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Abstract On arbitrary polygonal grids, a family of vertex-centered finite volume schemes
are suggested for the numerical solution of the strongly nonlinear parabolic equations arising
in radiation hydrodynamics and magnetohydrodynamics. We define the primary unknowns
at the cell vertices and derive the schemes along the linearity-preserving approach. Since we
adopt the same cell-centered diffusion coefficients as those in most existing finite volume
schemes, it is required to introduce some auxiliary unknowns at the cell centers in the case
of nonlinear diffusion coefficients. A second-order positivity-preserving algorithm is then
suggested to interpolate these auxiliary unknowns via the primary ones. All the schemes
lead to symmetric and positive definite linear systems and their stability can be rigorously
analyzed under some standard andweak geometry assumptions.More interesting is that these
vertex-centered schemes do not have the so-called numerical heat-barrier issue suffered by
many existing cell-centered or hybrid schemes (Lipnikov et al. in J Comput Phys 305:111–
126, 2016). Numerical experiments are also presented to show the efficiency and robustness
of the schemes in simulating nonlinear parabolic problems.

Keywords Parabolic problem · Strongly nonlinearity · Vertex-centered scheme · Linearity-
preserving discretization

1 Introduction

We consider the following parabolic equation

∂u

∂t
− div(κ(u)∇u) = S, in Ω, (1)

where κ(u) denotes the diffusion coefficient that is possibly a strongly nonlinear function
of u, S is the source or sink term and Ω is an open bounded connected polygonal domain
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in R
2. For simplicity of exposition, here we only consider the isotropic diffusion, i.e. κ(u)

is a scalar, and the extension to the case of full diffusion tensor is almost straightforward.
Besides, we assume that the above equation is equipped with proper initial and boundary
conditions so that the resulting problem is well-posed.

Equations in the form of (1) arise in many applications such as radiation hydrodynamics
(RHD), magnetohydrodynamics (MHD), reservoir modeling, and so on. For example, in
RHD, (1) is coupled with hydrodynamics that are usually simulated using Lagrange or ALE
algorithms, where u stands for temperature or radiation energy. In this case, the diffusion
coefficient is closely related to some cell-centered quantities such as density and energy,
taking a strongly nonlinear form of κ(u) ∝ uα with α = 5/2 or 3. Diffusion coefficients in
a cell-centered form are natural in these applications. Moreover, the meshes are generally
skewed and distorted because of themovements of the fluids and at the same time, a variety of
discontinuities, such as multi-materials, shocks and radiation waves, are usually presented.
Finite volume discretizations of such systems are very popular among the scientists and
engineers due to their nice properties such as simplicity and local conservation. A desirable
scheme should be capable of handling all the aforementioned difficulties and possesses good
numerical properties as many as possible.

The key ingredient in the numerical solution of (1) through finite volume approach is
the discretization of the diffusion operator therein. In recent decades, numerous efforts
have been devoted to this topic, which results in a great many diffusion schemes that can
be roughly classified as cell-centered schemes, hybrid schemes, mixed schemes, nonlinear
positivity-preserving schemes and so on. The reader is referred to [8,10,12,18] for some
recent developments. Here we just mention some recent works confined to RHD and MHD.
The authors in [23] updated a nonlinear cell-centered scheme [15] to solve a nonlinear heat
conduction equation in MHD on moving Voronoi meshes. For non-equilibrium radiation
diffusion equations, a moving mesh finite difference method was studied in [35], and two
1D finite point schemes were proposed in [21] where the authors also discussed the exten-
sion to 2D rectangular grids. A three-temperature radiation-hydrodynamics code [31] was
developed based on a diffusion scheme that is a combination of a nonlinear two-point flux
approximation [29] and an efficient nodal interpolation algorithm [14]. A non-overlapping
domain decomposition algorithm combined with a linearity-preserving hybrid scheme was
studied in [36].

Recently, it has been pointed out in [25] that many existing finite volume schemes for
nonlinear parabolic equations, including the mimetic finite difference schemes [4,6], suffer
the so-called heat-barrier issue (addressed in the following section). More explicitly, any
schemes based on the harmonic averaging of cell-centered diffusion coefficients will break
down when some of these coefficients go to zero or their ratio grows, which results in
totally wrong numerical solution profiles in some strongly nonlinear problems such as the
propagation of a nonlinear heat wave in a cold media. A new mimetic scheme with a remedy
technique, i.e., a staggered discretization of diffusion coefficients, was then suggested in [25]
to overcome this problem. A similar work can be found in [17]. Our numerical experiments
indicate that all the cell-centered and hybrid linearity-preserving schemes we studied before
suffer the same problem. To overcome the heat-barrier issue is among the main motivations
of the present work.

In this paper, we keep in our mind the applications of RHD and MHD, and focus on
constructing pure vertex-centered schemes for (1), using only the cell-centered diffusion
coefficients, a simple and natural choice to couple with Lagrange or ALE hydrodynamics.
All the derivations are conducted according to the linearity-preserving criterion, i.e., each
step of the derivation is exact in the sense whenever the solution is piecewise linear and the
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diffusion coefficient is piecewise constant with respect to the mesh. This procedure looks
a bit like the famous patch test [22] in finite element method or the consistence condition
in some finite volume schemes [10]. Although at the present we do not know whether the
linearity-preserving property is sufficient or necessary for the convergence of finite volume
schemes, it is a simple tool for us to derive some cell-centered or hybrid schemes [14,
16,33,37,39]. In [34], we suggested a vertex-centered linearity-preserving scheme for linear
anisotropic diffusion problemswhere only the unknowns defined at cell vertices are involved.
The construction of this scheme is based on two types of meshes: a primary mesh and its dual
counterpart, which is similar to the finite volume element method (FVEM) [2,7,24,27,41]
and DDFV schemes [8,19]. Actually, this scheme can be viewed as a direct extension of
FVEM and it reduces to the lower-order finite volume element scheme on triangular meshes
[34]. By comparison, DDFV schemes are not pure vertex-centered ones since they have both
cell-centered and vertex-centered unknowns. Here we further develop the idea to construct
a family of finite volume schemes for the nonlinear parabolic equations. Both the vertex-
centered and cell-centered unknowns are introduced and the cell-centered ones are only
required in the evaluation of cell-centered nonlinear diffusion coefficients. By interpolating
the cell-centered unknowns via vertex-centered ones, the final schemes become pure vertex-
centered. These new schemes have many good numerical properties, for example, they are
locally conservative, linearity-preserving, coercive on arbitrary polygonal grids with star-
shaped cells, and capable of handing arbitrary discontinuities. Moreover, they have local
stencil and always lead to symmetric and positive definite linear systems. Most interesting is
that they do not suffer the numerical heat-barrier issue.

To our knowledge, there exists no linear finite volume scheme (leading to linear systems
for the linear equations) that preserves solution positivity unconditionally. The present vertex-
centered schemes are linear ones, so theymay produce negative solutions at cell verticeswhen
the analytic solution is near zero. As far as the application in RHD and MHD is concerned,
what really matters is not the positivity of the vertex-centered unknowns, but the positivity of
the cell-centered ones. For this purpose, we suggest a second-order algorithm to interpolate
the cell-centered unknowns by the vertex-centered ones. On polygonal meshes with star-
shaped cells, this interpolation algorithm is a positivity-preserving one, that is, it produces
non-negative cell-centered values provided that all the vertex-centered values involved are
non-negative. As for the positivity of the vertex-centered unknowns, it is guaranteed by
simply truncating the negative values, which is a traditional practice and has also a certain
mathematical foundation [26].

