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Abstract The implementations of the eXtended Finite Element Method and the Boundary
Element Method need to face the challenge of integrating singular functions. Since standard
quadrature techniques usually produce inaccurate results, a number of specific algorithms
have been developed to address this problem. We present a general framework for the sys-
tematic formulation of the three-dimensional case. The classical cubic transformation is also
considered, including an analytical optimization of its parameters for improved practical
efficiency.
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1 Introduction

The first stage in the Finite Element Method (FEM) is the meshing, by which the problem
domain is partitioned into elements. In two dimensions (2D), typical elements are triangles
or quadrilaterals, whereas in three dimensions (3D), tetrahedra, pyramids, prisms or 8-node
hexahedra are common choices.Often, these elements have arbitrary shapes since they have to
suit complicated boundary conditions.Numerical integration is employed over these elements
to compute the different matrices involved.
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Well-known quadrature rules exist in 2D for triangles and a few 3D regions, such as
tetrahedra, prisms and hexahedra. Optimal rules that minimize the number of nodes for a
given region can be developed (see e.g. [46]) in 2D and higher dimensions. All these methods
are tailored to specific element shapes, although, in the case of triangles and tetrahedra, an
affine map [37], allows to express the integrals over a standard domain, where both tensor
and non-tensor formulas can be readily used.

Amore complicated problem that arises in eXtended Finite ElementMethod (XFEM) and
Boundary Element Method (BEM) is the numerical integration of singular functions. This
has originated a wide range of transformations that share an algebraic-geometric purpose:
they try to cancel, or at least attenuate, the singularities in the integrand whilst expressing
the integrals over a standard (parent) domain, usually a hypercube or a simplex.

Most 3D methods are based on affine mappings of tetrahedra or isoparametric mappings
of hexahedra. The Duffy transformation (see e.g. [9]), is a particular case of the latter, that
maps the unit cube onto a standard pyramid. This idea dates back to 1982, although some
previous works [33,38,41] preceded significantly. Extensions of the Duffy map to dimension
n are found in [5,6], whereas a composition with a power transformation, in 2D and 3D, is
developed in [32]. On the other hand, trigonometric [34,36] and hyperbolic [30] maps have
also been proposed.

This work extends the variable transformation method developed in [3] to the 3D case, for
arbitrary regions and integrands. A pyramidalmap denoted byP is introduced as a degenerate
case of the trilinear isoparametric transformation. Further non-linear transformations from
the unit cube onto itself are then composed with P in order to attenuate the remaining
singularities in the integral kernel.

2 The Isoparametric Transformation

The isoparametric transformation is a widely established technique in FEM problems (see
e.g. [7,14]).We recall the formulation of the n-dimensional case, and show that homogeneous
transformations are particular degenerate cases.

2.1 The Isoparametric Map for Multilinear Elements

The expression of the first-order shape functions in the unit interval is:

N0(u) = 1 − u,

N1(u) = u.

By a tensor product method, it is easy to build the multilinear shape functions for the unit
hypercube Cn = [0, 1]n , namely

Ni(u) =
n∏

j=1

Ni j (u
j ), (1)

where i = i1 . . . in is the multi-index with i j ∈ {0, 1} and u = (u1, . . . , un) are the parent
coordinates. The shape functions in (1) are the product of polynomials of degree one in each
parent coordinate. As an example in 3D, with the usual notation u = (u, v, w), we have that
N010(u, v, w) = (1 − u)v(1 − w).
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Fig. 1 Isoparametric transformation in 3D

The 2n vertices of Cn can be mapped onto an arbitrary set S = {xi : i ∈ In}, with In =
{0, 1}n , of 2n points in R

n by the isoparametric transformation

x(u) =
∑

i∈In
Ni(u)xi, (2)

where x = (x1, . . . , xn) are the physical coordinates.
The shape functions satisfy the interpolation property (see e.g. [14]): if uj is the j-th vertex

of Cn then Ni(uj) = δij, i ∈ In , δij being the Kronecker tensor. It follows that (2) maps the
vertices of Cn onto S: x(uj) = xj. A consequence of this fact is the Partition of Unity (PU)
property of the shape functions:

∑

i∈In
Ni(u) = 1,

and since Ni(u) � 0 for i ∈ In , we have that (2) expresses x as a convex combination of the
points xi ∈ S. The image of Cn by this transformation is usually called a multilinear element
(see e.g. [11,14,15,22,45,50]). In 3D, the element defined by (2) is the 8-node, curved-face
hexahedron H (Fig. 1).

2.2 The Pyramidal Transformation

Transforming a physical element onto Cn allows us to use a standard tensor-product rule
to evaluate the corresponding integrals. In addition, there are certain algebraic properties of
the transformation that may be desirable in some situations, particularly when the integrand
is singular. For example, if the singular kernel is a homogeneous function, the use of a
transformation that has (at least partially) separated variables may result in one or more
variables factored out from the rest of the integral kernel. Moreover, the Jacobian of the
transformation may help cancelling the singularity itself. This cancellation may be total or
partial depending on the singular kernel degree.

