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Abstract In this paper, a fully non-conforming least-squares spectral element method for
fourth order elliptic problems on smooth domains is presented. The proposed method works
for a general fourth order elliptic operator with non-homogeneous data in two dimensions
and gives exponentially accurate solutions. We derive differentiability estimates and prove
our main stability estimate theorem using a non-conforming spectral element method. We
then formulate a numerical scheme using a block diagonal preconditioner. Error estimates
are also proven for the proposed method. We provide the computational complexity of our
method and present results of numerical simulations that have been performed to validate
the theory.
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1 Introduction

The h–p version of the finite element method (FEM) for elliptic problems was proposed
in the mid-80’s by Babuška et al. [3,4] for solving problems in structural mechanics. The
h–p version simultaneously refines the mesh and increases the polynomial degree achieve
optimal convergence.Theh–pversionof spectral elementmethod (SEM)as compared toFEM
employ polynomials of higher degree in order to recover the so called spectral/exponential
convergence. It is well established that SEM deliver exponential convergence for elliptic
problems with smooth solutions and have been successfully implemented to many practical
problems [24,30]. In this paper we describe an efficient and exponentially accurate least-
squares spectral element method for fourth order elliptic problems on smooth domains. Such
problems include examples of the classical plate bending problem in the theory of elasticity.
This type of boundary value problems arise in structural mechanics, materials science and
fluid flow.

Several methods have been proposed and analyzed both theoretically and computation-
ally for fourth order elliptic problems in [7,9,13,28,34–36,39–42,44] (and references cited
therein) and have been shown to be very effective. In [9], Ben-Artzi et al. presented a fast
direct solver for the Dirichlet biharmonic problem in a rectangle based on the capacitance
matrix method of [13,14]. The resulting linear system is solvable in O(N 2 log N ), where N
is the number of grid points in each direction. Bernardi et al. [7] presented some spectral
approximations of two-dimensional fourth-order problems. Preconditioning of thin solids in
structural mechanical problems was analyzed in [28] using p−version FEM. It is shown that
the method performs well for modelling many real world problems such as skin of an aircraft,
laminated fibre plate, microstructure of composite materials etc. These preconditioners are
constructed using classical additive Schwarz method which is essentially a generalization of
the block Jacobi method to allow for overlapping of the blocks.

In [34], Shen proposed an efficient spectral-Galerkin method for the second and fourth
order equations using Legendre polynomials. The two books by Shen and coworkers [35,36]
deal with many important practical aspects of computations using spectral methods and
present the recent research in the subject. Zhang et al. [41] developed nearly optimal solvers
for the linear algebraic systems for fourth order problems on arbitrary polygonal domains
that are partitioned by unstructured grids in the framework of finite element methods. They
proved that such a system can be solved in O(N log N ) operations on an unstructured grid of
size N . We refer to the work by Meleshko [29] for a comprehensive history and summary of
results available for the biharmonic problem in two dimensions. Recently, Yu et al. [39,40]
proposed spectral element method for mixed inhomogeneous boundary value problems of
fourth order and also discussed spectral method for fourth-order problems on quadrilaterals.

The least-squares methods are well suited for the numerical solution of partial differential
equations. However, the convergence of the least-squares approach in solving biharmonic
problems depends on the convergence of fourth order derivatives which is an essential disad-
vantage in comparison with the conventional Galerkin or weak formulation approach, where
only the convergence of the second order derivatives is required for solving biharmonic
problems. Secondly, the resulting coefficient matrices are essentially more ill-conditioned
as compared to the Galerkin methods. This can be easily circumvented by properly selected
preconditioners. On the other hand, the least-squares methods give rise to symmetric, pos-
itive definite matrices and does not require numerical integration. Moreover, least-squares
approach can be used for solving problems on complicated geometries.

The least squares spectral element method (LSQ-SEM) is a very promising numerical
method developed by Proot et al. [32], and Potanza et al. [31] which combine the least
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squares formulation with the spectral element approximation. LSQ-SEM combines the gen-
erality of finite element methods, the accuracy of the spectral methods and the theoretical
and computational advantages of the algorithmic design and implementation into a general
mathematical framework. LSQ-SEMhas been successfully applied to many interesting prob-
lems (see [18–21,25,31,32,37,38,43]). However, their implementation to the fourth order
problems has been limited so far.