The rest part of this paper is organized as follows. In Sect. 2, the numerical heat-barrier
issue is addressed by a 1D example. The construction of the new vertex-centered schemes
is discussed in Sect. 3 and the stability of the schemes is proved in Sect. 4. A number of
numerical experiments are presented in Sect. 5 and some concluding remarks are given in
the last section.

2 The Numerical Heat-Barrier Issue

In this section, we employ the 1D problem to illustrate the so-called numerical heat-barrier
issue arising in the numerical solution of strongly nonlinear parabolic problems by some
existing cell-centered or hybrid finite volume schemes.Consider the following 1Dcounterpart
of (1),

∂u

∂t
− ∂

∂x

(
κ(u)

∂u

∂x

)
= S, (x, t) ∈ (0, a) × (0, T ], (2)
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where u(0, t), u(a, t) and u(x, 0) are the given Dirichlet boundary data and initial data,
respectively.

Let 0 = x0 < x1 < · · · < xm = a be a uniform partition of [0, a] with mesh size
h = xi − xi−1 = a/m. The partition of [0, T ] is also uniform and the mesh size is Δt =
tn − tn−1 = T/N where tn = nΔt . Denote by xi−1/2 the midpoint or cell center of cell
[xi−1, xi ] and F the so-called flux, defined by

F = −κ(u)
∂u

∂x
.

uni and u
n
i−1/2 are respectively the approximations of u at (xi , tn) and (xi−1/2, tn), while Fn

i
and Fn

i−1/2 can be understood in an analogous sense.

2.1 Hybrid and Cell-Centered Schemes

From now on, all the derivation is conducted according to the linearity-preserving criterion.
Integrating (2) over the control volume [xi−1, xi ], using the backward Euler time-stepping
and by the fundamental theorem of calculus, we obtain the following finite volume equation

h

Δt

(
un
i− 1

2
− un−1

i− 1
2

)
+ Fn

i,l − Fn
i−1,r =

∫ xi

xi−1

Sdx, (3)

where Fn
i,l (resp. F

n
i−1,r ) denotes the approximation of F at xi (resp. xi−1) from the left (resp.

right) side, given by

Fn
i,l = − 2

h
κ

(
un
i− 1

2

)(
uni − un

i− 1
2

)
, Fn

i−1,r = − 2

h
κ

(
un
i− 1

2

)(
un
i− 1

2
− uni−1

)
. (4)

Usually, it is required that the flux should be continuous at the mesh vertex xi so that Fn
i,l =

Fn
i,r , which leads to the local conservation equation below

− 2

h
κ

(
un
i− 1

2

)(
uni − un

i− 1
2

)
= − 2

h
κ

(
un
i+ 1

2

)(
un
i+ 1

2
− uni

)
. (5)

If uni and u
n
i−1/2 are all treated as primary unknowns, then (3)–(5) constitute a hybrid scheme

for (2), which is the 1D counterpart of some 2D hybrid linearity-preserving schemes, such
as those in [6,28,37,39].

If only the cell-centered unknowns uni−1/2(1 ≤ i ≤ m) are treated as primary unknowns,
then by eliminating the vertex-centered unknowns from (4) and (5) we get

Fn
i,l = − 1

h
κn
i

(
un
i+ 1

2
− un

i− 1
2

)
, Fn

i−1,r = − 1

h
κn
i−1

(
un
i− 1

2
− un

i− 3
2

)
, (6)

where

κn
i =

2κ(un
i− 1

2
)κ(un

i+ 1
2
)

κ(un
i− 1

2
) + κ(un

i+ 1
2
)
, 1 ≤ i ≤ m − 1. (7)

Substituting (6) into (3) yields a cell-centered finite volume scheme. Some existing 2D cell-
centered schemes, such as those in [1,5,14,16,20,33], reduce to this scheme on uniform
square meshes.
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2.2 A Vertex-Centered Scheme

In this approach, only vertex-centered unknowns uni (1 ≤ i ≤ m − 1) are treated as primary
unknowns. Recall that the flux is assumed to be continuous over the whole domain. By
choosing [xi−1/2, xi+1/2] to be the control volume and following the same derivation of (3),
we have

h

Δt

(
uni − un−1

i

)
+ Fn

i+ 1
2

− Fn
i− 1

2
=
∫ x

i+ 1
2

x
i− 1

2

Sdx, (8)

where Fn
i±1/2 denote the approximations of F at the cell centers xi±1/2. Note that both the

solution and the diffusion coefficient are usually assumed to be smooth inside each cell
[xi−1, xi ]. Thus, we directly obtain

Fn
i+ 1

2
= − 1

h
κ

(
un
i+ 1

2

) (
uni+1 − uni

)
, Fn

i− 1
2

= − 1

h
κ

(
un
i− 1

2

) (
uni − uni−1

)
. (9)

Here, the cell-centered unknowns uni−1/2(1 ≤ i ≤ m) appear only in the evaluation of
diffusion coefficients and can be interpolated by the vertex-centered ones via the formula
below

un
i± 1

2
= 1

2

(
uni±1 + uni

)
. (10)

Substituting (10) and (9) into (8) leads to a classical vertex-centered finite volume scheme.

2.3 A Numerical Example

For (2), let

a = 3, κ(u) = u3, S = 0, u(0, t) = 3
√
3c2t + ε, u(3, t) = 3

√
ε, u(x, 0) = 3

√
ε,

(11)
where c and ε are two positive parameters. When ε = 0, (2) has the following analytic
solution

u(x, t) =
{

3
√
3c(ct − x), x < ct,

0, otherwise.
(12)

This example is taken from [25]. Since the hybrid scheme and the cell-centered scheme in
Sect. 2.1 are equivalent, we simply use the cell-centered version and at the same time, use also
the vertex-centered scheme (8)–(10) for comparison. As done in [25], we choose c = 0.4,
ε = 10−9, h = 1/30 and Δt = 0.4h2. Obviously, in this case (12) can approximately serve
as the exact solution since ε is small.

The profiles of the numerical solution and the approximate analytic solution (12) are
depicted in Fig. 1, where we can see that the cell-centered scheme produces a totally wrong
solution while the result of the vertex-centered scheme is quite good. The solution profile for
the cell-centered scheme indicates that the heat wave seems to be blocked so that it cannot
propagate at a right speed. As was already pointed out by some authors [3,17,25], the reason
for this is due to the harmonic averaging of the cell-centered diffusion coefficients given in
(7). More explicitly, we deduce from (7) that

κn
i ≈ 2κ

(
un
i+ 1

2

)
, if κ

(
un
i− 1

2

)
>> κ

(
un
i+ 1

2

)
> 0,

which implies that when one of the two cell-centered diffusion coefficients κ(uni−1/2) and
κ(uni+1/2) goes to zero or their ratio grows large, vertex xi will act like a barrier preventing the
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Fig. 1 Solution profiles at t = 5.0 (left cell-centered scheme; right vertex-centered scheme)

heat conducing from one neighbor cell to the other. As a result, for any cell-centered or hybrid
scheme that can reduce to (3) and (6) in 1D case, some special techniques, such as those
in [17,25], have to be employed to overcome this difficult. By comparison, for the vertex-
centered scheme (8)–(10), no such harmonic averaging is involved so that it does not suffer
the same issue, which indicates that the vertex-centered scheme might provide an alternative
solution to the heat-barrier issue. In the following, we shall derive 2D linearity-preserving
schemes without any harmonic averaging over the diffusion coefficients.

