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Abstract For a given nonlinear problem discretized by standard finite elements, we propose
two iterative schemes to solve the discrete problem. We prove the well-posedness of the
corresponding problems and their convergence. Next, we construct error indicators and prove
optimal a posteriori estimates where we treat separately the discretization and linearization
errors. Some numerical experiments confirm the validity of the schemes and allow us to
compare them.

Keywords Posteriori error estimation · Nonlinear problems · Iterative methods ·
Finite elements method

1 Introduction

Let � be an open polygon in R
2, we consider the problem

− �u + λ|u|2pu = f in �, (1.1)

u = 0 on ∂�, (1.2)
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where λ and p are two positive real numbers. The right-hand side f belongs to the dual
space H−1(�) of the Sobolev space H1

0 (�). The a posteriori error analysis of finite element
approximations of the presentmodel problemhasbeen studiedbyBernardi et al. [2]. In fact, let
Vh ⊂ H1

0 (�) be theP1 finite element space associated with a regular family of triangulations
of �, denoted by Th . Using P1 Lagrange finite elements, the discrete variational problem
obtained by the Galerkin method amounts to (from now on, we denote by (·, ·) the scalar
product of L2(�)).

Find uh ∈ Vh such that

∀vh ∈ Vh,
(∇uh,∇vh

) + λ
(|uh |2puh, vh

) = 〈 f, vh〉. (1.3)

In order to solve the discrete nonlinear problem (1.3), we introduced in [2] the following
linear numerical scheme, called fixed-point algorithm:

Find ui+1
h ∈ Vh such that

∀vh ∈ Vh,
(∇ui+1

h ,∇vh
) + λ

(|uih |2pui+1
h , vh

) = 〈 f, vh〉. (1.4)

This algorithm leads to a conditional convergence of the problem. In fact, the convergence
of this numerical schemes depends on the parameters λ, p and f . Furthermore, the a priori
estimate of the discrete variationel problem is presented in [2]. As well, the a posteriori
analysis of the discretization is performed but requires that the discrete solution belongs to a
neighborhood of the exact solution u.

As a new contribution to the previous work that we have carried out recently on the a
posteriori analysis of the present nonlinear problem, see [2], we introduce in this paper two
different convergent numerical schemes to solve this problem. In fact, the main idea is to
introduce a parameter α which can be controlled in order to insure the convergence. Let u0h
be an initial guess, for i ≥ 0 we introduce the following two algorithms:

First numerical scheme.
Find ui+1

h ∈ Vh such that

∀vh ∈ Vh, α
(
ui+1
h − uih, vh

) + (∇ui+1
h ,∇vh

) + λ
(|uih |2pui+1

h , vh
) = 〈 f, vh〉, (1.5)

Second numerical scheme.
Find ui+1

h ∈ Vh such that

∀vh ∈ Vh, α
(∇ui+1

h − ∇uih,∇vh
) + (∇ui+1

h ,∇vh
) + λ

(|uih |2pui+1
h , vh

) = 〈 f, vh〉,
(1.6)

For a parameter α bigger than a specific constant that depends on λ, p and the data f ,
problem (1.5) and (1.6) always converge. Moreover, our objective is to derive an a posteriori
error estimate distinguishing linearization and discretization errors.

In practice, the present problem (1.1)–(1.2) is solved using an iterative method involving
a linearization process and approximated by the finite element method. Thus, two sources of
error appear, namely linearization and discretization. The main result in [2] is a two-sided
bound of the error distinguishing linearization and discretization errors in the context of an
adaptive procedure. This type of analysis was introduced by Chaillou and Suri [3,4] for a
general class of problems characterized by strongly monotone operators and developed by El
Alaoui et al. [5] for a class of second-order monotone quasi-linear diffusion-type problems
approximated by piecewise affine, continuous finite elements.Wewish to extend these results
to the problem that we consider and prove optimal estimates.
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In the following, we summarize the differences between the scheme (1.4) (studied in [2])
and the schemes (1.5) and (1.6) studied in this work:

(1) (1.4) converges when the data (f, λ, p) verifies a condition called small condition (see
[2], Theorem 4.1). But the two schemes presented in this paper [(1.5) and (1.6)] introduce
a parameter α which can be calibrated to obtain the convergence for any data. Numerical
simulations of comparison are listed in Sect. 5 and specially in Tables 1 and 2 to show
the comparison between them.

(2) In [2] we show the a posteriori error corresponding to the fixed point scheme when the
discrete iterative solution ui+1

h is in a neighborhood of the exact solution u. With the two
schemes presented in this work, we derive a posteriori error estimates for any iterative
solution ui+1

h without the neighborhood constraints.

The paper is organized as follows:

• Section 2 describes the model problem.
• Section 3 is devoted to the study of the convergence of the schemes.
• Section 4 provides the a posteriori estimates for both problems.
• Section 5 is devoted to the numerical results.

2 Preliminaries

In this section, we describe the variational formulation associated with the nonlinear problem
(1.1)–(1.2) and introduce and recall some corresponding properties which will be used later.
We denote by L p(�) the space of measurable functions summable with power p, and for all
v ∈ L p(�), the corresponding norm is defined by

‖ v ‖L p(�)=
(∫

�

|v(x)|pdx
)1/p

.

In the case p = 2, we also denote this norm by ‖v‖0,� = ‖v‖L2(�). Throughout this paper,
we constantly use the classical Sobolev space

H1(�) =
{
v ∈ L2(�); ∂v

∂x1
,

∂v

∂x2
∈ L2(�)

}
,

which is equipped respectively with the semi-norm and norm

|v|1,� =
(∫

�

(∣∣∣∣
∂v

∂x1

∣∣∣∣

2

+
∣∣∣∣
∂v

∂x2

∣∣∣∣

2
)

dx

)1/2

and ‖ v ‖1,�= (||v||20,� + |v|21,�)
)1/2

.

