrices of
the numerical method, we develop a fast conjugate gradient algorithm , which reduces the
computations to O(NlogN ) per iteration and the memory to O(N ). The use of the precon-
ditioner significantly reduces the number of iterations. Numerical results show the utility of
the method.
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1 Introduction

Nonlocal theory has been used widely in physics and applied science, such as memory-
dependent elastic solids, viscous fluids, and electromagnetic solids [12]. Nonlocal theory
leads to fractional differential equations which model anomalous diffusion processes occur-
ring in chaotic dynamics [27] and turbulent flow [5]. In solid mechanics nonlocal theory is
used to derive a peridynamic model [22], which was used to better model elasticity problems
involving fracture and failure of composites, crack instability, the fracture of poly-crystals
and nanofiber networks [2,15,23,24].

In recent studies a generalized elastic model was proposed to account for the stochas-
tic motion of several physical systems such as membranes, (semi) flexible polymers and
fluctuating interfaces among others [25]. Mathematically, the model is expressed as a com-
position of a fractional differential equation with a Riesz potential operator. Consequently,
many mature numerical techniques, such as finite difference, finite volume, and collocation
methods, do not seem to be conveniently applicable to the model. A composition of a fast
collocation-finite difference scheme was developed in [11] to numerically solve the model,
which fully explores the structure of the dense stiff matrix of the scheme with a significantly
reduced memory requirement and computational cost. Numerical results were presented to
show the strong potential of the numerical scheme.

However, the development of the numerical scheme in [11] was heuristic as no rigor-
ous mathematical analysis was presented on the solvability, stability and convergence of the
numerical scheme. The goals of this paper can be summarized as follows: (1) By fully analyz-
ing its mathematical structure, we reformulate the generalized model into a mixed Galerkin
weak formulation that consists of a Riesz potential operator and a fractional differential oper-
ator on a carefully chosen Sobolev product space. We then prove the wellposedness of the
mixed formulation. As a consequence, the induced Fredholm integral operator of the first kind
by the peridynamic model has a bounded inverse, which may provide a solvability criterion
for the Fredholm integral equation of the first kind. (2) Based on the mixed Galerkin weak
formulation we develop a mixed Galerkin method and prove its wellposedness, which could
compensate the lack of solvability proof for the collocation-finite difference scheme proposed
in [11]. (3) We prove the convergence of the mixed Galerkin method. (4) We develop a fast
algorithm by exploring the Toeplitz structure of the stiff matrix of the method, which reduces
the computational cost and a memory requirement fromO(N 3) andO(N 2) of a direct solver
to O(N log N ) per iteration and O(N ) respectively. (5) We conduct numerical experiments
to substantiate our theoretical results.

2 Model Problem and Auxiliary Lemmas

In this paper, we consider the following generalized nonlocal elasticity model [25]

− 1

Γ (1 − α)

∫ 1

0

1

|x − y|α
{
d+

0D
β
y u(y) + d−

y D
β
1 u(y)

}
dy = f (x), x ∈ (0, 1),

u(x) = 0, x /∈ (0, 1), 0 < α < 1 < β < 2.
(2.1)

Here d+ > 0 and d− > 0 are the left and right diffusivity coefficients respectively, 0D
β
x u(x)

and x D
β
1 u(x) are the left and right Riemann–Liouville fractional derivatives defined by

0D
β
x u := d2

dx2
(0 I

2−β
x u), x D

β
1 u := d2

dx2
(x I

2−β
1 u)
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where 0 I
2−β
x and x I

2−β
1 stand for the left and right fractional integral operators defined by

0 I
2−β
x u := 1

Γ (2 − β)

∫ x

0
(x − s)1−βu(s)ds,

x I
2−β
1 u := 1

Γ (2 − β)

∫ 1

x
(s − x)1−βu(s)ds,

with Γ (x) being the Gamma function.
To reformulate (2.1) into a variational framework, in the subsequent development of the

paper we shall use the well established relations between the fractional Sobolev spaces
Hμ(0, 1) and the negative fractional derivative spaces J−μ

L (0, 1), J−μ
R (0, 1) and the frac-

tional derivative spaces Jμ
L (0, 1), Jμ

R (0, 1). We put the definitions of these spaces in the
Appendix.

Lemma 2.1 ([7],Theorem 2.6) Let μ > 0, μ �= n − 1
2 , n ∈ N. Then, the left negative frac-

tional derivative space J−μ
L (0, 1), the right negative fractional derivative space J−μ

R (0, 1)
and the negative fractional Sobolev space H−μ(0, 1) are equal with equivalent norms.

Lemma 2.2 ([13],Theorem 2.12) Let μ > 0, μ �= n − 1
2 , n ∈ N. Then, the left fractional

derivative space Jμ
L ,0(0, 1), the right fractional derivative space J

μ
R,0(0, 1) and the fractional

Sobolev space Hμ
0 (0, 1) are equal with equivalent semi-norms and norms.

When 0 ≤ μ ≤ 1
2 , the Sobolev space H

μ(0, 1) can be viewed as the completion ofC∞
0 (0, 1),

the set of all infinitively differentiable functions that vanish outside a compact subset of (0, 1),
with respect to its norm [18].

Lemma 2.3 ([18],Theorem 11.1) C∞
0 (0, 1) is dense in Hμ(0, 1) if and only if 0 ≤ μ ≤ 1

2 .

Remark 2.1 For 0 ≤ μ < 1
2 , the spaces Jμ

L ,0(0, 1), J
μ
R,0(0, 1), H

μ
0 (0, 1) and Hμ(0, 1) are

equal with equivalent norms. For notational convenience, we do not differentiate these spaces
in this case in subsequent sections, using ‖ · ‖μ and | · |μ to denote its norm and semi-norm
respectively.Whenμ = 0,we understand H0(0, 1) = L2(0, 1) and simply use ‖·‖ to denote
its norm. Moreover, in negative fractional Sobolev space H−μ(0, 1), we also use ‖ · ‖−μ to
denote its norm.

We conclude this section by proving two mapping properties of the integral operators and
establishing an equality concerning the relation of the dual pairs and the inner products for
later use.

Lemma 2.4 Let 0 ≤ μ < 1
2 , the following mapping properties hold:

1. 0 I
2μ
x : H−μ(0, 1) → Hμ(0, 1) is a bounded linear operator.

2. x I
2μ
1 : H−μ(0, 1) → Hμ(0, 1) is a bounded linear operator.

Proof [19] indicates the operators 0 I
2μ
x and x I

2μ
1 are linear, it remains to show that they are

continuous. For this purpose, we apply Remark 2.1, the semigroup property of the fractional
integral operator (Lemma 9.4 in Appendix) and Lemma 2.1 to deduce that

‖0 I 2μx v‖2Hμ(0,1) ≤ C‖0 I 2μx v‖2
Jμ
L ,0(0,1)

= C

{
‖0 I 2μx v‖2L2(0,1) + |0 I 2μx v|2

Jμ
L ,0(0,1)

}

123



J Sci Comput (2017) 71:660–681 663

= C
{
‖0 Iμ

x · 0 Iμ
x v‖2L2(0,1) + ‖0Dμ

x · 0 I 2μx v‖2L2(0,1)

}

≤ C
{
‖0 Iμ

x v‖2L2(0,1) + ‖0 Iμ
x v‖2L2(0,1)

}

≤ C‖v‖2
J−μ
L (0,1)

≤ C‖v‖2H−μ(0,1),

where C is a generic constant independent of v. Here we use another mapping property that
0 I

μ
x is bounded from L2(0, 1) to L2(0, 1) [13]. This is the first property of the lemma. A

similar argument is applied to derive the second property. �	

Lemma 2.5 Let 0 ≤ μ < 1
2 , v,w ∈ H−μ(0, 1). Then, the following relation between the

dual pair < ·, · > over H−μ(0, 1) × Hμ(0, 1) and L2 inner product (·, ·) holds,
〈
0 I

2μ
x v,w

〉 = (
0 I

μ
x v, x I

μ
1 w

)
. (2.2)

Proof The completeness of C∞
0 (0, 1) in H−μ(0, 1) under its norm ‖0 Iμ

x · ‖ implies that, for
w ∈ H−μ(0, 1), there exists a sequence {wn}∞n=1 in C

∞
0 (0, 1) such that

‖w − wn‖−μ → 0, as n → ∞.