3 A Family of Vertex-Centered Linearity-Preserving Schemes

3.1 The Meshes and Unknowns

We first partition Ω into a number of non-overlapped polygonal cells that constitute the
so-called primary mesh, whose cell edges, edge midpoints and cell centers are shown by
solid line segments, hollow squares and hollow circles in Fig. 2, respectively. The center
of a primary cell can be any point inside the cell. Each primary cell is further partitioned
into several quadrilateral subcells by connecting the cell center with the edge midpoints. All
subcells sharing a common vertex of the primary mesh form a cell of the dual mesh, which
is shown by dashed line segments in Fig. 2. Obviously, the dual mesh makes sense under the
following geometric assumption:

(H1) Every primary cell is star-shaped with respect to its cell center, i.e., any ray that starts
from the cell center intersects the cell boundary only once.

At each primary vertex inΩ \Γ D where ΓD denotes the Dirichlet boundary, we introduce
a primary unknown, shown by the solid points in Fig. 2. A finite volume equation will be
constructed associated with each primary unknown. For linear problems, there is no need to
introduce any auxiliary unknowns. However, for the nonlinear problems, since we plan to
use the same cell-centered diffusion coefficients as those in cell-centered or hybrid schemes,
we have to introduce some auxiliary unknowns defined at cell centers. To get a pure vertex-
centered scheme, these cell-centered unknowns will be interpolated by the vertex-centered
ones.
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Fig. 2 The primary mesh (solid
line) and dual mesh (dashed line)

3.2 The Flux Discretization

Throughout, all the derivations are conducted under the following assumptions:

1. The solution and the diffusion coefficient are smooth inside each primary cell and the
former is even continuous on the whole domain Ω . The possible discontinuities of the
solution gradient and the diffusion coefficient are only allowed to appear on the edges of
the primary mesh.

2. The normal component of the flux F = −κ(u)∇u is continuous across all interior edges
of the primary mesh.

These assumptions are standard and the same as those for the derivation of cell-centered and
hybrid finite volume schemes. Note that the first assumption implies the continuity of the
normal component of the flux across all interior edges of the dual mesh, which is explicitly
maintained in the present vertex-centered schemes. As for the second assumption, it is just
involved implicitly and will be discussed later.

To facilitate the exposition, we introduce some notations, some of which are also shown
in Fig. 3.

– K , a generic primary cell with nK edges; its center, measure, diameter (the maximal
distance of two arbitrary points in K ) and set of edges are denoted as xK , |K |, hK and
EK , respectively.

– M, the set of primary cells in Ω with mesh size h = maxK∈M hK .
– σ , a generic primary edge of K whose two endpoints, measure and midpoint are denoted

as xν , xν+ , |σ | and xσ , respectively. In addition, it is always assumed that xν points
anticlockwisely to the other one xν+ along ∂K . In this context, we sometimes use notation
[ν, ν+] to replace σ .

– K ∗
ν , a generic dual cell associated with primary vertex xν whose outward unit normal

vector along the boundary of the dual cell is denoted as n∗
ν .

– σ ∗
K , a generic dual edge connecting xK and xσ .

– n∗
K ,σ , a unit vector normal to σ ∗

K whose direction is fixed once and for all. Moreover, for
simplicity, we assume that all n∗

K ,σ (σ ∈ EK ) inside K are oriented clockwisely.
– unν , u

n
ν+ , unK , the unknowns defined respectively at xν , xν+ and xK when t = tn .
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xν xσ

xK

σ

σ∗
K

xν+

xν−

K

n∗
K,σ

K∗
ν

xν

n∗
ν

Fig. 3 Notations related to a primary cell (left) and a dual cell (right)

– Fn
K ,σ ∗ , the approximation of

∫
σ ∗
K
F · n∗

K ,σ ds on time level t = tn .

Generally speaking, each quantity related to the dual mesh is distinguished by a star super-
script. Throughout, the hollow lettersA,F,U, · · · will be used to denote rectangular matrices
with a number of columns greater than one while the bold ones F, x, n, · · · will represent
vectors.

The main part of the finite volume discretization of the parabolic equation (1) is to obtain
the flux approximation. For this purpose, we first gather all the nK flux approximations
Fn
K ,σ ∗ , σ ∈ EK into a group and manipulate them together. Then, we seek the following local

algebraic system
Fn

K = A
n
K δUn

K , (13)

where A
n
K is the so-called cell matrix of size nK × nK , Fn

K = (Fn
K ,σ ∗)Tσ∈EK

and δUn
K =

(un
ν+ − unν)

T
[ν,ν+]∈EK

are two vectors of size nK , containing all the flux approximations
inside K and all the successive differences of the primary unknowns along ∂K , respectively.
Obviously, once the cell matrix A

n
K is specified, all the nK flux approximations inside K are

obtained by (13).
In the linearity-preserving approach, (13) is required to be exact for piecewise affine

solutions and piecewise constant diffusion coefficients with respect to the primary mesh.
Thus, by setting u = x, y and κ(u) = κ(unK ) in (13), we have

κ(unK )̃FK = A
n
KXK , (14)

where F̃K and XK are two nK × 2 matrices, given by

F̃K = (−|σ ∗
K |n∗

K ,σ

)T
σ∈EK

, XK = (xν+ − xν)
T
[ν,ν+]∈EK

. (15)

If all nK × nK entries of the cell matrix A
n
K are treated as unknowns, then (14) provides

only nK × 2 equations. Therefore, the cell matrix A
n
K that satisfies (14) is not unique and

different cell matrices may result in different schemes. The key ingredient in the present work
is to find a symmetric and positive definite (SPD) matrix A

n
K through an algebraic approach

such that (14) is fulfilled.
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3.2.1 A Direct Algorithm for An
K

The first algorithm for An
K is a direct one and was suggested in [34] for the solution of

diffusion equations. Here we give a simple description of this algorithm in order to facilitate
the exposition of the new and indirect algorithm.Under assumption (H1), we have the identity
(see Lemma 3.1 in [34])

F̃
T
KXK = |K |I2, (16)

where I2 denotes the 2 × 2 identity matrix. This formula is actually a variant of some
existing geometric identities, see, e.g., (2.17) in [11] or (3.7) in [39]. Multiplying (16) with
κ(unK )/|K |̃FK yields

κ(unK )

|K | F̃K F̃
T
KXK = κ(unK )̃FK ,

which implies that, if we choose

A
n
K = κ(unK )

|K | F̃K F̃
T
K ,

(14) will be satisfied. However, cell matrix of this type is only semi-positive definite. Moti-
vated by [6,32,37], we suggested that a stabilized term should be added so that

A
n
K = κ(unK )

|K | F̃K F̃
T
K + γKCKC

T
K , (17)

where

CK = IK − 1

|K | F̃KX
T
K , (18)

γK is a positive parameter and IK the nK × nK identity matrix. By (24), the add of the
stabilized term does not destroy the linear-preserving property (14).

Theorem 1 (Theorem 3.1 in [34]) The cell matrix A
n
K , defined by (17) and (18), satisfies

(14) and is SPD.

3.2.2 An Indirect Algorithm for An
K

In the indirect algorithm, we obtain A
n
K by evaluating its inverse first. Starting from an

equivalent version of (16), i.e.,
X
T
K F̃K = |K |I2 (19)

and following the derivation of (17), we get

(
A
n
K

)−1 = 1

κ(unK )|K |XKX
T
K + γ̂KC

T
KCK , (20)

where CK is defined by (18) and γ̂K denotes a positive parameter.

Theorem 2 The cell matrix An
K , defined by (20) and (18), is SPD and satisfies (14).