In particular, we consider the following space

H1
0 (�) = {v ∈ H1(�), v|∂�

= 0},
and its dual space H−1(�). We recall the Sobolev imbeddings (see Adams [1], Chapter 3).

Lemma 2.1 For any bounded domain � in R
2, for all j , 1 ≤ j < ∞, there exists a positive

constant S j such that

∀v ∈ H1
0 (�), ‖ v ‖L j (�)≤ S j |v|1,�. (2.1)
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Remark 2.2 For domains� inR3, inequality (2.1)with standard definition of H1
0 (�) remains

valid only for j ≤ 6, whence the interest of working in dimension d = 2.
Setting X = H1

0 (�), the model problem (1.1)–(1.2) admits the equivalent variational for-
mulation:
Find u ∈ X such that

∀v ∈ X,

∫

�

∇u∇vdx +
∫

�

λ|u|2puvdx = 〈 f, v〉, (2.2)

Theorem 2.3 [2] Problem (2.2) admits a unique solution u ∈ X.

We now introduce the following technical lemmas:

Lemma 2.4 Let a, b and p ≥ 1 be three real numbers. We have the following relation
∣
∣|a|p − |b|p∣∣ ≤ p|a − b|(|a|p−1 + |b|p−1).

Proof The result follows from applying the mean value theorem to f (x) = x p with x ≥ 0.
�

Remark 2.5 For a real positive p < 1 and for any real numbers a and b, the last lemma can
be written as follow

∣∣|a|p − |b|p∣∣ ≤ (p + 1)|a − b|(|a|p−1 + |b|p−1).

Lemma 2.6 For all x, y ∈ R and p ∈ R
+, we have

(|x |2px − |y|2p y)(x − y) ≥ 0.

Remark 2.7 In the sequel, we denote by C , C ′, . . . generic constants that can vary from line
to line but are always independent of all discretization parameters.

3 Finite Element Discretization and Convergence

In this section, we begin to collect some useful notation concerning the discrete setting and
the a priori estimate. Then, we show the convergence of the schemes (1.5) and (1.6).
Let (Th)h be a regular family of triangulations of �, in the sense that, for each h:

• The union of all elements of Th is equal to �.
• The intersection of two different elements of Th , if not empty, is a vertex or a whole edge

of both triangles.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed

circle δK is smaller than a constant independent of h.
As usual, h stands for the maximum of the diameters hK of the element K ∈ Th . Let
Vh ⊂ H1

0 (�) be the LagrangeP� finite element space associated with Th,more precisely

Vh =
{
vh ∈ H1

0 (�); ∀K ∈ Th, vh|K ∈ P�(K )

}
,

where P�(K ) stands for the space of restrictions to K of polynomial functions of degree
≤ � on R

2.
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Remark 3.1 (Inverse inequality) There exists a constant SI > 0 such that for all vh ∈ Vh
and K ∈ Th , we have

|vh |1,K ≤ SI h
−1
K ||vh ||0,K . (3.1)

Theorem 3.2 [2] Let u be the solution of (2.2). Then, Problem (1.3) has a unique solution
uh. Moreover, if u ∈ H2(�), the following estimate holds

‖ uh − u ‖1,�≤ Ch ‖ u ‖2,� .

In the following, we investigate the convergence of the schemes (1.5) and (1.6).

Theorem 3.3 Problem (1.5) admits a unique solution. Furthermore, if the initial value u0h
satisfies the condition

||u0h ||0,� ≤ S2|| f ||−1,�, (3.2)

then the solution of the problem (1.5) satisfies the estimates

||ui+1
h ||0,� ≤ S2|| f ||−1,� and |ui+1

h |1,� ≤
√
1 + αS22 || f ||−1,�. (3.3)

Proof It is readily checked that problem (1.5) has a unique solution as a consequence of the
coercivity of the bilinear form.
We consider the Eq. (1.5) with vh = ui+1

h and we obtain:

α

2
||ui+1

h ||20,� − α

2
||uih ||20,� + α

2
||ui+1

h − uih ||20,� + |ui+1
h |21,�

+λ(|uih |2p ui+1
h , ui+1

h ) = ( f, ui+1
h ).

By using the inequality

( f, ui+1
h ) ≤ 1

2
|| f ||2−1,� + 1

2
|ui+1

h |21,�,

we deduce the relation
α

2
||ui+1

h ||20,� − α

2
||uih ||20,� + α

2
||ui+1

h − uih ||20,�
+1

2
|ui+1

h |21,� + λ(|uih |2p ui+1
h , ui+1

h ) ≤ 1

2
|| f ||2−1,�. (3.4)

We now prove the first estimate in (3.3) by induction on i . Starting with the relation (3.2),
we suppose that we have

||uih ||0,� ≤ S2|| f ||−1,�.

We are in one of the following two situations:

• We have ||ui+1
h ||0,� ≤ ||uih ||0,�. We obviously deduce the bound

||ui+1
h ||0,� ≤ S2|| f ||−1,�

from the induction hypothesis.
• We have ||ui+1

h ||0,� ≥ ||uih ||0,�. The Eq. (3.4) gives
|ui+1

h |21,� ≤ || f ||2−1,�

and we deduce the inequality

||ui+1
h ||20,� ≤ S22 |ui+1

h |21,�
≤ S22 || f ||2−1,�.
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This gives the first part of (3.3). We now check the second part. We have from (3.4)

|ui+1
h |21,� ≤ || f ||2−1,� + α||uih ||20,� ≤ (1 + αS22 )|| f ||2−1,�,

whence the desired result.