To this purpose, we will focus on transformations that are homogeneous in the first parent
coordinate when x0 = x000 is taken as the origin, i.e.

x(u) − x0 = ur(v), (3)

where u = (u, v1, . . . , vn−1) = (u, v) and r(v) is a linear combination of shape functions,
that are polynomials of degree one in each of the variables v1, . . . , vn−1.
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Fig. 2 Pyramidal transformation in 3D

Since the general isoparametric transformation (2) is affine in each variable, it follows
that

x(u) = (1 − u)x(0, v) + ux(1, v). (4)

In consequence, (4) takes the form (3) if and only if x(0, v) = x0, or, by the PU property,
when x0i2...in collapse into x0. It follows from (3) that r(v) = x(1, v) − x0 and thus the
base of the element, i.e. the points for which u = 1, is not restricted to a hyperplane, but
rather corresponds to the more general form of an (n − 1)-dimensional face of a multilinear
element. If we assume that x1i2...in �= x0 it is then clear that r(v) �= 0. Indeed, the geometric
interpretation of r(v) is the radius vector of the base points, x(1, v), measured from x0.

In 3D, the vertices x001, x010 and x011 of the 8-node hexahedron (Fig. 1) collapse onto x0.
A trilinear pyramid P is then obtained (Fig. 2) with 5 faces (4 of them triangles), 8 edges and
5 vertices. In general, the four vertices x1i2i3 are not coplanar, but rather belong to a doubly
ruled surface (a hyperbolic paraboloid).

We remark that the most general 3D isoparametric element for which (3) exists is the
curved-base pyramid in Fig. 2, and therefore other common elements in the FEM context,
such as 6-node pentahedra, with triangular prisms as particular cases [27] and 8-node non-
degenerated hexahedra [14,49] are excluded from a u-homogeneous transformation.

Particular cases of (3) are commonly referred in the engineering literature as Duffy trans-
formations [5,9,30,32], although this term has also been used for other cases of degenerate
hexahedra, such as prisms, see e.g. [27], p. 188.

2.3 The Jacobian of the Pyramidal Transformation in 3D

Considerable effort has beendedicated to establish the (local) invertibility of the isoparametric
map for 8-node hexahedra, see e.g. [25,26,45,49]. Sufficient conditions exist but, to our
knowledge, no necessary and sufficient algebraic conditions for positive Jacobian have been
derived yet.

The reasonable algebraic complexity of the pyramidal transformation (3)makes it possible
to find a closed expression for its Jacobian, as well as a necessary and sufficient algebraic
condition for its invertibility.

Theorem 1 The Jacobian of the pyramidal transformation is

JP (u) = u2
∑

i∈I2
Ni(v)Vi, (5)
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for all u ∈ C3, where Vi is the (signed) volume of the parallelepiped determined by the edges
x1i1i2 − x0, x11i2 − x10i2 and x1i11 − x1i10 of the pyramid, namely

Vi = ∣∣ x1i1i2 − x0 x11i2 − x10i2 x1i11 − x1i10
∣∣ .

Proof The Jacobian of the transformation is given by the determinant:

JP (u) =
∣∣∣ ∂x(u)

∂u
∂x(u)
∂v

∂x(u)
∂w

∣∣∣

= u2
∣∣∣ r(v) ∂r(v)

∂v
∂r(v)
∂w

∣∣∣ . (6)

A direct application of the PU property yields

r(v) =
∑

i∈I2
Ni(v)(x1i1i2 − x0), (7)

and recalling that Ni(v) = Ni1(v)Ni2(w) it is immediate to show that the partial derivatives
of r(v) are

∂r(v)
∂v

=
∑

i2∈I1
Ni2(w)

(
x11i2 − x10i2

)
, (8)

∂r(v)
∂w

=
∑

i1∈I1
Ni1(v)

(
x1i11 − x1i10

)
. (9)

It is then clear that ∂2r(v)
∂v2

= ∂2r(v)
∂w2 = 0, from where it follows that

∂2 JP (u)

∂v2
= ∂2 JP (u)

∂w2 = 0,

and this means that the Jacobian of P is a polynomial of degree one in each of the variables
v, w. Taking into account (6)–(9) it is immediate to show that the value of JP at the vertex
x1i1i2 is Vi, which finishes the proof. ��
Corollary 1 The necessary and sufficient condition for JP to be positive in the interior of
C3 is that all Vi � 0, with at least one positive volume.

For the standard pyramid P1 [9,32] with vertices (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0) and
(1, 1, 1) the pyramidal transformation (3) reduces to

x(u) = (u, uv, uw),

JP (u) = u2.

Tetrahedra are obtained by collapsing two additional pyramid vertices, excluding the apex.
If we make x101 collapse with x100, (3) becomes

x(u) − x0 = u (−x0 + (1 − v)x100 + v(1 − w)x110 + vwx111) ,

JP (u) = u2vV10 = 6u2vVT , (10)

where VT is the volume of the tetrahedron determined by x0, x100, x110, x111. For the standard
tetrahedron T1 with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 1), (10) reduces to

x(u) = (u, uv, uvw),

JP (u) = u2v.
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3 The Integration of Vertex Singularities in 3D

We now consider the following vertex-singular integral:

I =
∫∫∫

P

g(x)
f (x − x0)

dx, (11)

where P is a pyramid with apex x0 such that JP > 0 in the interior of C3, g is a regular
integrable function and f is an α-positively homogeneous function, i.e. f (tx) = tα f (x),
∀t > 0. We assume that f vanishes nowhere apart from the origin. A typical example in
terms of the Euclidean distance would be f (x) = |x|α . The real parameter α is the singularity
strength, with α < 3 for (11) to be finite.