It follows that, from the adjoint property of the fractional integral operators(Lemma 9.5 in
Appendix), Lemma 2.4 and the definitions and the equivalence of J−μ(0, 1) and H−μ(0, 1),

〈
0 I

2μ
x v,w

〉 = 〈
0 I

2μ
x v,w − wn

〉 + 〈
0 I

2μ
x v,wn

〉
= 〈

0 I
2μ
x v,w − wn

〉 + (
0 I

2μ
x v,wn

)
= 〈

0 I
2μ
x v,w − wn

〉 + (
0 I

μ
x v, x I

μ
1 wn

)
= 〈

0 I
2μ
x v,w − wn

〉 + (
0 I

μ
x v, x I

μ
1 (wn − w)

) + (
0 I

μ
x v, x I

μ
1 w

)
.

Noting that
∣∣〈0 I 2μx v,w − wn

〉∣∣ ≤ C‖v‖−μ‖w − wn‖−μ → 0, as n → ∞,∣∣(0 Iμ
x v, x I

μ
1 (wn − w)

)∣∣ ≤ ‖0 Iμ
x v‖‖x Iμ

1 (wn − w)‖
≤ C‖v‖−μ‖w − wn‖−μ → 0, as n → ∞,

we have
〈
0 I

2μ
x v,w

〉 = (
0 I

μ
x v, x I

μ
1 w

)
.

�	

In subsequent sections, we omit the space interval (0, 1) in any functional spaceswhenever
no confusion occurs.

3 A Mixed Galerkin Variational Formulation and Its Wellposedness

We start by rewriting the governing Eq. (2.1) as a mixed formulation by introducing an
intermediate variable v

123



664 J Sci Comput (2017) 71:660–681

0 I
1−α
x v(x) + x I

1−α
1 v(x) = f (x), x ∈ (0, 1),

−{d+
0D

β
x u(x) + d−

x D
β
1 u(x)} = v(x), x ∈ (0, 1),

u(x) = 0, x /∈ (0, 1). (3.1)

We multiply the first equation by any w ∈ H− 1−α
2 , integrate the resulting equation over

(0, 1) and use Lemma 2.5 to obtain the following

a(v,w) :=
(
0 I

1−α
2

x v, x I
1−α
2

1 w

)
+
(
x I

1−α
2

1 v, 0 I
1−α
2

x w

)
= 〈 f, w〉, ∀w ∈ H− 1−α

2 . (3.2)

We thenmultiply the second equation in (3.1) by anyϕ in H
β
2
0 , integrate the resulting equation

over the interval (0, 1) and apply the adjoint property of the fractional differential operator
cited by Lemma 9.7 in Appendix to obtain

b(u, ϕ) := −d+
(
0D

β
2
x u, x D

β
2
1 ϕ

)
− d−

(
x D

β
2
1 u, 0D

β
2
x ϕ

)
= 〈v, ϕ〉, ∀ϕ ∈ H

β
2
0 . (3.3)

To summarize, we formulate the following mixed Galerkin weak formulation for problem

(2.1): For any given f ∈ H
1−α
2 , find (v, u) ∈ H− 1−α

2 × H
β
2
0 such that

a(v,w) = 〈 f, w〉, ∀w ∈ H− 1−α
2 ,

b(u, ϕ) = 〈v, ϕ〉, ∀ϕ ∈ H
β
2
0 .

(3.4)

Theorem 3.1 The bilinear form a(·, ·) is coercive and continuous on H− 1−α
2 ×H− 1−α

2 . That
is, there exist positive constants 0 < C1 ≤ C2 < +∞ such that

a(v, v) ≥ C1‖v‖2− 1−α
2

∀v ∈ H− 1−α
2 ,

|a(v,w)| ≤ C2‖v‖− 1−α
2

‖w‖− 1−α
2

∀v,w ∈ H− 1−α
2 .

(3.5)

Similarly, the bilinear form b(·, ·) is coercive and continuous on H
β
2
0 × H

β
2
0 . In other words,

there exist positive constants 0 < C3 ≤ C4 < +∞ such that

b(u, u) ≥ C3‖u‖2β
2

, ∀u ∈ H
β
2
0 ,

|b(u, ϕ)| ≤ C4‖u‖ β
2
‖ϕ‖ β

2
∀u, ϕ ∈ H

β
2
0 .

(3.6)

Consequently, for any given f ∈ H
1−α
2 , the mixed formulation (3.4) has a unique solution

(v, u) ∈ H− 1−α
2 × H

β
2
0 with the stability estimates

‖u‖
H

β
2
0

≤ C‖v‖
H− β

2
≤ C‖v‖

H− 1−α
2

≤ C‖ f ‖
H

1−α
2

. (3.7)

Proof Using the definition of a(·, ·) and Lemma 9.2 in Appendix, we have

a(v, v) =
(
0 I

1−α
2

x v, x I
1−α
2

1 v

)
+
(
x I

1−α
2

1 v, 0 I
1−α
2

x v

)
= 2

(
0 I

1−α
2

x v, x I
1−α
2

1 v

)

= 2 cos

(
1 − α

2
π

)
‖v‖2− 1−α

2
= 2 sin

απ

2
‖v‖2− 1−α

2
.
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We thus prove the coercivity of a(·, ·). We now use the equivalence between J
− 1−α

2
L , J

− 1−α
2

R

and H− 1−α
2 in Lemma 2.1 to obtain that for any w ∈ H− 1−α

2 ,

|a(v,w)| ≤
∣∣∣∣
(
0 I

1−α
2

x v, x I
1−α
2

1 w

)∣∣∣∣ +
∣∣∣∣
(
x I

1−α
2

1 v, 0 I
1−α
2

x w

)∣∣∣∣
≤
∥∥∥∥0 I

1−α
2

x v

∥∥∥∥
∥∥∥∥x I

1−α
2

1 w

∥∥∥∥ +
∥∥∥∥x I

1−α
2

1 v

∥∥∥∥
∥∥∥∥0 I

1−α
2

x w

∥∥∥∥
= ‖v‖

J
− 1−α

2
L

‖w‖
J

− 1−α
2

R

+ ‖v‖
J

− 1−α
2

R

‖w‖
J

− 1−α
2

L

≤ C2‖v‖− 1−α
2

‖w‖− 1−α
2

.