Proof
(
A
n
K

)−1 is obviously symmetric and semi-positive definite. Suppose that vT
(
A
n
K

)−1
v

= 0 for some v. Noticing that γ̂K > 0 and κ(unK ) > 0, we have

X
T
K v = 0, CK v =

(
IK − 1

|K | F̃KX
T
K

)
v = 0,
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which leads to v = 0 and proves that
(
A
n
K

)−1 (and in turn A
n
K ) is SPD, here 0 denotes a

generic zero vector. From (18) and (19), we have

CK F̃K =
(
IK − 1

|K | F̃KX
T
K

)
F̃K = F̃K − F̃K = O. (21)

It follows from (20) that

(
A
n
K

)−1
F̃K = 1

κ(unK )|K |XKX
T
K F̃K = 1

κ(unK )
XK ,

which leads to (14) and completes the proof.

Herewemust point out that, generally speaking, algorithms (17) and (20) produce different
families of An

K . Theoretically, we have the following result.

Theorem 3 (17) and (20) generate an identical cell matrix An
K if and only if

γK γ̂KCKC
T
KCK = CK . (22)

Moreover, a necessary condition for (22) is that all the positive eigenvalues of CT
KCK are

identical and equal to 1/(γK γ̂K ).

Proof If the undetermined parameters γK and γ̂K can be properly chosen such that (20) is
identical to (17), then we have(

κ(unK )

|K | F̃K F̃
T
K + γKCKC

T
K

)(
1

κ(unK )|K |XKX
T
K + γ̂KC

T
KCK

)
= IK . (23)

Notice that

C
T
KXK =

(
IK − 1

|K |XK F̃
T
K

)
XK = XK − XK = O (24)

and

C
2
K =

(
IK − 1

|K | F̃KX
T
K

)
CK = CK .

Then, by (16), (18) and (21), we can simplify (23) to reach (22). Now, let λi be a positive
eigenvalue of CT

KCK so that CT
KCK ξ i = λi ξ i for some ξ i �= 0. It follows from (22) that

γK γ̂KλiCK ξ i = CK ξ i , which implies λi = 1/(γK γ̂K ) since CK ξ i �= 0. The proof is
complete.

Remark 1 (i) If K is a triangle cell and its cell center xK is chosen to be the barycenter,
then by straightforward calculations, we find that CK is a 3 × 3 matrix with all entries
equal to 1/3. Thus (22) holds if we choose γK γ̂K = 1.

(ii) If K is a polygonal cell, then (22) will generally not hold. For example, suppose that
K is a trapezoid with vertices (0, 0), (h, 0), (αh, h) and (0, h), where 0 < α < 1 and
h > 0. The cell center is chosen to be xK = ((1 + α)h/4, h/2). By straightforward
calculations, we have

CK = 1

2(1 + α)

⎛
⎜⎜⎝
2α 1 − α 2α 1 − α

0 1 + α 0 1 + α

2 α − 1 2 α − 1
0 1 + α 0 1 + α

⎞
⎟⎟⎠ .
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Using Maple software, we find that the four eigenvalues of CT
KCK are

0, 0, 1, 1 + 2(1 − α)2

(1 + α)2
.

By Theorem 1, it is impossible for (17) and (20) to produce an identical cell matrix in
this case.

We admit that the indirect algorithm involves some extra computations. However, as a
reward, it allows for a simple estimate of the minimal eigenvalue of An

K , which is required
in the stability analysis of the schemes.

3.3 The Finite Volume Equation and the Boundary Discretization

For a vertex xν ∈ Ω \Γ D , letMν (resp. Eν) be the set of primary cells (resp. edges in primary
mesh) sharing xν . Integrating (1) over the dual cell K ∗

ν , using the divergence theorem and
by the backward Euler time-stepping, we obtain the following finite volume equation

∣∣K ∗
ν

∣∣ unν − un−1
ν

Δt
+

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗
K ,σ · n∗

ν

)
Fn
K ,σ ∗ = |K ∗

ν |SnK , (25)

where

SnK = 1

|K ∗
ν |
∫
K ∗

ν

Sn dx, Sn = S(x, tn),

Fn
K ,σ ∗ is given by (13) and (17) (or (20)). Note that a factor

(
n∗
K ,σ · n∗

ν

)
(= 1 or −1) is added

to assure the true flux orientation. We mention that any higher order time discretization such
as theCrank-Nicolsonmethod can be easily integrated into the above finite volume algorithm.

The discretization of the boundary conditions is the same as the lower-order finite volume
element method [24]. Here, we just give a brief description. There are no finite volume
equations associated with the vertices on the Dirichlet boundary, and the Dirichlet boundary
data are inserted into δUn

K in the local system (13). By comparison, there is one finite
volume equation associated with each vertex on the Neumann boundary. In this case, the
dual cell for each vertex on the Neumann boundary has some edges located on the boundary
and the Neumann boundary data (or the flux data) are directly integrated into the finite
volume equation (25). The discretization of the mixed boundary condition can be considered
analogously.

3.4 The Discussion on Local Conservation of the Flux

Since we define a unique flux approximation for a dual cell edge, the local conservation
with respect to the dual mesh is always guaranteed. However, for the primary mesh, the
conservation of the flux is never touched because we do not require in the present approach
the fluxes across the primary cell edges. Actually the new schemes do have a compatible
definition of fluxes across primary cell edges that assures the later local conservation. Here
we just give a sketch.

Without loss of generality, suppose that xν is an interior vertex. Let nν denote the number
of edges in Eν and define

Fσ ≈
∫
xν xσ

F · nσ ds, σ ∈ Eν,
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where nσ is the unit vector normal to σ and oriented anticlockwisely with respect to xν .
Similar to (25), we can easily establish a finite volume equation on each subcell sharing xν ,
leading to nν linear equations for unknowns Fσ whose coefficient matrix is given by⎛

⎜⎜⎝
−1 1 0 · · · 0
0 −1 1 · · · 0
· · · · · · · · · · · · · · ·
1 0 0 · · · −1

⎞
⎟⎟⎠

Obviously, the summation of these nν equations yields (25) and only nν − 1 of them are
linearly independent so that we need one more equation.

For a primary cell K ∈ Mν , we can compute a discrete gradient ∇K u from all the fluxes
Fn
K ,σ ∗ (viewed as known quantities) through a least squares approach. From this discrete

gradient, we obtain flux approximations across the edge of K , given by

FK ,σ = |xνxσ | (−ΛK∇K u) · nσ , σ ∈ Eν ∩ EK , K ∈ Mν .

Using a least squares approach once again, we obtain the following equation
∑
σ∈Eν

Fσ = 1

2

∑
K∈Mν

∑
σ∈EK∩Eν

FK ,σ . (26)

Replacing any of the nν equations derived in the first step with the above equation, we obtain
nν linearly independent equations, by which Fσ (σ ∈ Eν) can be uniquely determined. It is
easy to see that the above algorithm is compatible with (25) and the fluxes defined on dual
cell edges.

3.5 The Interpolation of the Cell-Centered Unknowns

From the previous discussion, we can see that the cell-centered unknowns unK appear in
the evaluation of diffusion coefficients for nonlinear parabolic problems. In order to get a
pure vertex-centered scheme, they must be evaluated via the vertex-centered ones. Since the
solution and the diffusion coefficient are assumed to be smooth inside each primary cell,
we have many choices to design a second-order interpolation algorithm, such as the least
squares interpolation [9] and the first-order Taylor expansion algorithm [20]. However, these
interpolation algorithms are generally not positivity-preserving, which will cause serious
problems in some cases such as κ(u) ∝ u5/2. Here we suggest a second-order positivity-
preserving algorithm under assumption (H1).