Theorem 3.4 Problem (1.6) admits a unique solution. Furthermore, if the initial value u0h
verifies the condition

|u0h |1,� ≤ || f ||−1,�, (3.5)

then the solution of Problem (1.6) satisfies the estimate

|ui+1
h |1,� ≤ || f ||−1,�. (3.6)

Proof We follow the same proof as for Theorem 3.3. It is readily checked that problem (1.6)
has a unique solution as a consequence of the coercivity of the bilinear form.
We consider the Eq. (1.6) with vh = ui+1

h and we obtain:

α

2
|ui+1

h |21,� − α

2
|uih |21,�+ α

2
|ui+1

h −uih |21,�+|ui+1
h |21,�+λ(|uih |2p ui+1

h , ui+1
h )=( f, ui+1

h ).

We deduce the relation
α

2
|ui+1

h |21,� − α

2
|uih |21,� + α

2
|ui+1

h − uih |21,�
+1

2
|ui+1

h |21,� + λ(|uih |2p ui+1
h , ui+1

h ) ≤ 1

2
|| f ||2−1,�. (3.7)

We prove the relation (3.6) recursively. Starting with (3.5), we suppose that we have

|uih |1,� ≤ || f ||−1,�.

We are in one of the following two situations:

• We have |ui+1
h |1,� ≤ |uih |1,�. We deduce the bound

|ui+1
h |1,� ≤ || f ||−1,�.

• We have |ui+1
h |1,� ≥ |uih |1,�. It follows from (3.7) that

|ui+1
h |21,� ≤ || f ||2−1,�.

We conclude the proof of the theorem.
Unfortunately the proof of the next result is much more technical.

Theorem 3.5 Assume that there exists β > 0 such that, for every element K ∈ Th, we have

hK ≥ βh,

(which means that the family of triangulations is uniformly regular). Under the assumptions
of Theorem 3.3 and for

α > C2 p2λ2h−4p (3.8)

where

C = 4S4S8S
2p−1
8(2p−1)

S2pI
β2p S

2p
2 || f ||2p−1,�,

the sequence of solutions (uih) of Problem (1.5) converges in H1
0 (�) to the solution uh of

Problem (1.3).
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Proof We take the difference between the Eqs. (1.5) and (1.3) with vh = ui+1
h − uh and we

obtain the equation

α
2 ||ui+1

h − uh ||20,� − α
2 ||uih − uh ||20,� + α

2 ||ui+1
h − uih ||20,� + |ui+1

h − uh |21,�
+λ(|uih |2pui+1

h − |uh |2puh, ui+1
h − uh) = 0.

The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|uih |2p − |ui+1
h |2p)ui+1

h , ui+1
h − uh) + λ(|ui+1

h |2pui+1
h − |uh |2puh, ui+1

h − uh).

We denote by T1 and T2, respectively, the first and the second terms in the right-hand side of
the last equation. Using Lemma 2.6, we have T2 ≥ 0. Then we derive by using Lemma 2.4
(with p replaced by 2p)

α

2
||ui+1

h − uh ||20,� − α

2
||uih − uh ||20,� + α

2
||ui+1

h − uih ||20,� + |ui+1
h − uh |21,� + T2 = −T1

≤ 2pλ
∫

�

(|ui+1
h |2p−1 + |uih |2p−1)|ui+1

h − uih | |ui+1
h | |ui+1

h − uh |dx
≤ 2pλ||ui+1

h − uih ||0,� |||ui+1
h |2p−1 + |uih |2p−1||L8(�) ||ui+1

h ||L8(�) ||ui+1
h − uh ||L4(�)

≤ 2pλS4S8S
2p−1
8(2p−1)(|ui+1

h |2p−1
1,� + |uih |2p−1

1,� )|ui+1
h |1,�||ui+1

h − uih ||0,�|ui+1
h − uh |1,�

≤ 2pλS4S8S
2p−1
8(2p−1)

S2pI
β2p h

−2p||ui+1
h ||2p−1

0,� + ||uih ||2p−1
0,� ||ui+1

h ||0,�||ui+1
h − uih ||0,�|ui+1

h

−uh |1,�
≤ 4pλS4S8S

2p−1
8(2p−1)

S2pI
β2p S

2p
2 h−2p|| f ||2p−1,�||ui+1

h − uih ||0,�|ui+1
h − uh |1,�

We denote by C = 4S4S8S
2p−1
8(2p−1)

S2pI
β2p S

2p
2 || f ||2p−1,� and we use the Cauchy’s inequality

ab ≤ 1
2εa

2 + ε
2b

2 (with ε = 1
Cpλh−2p ) to obtain the following bound

α

2
||ui+1

h − uh ||20,� − α

2
||uih − uh ||20,� + α

2
||ui+1

h

−uih ||20,� + 1

2
|ui+1

h − uh |21,� + T2 ≤ C2 p2λ2

2
h−4p||ui+1

h − uih ||20,�.

We choice α > C2 p2λ2h−4p , denote by C1 = α−C2 p2λ2h−4p

2 and obtain

α

2
||ui+1

h − uh ||20,� − α

2
||uih − uh ||20,�+C1||ui+1

h − uih ||20,�+ 1

2
|ui+1

h − uh |21,� + T2≤0.

(3.9)

We deduce that, for all i ≥ 1, we have (if ||uih − uh ||0,� �= 0)

||ui+1
h − uh ||0,� < ||uih − uh ||0,�,

andwe deduce the convergence of the sequence (ui+1
h −uh) in L2(�) and the the convergence

of the sequence uih in L2(�). By taking the limit of (3.9) we get

lim
i→+∞

(1
2
|ui+1

h − uh |21,� + T2
)

≤ 0.

As T2 ≥ 0, we deduce that |ui+1
h −uh |1,� converges to 0 and ui+1

h converges to uh in H1
0 (�).