From now on we denote the parent coordinates as ū = (ū, v̄, w̄). Applying the pyramidal
transformation (3), (5) to the integral in (11) results in

I =
∫∫∫

C3

g(x(ū))ū2−αφ(v̄, w̄)dū, (12)

where C3 = [0, 1]3, the scalar function φ(v̄, w̄) is defined by

φ(v̄, w̄) =
∑

i∈I2 Ni(v̄, w̄)Vi

f (r(v̄, w̄))
, (13)

and g(x(ū)) is regular since g is regular and x is a polynomial map. The regular part of the
integrand, g, is typically composed of a polynomial of arbitrary degree related to isopara-
metric shape functions and their derivatives. Moreover, in certain problems related to crack
growth or fracture mechanics, branch functions may appear as a factor of g (see Sect. 4 for
details).

The integral I in (12) is expressed over a standard domain, whilst its singular kernel
becomes factorized into a radial part, ū2−α , and an angular part, φ(v̄, w̄). Unfortunately, this
transformation may not completely remove the singularities. For example, the radial term
ū2−α is regular for integer α, but for non-integer α the successive derivatives of ū2−α may
be singular at ū = 0. In fact, if α > 2 the integrand itself is still singular at ū = 0, as pointed
out in [32].

On the other hand, the angular term φ(v̄, w̄), is non-singular in C2 = [0, 1]2 since,
according to the previous section, r does not vanish and neither does f (r). However, it will
be shown that φ(v̄, w̄) may have near-singularities over C2, i.e., points where the function
and/or its partial derivatives take very large, yet finite values.

The next subsections describe how to deal with the remaining singularities in each separate
part of the kernel. More specifically, a radial transformation will be introduced to treat the
singularity in the term ū2−α , whereas angular transformations will take care of the near-
singularities in φ.

3.1 The Radial Kernel

Several strategies have been devised to treat the radial singularity. Some authors try to soften
the singularity by applying quadrature rules adapted to specific kernels, by means of moment
fitting methods. For example, Gauss–Jacobi and composite Gauss–Legendre rules are used
in [5,6] and Gauss–Jacobi rules in [9]. On the other hand, there exist transformation methods
that aim at attenuating the ū-singularity and produce the simplest possible kernel in terms of
integration, namely a polynomial. They consist of a map of the unit interval [0, 1] onto itself,
such that the exponent of the new variable in the kernel is increased to an integer value, to
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Table 1 Optimal exponent n1

for ū = u
n1+1
3−α

α <1.1 <1.4 <1.8 <2.1 <2.4 <2.6 <2.8 <3

n1 7 6 5 4 3 2 1 0

make the function softer without compromising the computational cost of the procedure (see
e.g. [32]).

Extending the ideas in [3], we propose amap ū = ū(u) that verifies the following equation

ū(u)2−α dū

du
= c1

dσ(u)

du
, (14)

where c1 is a constant to be determined and σ is a polynomial that maps [0, 1] onto itself,
whose purpose is to make ū as smooth as possible. Thus, the radial factor of the kernel
becomes a polynomial in u, that is written in terms of the derivative of another polynomial,
σ , in order to simplify the subsequent developments.

By direct integration of (14) we obtain the solution ū in closed form

c1 = 1

3 − α
,

ū(u) = σ(u)
1

3−α .

In the simplest case where σ(u) = u, the solution of (14) takes the form

ū(u) = u
1

3−α ,

which is smooth enough for values of α close to 3. However, if α < 5
2 , the second or even

the first derivative of ū may be singular at u = 0, affecting severely the accuracy of the
quadrature rule. Following the reasoning in [3] we take σ(u) = un1+1, where n1 is a small,
suitable integer, from where

ū(u) = u
n1+1
3−α . (15)

If α is an integer or a half-integer, the value of n1 can be easily chosen so that the exponent
in (15) is an integer. For instance, if α = 1

2 , 1,
3
2 , 2,

5
2 , it suffices taking n1 = 4, 1, 2, 0, 0.

For more arbitrary values of α, the choice of n1 might not be so immediate. It is clear
that the larger n1, the stronger the softening effect on ū(u). More specifically, if n1+1

3−α
� k,

then the first k derivatives of ū(u) are non-singular at u = 0. However, the degree of the
polynomials involved increases with n1, and this affects the exactness of the rule. Numerical
simulations allow to determine the optimal trade-off value of n1 for which the quadrature
error reaches a minimum. For example, if monomials up to degree two are used as the regular
part of the integrand, i.e., g(x, y, z) = xi y j zk , i + j + k � 2 over the standard pyramid P1,
the optimal values of n1 can be picked from Table 1.

We remark that the idea of increasing the exponent to soften ū has been used in [32], for
α being an integer or the ratio of two small integers. The proposed transformation (15) can
be readily used for any value of α ∈ (0, 3). Particularly, fast convergence rates are achieved
for strong singularities with α > 2.

3.2 The Angular Kernel

Unlike the radial singularity, less attention has been devoted in the literature to the near-
singularities in the angular kernel. In fact, most existing methods implement a plain Gaussian
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Fig. 3 Behaviour of φ(v̄, w̄) for a regular and a distorted element

rule on the non-radial variables [9,30,32,36], although Dunavant rules (see [10]) have been
used in [36], and some other techniques, such as sparse grids and Sobol’ sequences have
been considered in [5,6].

This subsection describes how the near-singularities in φ(v̄, w̄) happen to be of a quite
subtle nature, yet they have a strong influence on the performance of the quadrature rules.
In order to illustrate this point, Fig. 3 shows the behaviour, for α = 1.6 and f (r) = |r|α , of
φ(v̄, w̄) and its first derivatives ∂φ

∂v̄
, ∂φ

∂w̄
for a regular element, namely the standard pyramid

P1 (see Sect. 2.3), and a distorted element where the vertex x100 has been displaced to the
point (0.5,−0.4,−0.2) (the same vertical scaling has been used for each pair of graphics).
It is clear that much stronger variations occur in the case of the distorted element.