We thus prove the continuity of a(·, ·). For any given f ∈ H
1−α
2 , Lax–Milgram lemma

assures that there exists a unique solution v ∈ H− 1−α
2 to the weak formulation (3.2) which

satisfies the last stability estimate in (3.7).
We next turn to the bilinear form b(·, ·). Note that cos βπ

2 < 0 for 1 < β < 2, we use

Lemma 9.3 in Appendix to conclude that for any u ∈ H
β
2
0 ,

b(u, u) = −d+
(
0D

β
2
x u, x D

β
2
1 u

)
− d−

(
x D

β
2
1 u, 0D

β
2
x u

)

= − (
d+ + d−) cos

(
βπ

2

)∥∥∥∥0D
β
2
x u

∥∥∥∥
2

= (
d+ + d−) ∣∣∣∣cos βπ

2

∣∣∣∣ |u|2
J

β
2
L ,0

≥ C
(
d+ + d−) ∣∣∣∣cos βπ

2

∣∣∣∣ |u|2β
2

≥ C3‖u‖2β
2
,

where at the last inequality we have used the fractional Poincaré inequality. We thus prove
the coercivity of b(·, ·). To prove the continuity of b(·, ·) we note that

|b(u, ϕ)| ≤ d+
∣∣∣∣
(
0D

β
2
x u, x D

β
2
1 ϕ

)∣∣∣∣ + d−
∣∣∣∣
(
x D

β
2
1 u, 0D

β
2
x ϕ

)∣∣∣∣
≤ max

{
d−, d+}(∥∥∥∥0D

β
2
x u

∥∥∥∥
∥∥∥∥x D

β
2
1 ϕ

∥∥∥∥ +
∥∥∥∥x D

β
2
1 u

∥∥∥∥
∥∥∥∥0D

β
2
x ϕ

∥∥∥∥
)

≤ max
{
d−, d+}

(
|u|

J
β
2
L ,0

|ϕ|
J

β
2
R,0

+ |u|
J

β
2
R,0

|ϕ|
J

β
2
L ,0

)

≤ C

(
‖u‖

J
β
2
L ,0

‖ϕ‖
J

β
2
R,0

+ ‖u‖
J

β
2
R,0

‖ϕ‖
J

β
2
L ,0

)

≤ C4‖u‖ β
2
‖ϕ‖ β

2
, ∀ϕ ∈ H

β
2
0 .

We note that H− 1−α
2 (0, 1) ↪→ H− β

2 (0, 1) as H
β
2
0 (0, 1) ↪→ H

1−α
2

0 (0, 1) for (1 − α)/2 <

1/2 < β/2 < 1 [1]. Hence, we have v ∈ H− β
2 . Lax–Milgram lemma ensures that the weak

formulation (3.3) has a unique solution u ∈ H
β
2
0 which satisfies the first inequality in (3.7).

�	
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We end this section by some comments. Define an operator L : H− 1−α
2 (0, 1) →

H
1−α
2 (0, 1) as

L(v) := 0 I 1−α
x v + x I

1−α
1 v, ∀v ∈ H− 1−α

2 (0, 1). (3.8)

It’s easy to see that L is a Fredholm integral operator of the first kind and the peridynamic
part in (3.1) can be viewed as

L(v)(x) = f (x).

Corollary 1 The Fredholm integral operator of the first kind L defined as (3.8) is invertible

from H
1−α
2 (0, 1) to H− 1−α

2 (0, 1). Moreover, the inverse operator L−1 of L is also bounded.

Proof From the first equality of (3.2), the operator can also be expressed equivalently by the
bilinear form a(·, ·)

〈L(v), w〉 = a(v,w), ∀w ∈ H− 1−α
2 (0, 1). (3.9)

Then, the coercivity of a(·, ·) in H− 1−α
2 (0, 1) suggests that

〈L(v), v〉 ≥ C1‖v‖2
H− 1−α

2 (0,1)
, ∀v ∈ H− 1−α

2 (0, 1), (3.10)

which implies that the operator L is an invertible linear operator with the bound[8,21]

‖L−1‖ ≤ 1
C1

. (3.11)

The proof is completed. �	
As a consequence, the induced Fredholm integral operator of the first kind by the peri-

dynamic part in (3.1) is invertible from H
1−α
2 (0, 1) to H− 1−α

2 (0, 1), which may provide a
solvability criterion for the Fredholm integral equation of the first kind with a weak-singular
kernal.

4 A Mixed Galerkin Finite Element Method Based on the Variational
Formulation

Let N be a positive integer. We define a uniform partition on [0, 1] by xi := ih for i =
0, 1, . . . , N with h = 1/N and the intervals Ii = (xi−1, xi ) for i = 1, 2, · · · , N .

Let Pk denote the set of polynomials of degree less than or equal to k.We define two finite
element spaces

Mh := {φ ∈ L2(Ω) : φ|Ii ∈ Pk(Ii ), i = 1, 2, . . . , N ; k ≥ 0},
Xh := {ψ ∈ C0(Ω) : ψ |Ii ∈ Pl(Ii ), i = 1, 2, . . . , N , ψ(0) = ψ(1) = 0; l ≥ 1}.

Considering that Mh and Xh don’t need to satisfy any matching constraints, like the LBB-
condition required by Raviart-Thomasmixed finite element space [20], we can use a different
partition: I 1

2
= (0, 1

2 ), Ii+ 1
2

= (i − 1
2h, i + 1

2h) for i = 1, . . . , N − 1 and IN+ 1
2

=
((N − 1

2 )h, 1) for Mh to keep the flexility of the mixed Galerkin procedure. In this way, the
finite element spaces are as follows,

Mh := {φ ∈ L2(Ω) : φ|I
i+ 1

2
∈ Pk(Ii+ 1

2
), i = 0, 1, . . . , N ; k ≥ 0},

Xh := {ψ ∈ C0(Ω) : ψ |Ii ∈ Pl(Ii ), i = 1, 2, . . . , N , ψ(0) = ψ(1) = 0; l ≥ 1}.
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Then the mixed Galerkin method is defined as: find vh ∈ Mh and uh ∈ Xh such that

a(vh, wh) = 〈 f, wh〉, ∀wh ∈ Mh, (4.1)

b(uh, ϕh) = 〈vh, ϕh〉, ∀ϕh ∈ Xh . (4.2)

As the finite element spaces Mh × Xh ⊂ H− 1−α
2 × H

β
2
0 , Theorem 3.1 ensures the wellposed-

ness of the numerical scheme (4.1) and (4.2).
It is worthy to point out that these two Mhs do have no essential differences except for

the degrees of freedom of the later one is k + 1 more than that of the first one. Therefore, we
shall use the finite element spaces defined on the later partition with k = 0, l = 1 to discuss
the numerical behaviours of (4.1) and (4.2) in Sects. 6 and 7. In this case,

M0
h = N

span
i=0

{φi ;φi is the indicator of the intervalIi+ 1
2
},

X1
h = N−1

span
i=1

{ψi ;ψi is the linear Lagrange base function at interior nodes}.

Consequently the numerical solution vh and uh can be expressed as

vh =
N∑
j=0

v jφ j and uh =
N−1∑
j=1

u jψ j .

If we denote

v = (v0, v1, . . . , vN )T and u = (u1, u2, . . . , uN−1)
T ,

we can rewrite (4.1), (4.2) into the following matrix form,

Av = F, (4.3)

Bu = V , (4.4)

where A = (ai, j )(N+1)×(N+1), B = (bi, j )(N−1)×(N−1), F = (Fi )(N+1) and V = (Vi )(N−1)
are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai, j = a(φ j , φi )

= (0 Ixφ j , x I1φi ) + (x I1φ j , 0 Ixφi ), i, j = 0, 1, . . . , N .

bi, j = b(ψ j , ψi )

= −d+(0D
β
2
x ψ j , x D

β
2
1 ψi ) − d−(x D

β
2
1 ψ j , 0D

β
2
x ψi ), i, j = 1, 2, . . . , N − 1.