123



336 J Sci Comput (2017) 71:329–347

Theorem 3.6 Under the assumptions of Theorem 3.4 and for

α >
(
4S2S4S8S

2p−1
8(2p−1)|| f ||2p−1,�

)2
p2λ2, (3.10)

the sequence of solutions (uih) of Problem (1.6) converges in H1
0 (�) to the solution uh of

Problem (1.3).

Proof We take the difference between the Eqs. (1.6) and (1.3) with vh = ui+1
h − uh and we

obtain the equation

α

2
|ui+1

h − uh |21,� − α

2
|uih − uh |21,� + α

2
|ui+1

h − uih |21,� + |ui+1
h − uh |21,�

+λ(|uih |2pui+1
h − |uh |2puh, ui+1

h − uh) = 0.

The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|uih |2p − |ui+1
h |2p)ui+1

h , ui+1
h − uh) + λ(|ui+1

h |2pui+1
h − |uh |2puh, ui+1

h − uh).

We denote by T1 and T2 respectively the first and the second terms in the right-hand side of
the last equation. Using Lemma 2.6, we have T2 ≥ 0. Then we have by using Lemma 2.4

α

2
|ui+1

h − uh |21,� − α

2
|uih − uh |21,� + α

2
|ui+1

h − uih |21,� + |ui+1
h − uh |21,� + T2 = −T1

≤ 2pλ
(
(|ui+1

h |2p−1 + |uih |2p−1), |ui+1
h − uih | |ui+1

h | |ui+1
h − uh |

)

≤ 2pλ||ui+1
h − uih ||0,� ||(|ui+1

h |2p−1 + |uih |2p−1)||L8(�) ||ui+1
h ||L8(�) ||ui+1

h − uh ||L4(�)

≤ 4pλS2S4S8S
2p−1
8(2p−1)|| f ||2p−1,�|ui+1

h − uih |1,�|ui+1
h − uh |1,�.

We denote by C = 4S2S4S8S
2p−1
8(2p−1)|| f ||2p−1,� and we use the Cauchy’s inequality ab ≤

1
2εa

2 + ε
2b

2 (with ε = 1
Cpλ ) to obtain the following bound

α

2
|ui+1

h − uh |21,� − α

2
|uih − uh |21,� + α

2
|ui+1

h − uih |21,�

+1

2
|ui+1

h − uh |21,� + T2 ≤ C2 p2λ2

2
|ui+1

h − uih |21,�.

We choose α > C2 p2λ2, denote by C1 = α−C2 p2λ2

2 and obtain

α

2
|ui+1

h − uh |21,� − α

2
|uih − uh |21,�

+C1|ui+1
h − uih |21,� + 1

2
|ui+1

h − uh |21,� + T2 ≤ 0. (3.11)

We derive that, for all i ≥ 1, we have

|ui+1
h − uh |1,� < |uih − uh |1,�,

we obtain the convergence of the sequence (ui+1
h − uh) in H1(�) and then the convergence

of uih in H1(�), by taking the limit of (3.11) we get

lim
i→+∞

(1
2
|ui+1

h − uh |21,� + T2
)

≤ 0.

As T2 ≥ 0, we deduce that |ui+1
h −uh |1,� converges to 0 and ui+1

h converges to uh in H1
0 (�).

�

123



J Sci Comput (2017) 71:329–347 337

Remark 3.7 The conditions (3.2) and (3.5) suppose that the initial values of the algorithms
are small related to the data f . We can always take u0h = 0.

Remark 3.8 The previous two theorems bring to light a first difference between the two
schemes (1.5) and (1.6): in opposite to (1.5), the convergence of (1.6) is proved when α is
larger than a constant independent of h (and does not require the uniform regularity of the
family of triangulations).

4 A Posteriori Error Analysis

We start this section by introducing some additional notationwhich is needed for constructing
and analyzing the error indicators in the sequel.
For any triangle K ∈ Th we denote by E(K ) and N (K ) the set of its edges and vertices,
respectively, and we set

Eh =
⋃

K∈Th

E(K ) and Nh =
⋃

K∈Th

N (K ).

With any edge e ∈ Eh we associate a unit vector n such that n is orthogonal to e. We split Eh
and Nh in the form

Eh = Eh,� ∪ Eh,∂� and Nh = Nh,� ∪ Nh,∂�

where Eh,∂� is the set of edges in Eh that lie on ∂� and Eh,� = Eh\Eh,∂�. The same goes for
Nh,∂�.
Furthermore, for K ∈ Th and e ∈ Eh , let hK and he be their diameter and length, respectively.
An important tool in the construction of an upper bound for the total error is Clément’s
interpolation operator Rh with values in Vh . The operator Rh satisfies, for all v ∈ H1

0 (�),
the following local approximation properties (see Verfürth [7], Chapter 1):

‖ v − Rhv ‖L2(K ) ≤ ChK |v|1,�K ,

‖ v − Rhv ‖L2(e) ≤ Ch1/2e |v|1,�e ,

where �K and �e are the following sets:

�K =
⋃ {

K ′ ∈ Th; K ′ ∩ K �= ∅
}

and �e =
⋃ {

K ′ ∈ Th; K ′ ∩ e �= ∅
}
.

We now recall the following properties (see Verfürth [7], Chapter 1):

Proposition 4.1 Let r be a positive integer. For all v ∈ Pr (K ), the following properties hold

C ‖ v ‖L2(K ) ≤ ‖ vψ
1/2
K ‖L2(K )≤‖ v ‖L2(K ) (4.1)

|v|1,K ≤ Ch−1
K ‖ v ‖L2(K ) . (4.2)

whereψK is the triangle-bubble function (equal to the product of the barycentric coordinates
associated with the vertices of K ).