The standard strategy to soften the near-singularities in the angular kernel would be to
treat φ(v̄, w̄) as a weight function, and develop a quadrature rule, by means of moment fitting
equations, specific to that particular weight. The obvious disadvantage of this idea is that a
new quadrature rule would have to be developed whenever the vertex coordinates, or even
the singularity strength α, were changed.

A different approach might be to extend the method introduced in [3] to the kernel in two
variables, by finding a transformation

(v̄, w̄) = (v̄(v, w), w̄(v,w)),

that maps C2 onto itself and leaves a polynomial kernel. However, the fact that φ(v̄, w̄) does
not have, in general, separated variables, means that this procedure is likely to incur a high
computational cost.

3.2.1 The Behaviour of φ on the Boundary of C2

A simpler approach is possible by focusing on single-variable transformations that soften the
angular kernel on the boundary of C2, rather than its interior. Numerical experiments show
that there exist maps that improve simultaneously the behaviour of φ on the boundary of C2

and its interior for some particular kernels. We next give some evidence on this statement.
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Fig. 4 Triangular face of a pyramid

The restriction of φ(v̄, w̄) to any of the 4 sides of C2 can be written as

φB(v̄) = (1 − v̄)V1 + v̄V2
f ((1 − v̄)x1 + v̄x2)

, (16)

where short indices 1, 2 have been used. Here, the volumes V1, V2 coincide with one of the
volumes Vi1i2 , x1, x2 stand for x1i1i2 , the origin has been set at x0 and the variable w̄ has
been renamed as v̄ where necessary. The correspondence between the short indices 1,2 and
the tensor indices i1i2 can be easily obtained from (13).

We look for a single-variable map v̄ = v̄(v) such that the near-singularities in the com-
posite function φB(v̄(v)) become attenuated. One transformation will be applied to one of
the boundaries (v̄, 0) or (v̄, 1), wherever φB behaves less smoothly. Similarly, another trans-
formation will be applied to one of the boundaries (0, w̄) or (1, w̄). We impose that all maps
leave [0, 1] invariant, in order to avoid hidden singularities on the boundaries of non-standard
domains, as pointed out in e.g. [2,39].

3.2.2 The Algebraic Kernel

As the actual form of the transformation v̄ depends on the particular kernel considered, we
now focus on the algebraic case, that occurs when f (r) = |r|α in (13), i.e.:

φ(v̄, w̄) =
∑

i∈I2 Ni(v̄, w̄)Vi

|r(v̄, w̄)|α . (17)

Then, the restriction of (17) to the boundary of C2 takes the form:

φB(v̄) = (1 − v̄)V1 + v̄V2
|(1 − v̄)x1 + v̄x2|α . (18)

We next show that (18) can be expressed in terms of the well-known near-singular kernel in
one dimension. Denoting the scalar product of the vectors x and y by x · y, the following
identity holds

|(1 − v̄)x1 + v̄x2|2 = |x1 − x2|2v̄2 − 2x1 · (x1 − x2)v̄ + |x1|2.
On the triangular face determined by the vertices x0, x1 and x2 (Fig. 4), we have that cos θ1 =
x1·(x1−x2)|x1||x1−x2| , from where it follows

φB(v̄) = (1 − v̄)V1 + v̄V2
|x1 − x2|α

(
v̄2 − 2

|x1|
|x1 − x2| cos θ1v̄ + |x1|2

|x1 − x2|2
)−α/2

. (19)

The last factor in (19) can be expressed as
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Fig. 5 Position of the peak point v̄p

φN (v̄) =
((

v̄ − v̄p
)2 + ε2

)−α/2
, (20)

with ε = |x1||x1−x2| sin θ1 and v̄p = |x1||x1−x2| cos θ1. This factor is near-singular whenever ε is
small and v̄p is close to the interval [0, 1]. We next give some details on these two parameters,
that characterize the behaviour of φN .

The near-singularity perturbation, ε, provides a measure of the distortion, or aspect ratio,
of the triangular face shown in Fig. 4. In fact, if h denotes the height of the triangle, we have
that

ε = h

|x1 − x2| .

The near-singular kernel φN has received considerable attention over the last 30 years
[13,16–18,23,28,29,43,44,48], and it is a well-known fact that as ε becomes smaller, the
integration of φN is more difficult. Some recent works have considered extreme cases for
which ε reaches 10−10 or even less [16,17,51].However, since this near-singularity is induced
by the distortion of the triangular element, it is expected that ε will not be too small if a proper
meshing has been performed.

On the other hand, it is commonly recognized that the integration of φN is more difficult
whenever v̄p lies inside the integration interval [1,4,16–18,23,24,29]. Figure 5 depicts three
different examples of triangles for which the peak point v̄p lies outside, on the boundary, or
inside the interval v̄ ∈ [0, 1] (the cases v̄p = 1 and v̄p > 1 are easily obtained by symmetry).
The rightmost case in Fig. 5, where the peak point lies inside the integration interval, is
expected to be the hardest to integrate.

It is immediate from (19) to (20) that the boundary kernel φB shares the near-singular
behaviour of φN . However, this analogy does not extend immediately to the angular kernel φ
in C2. The reason for this is that φ(v̄, w̄) in (17) depends on 12 parameters (the three spatial
coordinates of the four vertices opposite to the pyramid apex), whereas the near-singular

kernel in 2D, given by
(
x2 + y2 + ε2

)−α/2
, depends at most on 7 parameters (the two planar

coordinates of the triangle vertices plus the near-singular perturbation ε). Therefore, φ(v̄, w̄)

is likely to be a more complicated function, in the general case, than the near-singular kernel
in 2D.