Fi = 〈 f, φi 〉, i = 0, 1, . . . , N .

Vi = 〈vh, ψi 〉, i = 1, 2, . . . , N − 1.
(4.5)

Remark 4.1 In [11], the authors decomposed the generalized nonlocal elasticmodel (2.1) into
(3.1) and discretized the first equation by the collocation method with N collocation points
and the second equation by the finite difference method. The resulted coefficient matrices
are of N × (N + 2) and (N + 2) × N respectively. Hence, the solvability for vh and uh
can not been proved, even only for uh . Theorem 3.1 here concerning the solvability of the
mixed type variational principle can provide a better understanding for the structure of the
exact solution, and the wellposedness of the discrete procedure compensates the lack of proof
for the solvability in [11]. In this sense, the mixed Galerkin procedure (4.1) and (4.2) is a
meaningful improvement of [11].
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5 Convergence Analysis

We shall conduct error estimates of the mixed Galerkin method under the norms ‖ · ‖− 1−α
2

and ‖ · ‖ β
2
. Let Πh : C[0, 1] → Xh be the interpolation operator and Ph : L2(0, 1) → Mh

be the orthogonal L2 projection operator. The following approximation properties are well
known [4,7,8].

Lemma 5.1 [4,8] Assume that u ∈ Hs(0, 1) and v ∈ Hm(0, 1). Then, there exists a positive
constant C such that

‖u − Πhu‖r ≤ Chmin{s,l+1}−r‖u‖s, 0 ≤ r ≤ s;
‖v − Phv‖ ≤ Chmin{m,k+1}|v|m, m ≥ 0.

(5.1)

Lemma 5.2 [4,7] Assume that v ∈ Hm(0, 1) for m ≥ 0 and 0 ≤ r ≤ m. Then, there exists
a positive constant C such that

‖v − Phv‖−r ≤ Chmin{m,k+1}+r |v|m . (5.2)

We are now in the position to prove the error estimates for v and u.

Theorem 5.1 Let (v, u) ∈ H− 1−α
2 × H

β
2
0 be the solution to the weak formulation (3.4) and

(vh, uh) ∈ Mh × Xh be the solution to the corresponding numerical scheme (4.1) and (4.2).
Furthermore, we assume that u ∈ Hs

0 with s > β. Then, there exists a positive constant C
such that

‖v − vh‖− 1−α
2

≤ Chmin{s−β,k+1}+ 1−α
2 ‖u‖s,

‖u − uh‖ β
2

≤ C{hmin{s,l+1}− β
2 + hmin{s−β,k+1}+ 1−α

2 }‖u‖s .
(5.3)

Proof We first show that the intermediate variable v defined by the second equality of (3.1)
is in Hs−β(0, 1) and |v|s−β,(0,1) ≤ C |u|s,(0,1) as the unknown function u ∈ Hs

0 (0, 1), by
Fourier transform F (·)(see Appendix) and its properties [19].

Let ũ be the extension of u by zero outside (0, 1), then u → ũ is a continuous mapping
from Hs

0 (0, 1) to Hs(R) [18]. That is, there exists a constant C independent of u such that
|ũ|s,R ≤ C |u|s,(0,1).

Let ṽ(x) := −{d+−∞Dβ
x ũ(x) + d−

x D
β
+∞ũ(x)}, we have, for x ∈ (0, 1),

ṽ(x)|(0,1) = −
{
d+−∞Dβ

x ũ(x)|(0,1) + d−
x D

β
+∞ũ(x)|(0,1)

}

= −
{
d+

0D
β
x u(x)|(0,1) + d−

x D
β
1 u(x)|(0,1)

}

= v(x)|(0,1).
Applying the definition of | · |s−β,R and the properties of Fourier transform F (·) to derive

|v|2s−β,(0,1) ≤ |ṽ|2s−β,R

=
∣∣∣d+−∞Dβ

x ũ + d−
x D

β
+∞ũ

∣∣∣2
s−β,R

≤ C

{∣∣−∞Dβ
x ũ

∣∣2
s−β,R

+
∣∣∣x Dβ

+∞ũ
∣∣∣2
s−β,R

}

= C

{∥∥|w|s−βF (−∞Dβ
x ũ)

∥∥2
L2(R)

+
∥∥∥|w|s−βF (x D

β
+∞ũ)

∥∥∥2
L2(R)

}
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= C
{∥∥|w|s−β(iw)βF (ũ)

∥∥2
L2(R)

+ ∥∥|w|s−β(−iw)βF (ũ)
∥∥2
L2(R)

}

≤ C
{∥∥|w|sF (ũ)

∥∥2
L2(R)

+ ∥∥|w|sF (ũ)
∥∥2
L2(R)

}

≤ C |ũ|2s,R ≤ C |u|2s,(0,1),

that is, |v|s−β,(0,1) ≤ C |u|s,(0,1).
We then prove (5.3). Since Mh ⊂ H− 1−α

2 , we take w = wh ∈ Mh in (3.2) and subtract
(4.1) from (3.2) to derive the following error equation,

a(v − vh, wh) = 0, ∀wh ∈ Mh . (5.4)

We use the coercivity and continuity of a(·, ·) to derive that for wh ∈ Mh

C1‖v − vh‖2− 1−α
2

≤ a(v − vh, v − vh) = a(v − vh, v − wh)

≤ C2‖v − vh‖− 1−α
2

‖v − wh‖− 1−α
2

.

This yields

‖v − vh‖− 1−α
2

≤ C2

C1
inf∀wh∈Mh

‖v − wh‖− 1−α
2

≤ C2

C1
‖v − Phv‖− 1−α

2
.

We combine this with the estimate (5.2) to prove the first estimate in (5.3).

We now turn to the second estimate. As Xh ⊂ H
β
2
0 , we take ϕ = ϕh ∈ Xh in (3.3) and

subtract (4.2) from (3.3) to derive the error equation

b(u − uh, ϕh) = 〈v − vh, ϕh〉, ∀ϕh ∈ Xh . (5.5)

We use the coercivity and the continuity of b(·, ·) and Young’s inequality to deduce

C3‖u − uh‖2β
2

≤ b(u − uh, u − uh)

= b(u − uh, u − Πhu) + b(u − uh,Πhu − uh)

= b(u − uh, u − Πhu) + 〈v − vh,Πhu − uh〉
= b(u − uh, u − Πhu) + 〈v − vh,Πhu − u〉 + 〈v − vh, u − uh〉
≤ C

{
‖u − uh‖ β

2
‖u − Πhu‖ β

2
+ ‖v − vh‖− β

2
‖u − Πhu‖ β

2

+‖v − vh‖− β
2
‖u − uh‖ β

2

}

≤ C

{
‖u − Πhu‖2β

2
+ ‖v − vh‖2− β

2

}
+ C3

2
‖u − uh‖2β

2
.