In [18–20,37,38], an exponentially accurate h–p spectral element method was proposed
for two dimensional elliptic problems on non-smooth domains using parallel computers.
The key ingredients were use of auxiliary mappings and geometrical mesh near corners,
proposed originally by Babuška et al. [3,4]. The analysis of LSQ-SEM for Stokes andNavier-
Stokes is given in [31,32]. Recently, an exponentially accurate nonconforming LSQ-SEM
for elliptic problems on unbounded domain is presented in [25]. LSQ-SEM solution of the
gas-liquid multi-fluid model coupled with the population balance equation is discussed in
[43]. A discrete weighted least-squares method for the Poisson and biharmonic problems
on circular and annular domains was presented by Zitnan [44] having smooth solutions.
The resulting matrices were preconditioned using algebraic polynomials, suitably chosen
collocation (matching) points and weight factors. However, the method is not suitable for
problems on irregular domains. For a complete survey of spectral element methods and their
applications to elliptic boundary value problems we refer to the monograph by Karniadakis
et al. [24] which summarizes the recent developments in the subject.

We choose as our solution the spectral element function which minimizes the sum of a
squared norm of the residuals in the partial differential equations and the squared norm of the
residuals in the boundary conditions in fractional order Sobolev spaces and enforce continuity
by adding a term which measures the jump in the function and its derivatives at inter-element
boundaries in fractional Sobolev norms, to the functional being minimized. The method we
shall describe is a least-squares collocation method and to obtain our approximate solution
we solve the normal equations using preconditioned conjugate gradient method (PCGM).
The residuals in the normal equations can be obtained without computing and storing mass
and stiffness matrices [37,38]. A preconditioner is defined for the method which is a block
diagonal matrix, where each diagonal block corresponds to an element. It is shown in [23]
that there exists a new preconditioner which is a diagonal matrix on each element.

We remark here that after obtaining our approximate solution at the Gauss-Lobatto-
Legendre points consisting of non-conforming spectral element functions we can make a
correction to it so that the corrected solution is conforming and is an exponentially accurate
approximation to the true solution in the H2 norm over the whole domain. These corrections
are similar to those for second order elliptic problems described in [33,38]. However, our
computational results do not include these corrections. We also emphasize that for simplicity
we consider only curvilinear domains although our results have a more general character.
The method works for non self-adjoint problems too. Computational results for a non self-
adjoint problemwith variable coefficients are provided. Throughout this paper,�will denote
a curvilinear domain in R

2 and (x1, x2) will denote the standard Cartesian coordinates. We
shall also denote the Cartesian coordinates by (x, y).

The organization of this paper is as follows. In Sect. 2, we introduce the problem under
consideration. In Sect. 3, we drive differentiability estimates, define the spectral element
functions and prove the stability estimate which is the main result of this paper. Numerical
scheme and error estimates are provided in Sects. 4 and 5 respectively. Sections 6 is dedicated
to computational results for various test problems on with analytic solutions. Concluding
remarks and some outlines for future work are provided in Sect. 7.
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2 Preliminaries

Let� denote a curvilinear domain inR2 with smooth boundary.We shall denote the boundary
of � by ∂�. Consider the fourth order elliptic problem with non-homogeneous Dirichlet
boundary conditions

Lw = �2 w = f in �, (2.1a)

w = � on ∂�, (2.1b)

∂w

∂ν
= � on ∂�. (2.1c)

Here, ν denotes the outward unit normal vector to the boundary ∂�. The data f is analytic on
�̄ and�,� are analytic on ∂�. The problem (2.1) describes the vibration of a homogeneous
non-clamped isotropic plate with constant thickness. The thickness is assumed to be much
smaller that the other two dimensions of the plate.

We need to review a set of function spaces. Letw(x1, x2) be a smooth function. By Hm(�),
we denote the usual Sobolev space of integer order m ≥ 0 furnished with the norm

||w||2Hm (�) =
∑

|α|≤m

||∂αw||2L2(�)
=

∫ ∫

�

∑

|α|≤m

|∂αw|2dx1dx2,

where α = (α1, α2), |α| = α1 + α2, ∂
αw = ∂

α1
x1 ∂

α2
x2 w = wx

α1
1 x

α2
2

is the distributional (weak)

derivative of w. As usual H0(�) = L2(�), and

H2
0 (�) =

{
w ∈ L2(�) : ∂w, ∂2w ∈ L2(�) such that w = 0,

∂w

∂ν
= 0 on ∂�

}
.

A seminorm on Hm(�) is given by

|w|2Hm (�) =
∑

|α|=m

||∂αw||2L2(�)
.

Further, let

||w||2Hs (I ) =
∫

I
w2dx +

∫

I

∫

I

|w(x) − w(x ′)|2
|x − x ′|1+2s dxdx ′

denote the fractional Sobolev norm of order s, where 0 < s < 1. Here, I denotes an interval
contained in R.