We look now for a criterion to choose appropriate softening transformations able to reg-
ularize φN . It is known that the truncation error of the quadrature rules is reduced whenever
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the kernel poles are moved further away from the integration interval (see e.g. [8,39]). We
will consider a couple of maps, commonly utilized in the near-singular integration context,
that serve this purpose.

3.2.3 The Cubic Transformation

The cubic transformation, introduced in [43], was one of the first attempts aimed at flatten-
ing the near-singular integrand φN . According to [43], the conditions verified by the cubic
polynomial are

1. It transforms [0, 1] onto itself.
2. Its first derivative has a prescribed value at the near-singular point.
3. Its second derivative vanishes at the near-singular point.

The cubic map given by
q(t) = v̄p + r t + (1 − r)t3, (21)

where r ∈ [0, 1] is a parameter to be established, verifies Conditions 2 and 3, but does not
verify the first one, unless v̄p = 0. This drawback is easily solved by applying a further affine
transformation from [0, 1] onto [t0, t1] given by

t (v) = t0 + (t1 − t0)v, (22)

with
t j = q−1( j), j = 0, 1. (23)

Thus, the composite transformation given by

q(t (v)) = v̄p + r t (v) + (1 − r)t (v)3, (24)

satisfies conditions 1–3, and motivates the choice v̄(v) = q(t (v)). Moreover, v̄ has the
following non-vanishing Jacobian:

d v̄

dv
= (t1 − t0)

(
r + 3(1 − r)t (v)2

)
. (25)

Denoting vp = v̄−1(v̄p) it is immediate that t (vp) = 0, from where it is easily shown that
d v̄
dv

∣∣
vp

= (t1 − t0)r.

Even though the cubic map has been referenced by a large number of authors over the last
years [1,2,4,23,39,48] it is commonly acknowledged to have limited effectiveness due to the
difficulty of finding the optimal value of r in (24). An approximate expression was derived
in [43] and extended in [24], but it has been established [40] that a deviation of 1% in the
optimal value results in a severe loss of accuracy when computing the integrals involved.

A detailed analysis on the effect of the cubic transformation over the complex poles of
φN (q(t)) allows to determine the optimal value of r , whose explicit value is provided in Sect.
3.2.5.

3.2.4 The sinh Transformation

The sinh transformationwasfirst introduced in [23], although similarmaps had been proposed
previously (see e.g. [28]). It has foundwide acceptance in the near-singular integration context
ever since, see e.g. [2,16,17,39,47,48,51].
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The sinh transformation given by

s(t) = v̄p + ε sinh(μt), μ(ε) = sinh−1 1

ε
, (26)

does not map [0, 1] onto itself, unless v̄p = 0. Proceeding as in the previous subsection, the
affine map t (v) given in (22), with

t j = 1

μ
sinh−1

(
j − v̄p

ε

)
, j = 0, 1, (27)

is such that the composite transformation

v̄(v) = s(t (v)) = v̄p + ε sinh(μt (v)), (28)

maps [0, 1] onto itself and has a non-vanishing Jacobian given by

d v̄

dv
= εμ(ε)(t1 − t0) cosh(μ(ε)t (v)). (29)

It is worth noting that, as in the case of the cubic transformation, the second derivative of
v̄(v) vanishes at vp . A detailed analysis on how the sinh transformation affects the complex
poles of the kernel can be found in [12].

3.2.5 Effect of the Transformations on the Kernel Poles

Both methods, cubic (24) and sinh (28), incorporate information on ε and v̄p , as pointed
out in [24] for the sinh case. However, the composite kernels φN (q(t)) and φN (s(t)) only
depend on ε through the parameters r and μ. In other words, the information on v̄p comes
exclusively from the affine transformation t (v), that has no effect on the convergence speed.

In consequence, since the poles of φN (v̄) are located at v̄ = v̄p ± iε, the effect of the
non-linear transformations (21) and (26) consists of increasing the imaginary part of these
poles, i.e., moving them further away from the real axis. Therefore, even though the most
peaked kernels occur for 0 < v̄p < 1, the same softening effect is applied as in the case
|v̄p| � 1. We remark that there exist other techniques that do enhance the performance of the
rules for peaked kernels. More specifically, interval splitting at v̄p has been proposed e.g. in
[1,4,23,29,39].

Focusing on the cubic transformation, the optimal value of the free parameter r , for which
the distance of the poles of φN (q(t)) to the real axis becomes maximized, is established
below.

Theorem 2 The value of r in the cubic transformation for which the poles of φN (q(t)) are
moved furthest away from the real axis is

r0(ε) = 3ε2/3

2

[(√
1 + ε2 + 1

)1/3 −
(√

1 + ε2 − 1
)1/3]

. (30)

Furthermore, the distance of the complex poles of φN (v̄(v)) to the real axis is bounded below

by ε1/3

2 .

A proof of this statement is provided in “Appendix” section.
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3.2.6 Summary of the Methods Proposed

From a practical point of view, the cubic and sinh methods are implemented in separate
transformations for the variables v̄ and w̄. In each case, the transformation is applied on the
boundary where φN behaves less smoothly, i.e., the one for which ε has the smallest value,
according to the following steps:

1. On boundaries (v̄, 0), (v̄, 1), compute ε = h
|x1−x2| and take the smallest value.

2. Calculate r0 from (30) or μ from (26).
3. Compute t0 and t1 by means of (23) or (27).
4. Construct v̄ and its Jacobian from (24–25) or (28–29).
5. Repeat Steps 1–4 on boundaries (0, w̄), (1, w̄) to obtain w̄ and its Jacobian.