We absorb the ‖u − uh‖2β
2

−term on the right hand side by its analogue on the left, denote 2C
C3

still by a generic constant C, use Lemma 5.1 and the estimate for v − vh to obtain

‖u − uh‖ β
2

≤ C
{
‖u − Πhu‖ β

2
+ ‖v − vh‖− β

2

}

≤ C
{
‖u − Πhu‖ β

2
+ ‖v − vh‖− 1−α

2

}
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≤ C
{
hmin{s,l+1}− β

2 ‖u‖s + hmin{s−β,k+1}+ 1−α
2 |v|s−β

}

≤ C
{
hmin{s,l+1}− β

2 ‖u‖s + hmin{s−β,k+1}+ 1−α
2 |u|s

}

≤ C
{
hmin{s,l+1}− β

2 + hmin{s−β,k+1}+ 1−α
2

}
‖u‖s .

This completes the proof. �	

Remark 5.1 As the boundary condition states that the solution u = 0 for x /∈ (0, 1), or
x ∈ R\(0, 1), this forces that the solution u must lie in Hs

0 (Ω) if we require u to possess
Hs(Ω)− regularity. Otherwise the solution umay produce strong singularity on the boundary
which would destroy the regularity assumption u ∈ Hs(Ω). A similar observation was
found and proved in [16]. This reflects a major difference between the fractional and second
order differential equations due to the non-locality of the fractional operators. Therefore, the
regularity assumption u ∈ Hs

0 (Ω) on the solution of (2.1) is natural and reasonable.

Remark 5.2 In the derivation of the last inequality, a sharp estimate for the first term ‖u −
Πhu‖ β

2
can be easily obtained by directly using Lemma 5.1. However, the estimate for the

second term may not be sharp since we have to use the bound of ‖v − vh‖− 1−α
2

instead of
‖v − vh‖− β

2
by the embedding inequality

‖v − vh‖− β
2

≤ C‖v − vh‖− 1−α
2

.

This may make a loss of α+β−1
2 —order in the convergence rate.

6 Fast Algorithm and Its Efficient Implementation

When solving the linear equations Mx = y where M is a N × N full coefficient matrix, we
generally use the Gauss elimination method to obtain the solution x, which requires O(N 3)

computations and O(N 2) storage. In order to reduce the computational cost, some practical
iterative algorithms appear. For example, if M is symmetric positive definite, conjugate
gradient (CG)method is an efficient iterative algorithm to solve this problem [3]. Furthermore,
if the coefficient matrix M is nonsymmetric, the CG method can be applied to its equivalent
linear system

MT Mx = MT y, (6.1)

which is called conjugate gradient on the normal equation (CGNR) method [3]. This still
needs the storage of O(N 2). But the major computational cost per iteration is the matrix-
vector multiplication M p with the order reduced to O(N 2).

When M = C is a N × N circulant matrix, each row vector is rotated one element to
the right relative to the preceding row vector. As a result, we only need to store the first
row vector c of C with the storage reduced to O(N ). Moreover, a circulant matrix can be
decomposed as follows [9,14],

C = F−1
N diag(FN · c)FN , (6.2)

where FN is the N × N discrete Fourier transform matrix in which the ( j, l)−entry FN ( j, l)
of the matrix FN is given by
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FN ( j, l) = 1√
N
exp

(
−2π i jl

N

)
, 0 ≤ j, l ≤ N − 1, (6.3)

with i2 = −1. The Fourier transform matrix-vector multiplication can be realized via fast
Fourier transform (FFT) for the vector and the computational cost of FFT is O(NlogN ), so
is the circulant matrix-vector multiplication.

When M is a N × N Toeplitz matrix whose descending diagonal from left to right is
constant, M can be embedded into a 2N × 2N circulant matrix. Therefore the storage of
Toeplitz matrix and the computational cost of Toeplitz matrix-vector multiplication can also
be reduced to O(N ) and O(NlogN ) respectively [26]. Combined this technique with CG
and CGNR method, we call them fast CG and fast CGNR method.

We find that the coefficient matrices A and B generated by discretization for (4.1) and
(4.2) possess a Toeplitz-like structure, when the piecewise constant finite element space M0

h
and the piecewise linear finite element space X1

h are used. Hence, we shall carefully explore
their characteristics of easy computation and design a fast algorithm based on the CG and
CGNR method.

Theorem 6.1 Assume that the base functions of M0
h × X1

h are defined as in Sect. 4. The sym-
metric coefficient matrix A generated by the finite element procedure (4.1) can be expressed
in the form

A =

⎛
⎜⎜⎜⎜⎝

ω0 ωT ωN

ω Ã ω̃

ωN ω̃T ω0

⎞
⎟⎟⎟⎟⎠

(N+1)×(N+1)

.

Hereω = (ω1, ω2, . . . , ωN−2, ωN−1)
T , ω̃ = (ωN−1, ωN−2, . . . , ω2, ω1)

T are N−1 vectors.
ω0, ωN are real numbers. Ã is a symmetric (N − 1) × (N − 1) Toeplitz matrix.

Proof Noting that A is a symmetric matrix from the symmetry of the bilinear form a(·, ·),
we only calculate those entries ai, j , i ≥ j, j = 0, 1, . . . , N . Since φ0 and φN , the base
functions at the end semi-interval, are of different forms from the others, we first focus on
the calculation of the entries ai, j , i ≥ j, j = 1, 2, . . . , N − 1.

Applying (4.5) and the definition of the base function φi to compute, we have, when
i − j = 0 or i = j,

ai, j = a(φ j , φ j ) = 2

(
0 I

1−α
2

x φ j , x I
1−α
2

1 φ j

)

= 2(
Γ
( 3−α

2

))2
∫ (

j+ 1
2

)
h

(
j− 1

2

)
h

[
x −

(
j − 1

2

)
h

] 1−α
2
[(

j + 1

2

)
h − x

] 1−α
2

dx

= 2(
Γ
( 3−α

2

))2
[(

j + 1

2

)
h −

(
j − 1

2

)
h

]2−α

B

(
3 − α

2
,
3 − α

2

)

= 2

Γ (3 − α)
h2−α,

with B(p, q) being the Beta function. When i − j = m,m = 1, 2, . . . , N − 2, similar
calculation shows that
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a(φ j+m, φ j ) =
(
0 I

1−α
2

x φ j+m, x I
1−α
2

1 φ j

)
+
(
x I

1−α
2

1 φ j+m, 0 I
1−α
2

x φ j

)

= h2−α

(
Γ
( 3−α

2

))2
{
(m + 1)2−α − 2m2−α + (m − 1)2−α

}
B

(
3 − α

2
,
3 − α

2

)

= h2−α

Γ (3 − α)

{
(m + 1)2−α − 2m2−α + (m − 1)2−α

}
.

This indicates that the value of ai, j = a(φ j+m, φ j ) for i − j = m depends only on the index
m, which ensures that the entries in each descending diagonal are same.

We then calculate the remaining entries analogously,

a(φ0, φ0) = h2−α

Γ (3 − α)
2

(
1

2

)2−α

,

a(φ0, φ j ) = h2−α

Γ (3 − α)

{(
j + 1

2

)2−α

−
(
j − 1

2

)2−α

− j2−α + ( j − 1)2−α

}
,

j = 1, 2, . . . , N − 1,

a(φ0, φN ) = h2−α

Γ (3 − α)

{
N 2−α − 2

(
N − 1

2

)2−α

+ (N + 1)2−α

}
,

a(φi , φN ) = h2−α

Γ (3 − α)

{(
N − i + 1

2

)2−α

−
(
N − i − 1

2

)2−α

− (N − i)2−α

+ (N − i − 1)2−α
}
, i = 1, 2, . . . , N − 1,

a(φN , φN ) = h2−α

Γ (3 − α)
2

(
1

2

)2−α

,

from which we easily find that a(φ0, φi ) = a(φN−i , φN ), that is, a0,i = aN−i,N for i =
1, 2, . . . , N − 1.