We also introduce a lifting operator: For each K ∈ Th and any edge e of K , Le,K

maps polynomials of fixed degree on e vanishing on ∂e into polynomials on K vanishing
on ∂K\e and is constructed by affine transformation from a fixed lifting operator on the
reference triangle. For a positive integer r , we denote by Pr (e) the space of restrictions to e
of polynomial functions of degree ≤ r on R

2.
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Proposition 4.2 Let r be a positive integer. For all v ∈ Pr (e), we have the following property

C ‖ v ‖L2(e) ≤ ‖ vψ
1/2
e ‖L2(e)≤‖ v ‖L2(e), (4.3)

where ψe is the bubble function on the edge e, and for all v ∈ Pr (e) vanishing on ∂e, we
have

||Le,κv||L2(κ) + he|Le,κv|1,κ ≤ Ch1/2e ‖ v ‖L2(e), (4.4)

where κ is a triangle of edge e.

Finally, we denote by [vh] the jump of vh across the common edge e of two adjacent elements
K , K ′ ∈ Th . We have now provided all prerequisites to establish an upper bound and lower
bound for the total error. Let ui+1

h and u be the solution of the iterative problem (1.5) or (1.6)
and the continuous problem, respectively. They satisfy the identity

∫

�

∇(ui+1
h − u)∇vdx =

∫

�

∇ui+1
h ∇vdx + λ

∫

�

|u|2puvdx −
∫

�

f vdx. (4.5)

We now start the a posteriori analysis of our algorithms.

4.1 Algorithm (1.5)

In order to prove an upper bound of the error, we introduce an approximation fh of the data
f which is constant on each element K of Th . We first write the residual equation

∫

�

∇u∇vdx + λ

∫

�

|u|2puvdx −
∫

�

∇ui+1
h ∇vdx − λ

∫

�

|uih |2pui+1
h vdx

=
∫

�

( f − fh)(v − vh)dx +
∑

K∈Th

{∫

K
( fh + �ui+1

h − λ|uih |2pui+1
h

−α(ui+1
h − uih))(v − vh)dx

− 1

2

∑

e∈E(K )

∫

e
[∂u

i+1
h

∂n
](v − vh)dτ

}
+ α

∑

K∈Th

∫

K
(ui+1

h − uih)vdx. (4.6)

By adding and subtracting λ
∫
�

|ui+1
h |2pui+1

h vdx, we obtain

∫

�

∇u∇vdx + λ

∫

�

|u|2puvdx −
∫

�

∇ui+1
h ∇vdx − λ

∫

�

|ui+1
h |2pui+1

h vdx

=
∫

�

( f − fh)(v − vh)dx +
∑

K∈Th

{∫

K
( fh + �ui+1

h

− λ|uih |2pui+1
h − α(ui+1

h − uih))(v − vh)dx

− 1

2

∑

e∈E(K )

∫

e
[∂u

i+1
h

∂n
](v − vh)dτ

}

+ λ

∫

�

(|uih |2p − |ui+1
h |2p)ui+1

h vdx + α
∑

K∈Th

∫

K
(ui+1

h − uih)vdx. (4.7)
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We now define the local linearization indicator η
(L)
K ,i and the local discretization indicator

η
(D)
K ,i at each iteration i by:

η
(L)
K ,i = ||ui+1

h − uih ||1,K ,
(
η

(D)
K ,i

)2 = h2K ‖ fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih) ‖2L2(K )

+
∑

e∈E(K )

he ‖ [∂u
i+1
h

∂n
] ‖2L2(e) .

We are in a position to state the first result of this section:

Theorem 4.3 Upper bound. Let ui+1
h and u be the solution of the iterative problem (1.5) and

the exact problem (2.2) respectively. We have the following a posteriori error estimate

|ui+1
h − u|1,�

≤ C

⎛

⎜
⎝

⎛

⎝
∑

K∈Th

((
η

(D)
K ,i

)2 + h2K ‖ f − fh ‖2L2(K )

)
⎞

⎠

1/2

+
⎛

⎝
∑

K∈Th

(
η

(L)
K ,i

)2
⎞

⎠

1/2
⎞

⎟
⎠ .

Proof We consider Eq. (4.7) with v = u − ui+1
h and we obtain

∫

�

∇(u − ui+1
h )2dx + λ

∫

�

(|u|2pu − |ui+1
h |2pui+1

h )(u − ui+1
h )dx

=
∑

K∈Th

∫

K
( f − fh)(v − vh)dx +

∑

K∈Th

{∫

K
( fh + �ui+1

h − λ|uih |2pui+1
h

−α(ui+1
h − uih))(v − vh)dx

− 1

2

∑

e∈E(K )

∫

e
[∂u

i+1
h

∂n
](v − vh)dτ

}
+ λ

∫

�

(|uih |2p

− |ui+1
h |2p)ui+1

h vdx + α
∑

K∈Th

∫

K
(ui+1

h − uih)vdx. (4.8)

Then we have by using Lemmas 2.4 and 2.6

|u − ui+1
h |21,� ≤

∑

K∈Th

|| f − fh ||L2(K )||v − vh ||L2(K )

+
∑

K∈Th

(|| fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih)||L2(K )||v − vh ||L2(K )

+ 1

2

∑

e∈E(K )

||[∂u
i+1
h

∂n
]||L2(e)||v − vh ||L2(e)

+ λ

∫

�

2p
∣∣uih − ui+1

h |(|uih |2p−1 + |ui+1
h |2p−1)|ui+1

h ||v|dx

+α
∑

K∈Th

||ui+1
h − uih ||L2(K )||v||L2(K )
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We choose vh = Rhv, the image of v by the Clément operator and we obtain

|u − ui+1
h |21,� ≤ C

∑

K∈Th

hK || f − fh ||L2(K )|v|1,�K

+
∑

K∈Th

(ChK || fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih)||L2(K )|v|1,�K

+ C

2

∑

e∈E(K )

h
1
2
e ||[∂u

i+1
h

∂n
]||L2(e)|v|1,�e )