Even though v̄ and w̄ are applied on the boundary of C2, numerical experiments in Sect. 4
will show noticeable improvements in convergence speed when compared to methods that
implement no angular softening.

We remark that the use of separate univariate maps in both variables v̄ and w̄ has already
been considered by a number of authors for the ordinary near-singular 2D kernel [18,29,51].
Further developments of [18] can be found, e.g., in [19–21].

3.3 The Jacobian of the Softening Transformation

The procedures described above can be regarded as a softening transformation R from the
unit cube C3 onto itself, in separated variables, whose Jacobian is

JR(u) = n1 + 1

3 − α
ū(u)α−2un1

d v̄

dv

dw̄

dw
.

Thus, the composition of the pyramidal and softening maps has a Jacobian

JP◦R(u) = n1 + 1

3 − α
ū(u)α

∑

i∈I2
(Ni(v̄(v), w̄(w))Vi) u

n1 d v̄

dv

dw̄

dw
.

4 Numerical Results

The algorithms detailed in the previous section are now tested in a variety of situations,
comparing its performancewith some existingmethods [9,30,32,36]. Integrations are always
performed in the physical domain by means of modified nodes and weights, obtained from

x j = x(ū(u j )),

w∗
j = JP◦R(u j )w j ,

for j = 1, . . . , nw , where u j and w j are the standard Gaussian nodes and weights, respec-
tively, for the quadrature rule of order nw.

The singular part of the physical integrand is given by 1
|x−x0|α . Regarding the regular

integrand, the following functions are taken:

g(x, y, z) = xi y j zk f	(θ),

with i + j + k � dm , dm being the total degree of monomials, θ = tan−1 y
x and f	(θ) is the

angular part of the crack-tip, or branch functions [31,36,42]: f1(θ) = sin θ
2 , f2(θ) = cos θ

2 ,
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Table 2 Optimal exponent β1
for P ◦ W α <1 <2 <2.3 <2.6 <3

β1 3 4 5 6 7

f3(θ) = sin θ
2 sin θ , f4(θ) = cos θ

2 sin θ . If no crack-tip function is used, it suffices taking
f0(θ) = 1.

4.1 Simulations Over Pyramids

The methods implemented for comparison purposes are:

– P: Pyramidal transformation, already described in Sect. 2.2.
– P ◦ C: Composition of P with the cubic transformation
– P ◦ S: Composition of P with the sinh transformation
– P ◦ W: Composition of P with the power transformation, it is an extension of [32] to

arbitrary pyramids given by

x(u, v, w) − x0 = uβ1r(v,w),

JP◦W (u) = β1u
3β1−1

∑

i∈I2
Ni(v)Vi.

The efficiency of theP ◦W method greatly relies on an adequate choice of the parameter
β1, that plays a similar role to the parameter n1 in (15). The authors in [32] point out that
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Fig. 6 Performance of the methods over the standard pyramid P1
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Fig. 7 Moderately distorted pyramid

when the singularity strength, α, is an integer or the ratio of two small integers (like 1
2 ,

1
3 ,

2
3 and so on), then the value of β1 should be equal to the denominator of α. However,

when α has a more arbitrary value, no systematic way of finding β1 is provided. As with
n1, the optimal value of β1 can be picked from Table 2, that was obtained empirically.

Numerical experiments The exact value of the integrals is evaluated by means of a high-
degree rule, with a total monomial degree of dm = 2. On top of each graphic, the parameters
dm , α, β1, n1, rv (r0 for v̄), and rw (r0 for w̄) are displayed.

All methods are initially tested on the standard pyramid P1 (see Sect. 2.3), for values
α = 0.53 + 0.63k, k = 0, 1, 2, 3. The cases with integer or half-integer α are similar to the
examples displayed, with P and P ◦ W being coincident for integer α. Notice that angular
softening in the cubic transformation already applies (i.e., rv, rw < 1) to this apparently
non-distorted case (Fig. 6).

A moderately distorted pyramid is considered as well. If we take x0 = (0, 0, 0), x100 =
(1, 0.5, 0.5), x101 = (1,−0.5, 1), x110 = (1.5, 3, 0.5), x111 = (0.5, 4.5, 4), the angular
softening becomes quite significant (Fig. 7).

For amore distorted pyramid, typicallywith obtuse tip angles θ0, allmethods performmore
poorly, and the effect of angular softening is less evident. For example, taking x0 = (0, 0, 0),
x100 = (2,−0.5,−0.5), x101 = (1,−1, 1), x110 = (1.5, 1,−1), x111 = (0.5, 3, 3), yields
the results shown in Fig. 8.