Finally we let

ω0 = a(φ0, φ0) = a(φN , φN ),

ω j = a(φ0, φ j ) = a(φN− j , φN ), j = 1, 2, . . . , N − 1,
ωN = a(φ0, φN ),

δ1 = a(φ j , φ j ), j = 1, 2, . . . , N − 1,
δm+1 = a(φ j+m, φ j ), m = 1, 2, . . . , N − 2,

and put them into the matrix A according to their i − j positions to express A as below,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 ω1 ω2 . . . ωN−2 ωN−1 ωN

ω1 δ1 δ2 . . . δN−2 δN−1 ωN−1

ω2 δ2 δ1 δ2
. . . δN−2 ωN−2

...
...

. . .
. . .

. . .
...

...

ωN−2
...

. . . δ2 δ1 δ2 ω2

ωN−1 δN−1 . . . . . . δ2 δ1 ω1

ωN ωN−1 ωN−2 . . . . . . ω1 ω0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This shows that Ã, the centered part of A, is a Toeplitz matrix. We then rewrite A into its
block form based on the definitions of ω, ω̃ and Ã to complete the proof. �	
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Theorem 6.2 Assume that the base functions of M0
h × X1

h are defined as in Sect. 4. The
coefficient matrix B generated by the finite element procedure (4.2) is a (N − 1) × (N − 1)
Toeplitz matrix.

Proof Analogous to the derivation of the matrix A we get

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ0 σ−1 . . . σ3−N σ2−N

σ1 σ0 σ−1
. . . σ3−N

...
. . .

. . .
. . .

...

σN−3
. . . σ1 σ0 σ−1

σN−2 σN−3 . . . σ1 σ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

whose entries are given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ0 = h1−β

Γ (4 − β)
{d+(23−β − 4) + d−(23−β − 4)},

σ1 = h1−β

Γ (4 − β)
{d+(33−β − 4 · 23−β + 6) + d−},

σi = h1−β

Γ (4 − β)
d+ {

(i + 2)3−β − 4 · (i + 1)3−β + 6 · i3−β

− 4(i − 1)3−β + (i − 2)3−β
}
, i = 2, 3, 4, . . . , N − 2.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ−1 = h1−β

Γ (4 − β)

{
d+ + d−(33−β − 4 · 23−β + 6)

}
,

σ−i = h1−β

Γ (4 − β)
d− {

(i + 2)3−β − 4 · (i + 1)3−β + 6 · i3−β

− 4(i − 1)3−β + (i − 2)3−β
}
, i = 2, 3, 4, . . . , N − 2.

As a result, B is a Toeplitz matrix. �	

For (4.2), Theorem 6.2 indicates that the matrix B is a (N − 1) × (N − 1) nonsymmetric
Toeplitz matrix. The fast algorithm can be directly formulated based on the CGNR method
to solve the linear system, with the storage reduced to O(N ) and the computational cost
reduced to O(NlogN ) per iteration [26].

For (4.1), Theorem 6.1 tells that the matrix A is a (N + 1)× (N + 1) symmetric Toeplitz-
like matrix, thus some extra work is necessary. It’s not difficult to find that the matrix A can
be regarded as the composition of a Toeplitz matrix and a sparse matrix, that is, A = A1+A2,
with

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 δ2 . . . δN−1 ωN−1 ωN

δ2 δ1 δ2
. . . δN−1 ωN−1

...
. . .

. . .
. . .

. . . δN−1

δN−1
. . .

. . .
. . .

. . .
...

ωN−1 δN−1
. . .

. . .
. . . δ2

ωN ωN−1 δN−1 . . . δ2 δ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 − δ1 ω1 − δ2 . . . ωN−2 − δN−1 0 0
ω1 − δ2 0 . . . . . . 0 0

...
...

. . .
. . .

... ωN−2 − δN−1

ωN−2 − δN−1
...

. . .
. . .

...
...

0 0 . . . . . . 0 ω1 − δ2
0 0 ωN−2 − δN−1 . . . ω1 − δ2 ω0 − δ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On one hand, A1 is a (N + 1) × (N + 1) Toeplitz matrix with the storage to be O(N ) and
the computational cost of the matrix-vector multiplication to be O(NlogN ). On the other
hand, A2 is a (N + 1) × (N + 1) sparse matrix whose storage requires O(N ) memory and
matrix-vector multiplication only requiresO(N ) operations. To conclude, when solving (4.1)
by CG method, the storage and the computational cost of matrix-vector multiplication for
Toeplitz-like matrix can still be reduced to O(N ) and O(NlogN ) respectively. That is the
following conclusion:

Compared with Gauss elimination method, the computational cost for solving (4.1) and
(4.2) can be reduced fromO(N 3) toO(NlogN ) and the storage can be reduced fromO(N 2)

to O(N ) at each iteration.
According to Theorem 6.1, A is a symmetric definite matrix and the iteration number

in iterative algorithm is small. Nevertheless, in some cases, the Toeplitz system B may
be ill-conditioned and the iterative method may converge very slowly. To overcome such
shortcoming, preconditioners always play crucial roles [17]. With a special circulant matrix
P , the following linear system is equal to Bu = f :

(P−1B)T (P−1B)u = (P−1B)T P−1 f . (6.4)

A proper matrix P can further reduce the iterative number in fast CG or fast CGNR method
so as to reduce the computing time in solving u. Here we formulate T. Chan’s circulant
preconditioner [6] into (6.4). Since both of thematrix-vectormultiplication Bu and the inverse
of the circulant preconditioner P requireO(NlogN ) operations, the total computational cost
for fast PCG or fast PCGNR methods is also O(NlogN ) at each iteration. The following
numerical examples clearly shows the decrease of the iterative number and the computing
time.

7 Numerical Experiments

In this section, we are going to present two numerical examples, one for smooth solution
and the other for non-smooth solution, to illustrate the performance for our mixed-type finite
element procedure and fast algorithm.

Example 1 Let u = x2(1− x)2, α = 0.5, β = 1.5, d+ = d− = Γ (1.5). Then the right term
can be calculated as

f (x) = (4x3 − 6x2 + 2x)ln
1 + √

1 − x√
x

+ (4(1 − x)3 − 6(1 − x)2 + 2(1 − x))ln
1 + √

x√
1 − x
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+
(
4x2 − 10

3
x + 2

15

)√
1 − x +

(
4(1 − x)2 − 10

3
(1 − x) + 2

15

)√
x

+ π(2x3 + 2(1 − x)3 − 3x2 − 3(1 − x)2 + 1).

Here, u ∈ H2+γ
0 (0, 1) and γ ∈ [0, 1

2 ) can be selected as close to 1
2 as possible [7,16].

Since A is a symmetric matrix according to Theorem 6.1 and the parameters in this
example lead to a symmetric positive definite matrix B, fast CG method is enough to deal
with the linear systems. Matlab software is used in computing and the numerical results are
presented in Tables 1, 2, 3, and 4.

Tables 1 and 2 show the errors as well as the convergence orders for ‖v − vh‖− 1−α
2

and
‖u − uh‖ β

2
respectively. In Table 3, we compare the CPU time in solving vh by means of

Gauss elimination method and the fast CG method. In Table 4, fast PCG method is applied
in solving uh to verify the decrease of iterative number.