We recall once again that, in the linearity-preserving discretization, the derivation must be
exact whenever the diffusion coefficient is piecewise constant and the solution is piecewise
linear with respect to the primary mesh. In this context, the steady-state counterpart of (1)
reduces to a harmonic equation on each primary mesh cell. Thus, our main idea to design the
interpolation algorithm is to solve the harmonic equation on a single primary cell through a
finite volume approach.

For simplicity, let the vertices of cell K be denoted as xi (1 ≤ i ≤ nK ) which are ordered
anticlockwisely, see Fig. 4. In addition, denote by Si the area of triangle xK xi xi+1. For
edge xi xi+1 of K , under assumption (H1), it is always possible for us to find a certain
j (i) ∈ {1, 2, · · · , nK }, such that

ni := R (xi+1 − xi ) = αi
(
x j (i) − xK

)+ βi
(
x j (i)+1 − xK

)
(27)

and
αi ≥ 0, βi ≥ 0, (28)
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Fig. 4 The stencil and notations
for the interpolation algorithm

xK

xj(i)

xj(i)+1

xi

xi+1

niK

where R denotes a rotation operator that rotates a vector clockwise to its normal direction.
The geometric meaning of the above algorithm is that the normal vector ni is located between
x j (i) − xK and x j (i)+1 − xK , see Fig. 4. By direct calculations, we have

αi = ni · R (
x j (i)+1 − xK

)
(
x j (i) − xK

) · R (
x j (i)+1 − xK

) = |ni |
∣∣x j (i)+1 − xK

∣∣ sin θ2j (i)

2S j (i)
,

βi = ni · R (
x j (i) − xK

)
(
x j (i)+1 − xK

) · R (
x j (i) − xK

) = |ni |
∣∣x j (i) − xK

∣∣ sin θ1j (i)

2S j (i)
,

(29)

where θ1j (i)(resp. θ2j (i)) denotes the angle between ni and x j (i) − xK (resp. x j (i)+1 − xK ).
Obviously,

θ1j (i) ≥ 0, θ1j (i)+1 ≥ 0, θ1j (i) + θ2j (i) = � x j (i)+1xK x j (i) < π,

which implies (28). Since ni �= 0, a direct consequence of (28) is

αi + βi > 0. (30)

As will be seen clear, (28) and (30) are very important in assuring the positivity-preserving
property and second-order accuracy of the interpolation algorithm. It follows from (27) that

∇u · ni = αi
(
u(x j (i), t) − u(xK , t)

)+ βi
(
u(x j (i)+1, t) − u(xK , t)

)+ O(h2K ).

Integrating the harmonic equation Δu = 0 over K , using the divergence theorem and the
above formula, we obtain

u(xK , t)
nK∑
i=1

(αi + βi ) =
nK∑
i=1

(
αi u(x j (i), t) + βi u(x j (i)+1, t)

)+O(h2K ),

which leads to the following interpolation formula

unK = 1∑nK
i=1(αi + βi )

nK∑
i=1

(
αi u

n
j (i) + βi u

n
j (i)+1

)
, (31)

where unl (l = j (i), j (i) + 1) denotes the approximation of u at (xl , tn) and unK the approx-
imation of u(xK , tn). Theoretically, we have the following result.

Theorem 4 Under assumption (H1), the interpolation algorithm (31) is a positivity-
preserving one. If it is assumed further that u ∈ C2(K ) ∩ C0(K ) and uni = u(xi , tn) +
O(h2K )(1 ≤ i ≤ nK ), then (31) has a second-order accuracy.
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Proof For simplicity of exposition, set� = 1/
∑nK

i=1(αi +βi ). From (28) and (30), we have

0 ≤ �αi < 1, 0 ≤ �βi < 1. (32)

Thus, (31) is a positivity-preserving one, i.e., the fact that unj (i) and u
n
j (i)+1 are all nonnegative

guarantees the nonnegativity of unK . By Taylor expansion, we have

unl = u(xl , tn) + O(h2K ) = u(xK , tn) + ∇u(xK , tn) · (xl − xK ) + Rl ,

where l = j (i), j (i) + 1 and the remainder Rl = O(h2K ). It follows from (31) and (27) that

unK − u(xK , tn) = �

nK∑
i=1

∇u(xK , tn) · (αi
(
x j (i) − xK

)+ βi
(
x j (i)+1 − xK

))

+�

nK∑
i=1

(
αi R j (i) + βi R j (i)+1

)

= �∇u(xK , tn) ·
nK∑
i=1

R (xi+1 − xi ) + �

nK∑
i=1

(
αi R j (i) + βi R j (i)+1

)

= �

nK∑
i=1

(
αi R j (i) + βi R j (i)+1

)
.

Using (32) once again, we have unK − u(xK , tn) = O(h2K ), which completes the proof.

4 Stability of the Vertex-Centered Schemes

Throughout this section, we shall assume that (1) is imposed with a homogenous Dirichlet
boundary condition. The discrete L2 and H1 norms employed in the analysis are defined
respectively by

‖unh‖0,M =
⎧⎨
⎩
∑
xν∈Ω

|K ∗
ν | (unν)2

⎫⎬
⎭

1/2

(33)

and

|unh |1,M =
⎧⎨
⎩
∑
K∈M

∑
σ∈EK

(un
ν+ − unν)

2

⎫⎬
⎭

1/2

=
{ ∑
K∈M

‖δUn
K ‖2

}1/2

, (34)

where ‖ · ‖ denotes the Euclidean vector norm, and unh is the discrete function whose nodal
value at primary vertex xν is unν .

Moreover, in addition to (H1), we introduce the following assumptions.

(H2) There exists a positive constant α, independent of mesh size h, such that

|K | ≥ αh2K , ∀K ∈ M. (35)

(H3) For the matrix CK defined by (18), there exists a positive constant λ, independent of
h, such that

‖CT
KCK v‖2 ≥ λ‖CK v‖2, ∀K ∈ M. (36)
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Here, we remark that (H3) can actually be removed since (H1) implies (H3) with λ = 1.
The proofs of such a fact for triangular and quadrilateral grids were given in page 139-140
of [34], while the proof for general polygonal grids involves tedious details and will not be
presented here.

Lemma 1 (Discrete Gronwall inequality [42]) Suppose that a nonnegative sequence
{wn, n = 1, · · · , N } satisfies

wn ≤ A + BΔt
n∑

k=1

wk, 1 ≤ n ≤ N ,

where NΔt = T , A and B are nonnegative constants. Then,

max
1≤n≤N

wn ≤ Ae2BT ,

where Δt is sufficiently small such that BΔt ≤ 1/2.