123



586 J Sci Comput (2017) 71:571–593

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−16

−14

−12

−10

−8

−6

−4

−2

0

Total number of integration points (x 103)

lo
g1

0 
of

 m
ax

 r
el

at
iv

e 
er

ro
r

dm = 2, α = 0.53, β1 = 3, n1 = 7, rv = 0.67, rw = 0.70

P
P ◦ W
P ◦ C
P ◦ S

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−16

−14

−12

−10

−8

−6

−4

−2

0

Total number of integration points (x 103)

lo
g1

0 
of

 m
ax

 r
el

at
iv

e 
er

ro
r

dm = 2, α = 1.16, β1 = 4, n1 = 6, rv = 0.67, rw = 0.70

P
P ◦ W
P ◦ C
P ◦ S

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−16

−14

−12

−10

−8

−6

−4

−2

0

Total number of integration points (x 103)

lo
g1

0 
of

 m
ax

 r
el

at
iv

e 
er

ro
r

dm = 2, α = 1.79, β1 = 4, n1 = 5, rv = 0.67, rw = 0.70

P
P ◦ W
P ◦ C
P ◦ S

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−16

−14

−12

−10

−8

−6

−4

−2

0

Total number of integration points (x 103)

lo
g1

0 
of

 m
ax

 r
el

at
iv

e 
er

ro
r

dm = 2, α = 2.42, β1 = 5, n1 = 2, rv = 0.67, rw = 0.70

P
P ◦ W
P ◦ C
P ◦ S

Fig. 8 Strongly distorted pyramid

4.2 Simulations Over Tetrahedra

We assume without loss of generality that the vertex x101 collapses onto x100 to form a
tetrahedron, in other words, the boundary (0, w̄) now reduces to a point.

All methods implemented for pyramids can be readily reformulated for arbitrary tetrahe-
dra. Moreover, two additional transformations are considered:

Trigonometric transformation Denoted by T , it is a modification of the method proposed in
[36]. More specifically it consists of two stages:

1. An affine transformation whose inverse maps an arbitrary tetrahedron T (in coordinates
x, y, z) onto the standard tetrahedron T0 (in coordinates r, s, t), with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1).

2. A trigonometric transformation whose inverse maps T0 onto the unit cube C3 (in coor-
dinates u, v, w), with parametric equations

r(u) = u cos2
(π

2
v
)

,

s(u) = u cos2
(π

2
(1 − v + vw)

)
,

t (u) = u − r(u) − s(u),

J (u) = π2

4
u2v sin(πv) sin(π(1 − v + vw)).
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Fig. 9 Standard tetrahedron T1

Hyperbolic transformation Denoted byH, it is an implementation in two steps of the method
described in [30]:

1. An affine transformation whose inverse maps an arbitrary tetrahedron T (in coordinates
x, y, z) onto T0 (in coordinates ξ, η, ζ ).

2. A hyperbolic transformation whose inverse maps T0 onto C3, given by

ξ(u) = u2
1 − sinh(β2(2v − 1))

2
(1 − w),

η(u) = u2
1 + sinh(β2(2v − 1))

2
(1 − w),

ζ(u) = u2w,

J (u) = 2β2u
5(1 − w) cosh(β2(2v − 1)),

with β2 = sinh−1 1 = log(1 + √
2).

Numerical experiments The results are very similar to the pyramid case: all methods degrade
when applied to distorted elements, specially for large values of α.

The first element tested is the standard tetrahedron T1 (see Sect. 2.3), with results displayed
in Fig. 9. Notice that angular softening in the cubic transformation is already needed (i.e.,
rv, rw < 1) for this non-distorted case.
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Fig. 10 Strongly distorted tetrahedron

The second element tested is a distorted tetrahedron with vertices x0 = (0, 0, 0), x100 =
(1, 0, 0), x110 = (1, 4, 0), x111 = (0.5, 4, 3). As expected, all methods show a slower
convergence (Fig. 10).

It is worth noting that in general, when using pyramids as well as tetrahedra, the perfor-
mance of all methods deteriorates when crack-tip functions are part of the regular integrand.
This effect is more evident as the tip angles θ0 become larger.

5 Conclusions

A transformation method for singular integrals in 3D has been introduced, with specific
treatment of the radial and angular variables. Themethod is designed for pyramidal elements,
and can be extended, through partitioning, to prisms and hexahedra.

After describing the multilinear transformation, we focus on degenerate maps that are
homogeneous in one of its variables, and show that they can be applied to sets of points
more general than the n-dimensional pyramid (with hyperplanar base), but not as general as
n-prisms. Furthermore, a number of maps considered previously in the literature are found
to be particular cases of the degenerate isoparametric map.

The singularity in the radial variable can be successfully removed bymeans of a univariate
transformation, but the subsequent treatment of the remaining angular kernel has proved to be,
by far, the most delicate part of the method. Nevertheless, the effect of the angular distortion
is too large to be ignored, so this question needs to be addressed.
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A partial solution for the algebraic kernel has been provided, by considering a couple of
non-linear algorithms, cubic and sinh, extensively used for the near-singular kernel in 1D.
Experiments show that both methods can be successfully extended to the angular kernel in
3D, even though this is a more complicated function, in general, than the near-singular kernel
in 2D.

We believe the main contributions of this work to be

1. A general and systematic framework for 3D singular transformations, establishing a
necessary and sufficient algebraic condition for its inversion.

2. A first attempt at establishing a connection between the angular part of the 3D singu-
lar kernel and the near-singular integration problem, with significant results from the
numerical point of view.

3. An analytic expression for the optimal value of the free parameter r in the cubic trans-
formation, based on its effect over the complex poles of the kernel.

The feasibility of the proposedmethod for non-algebraic kernels (i.e the logarithmic kernel) is
a question subject to further research, provided that the logarithm is no longer a homogeneous
function of the coordinates. Another interesting question that will be considered in future
works is the integration of edge-singular kernels, i.e., functions that have singularities not
just at a vertex, but on a whole element edge.

Acknowledgements This work has been partially supported by Plan Nacional I+D+i (MTM2015-68275-R),
Spain.

Appendix

A proof of the Theorem in Sect. 3.2.5 is now provided.

Lemma 1 Consider the family of cubic polynomials given by

Pr (τ ) = (1 − r)τ 3 − rτ + ε, (31)

with r ∈ [0, 1) and ε > 0. Then, Pr has exactly one negative root that is a strictly decreasing
function of the parameter r .