+ λ

∫

�

2p
∣
∣uih − ui+1

h |(|uih |2p−1 + |ui+1
h |2p−1)|ui+1

h ||v|dx

+α
∑

K∈Th

||ui+1
h − uih ||L2(K )||v||L2(K )

We begin by bounding the second term of the right-hand side of the last inequality and we
obtain by using Theorem 3.3

λ

∫

�

2p
∣∣uih − ui+1

h |(|uih |2p−1 + |ui+1
h |2p−1)|ui+1

h ||v|dx
≤ 2λp|| |uih |2p−1 + |ui+1

h |2p−1||L8(�)

∣∣|uih − ui+1
h ||L8(�)||ui+1

h ||L4(�)||v||L2(�)

≤ 2λpS2S4S8
(|| |uih |2p−1||L8(�) + || |ui+1

h |2p−1||L8(�)

)|uih − ui+1
h |1,�|ui+1

h |1,�|v|1,�
≤ 2λpS2S4S8S

2p−1
8(2p−1)(|uih |2p−1

1,� + |ui+1
h |2p−1

1,� )
∣∣uih − ui+1

h |1,�|ui+1
h |1,�|v|1,�

≤ 4λp(1 + αS22 )
pS2S4S8S

2p−1
8(2p−1)|| f ||2p−1,�

∣∣uih − ui+1
h |1,�|v|1,�.

Let S = 4λp(1 + αS22 )
pS2S4S8S

2p−1
8(2p−1)|| f ||2p−1,�, then we have

|u − ui+1
h |21,� ≤ C

∑

K∈Th

hK || f − fh ||L2(K )|v|1,�K

+
∑

K∈Th

(ChK || fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih)||L2(K )|v|1,�K

+C

2

∑

e∈E(K )

h
1
2
e ||[∂u

i+1
h

∂n
]||L2(e)|v|1,�e )

+ S|uih − ui+1
h |1,�|v|1,� + α

∑

K∈Th

||ui+1
h − uih ||L2(K )||v||L2(K ).

By using the formula ab ≤ 1
2εa

2 + ε
2b

2, we obtain

|u − ui+1
h |21,� ≤ C1ε1

2

∑

K∈Th

h2K || f − fh ||2L2(K )
+ C1

2ε1

∑

K∈Th

|v|21,K

+ C2ε2

2

∑

K∈Th

h2K || fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih)||2L2(K )

+ C2

2ε2

∑

K∈Th

|v|21,K + C3ε3

4

∑

K∈Th

∑

E∈E(K )

hE ||[∂u
i+1
h

∂n
]||2L2(E)

+ C3

4ε3

∑

K∈Th

|v|21,K
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+ Sε4

2

∑

K∈Th

||uih − ui+1
h ||21,K + S

2ε4

∑

K∈Th

|v|21,K

+ αε5

2

∑

K∈Th

||ui+1
h − uih ||21,K + α

2ε5
||v||2L2(�)

We choose ε1 = 8C1, ε2 = 8C2, ε3 = 4C3, ε4 = 8S et ε5 = 8αS22 to obtain

|u − ui+1
h |21,� ≤ C

( ∑

K∈Th

h2K || f − fh ||2L2(K )
+

∑

K∈Th

∑

e∈E(K )

he||[∂u
i+1
h

∂n
]||2L2(e)

+
∑

K∈Th

h2K || fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih)||2L2(K )

+
∑

K∈Th

||uih − ui+1
h ||21,K +

∑

K∈Th

||ui+1
h − uih ||21,K

)
+ 5

16
|v|21,�,

and then

|ui+1
h − u|1,� ≤ C((

∑

K∈Th

(
(
η

(D)
K ,i

)2 + h2K || f − fh ||2L2(K )
))

1
2 + (

∑

K∈Th

(
η

(L)
K ,i

)2
)
1
2 ).

We conclude the proof of the theorem.
We address now the efficiency of the previous indicators. �

Theorem 4.4 Lower bound. For each K ∈ Th, there holds

η
(L)
K ,i ≤ ‖ uih − u ‖1,K + ‖ ui+1

h − u ‖1,K ,

η
(D)
K ,i ≤ C

∑

κ⊂ωK

(||u − ui+1
h ||1,κ + η

(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K .

Proof The estimation of the linearization indicator follows easily from the triangle inequality
by introducing u in η

(L)
K ,i . We now estimate the discretization indicator η

(D)
K ,i . We proceed in

two steps:
(i) We start by adding and subtracting λ

∫
�

|ui+1
h |2pui+1

h vdx in (4.6). Taking vh = 0, we
derive

∑

K∈Th

∫

K
( fh + �ui+1

h − λ|uih |2pui+1
h − α(ui+1

h − uih))vdx

=
∫

�

∇(u − ui+1
h )∇vdx −

∑

K∈Th

∫

K
( f − fh)vdx

+ 1

2

∑

K∈Th

∑

e∈E(K )

∫

e
[∂u

i+1
h

∂n
]vdτ + λ

∫

�

(|u|2pu − |ui+1
h |2pui+1

h )vdx

+ λ

∫

�

ui+1
h (|ui+1

h |2p − |uih |2p)vdx − α
∑

K∈Th

∫

K
(ui+1

h − uih)vdx. (4.9)
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We choose v = vK such that

vK =
{

( fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih))ψK in K

0 in �\K
where ψK is the triangle-bubble function.
Using Cauchy–Schwarz inequality, (2.1), (4.1) and (4.2) we obtain

‖ fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih) ‖2L2(K )

≤ (1 + λC ‖ f ‖2p−1,�) ‖ u − ui+1
h ‖1,K |vK |1,K+ ‖ f − fh ‖L2(K )‖ vK ‖L2(K )

+ λC ‖ uih − ui+1
h ‖1,K |vK |1,K + α||ui+1

h − uih ||L2(K )||vK ||L2(K ).