Table 1 The errors and
convergence orders for v − vh

N ‖v − vh‖− 1−α
2

Order ‖v − vh‖L2 Order

25 1.0034e−003 1.2209e-002

26 4.3831e−003 1.1943 6.2336e−003 0.9459

27 1.9458e−003 1.1722 3.1052e−003 1.0053

28 8.7469e−004 1.1529 1.5060e−003 1.0439

29 3.9704e−004 1.1395 7.1051e−004 1.0837

210 1.8198e−004 1.1255 3.2823e−004 1.1141

Table 2 The errors and
convergence orders for u − uh

N ‖u − uh‖ β
2

Order ‖u − uh‖L2 Order

25 3.7319e−003 8.3651e−005

26 1.6389e−003 1.1872 2.0405e−005 2.0534

27 7.0731e−004 1.2123 5.3681e−006 1.9264

28 3.0204e−004 1.2276 1.6346e−006 1.7154

29 1.2818e−004 1.2366 5.9946e−007 1.4472

210 5.4193e−005 1.2420 2.4658e−007 1.2816

Table 3 Comparison for Gauss
elimination and fast CG in
solving (4.3)

N ‖v − vh‖− 1−α
2

Gauss CPU (s) Fast CG CPU (s) Iter.

25 1.0034e−003 0.020 0.138 12

26 4.3831e−003 0.033 0.141 15

27 1.9458e−003 0.112 0.167 16

28 8.7469e−004 0.721 0.159 18

29 3.9704e−004 5.830 0.204 22

210 1.8198e−004 47.973 0.224 23
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Table 4 Comparison for Gauss elimination, fast CG and fast PCG in solving (4.4)

N ‖u − uh‖ β
2

Gauss CPU Fast CG CPU (s) Iter. Fast PCG CPU (s) Iter.

25 3.7319e−003 0.348 s 0.023 16 0.054 8

26 1.6389e−003 2.986 s 0.031 27 0.038 10

27 7.0731e−004 24.073 s 0.044 46 0.051 12

28 3.0204e−004 3 min 52 s 0.092 79 0.041 14

29 1.2818e−004 39 min 5 s 0.123 134 0.085 16

210 5.4193e−005 71 min 56 s 0.364 227 0.130 19

The numerical results in Table 1 indicates that the convergence orders of ‖v − vh‖− 1−α
2

are a little bit lower than 0.75+ γ ≈ 1.25, the predicted convergence order by Theorem 5.1.
The reason may be that in programming computation of the error ‖v − vh‖− 1−α

2
, quadrature

formulas are used more often than other calculations and the errors are probably affected.
Theoretically, the convergence order for ‖v − vh‖ should be 0.5 + γ ≈ 1. Table 1 shows
that the numerical convergence orders are greater than 1, a little bit higher than theoretical
convergence order.

Table 2 reports that the convergence orders of ‖u−uh‖ β
2
are about 1.25,which is consistent

with the convergence order ‖u − Πhu‖ β
2
and the theoretically predicted convergence order

by Theorem 5.1. The convergence orders for u in L2 norm are distributed between 1 and 2
since its errors depend on v which is approximated by piecewise constant functions.

Next we check the performance of the fast algorithm. We experiment 10 times and take
the mean CPU time as the test datum. Table 3 compares the CPU cost and iterative number
between Gauss elimination and the fast CG method for solving (4.3). It’s essential that both
of them share the almost same error of ‖v −vh‖− 1−α

2
. When N = 210, the Gauss elimination

method consumes more than 40 s to finish the calculation while the fast CG method only
needs >1 s to reach the solution. Comparatively speaking, the fast CG method evidently
reduces the computation time.

In Table 4, the reduction of the computation time is more apparent. As N = 210, the Gauss
elimination method consumes more than an hour. By contrast, the fast algorithm solves the
problem within one second. Nevertheless, the iterative number of the fast CG is increasing
fast as the mesh size becomes smaller. Therefore, we formulate the fast PCGmethod to make
an improvement. From the experiment results, the fast PCG method may take more time
than the fast CG method when N ≤ 27 since the saved time in iterative algorithm does not
counteract the consumed time to deal with the perconditioner. However, as N grows, the
use of the preconditioner is expected to greatly reduce the iterative number in the fast CG
method, also reduce the CPU time.

Example 2 Let u = x(1 − x), α = 0.5, β = 1.5, d+ = d− = Γ (1.5). Then the right term
can be calculated as

f (x) = (1 − 2x)

(
ln

1 + √
1 − x√
x

+ ln
1 − √

x√
1 − x

)
− 2(

√
x + √

1 − x).

Here, u ∈ H1+γ
0 (0, 1) and γ ∈ [0, 1

2 ) is defined as in Example 1.
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Table 5 The errors and
convergence orders for v − vh

N ‖v − vh‖− 1−α
2

Order

25 6.8164e−001

26 5.4405e−001 0.3253

27 4.3963e−001 0.3074

28 3.5886e−001 0.2929

29 2.9525e−001 0.2815

210 2.4438e−001 0.2728

Table 6 The errors and
convergence orders for u − uh

N ‖u − uh‖ β
2

Order ‖u − uh‖L2 Order

25 2.7163e−002 2.6302e−003

26 1.5974e−002 0.7659 1.3790e−003 0.9315

27 9.4575e−003 0.7562 7.4877e−004 0.8810

28 5.6184e−003 0.7513 4.1718e−004 0.8438

29 3.3429e−003 0.7491 2.3681e−004 0.8169

210 1.9903e−003 0.7481 1.3624e−004 0.7976

Table 7 Comparison for Gauss
elimination and fast CG in
solving (4.3)

N ‖v − vh‖− 1−α
2

Gauss CPU (s) Fast CG CPU (s) Iter.

25 6.8146e−001 0.024 0.164 12

26 5.4405e−001 0.039 0.178 16

27 4.3963e−001 0.133 0.175 18

28 3.5886e−001 0.868 0.181 21

29 2.9525e−001 5.682 0.205 25

210 2.4438e−001 46.987 0.211 30

Similar to Example 1, Tables 5 and 6 show the convergence results for v − vh and u − uh
respectively. Table 7 compares their CPU time in solving vh by Gauss elimination method
and fast CG method. In Table 8, fast PCG method is added to explain the advantage of the
preconditioner.

Theoretically we can not obtain any convergence order for v − vh since − 1
2 + γ < 0 and

v only lies in H− 1
2+γ (0, 1). However, parallel to the case of smooth v, one would formally

derive ‖v − vh‖− 1−α
2

≈ O(h− 1
2+γ−(− 1−α

2 )) ≈ O(h0.25). Table 5 presents the numerical
results of ‖v − vh‖− 1−α

2
. Although the errors seem to be large due to the contribution of

the factor 1
1−2γ in the norm ‖v‖− 1

2+γ , the convergence orders are a bit higher than and

approaching to 0.25 which agrees with the formally derived estimate. This shows that our
mixed procedure can still approximate non-smooth solution accurately.

Table 6 gives the numerical results for u − uh . The convergence orders of ‖u − uh‖ β
2

are about γ + 0.25 ≈ 0.75, which is better than the theoretical order given by Theorem 5.1
and obey the prediction of Remark 5.2. The convergence orders of ‖u − uh‖ look almost the
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Table 8 Comparison for Gauss elimination, fast CG and fast PCG in solving (4.4)

N ‖u − uh‖ β
2

Gauss CPU Fast CG CPU (s) Iter. Fast PCG CPU (s) Iter.