Furthermore, the polynomials (1− r)τ 3 + rτ − ε have exactly one positive root that is a
strictly decreasing function of r .

Proof A direct application of Descartes’ rule of signs shows that Pr (τ ) only has a negative
root, that will be denoted by τ1(r), as shown in Fig. 11.

Assuming 0 � r1 < r2 < 1, it can be readily shown that

Pr1(τ ) − Pr2(τ ) = (r2 − r1)(τ
2 + 1)τ, (32)

i.e., Pr intersect only at (0, ε) and Pr1(τ ) < Pr2(τ ) if τ < 0. Since Pr1 vanishes at τ1(r1), it
follows from (32) that Pr2(τ1(r1)) > 0. Moreover, Pr2(τ ) → −∞ as τ → −∞, and it is a
consequence of Bolzano’s theorem that Pr2 has its negative root in (−∞, τ1(r1)), i.e., τ1(r)
is strictly decreasing.

The second part of the Lemma is proved in a completely analogous way. ��
Lemma 2 The poles of φN (q(t)) reach a maximum distance to the real axis for the optimal
value r0 given in (30).
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Fig. 11 Intersection of Pr (τ )

Proof The composite kernel

φN (q(t)) = (
(r t + (1 − r)t3)2 + ε2

)−α/2
,

has 6 complex poles given by the roots of the equation

(1 − r)t3 + r t ± iε = 0. (33)

Since t is a solution of (33) if −t is a solution, it suffices considering the 3 complex roots of

(1 − r)t3 + r t − iε = 0, (34)

where ε > 0 is assumed without loss of generality. In order to avoid complex coefficients,
let t = iτ in (34) to obtain Pr (τ ) = 0, with Pr defined in (31). Hence, the real part of the
roots τ j is taken into account from now on. ��
It is clear that Pr has two or zero positive roots depending on the sign of Pr (τ ) at the local

minimum point, τm(r) =
(

r
3(1−r)

)1/2
, with

Pr (τm(r)) = ε

⎛

⎝1 −
√

4

27ε2
r3

1 − r

⎞

⎠ . (35)

We denote by r0 the value of r ∈ (0, 1) for which Pr (τm(r0)) = 0, and discuss the distance
of the closest root to the imaginary axis when Pr (τm(r)) changes its sign:

(i) Pr (τm(r)) � 0 (0 � r � r0)
In this case Pr has two complex conjugate roots, denoted by τ23(r). The two complex
roots merge into a double real root in the limit case Pr (τm(r)) = 0.
One of the well-known Vieta’s formulas states that the sum of the three roots of a cubic
polynomial equals its quadratic coefficient (with sign changed). Since in our case this
coefficient is zero, the real part of the complex roots is �(τ23) = − τ1

2 , i.e., τ23 is closer
than τ1 to the imaginary axis, and, according to Lemma 1 its real part is a positive and
strictly increasing function of r . Its maximum τ0 is then reached at r0, with

τ0(ε) = 3ε

2r0(ε)
. (36)
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(ii) Pr (τm(r)) < 0 (r0 < r < 1)
In this case Pr has two distinct positive roots, denoted by τ2(r) and τ3(r), with τ2 < τ3.
Since, according to (32), Pr (τ0) < 0 and Pr (0) = ε, it follows from Bolzano’s theorem
that 0 < τ2 < τ0. In other words, the root τ2 is always closer to the imaginary axis than
τ0.

We conclude that the distance of the closest pole to the real axis reaches a maximum at r0,
i.e. when Pr (τm(r)) = 0 in (35), which is equivalent to the cubic equation

4

27ε2
r3 + r − 1 = 0. (37)

Explicit inversion of (37) by means of the well-known classical formulas (see e.g. [35]) leads
to the final expression for r0 provided in (30). ��
Lemma 3 The poles of φN (q(t)) and φN (v̄(v)) have imaginary parts bounded below by(

ε
2

)1/3
and ε1/3

2 respectively.

Proof From (22) we have that v = t (v)−t0
t1−t0

and taking (36) into account it follows that the
complex poles of φN (v̄(v)) have imaginary parts given by

(v) = 3ε

2r0(ε)(t1(ε) − t0(ε))
.

We next find upper bounds for both factors in the denominator.
The term in brackets in (30) is bounded above by 21/3, and thus r0 � 3

(
ε
2

)2/3. We notice

that (36) implies a lower bound for τ0, namely τ0 �
(

ε
2

)1/3
.

On the other hand, according to (21)–(23) we can consider t j as functions of v̄p and try
to find the maximum of the function t1(v̄p) − t0(v̄p), i.e. we impose

d

d v̄p

(
t1(v̄p) − t0(v̄p)

) = 1

q ′(t1)
− 1

q ′(t0)
= 0,

from where the condition t21 − t20 = 0 can be derived. Since q(t) is strictly increasing, t1 > t0
and we have that t1 = −t0. Substituting terms in (23) and summing equations for j = 1, 2,
we obtain v̄p = 1

2 . This way, the equation for t1 takes the form

(1 − r)t31 + r t1 − 1

2
= 0. (38)

Applying the second part of Lemma 1, the only positive real root of (38) is a decreasing

function of r . Its maximum is therefore reached at r = 0, i.e. t1 �
( 1
2

)1/3
. It follows that

t1 − t0 = 2t1 � 22/3, which finishes the proof. ��
The Theorem in Sect. 3.2.5 is a consequence of Lemmas 1–3.
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