Lemma 2 (Lemma 4.1 in [34]) For the two matrices XK and F̃K defined in (15), we have

‖XK v‖ ≤ √
nK hK ‖v‖, ‖̃FK v‖ ≤ √

nK hK ‖v‖, ∀v ∈ R
2, ∀K ∈ M. (37)

Theorem 5 Assume that κ(u) ≥ κ and A
n
K is defined by (17) or (20). Then, under assump-

tions (H1), (H2) and (H3), we have

vTAn
K v ≥ �

K
‖v‖2, ∀v ∈ R

nK , ∀K ∈ M, (38)

where �
K
is a positive constant, independent of h, given by

�
K

= γKλ α2 κ

nK (2nK κ + γKα λ)
, for (17) (39)

and

�
K

= α2 κ

nKα + 2γ̂K κ
(
α2 + n2K

) , for (20). (40)

Proof (39) was proved in Lemma 4.3 of [34] under assumptions (H1), (H2) and (H3), and
what remains is to prove (40). For any v ∈ R

nK , from (20), we have

vT
(
A
n
K

)−1
v ≤ 1

κ|K | ‖X
T
K v‖2 + γ̂K ‖CK v‖2. (41)

By (15),
‖XT

K v‖2 ≤ ‖v‖2
∑

σ∈EK

‖xν+ − xν‖2 ≤ nK h
2
K ‖v‖2. (42)

It follows from (18) and Lemma 2 and that

‖CK v‖2 ≤ 2‖v‖2 + 2

|K |2 ‖̃FKX
T
K v‖2 ≤ 2

(
1 + n2K h

4
K

|K |2
)

‖v‖2. (43)

Substituting (42) and (43) into (41) and by (H2), we have

vT
(
A
n
K

)−1
v ≤ nK h2K

κ|K | ‖v‖2 + 2γ̂K

(
1 + n2K h

4
K

|K |2
)

‖v‖2

≤
(
nK
α κ

+ 2γ̂K + 2γ̂K n2K
α2

)
‖v‖2
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and in turn we obtain (38) with (40), which concludes the proof.

It is interesting to note from the above argumentation that (H3) is not required in the proof
of (40).

Theorem 6 Assume thatκ(u) ≥ κ and (1) is imposedwith a homogenousDirichlet boundary
condition. Then, under assumptions (H1), (H2) and (H3), there exists a positive constant C,
dependent only on T , such that

‖unh‖20,M + min
K∈M

�
K
Δt

N∑
n=1

|unh |1,M ≤ C

(
‖u0h‖20,M + Δt

N∑
n=1

‖Sn‖20
)

, (44)

where 1 ≤ n ≤ N, Δt ≤ 1/2, ‖ · ‖0 denotes the standard L2 norm and u0h is the discrete
function that coincides with initial data u(x, 0) at primary vertices.

Proof Notice that unν = 0 if xν ∈ ∂Ω . Then, multiplying both sides of (25) with unν and
summing over all the dual cells, we have

∑
xν∈Ω

∣∣K ∗
ν

∣∣ unν u
n
ν − un−1

ν

Δt
+
∑
xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗
K ,σ · n∗

ν

)
unνF

n
K ,σ ∗

=
∑
xν∈Ω

|K ∗
ν |unν SnK .

(45)

For the first term in the left-hand side of (45),

∑
xν∈Ω

∣∣K ∗
ν

∣∣ unν u
n
ν − un−1

ν

Δt
= 1

2Δt

∑
xν∈Ω

∣∣K ∗
ν

∣∣ [(unν)2 − (
un−1

ν

)2 + (
unν − un−1

ν

)2]

≥ 1

2Δt

(
‖unh‖20,M − ‖un−1

h ‖20,M
)

.

(46)

For the second term in the left-hand side of (45), by shifting the summation to primary cells,
we have ∑

xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗
K ,σ · n∗

ν

)
unνF

n
K ,σ ∗ =

∑
K∈M

∑
σ∈EK

(
un

ν+ − unν
)
Fn
K ,σ ∗

=
∑
K∈M

(
δUn

K

)T Fn
K ,

where we have used
(
n∗
K ,σ · n∗

ν

)
unν + (

n∗
K ,σ · n∗

ν+
)
un

ν+ = (
n∗
K ,σ · n∗

ν+
) (
un

ν+ − unν
)

and n∗
K ,σ · n∗

ν+ = 1 (see the orientations of the relevant vectors in Fig. 3). It follows from
(13), (38) and (34) that

∑
xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗
K ,σ · n∗

ν

)
unνF

n
K ,σ ∗ =

∑
K∈M

(
δUn

K

)T
A
n
K δUn

K

≥ min
K∈M

�
K
|unh |21,M. (47)
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As for the right-hand side of (45), by Cauchy inequality, we have

∑
xν∈Ω

|K ∗
ν |unν SnK ≤ 1

2

∑
xν∈Ω

|K ∗
ν | (unν)2 + 1

2

∑
xν∈Ω

|K ∗
ν |
(

1

|K ∗
ν |
∫
K ∗

ν

Sndx

)2

≤ 1

2
‖unh‖20,M + 1

2
‖Sn‖20. (48)

Substituting (46), (47) and (48) into (45) yields

1

Δt

(
‖unh‖20,M − ‖un−1

h ‖20,M
)

+ 2 min
K∈M

�
K
|unh |21,M ≤ ‖unh‖20,M + ‖Sn‖20,

n = 1, 2, · · · , N , which implies

‖unh‖20,M+2 min
K∈M

�
K
Δt

n∑
k=1

|ukh |21,M ≤ ‖u0h‖20,M+Δt
N∑

n=1

‖Sn‖20+Δt
n∑

k=1

‖ukh‖20,M. (49)

By the discrete Gronwall inequality, we have

‖unh‖20,M ≤ e2T
(

‖u0h‖20,M + Δt
N∑

n=1

‖Sn‖20
)

, (50)

where Δt ≤ 1/2. Substituting (50) into the right-hand side of (49) gives (44) and completes
the proof.

Based on the above stability result, a first-order error estimate in the discrete H1 norm
can be obtained through a discrete functional approach, see, e.g., subsection 6.1 in [38].

5 Numerical Experiments

In this section, we shall investigate the numerical performance of the vertex-centered
linearity-preserving schemes given by (25). For simplicity, the two schemes with the cell
matrix A

n
K given by the direct algorithm (17) and the indirect algorithm (20) will be denoted

as VLPS-D and VLPS-I, respectively. The corresponding parameters are chosen as follows:

γK = 1

100
trace

(
κ(unK )

|K | F̃K F̃
T
K

)
, γ̂K = trace

(
1

κ(unK )|K |XKX
T
K

)
.

At the same time, the Q1 finite volume element method (Q1-FVEM) [24] is employed for
comparison. Since the numerical behaviors of VLPS-D and VLPS-I are quite similar and
the former was thoroughly investigated in [34], we mainly present the results of VLPS-I and
Q1-FVEM, and the results of VLPS-D are only given in those cases where Q1-FVEM fails
or cannot be readily implemented. All mesh types used in the numerical experiments are
shown in Fig. 5. In addition, errors of the schemes are calculated in both discrete L2 and H1

norms, defined respectively by

Eu(h) = ‖enh‖0,M, Eq(h) = |enh |1,M,

where enh = u(x, t) − unh . The convergence rates are obtained by the formula

log[Eα(h2)/Eα(h1)]/log(h2/h1),

123



516 J Sci Comput (2017) 71:499–524

(a) (b) (c)

(d) (e) (f)
Fig. 5 Mesh types used in the numerical experiments. a Triangular mesh, b Kershaw mesh, c locally refined
mesh, d random mesh, e skewed mesh and f polygonal mesh

where α = u, q and hi (i = 1, 2) denote the mesh sizes of the two successive meshes.
Throughout, without special mention, the cell center is chosen to be the geometric one whose
coordinates are simple averages of those of the cell vertices. Moreover, all computations are
performed in double precision, and BICGSTAB is used for solving linear systems with
stopping tolerance 1.0E−15, while the possible nonlinear iteration is carried out by the
fixed-point method with stopping tolerance 1.0E−10.