25 2.7163e−002 0.421 s 0.045 16 0.058 9

26 1.5974e−002 3.027 s 0.039 28 0.045 10

27 9.4575e−003 26.478 s 0.074 48 0.062 12

28 5.6184e−003 4 min 3 s 0.114 81 0.115 14

29 3.3429e−003 41 min 25 s 0.134 138 0.092 16

210 1.9903e−003 460 min 13 s 0.341 233 0.165 20

same as those of ‖u − uh‖ β
2
only and the loss of the convergence order may result from poor

regularity of v.

The last two tables clearly show the nice performance of the fast algorithm as well as
the preconditioner technique analogously to the Example 1. The apparent reductions of the
computation time and the iterative number again verify their efficiency.

8 Concluding Remarks

We have established the well-defined mixed-type variational principle for a generalized non-
local elastic model composed by a fractional differential equation and a peridynamic model

in H− 1−α
2 (0, 1) × H

β
2
0 (0, 1) and developed the mixed-type finite element procedure which

approximates the unknown function u and the intermediate variable v. We find that the high-
lights of our paper at least are: (1) it creates a solvability criterion for the Fredholm integral
equation of the first kind by the solvability of the variational principle; (2) it provides amixed-
type finite element scheme and the existence and uniqueness of its solution can compensate
the lack of solvability proof for the collocation-finite difference scheme proposed in [11];
and (3) the induced Toeplitz or Toeplitz-like coefficient matrices and the fast algorithm can
be applied to reduce the storage to O(N ) and computational cost to O(NlogN ).
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9 Appendix

In this appendix, we introduce the definitions and notations of those spaces and the properties
of the fractional operators used in this paper. They also can be found in [1,7,10,13,18,19]
and the references cited therein.

Definition 9.1 (Negative fractional derivative spaces [7,10]) Let μ > 0. Define the norm

‖v‖J−μ
L (R)

:= ∥∥−∞ Iμ
x v

∥∥
L2(R)

, (9.1)
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and let J−μ
L (R) denote the closure of C∞

0 (R) with respect to ‖ · ‖J−μ
L (R)

. Analogously, define

the norm
‖v‖J−μ

R (R)
:= ∥∥x Iμ∞v

∥∥
L2(R)

, (9.2)

and let J−μ
R (R) denote the closure of C∞

0 (R) with respect to ‖ · ‖J−μ
R (R)

.

By the Fourier transforms

F (v)(w) = ∫∞
−∞ e−iwxv(x)dx = v̂(w),

the negative fractional order Sobolev space H−μ(R) is defined to be

Definition 9.2 (Negative Sobolev spaces [1,18]) Let μ > 0. Define the norm

‖v‖H−μ(R) := ‖|w|−μv̂(w)‖L2(R), (9.3)

and let H−μ(R) denote the closure of C∞
0 (R) with respect to ‖ · ‖H−μ(R).

The following equivalences are proved [10].

Lemma 9.1 ([10], Theorem 2.5) The three spaces J−μ
L (R), J−μ

R (R) and H−μ(R) are equal
with equivalent norms, and(

−∞ Iμ
x v, x I

μ∞v
) = cos(μπ)‖v‖2H−μ(R)

. (9.4)

For convenience, we need to restrict the negative fractional derivative spaces to a bounded
subinterval ofR, which, in this paper, is denoted by (0, 1). Still, we establish their equivalence
with H−μ(0, 1).

Definition 9.3 (Negative fractional derivative spaces in bounded domain [7]) Define the
spaces J−μ

L (0, 1), J−μ
R (0, 1) as the closure of C∞

0 (0, 1) under their respective norms.

A similar conclusion with Lemma 9.1 can be derived for the bounded domain (0, 1).

Lemma 9.2 ([7], Theorem 2.6) Assume that μ > 0. Then, the three spaces J−μ
L (0, 1),

J−μ
R (0, 1) and H−μ(0, 1) are equal with equivalent norms, and(

0 I
μ
x v, x I

μ
1 v

) = cos(μπ)‖v‖2H−μ(0,1), (9.5)

We then define the fractional derivative spaces introduced in [13].

Definition 9.4 (Fractional derivative spaces [13]) Let μ > 0. Define the semi-norm

|u|Jμ
L (R) := ‖−∞Dμ

x u‖L2(R),

and norm

‖u‖Jμ
L (R) :=

(
‖u‖2L2(R)

+ |u|2
Jμ
L (R)

) 1
2
, (9.6)

and let Jμ
L (R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jμ
L (R).

Analogously, we define the right fractional derivative space as follows. Let μ > 0. Define
the semi-norm

|u|Jμ
R (R) := ‖x Dμ

+∞u‖L2(R),

and norm

‖u‖Jμ
R (R) :=

(
‖u‖2L2(R)

+ |u|2
Jμ
R (R)

) 1
2
, (9.7)

and let Jμ
R (R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jμ
R (R).

We also define the norm for functions in Hμ(R) in terms of the Fourier transforms.
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Definition 9.5 (Fractional Sobolev spaces [1,13,18]) Let μ > 0. Define the semi-norm

|u|Hμ(R) := ‖|w|μû‖L2(R),

and norm

‖u‖Hμ(R) :=
(
‖u‖2L2(R)

+ |u|2Hμ(R)

)1/2
, (9.8)

and let Hμ(R) denotes the closure of C∞
0 (R) with respect to ‖ · ‖Hμ(R).

As stated in [13], the product of the left and the right fractional order derivative for the
same real valued function u can be related to | · |Jμ

L (R).

Lemma 9.3 ([13], Lemma 2.4) Assume that μ > 0. Then for u(x) a real valued function(
−∞Dμ

x u, x D
μ
+∞u

) = cos(μπ)‖−∞Dμ
x u‖2L2(R)

. (9.9)

At last, several good conclusions of the fractional operators will be demonstrated using
the following lemmas.

Lemma 9.4 (Semigroup property for fractional integrate operator [19]) Let μ, ν > 0. For
any u ∈ L2(0, 1), we have

0 I
μ+ν
x u = 0 I

μ
x 0 I

ν
x u. (9.10)

Lemma 9.5 (Adjoint property for fractional integrate operator [19]) Let μ > 0. For any
u, v ∈ L2(0, 1), we have

(0 I
μ
x u, v) = (u, x I

μ
1 v). (9.11)

Lemma 9.6 (Semigroup property for fractional derivative operator [13]) Let 0 < s < μ.

For any u ∈ Jμ
L ,0(0, 1), we have

0D
μ
x u = 0D

s
x 0D

μ−s
x u, (9.12)

and similarly for any u ∈ Jμ
R,0(0, 1), we have

x D
μ
1 u = x D

s
1x D

μ−s
1 u. (9.13)

Lemma 9.7 (Adjoint property for fractional derivative operator [13]) Let 1 < β < 2. For

any ω ∈ Hβ
0 (0, 1), v ∈ H

β
2
0 (0, 1), we have

(
0D

β
x ω, v

)
(0,1) =

(
0D

β
2
x ω, x D

β
2
1 v

)
(0,1)

, (9.14)

(
x D

β
1 ω, v

)
(0,1)

=
(
x D

β
2
1 ω, 0D

β
2
x v

)
(0,1)

. (9.15)
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