Therefore, we derive the following estimate of the first term of the local discretization esti-
mator η

(D)
K ,i

hK ‖ fh + �ui+1
h − λ|uih |2pui+1

h − α(ui+1
h − uih) ‖L2(K )

≤ C(‖ u − ui+1
h ‖1,K +hK ‖ f − fh ‖L2(K )) + C ′η(L)

K ,i . (4.10)

(ii) Now we estimate the second term of η
(D)
K ,i . Similarly, using (4.9) we infer

1

2

∑

K∈Th

∑

e∈E(K )

∫

e
[∂u

i+1
h

∂n
]v dτ =

∫

�

∇(ui+1
h − u)∇vdx

+
∑

K∈Th

∫

K
( fh + �ui+1

h − λ|uih |2pui+1
h − α(ui+1

h − uih))vdx +
∫

�

( f − fh)vdx

− λ

∫

�

(|ui+1
h |2pui+1

h − |uih |2pui+1
h )vdx − λ

∫

�

(|u|2pu − |ui+1
h |2pui+1

h )vdx

+α
∑

K∈Th

∫

K
(ui+1

h − uih)vdx. (4.11)

We choose v = ve such that

ve =
⎧
⎨

⎩
Le,κ

([
∂ui+1

h
∂n

]
ψe

)
κ ∈ {K , K ′}

0 in �\(K ∪ K ′)

where ψe is the edge-bubble function, K ′ denotes the other element of Th that share e with
K (the operator Le,K was introduced above Proposition 4.2).
Using Cauchy–Schwarz inequality, (2.1), (4.3) and (4.4) we derive

h1/2e ‖ [∂ui+1
h

∂n

] ‖2L2(e) ≤ (1 + λC ‖ f ‖2p−1,�) ‖ u − ui+1
h ‖1,K∪K ′ ‖ ve ‖L2(e)

+ he ‖ f − fh ‖L2(K∪K ′)‖ ve ‖L2(e) +he ‖ fh + �ui+1
h

− λ|uih |2pui+1
h − α(ui+1

h − uih) ‖L2(K∪K ′)‖ ve ‖L2(e)

+C ′(eta(L)
K ,ı + η

(L)

K ′,i )||ve||L2(e). (4.12)
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Collecting the two bounds above leads to the following estimation

η
(D)
K ,i ≤ C

∑

κ⊂ωK

(||u − ui+1
h ||1,κ + η

(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)

These estimates of the local linearization and discretization indicators are fully optimal. �
4.2 Algorithm (1.6)

The same calculation is followed as before but in (4.6) and (4.7)we haveα
∑

K∈Th

∫
K ∇(ui+1

h

−uih)∇v instead ofα
∑

K∈Th

∫
K (ui+1

h −uih)v.We are led to define themodified discretization

error indicator η̄
(D)
K ,i by

(
η̄

(D)
K ,i )

2 = h2K || fh + �ui+1
h − λ|uih |2pui+1

h + α�(ui+1
h − uih)||2L2(K )

+
∑

e∈E(K )

he||[∂u
i+1
h

∂n
− α

∂(ui+1
h − uih)

∂n
]||2L2(e).

The rest of the calculation is similar. We skip the proofs since they are exactly the same as
for Theorems 4.3 and 4.4.

Theorem 4.5 Upper bound. Let ui+1
h and u be the solution of the iterative problem (1.6) and

the exact problem (2.2) respectively. We have the following a posteriori error estimate

|ui+1
h − u|1,�

≤ C

⎛

⎜
⎝

⎛

⎝
∑

K∈Th

((
η̄

(D)
K ,i

)2 + h2K ‖ f − fh ‖2L2(K )

)⎞

⎠

1/2

+
⎛

⎝
∑

K∈Th

(
η

(L)
K ,i

)2
⎞

⎠

1/2
⎞

⎟
⎠ .

Theorem 4.6 Lower bound. For each K ∈ Th, there holds

η
(L)
K ,i ≤ ‖ uih − u ‖1,K + ‖ ui+1

h − u ‖1,K ,

η̄
(D)
K ,i ≤ C

∑

κ⊂ωK

(||u − ui+1
h ||1,κ + η

(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K .

5 Numerical Results

In this section, we present numerical experiments for our nonlinear problem. These simula-
tions have been performed using the code FreeFem++ due to Hecht and Pironneau [6]. For
all the numerical investigations and for simplicity, we use the finite element of degree � = 1.

5.1 A Priori Estimation

We consider the domain � =] − 1, 1[2, each edge is divided into N equal segments so that
� is divided into N 2 equal squares and finally into 2N 2 equal triangles . We consider the
exact solution u = e−5(x2+y2) where f = −�u + λ|u|2pu.
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Table 1 Convergence of algorithms (1.5) and (1.6) with respect of α

α 0.01 0.5 0.76 0.77 1 10

Algo (1.5) Div Div Div Div Div Div

Algo (1.6) Div Div Div 0.0581902 0.0581908 0.0581905

α 20 21.81 21.82 22 50 100

Algo (1.5) Div Div 0.0581906 0.0581904 0.0581897 0.0581886

Algo (1.6) 0.0581906 0.0581907 0.0581907 0.0581907 0.0581919 0.0581973

Table 2 Comparison of the convergence of algorithms (1.5), (1.6) (for α = 22) with (1.4)

λ = 1 λ = 2 λ = 5 λ = 5 λ = 10
p = 1 p = 10 p = 10 p = 50 p = 10

Algo (1.4) 0.0581392 0.0580725 Div Div Div

Algo (1.5) 0.0580467 0.058072 0.0581392 0.0581284 0.0582106

Algo (1.6) 0.0580458 0.0580717 0.0581399 0.0581292 0.0582111

λ = 10 λ = 10 λ = 50 λ = 100 λ = 100

p = 50 p = 100 p = 50 p = 50 p = 100

Algo (1.4) Div Div Div Div Div

Algo (1.5) 0.0581904 0.0581759 Div Div Div

Algo (1.6) 0.0581907 0.0581764 0.0582894 0.0583124 0.0582956

For the convergence, we use the classical stopping criterion errL ≤ 10−5, where errL is
defined by

errL = |ui+1
h − uih |1,�
|ui+1

h |1,�
.