5.1 Linear Elliptic Problem with a Discontinuity

For a finite volume scheme to be used in radiation hydrodynamics, the ability to deal with
discontinuities is a fundamental requirement. Here we consider the linear elliptic equation
−div(κ∇u) = S on Ω = [0, 1]2 with a pure Dirichlet boundary condition. The diffusion
coefficient is discontinuous and defined by κ(x, y) = 1 for x < 0.5 and κ(x, y) = k for
x > 0.5, where k is a parameter. The exact solution is chosen to be

u(x, y) =
⎧⎨
⎩
1 + x + y + (x − 0.5)2ex+y, x ≤ 0.5,
3k − 1

2k
+ x

k
+ y + (x − 0.5)2ex+y, x > 0.5

and S is determined by u accordingly. We set k = 0.001 so that the solution gradient has a
strongly discontinuity across the vertical line x = 0.5. Since the mesh lines must be aligned
with the discontinuity, we simply test the schemes on the mesh types (a), (b) and (c) in Fig. 5.
The results are presented respectively in Tables 1, 2, and 3, where optimal convergence rates,
i.e., second-order for the discrete L2 errors and first-order for the discrete H1 errors, can be
seen for three schemes.Wemention that itwas proved in [34] that all vertex-centered linearity-
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Table 1 Results of the schemes on triangular mesh

Mesh level h P1-FVEM VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 2.50E−1 8.69E−3 – 1.38E−1 – 8.69E−3 – 1.38E−1 –

2 1.25E−1 2.70E−3 1.69 8.31E−2 0.73 2.70E−3 1.69 8.31E−2 0.73

3 6.25E−2 7.40E−4 1.87 4.56E−2 0.87 7.40E−4 1.87 4.56E−2 0.87

4 3.13E−2 1.93E−4 1.94 2.38E−2 0.94 1.93E−4 1.94 2.38E−2 0.94

5 1.56E−2 4.91E−5 1.97 1.22E−2 0.97 4.91E−5 1.97 1.22E−2 0.97

CPU time 2.08 (s) 2.07 (s)

Table 2 Results of the schemes on Kershaw mesh

Mesh level h Q1-FVEM VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 9.21E−1 2.40E−2 – 4.43E−1 – 3.21E−2 – 7.91E−1 –

2 5.16E−1 1.12E−2 1.32 3.35E−1 0.48 9.63E−3 2.08 3.57E−1 1.37

3 2.72E−1 4.04E−3 1.59 1.57E−1 1.19 2.26E−3 2.26 1.28E−1 1.60

4 1.40E−1 1.20E−3 1.82 5.96E−2 1.45 5.08E−4 2.23 3.86E−2 1.80

5 7.06E−2 3.22E−4 1.94 2.00E−2 1.61 1.22E−4 2.10 1.07E−2 1.88

CPU time 3.85 (s) 3.82 (s)

Table 3 Results of the schemes on locally refined mesh

Mesh level h VLPS-D VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 3.54E−1 1.98E−2 – 3.76E−1 – 5.23E−3 – 6.34E−2 –

2 1.77E−1 3.96E−3 2.32 1.63E−1 1.21 1.26E−3 2.05 2.29E−2 1.47

3 8.84E−2 7.48E−4 2.40 6.11E−2 1.41 3.04E−4 2.05 7.85E−3 1.54

4 4.42E−2 1.45E−4 2.37 2.16E−2 1.50 7.47E−5 2.03 2.69E−3 1.55

5 2.21E−2 3.00E−5 2.27 7.53E−3 1.52 1.86E−5 2.01 9.27E−4 1.53

preserving schemes reduce to the P1 finite volume element scheme [24] on triangular meshes,
which is confirmed by the identical results of P1-FVEM and VLPS-I in Table 1. Moreover,
on mesh type (b), VLPS-I performs a little better than Q1-FVEM, and superconvergence
of the discrete H1 error for VLPS-I can be obviously observed. We find that mesh type (b)
belongs to the so-called h2-parallelogram meshes whose cells approach parallels as h → 0.
Supperconvergence of the flux usually appears on this type of meshes. In addition, we present
at the last rows of Tables 1 and 2 the CPU times, which shows that the computational costs of
VLPS-I and Q1-FVEM (resp. P1-FVEM) on quadrilateral meshes (resp. triangular meshes)
are almost the same.

123



518 J Sci Comput (2017) 71:499–524

Table 4 Results of the schemes on random mesh

Mesh level h VLPS-D VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 2.85E−1 2.46E−3 – 5.42E−2 – 1.32E−3 – 1.99E−2 –

2 1.39E−1 7.35E−4 1.68 3.64E−2 0.56 3.41E−4 1.89 1.12E−2 0.80

3 7.39E−2 1.86E−4 2.17 1.89E−2 1.04 8.58E−5 2.18 5.06E−3 1.26

4 3.82E−2 4.67E−5 2.10 9.58E−3 1.03 2.02E−5 2.19 2.68E−3 0.96

5 1.91E−2 1.21E−5 1.94 4.80E−3 0.99 5.73E−6 1.82 1.38E−3 0.96

Table 5 Results of the schemes on shewed mesh

Mesh level h Q1-FVEM VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 1.70E−1 4.98E−3 – 1.49E−1 – 7.39E−4 – 8.70E−3 –

2 8.52E−2 1.64E−3 1.61 5.62E−2 1.42 1.86E−4 2.00 2.21E−3 1.98

3 5.69E−2 7.91E−4 1.80 2.86E−2 1.67 8.27E−5 2.00 9.88E−4 2.00

4 4.27E−2 4.61E−4 1.88 1.71E−2 1.79 4.65E−5 2.00 5.56E−4 2.00

5 3.42E−2 3.00E−4 1.92 1.13E−2 1.86 2.98E−5 2.00 3.56E−4 2.00

5.2 Nonlinear Parabolic Problem

We solve the model problem (1) on Ω = [0, 1]2. The diffusion coefficient and the exact
solution are chosen to be κ(u) = 1 + u2 and u = e−t sin(π(x + 2y)/3), respectively. The
source function, the Dirichlet boundary data and the initial data are determined accordingly.
In this example, we use the three mesh types (d), (e) and (f) in Fig. 5. Here we mention that,
some cells in mesh type (d) are concave and the traditional Q1-FVEM fails so that some new
method must be explored [13]. Recall that, for the new schemes, the cell center can be any
point in a cell provided that (H1) holds. Therefore, when a concave cell in mesh type (d) is
not star-shaped with respect to its geometric center, we can assure (H1) simply by shifting
the cell center to the midpoint of the diagonal that touches the concave angle. This problem
is run up to time t = 1 with time step Δt = 0.4h2. The results are presented in Tables 4, 5,
and 6, respectively. One can see that, in each table, all involved schemes achieve optimal
convergence rates. Besides, on mesh type (e)(another h2-parallelogram mesh), the results of
VLPS-I are a little better than those of Q1-FVEM, and superconvergence of the discrete H1

error is also observed for both schemes.

5.3 Radiation Diffusion Problem

We solve (1) on a rectangular domain Ω = (0, 3) × (0, 1). The diffusion coefficient, the
source term, the Dirichlet data and the initial data are the same as those in (11). The left
and right boundaries are treated as Dirichlet ones while the top and bottom boundaries
are imposed with homogeneous flux boundary conditions. This problem was tested in [25]
where the authors claimed that many existing finite volume schemes fail on it. Our numerical
experiments show that, if no special treatments are made, all the cell-centered and hybrid
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Table 6 Results of the schemes on polygonal mesh

Mesh level h VLPS-D VLPS-I

Eu(h) Rate Eq (h) Rate Eu(h) Rate Eq (h) Rate

1 2.30E−1 5.21E−3 – 1.77E−1 – 1.04E−3 – 2.60E−2 –

2 1.19E−1 1.08E−3 2.38 7.32E−2 1.34 3.25E−4 1.77 1.03E−2 1.41

3 6.01E−2 2.04E−4 2.43 2.65E−2 1.48 8.34E−5 1.99 3.26E−3 1.68

4 3.01E−2 3.82E−5 2.43 8.20E−3 1.70 2.14E−5 1.97 1.11E−3 1.56

5 1.51E−2 7.94E−6 2.27 2.46E−3 1.74 5.42E−6 1.98 3.74E−4 1.57

x

y
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0.5

1

1.5
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Fig. 6 Results for scheme VLPS-D at t = 5.0 (left contour and grid; right solutions)

schemes we studied before suffer the numerical heat-barrier issue and yield solution profiles
similar to the black one in the left figure of Fig. 1.

We first partition the computational domain into random quadrilateral grids. Still, we
choose c = 0.4, ε = 10−9, Δt = 0.4h2 and use (12) as the analytic solution. For VLPS-D,
the contour(resp. the solutions versus x-coordinates) on 30 × 10 grid at time level t = 5 are
shown in the left (resp. right) part of Fig. 6,wherewe can see that this scheme captures the heat
wave quite well and maintains fairly good the 1D nature of the solution. The corresponding
figures for VLPS-I are similar and then omitted, while Q1-FVEM fails in this example due
to the presence of concave cells. The convergence investigation on a sequence of random
quadrilateral meshes is presented in Table 7 where one can see that the convergence rates of
the discrete L2 errors are less than 1. The convergence behavior of the new schemes in this
problem is similar to that of the new mimetic scheme in [25], where the authors pointed out
that the slower convergence rate might be caused by the possible lower-order regularity of
the exact solution.

5.4 Spherical Nonlinear Heat Wave

Consider a spherically symmetric heat wave, propagating in a cold medium and governed by
the following nonlinear parabolic equation

ρCv

∂T

∂t
= 1

r2
∂

∂r

(
r2κ

∂T

∂r

)
, (51)

where T stands for the temperature and depends only on the spherical radius r . Here the
thermal conduction coefficient obeys the power-law κ = κ0T n , where κ0 denotes the thermal
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Table 7 Convergence investigation on random meshes at t = 5.0

Mesh h Δt VLPS-D VLPS-I

Eu(h) Rate Eu(h) Rate

30 × 10 2.32E−1 2.15E−2 4.78E−2 – 4.61E−2 –

60 × 20 1.21E−1 5.86E−3 2.50E−2 1.00 2.40E−2 1.00

120 × 40 6.18E−2 1.53E−3 1.51E−2 0.75 1.46E−2 0.75

240 × 80 3.09E−2 3.82E−4 7.78E−3 0.96 7.45E−3 0.97

conductivity at room temperature and n is a constant. Assume that at time t = 0 a finite
amount of energy E0 is instantaneously released at r = 0. In this case, the analytic solution
is obtained by [40] in terms of the radial position of the wave front r f and the temperature
at the center Tc,

T = Tc

(
1 − r2

r2f

)1/n

, r ≤ r f ; T = 0, otherwise, (52)

where

Tc =
[

nξ2

2(3n + 2)

]1/n [
ρCvQ2/3

κ0t

]3/(3n+2)

, r f = ξ

(
κ0t

ρCv

Qn
)1/(3n+2)

, (53)

ξ is a dimensionless constant depending only on n, and T obeys the conservation of energy,
∫ +∞

0
4πr2Tdr = E0

ρCv

= Q. (54)

Substituting (52) and (53) into (54) and through some direct calculations, we have

4πξ(3n+2)/n
[

n

2(3n + 2)

]1/n ∫ 1

0
s2(1 − s2)1/nds = 1,

where s = r/r f . Noticing that

2
∫ 1

0
s2(1 − s2)1/nds = B

(
3

2
, 1 + 1

n

)
= Γ ( 32 )Γ (1 + 1

n )

Γ ( 52 + 1
n )

,

one reaches

ξ =
(

3n + 2

2n−1nπn

)1/(3n+2)
[

Γ ( 52 + 1
n )

Γ ( 32 )Γ (1 + 1
n )

]n/(3n+2)

. (55)

A number of special cases were used as benchmark examples in the literature, some of
which are listed below.

– Case 1 [17,30]: n = 3, ρCv = κ0 = E0 = 1.
– Case 2 [3,31]: n = 2, ρCv = κ0 = E0 = 1.

Here, we employ Case 2 to test the new vertex-centered schemes. In order to use the present
schemes directly we simply turn to solve the model equation (1) on xy-plane with u =
T, κ(u) = T 2 and S = −T/(8t). In this case, the solution is still given by (52) with
r = √

x2 + y2. The computational domain is chosen to be [0, 1]×[0, 1] and the point source
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Fig. 7 Results for scheme VLPS-I on 10 × 10 uniform square mesh at t = 0.3
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Fig. 8 Results for scheme VLPS-I on 20 × 20 uniform square mesh at t = 0.3

is placed at its bottom-left corner. The top and right boundaries are treated as homogeneous
Dirichlet ones while the left and bottom boundaries are imposed with homogeneous flux
boundary data.

A sequence of uniform square meshes are used, which aims to check how the schemes
maintain the spherical symmetry of solutiononmeshes that donot possess the same symmetry.
The simulation starts at t = 1.0E−8 and stops at t = 0.3. Meanwhile, the time step is a
variable one, i.e., it takes 4E−10 × h2 at the beginning and in the following computation
it is enlarged (resp. shortened) 20% if the number of nonlinear iteration is no more than 5
(resp. greater than 20). The results for VLPS-I on 10 × 10, 20 × 20 and 40 × 40 uniform
square meshes are shown in Figs. 7, 8, and 9, respectively. The left parts of the figures show
the meshes and contours while the right parts are the solution profiles with respect to the
spherical radius r . One can see that the new scheme maintains the spherical symmetry quite
well. As for the accuracy, the average convergence rate of discrete L2(resp. H1) errors on
these sequence ofmeshes is approximately 1.48 (resp. 0.56). Similar to the previous example,
the reason for the lower-order convergence might be the lower-order regularity of the exact
solution. The results for Q1-FVEM and VLPS-D are similar and then omitted.
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Fig. 9 Results for scheme VLPS-I on 40 × 40 uniform square mesh at t = 0.3

6 Conclusions

We suggest a family of vertex-centered finite volume schemes for the nonlinear parabolic
equations arising in RHD and MHD. The primary unknowns are defined at cell vertices and
the derivation of the schemes is performed through a linearity-preserving approach. We use
the same cell-centered diffusion coefficients as those in most existing cell-centered or hybrid
schemes, which is natural in coupling with some standard numerical methods for hydrody-
namics such as Lagrange or ALE algorithms. These new schemes are locally conservative,
linearity-preserving, coercive on arbitrary polygonal grids with star-shaped cells, and capable
of handing arbitrary discontinuities. They also lead to symmetric and positive definite linear
systems. Moreover, unlike many existing cell-centered or hybrid schemes that use only cell-
centered diffusion coefficients, it does not suffer the so-called numerical heat-barrier issue,
which is confirmed by numerical experiments on some standard benchmark models. One
drawback of the present schemes is that they are not positivity-preserving so that they may
produce negative values at vertices. Moreover, for the two algorithms of the cell matrix, our
numerical experiments show that the indirect algorithm seems more robust since the result is
not sensitive to the choice of γ̂K . The future works include the investigation of supperconver-
gence and the extensions to two-dimensional r − z meshes and three-dimensional polyhedral
meshes.
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