We consider λ = 10, p = 50 and N = 50. Table 1 shows the error

Err = |uih − u|1,�
|u|1,� ,

which describes the convergence of the algorithms (1.5) and (1.6) with respect of α. We
remark that the algorithm (1.5) converges for α ≥ 21.82 and the algorithm (1.6) converges
for α ≥ 0.77.

In order to compare our algorithms (1.5) and (1.6) with (1.4), Table 2 shows the conver-
gence for N = 50 and a fixed α = 22 in our algorithms. In fact, for big values of λ and
p, the algorithm (1.4) diverges. We mention that for λ and p where (1.5) and (1.6) diverge,
we must take a bigger values of α to obtain the convergence. Figure 1 shows in logarithmic
scale the error Err with respect to h (algorithm 1.5 in the left and algorithm 1.6 in the right).
The slope of the error corresponding to (1.5) and (1.6) are respectively 0.92 and 0.96, which
validates Theorem 3.2.
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Fig. 1 A priori error with respect of h = 1/N : left (algo 1.5) and right (algo 1.6)

5.2 A Posteriori Analysis

In this section, we test our a posteriori error estimates on our model problem. We consider
the same domain � with the theoretical solution now given by u = e−100(x2+y2). and we
choose λ = 10 and p = 50.
In [2] and for the adaptive strategy, we define the global indicators (introduced in [5]):

η
(D)
i =

⎛

⎝
∑

K∈Th

(
η

(D)
K ,i

)2
⎞

⎠

1/2

and η
(L)
i =

⎛

⎝
∑

K∈Th

(
η

(L)
K ,i

)2
⎞

⎠

1/2

,

and we introduce two kinds of stopping criteria:

η
(L)
i ≤ 10−5 Classical stopping criterion , (5.1)

and

η
(L)
i ≤ γ η

(D)
i New stopping criterion , (5.2)

where γ is a parameter which balances the discretization and linearization errors. We studied
in [2] the comparison between these two types of stopping criterion and we showed the
efficiency of the new one which is considered in this paper with γ = 0.001.

For our numerical investigations, we follow the algorithm described in [2]. The evolution
of the meshes with the new stopping criterion looks like the figures 3 and 4 in [2]. We note
that for λ = 10 and p = 50, the algorithm (1.4) diverges.

Figure 2 gives a comparison in logarithmic scale of the error between the uniform and
adaptive methods using the algorithms (1.5) and (1.6) with respect of the number of vertices.
We can easily see that the algorithms (1.5) and (1.6) give comparable results but the adaptive
method is more powerful than the uniform one.

Figure 3 shows the dependencies of the algorithms (1.5) and (1.6) with respect of γ in
logarithmic scale. We remark that for the algorithm (1.5), the curves are similar for γ ≥ 0.1
and we have approximately the same precision but it is much sensible with the variation of
γ for the algorithm (1.6).
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Fig. 2 Error versus number of vertices in logarithmic scale for adaptive and uniformmethods with algorithms
(1.5) and (1.6)

Fig. 3 Error versus number of vertices in logarithmic scale for adaptivemethodwith respect ofγ : left (algo 1.5)
and right (algo 1.6)

Table 3 Comparison of the precision and the CPU time between the algorithm (1.5) and (1.6) with respect
of α

α 22 30 40 50

Algo (1.5) Time = 5.186 s Time = 4.952 s Time = 5.505 s Time = 5.51 s

Error = 0.0487858 Error = 0.0484306 Error = 0.048256 Error = 0.0478781

Algo (1.6) Time = 56.625 s Time = 59.499 s Time = 66.231 s Time = 61.268 s

Error = 0.0475732 Error = 0.0486143 Error = 0.0469877 Error = 0.0494427

Table 3 shows comparisons, for approximatively the same precision, of the CPU time
between the algorithm (1.5) and (1.6) with respect of α. We remark that algorithm (1.5) is
faster than (1.6).
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Table 4 Repartition of errors and indicators during the refinement levels (Itn): Left [algorithm (1.5)] and
right [algorithm (1.6)]

Itn Err errI C = errI
Err Itn Err errI C = errI

Err

1 0.426417 1.31249 3.07796 1 0.443195 1.29673 2.92587

2 0.169927 0.524469 3.08644 2 0.175596 0.536429 3.05491

3 0.138091 0.372655 2.69862 3 0.143715 0.38263 2.66242

4 0.093948 0.278664 2.96615 4 0.0959932 0.290036 3.02142

5 0.0806374 0.222064 2.75386 5 0.0848493 0.229053 2.69953

6 0.063787 0.186245 2.91979 6 0.0643159 0.191061 2.97066

7 0.0583991 0.160167 2.74262 7 0.0577646 0.157273 2.72265

8 0.049479 0.14235 2.87698 8 0.0474228 0.137726 2.90422

In order to have an idea of the constant on the upper bound in Theorem 4.3, Table 4 shows
the repartition of the error Err and the sum of the indicators

errI = ((η
(D)
i )2 + (η

(L)
i )2)1/2

|u|1,� � η
(D)
i

|u|1,� ,

during the refinement level and after the convergence on each one. Even if the errors regu-
larly decrease (for instance from 1 to 0.14 for errI ) with respect to the number of adaptive
refinement levels which is consistent with adapted mesh method, the constant remains stable
and can be approximated by 2.85.
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