We now cite a special case of important regularity result Theorem (7.2.2.3) of Gris-
vard [22].

Theorem 2.1 (Smooth regularity) Let w ∈ H2(�) be a solution of

�2 w = f in �,

w = � on ∂�,

∂w

∂ν
= � on ∂�.

with f ∈ Hk(�), � ∈ Hk+7/2(∂�) and � ∈ Hk+5/2(∂�), k ≥ −1. Then w ∈ Hk+4(�).

Using this it follows that if f ∈ L2(�),� ∈ H
7
2 (∂�) and � ∈ H

5
2 (∂�), then the solution

w of (2.1) belongs to H4(�).
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Theorem 2.2 (Analytic regularity) For a curvilinear domain � with analytic boundary ∂�,
if the given data f,� and � are analytic then this implies analyticity of w and the following
differentiability estimate

∫

�

∑

|α|≤m

∣∣ ∂α
x w(x)

∣∣2 dx ≤ C (dm m!)2 (2.2)

holds for all integers m ≥ 1. Here, C and d denote positive constants.

Proof Since the solution w(x) is analytic in an open neighbourhood of �̄. Hence, (2.2)
follows. ��

3 Stability Estimates

First we divide the domain� into a set of N quadrilaterals�1,�2, . . . , �N with smooth sides
as shown in Fig. 1. Thus, the boundary ∂� of � is divided into analytic arcs γ̄l , 1 ≤ l ≤ N
i.e. ∂� =

⋃

l∈I
γ̄l , where I = {1, 2, . . . , N }. We shall assume that the data f is analytic on �̄

and�,� are analytic on every closed arc γ̄l and continuous on ∂�. Each of the quadrilaterals
{�l}l=1,2,...,N is mapped onto the master square S = (−1, 1) × (−1, 1) by a set of analytic
maps {M−1

l }l=1,2,...,N , where Ml is from S to �l . The map Ml is of the form

x1 = Xl(ξ, η), x2 = Y l(ξ, η)

with Xl and Y l being analytic functions on S. Thus, Ml = (Xl , Y l). Let W denote an upper
bound on the degree of the approximating polynomial.We shall assume that N is proportional
toW . A set of non-conforming spectral element functions which are a sum of tensor products
of polynomials in their respective coordinates are defined on the elements in �. Let �l be
one of the elements into which � is divided. We now define the spectral element function ul
on �l by

ul(ξ, η) =
W∑

i=0

W∑

j=0

αi, j ξ iη j .

Fig. 1 The domain � and its
division into �1,�2, . . . , �N

Ω3
Ω2ΩN

Ω1
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Let {Fu} denote the spectral element representation of the function u and SN ,W (�) denote
the space of spectral element functions Fu over the whole domain �. To state our main
stability theorem we shall define two quadratic forms VN ,W ({Fu}) and UN ,W ({Fu}).

Let [u]|γl,i denote the jump in u across the side γl,i . Let the side γl,i = γm, j , where γm, j

is one of the sides of the element �m . We assume that the side γl,i corresponds to ξ = 1
and γm, j corresponds to ξ = −1. Then, [u]|γl,i is a function of η only. Let Jl(ξ, η) is the
Jacobian of the mapping Ml from S to �l and letLl ul(ξ, η) = Lul(Ml(ξ, η))

√
Jl . Now we

have to approximate

|Lul |20,�l
=

∫

�l

∫
(Lul)2dxdy.

Hence,
∫

�l

∫
(Lul)2dxdy =

∫

S

∫
(Ll ul)

2dξdη. (3.1)

Let (Ll)
a denotes a differential operator which is an approximation to Ll in which the

coefficients of Ll are replaced by polynomial approximation. Then it is easy to prove that
for W large enough

N∑

l=l

∫

�l

∫
(Lul)2dxdy =

N∑

l=l

∫

S

∫
(Ll ul)

2dξdη =
N∑

l=l

||Llul − (Ll)
aul + (Ll)

aul ||20,S,

≤ C

(
N∑

l=l

||(Ll)
aul ||20,S +

N∑

l=l

||Llul − (Ll)
aul ||20,S

)
,

≤ C
N∑

l=l

∫

S

∫
((Ll)

aul)
2dξdη + εW

N∑

l=l

||ul ||24,S . (3.2)

Here, C is a constant and εW → 0 as W → ∞. In fact the rate of the convergence of
εW → 0 decays exponentially in W (the rest of the proof is given in Sect. 5). We now define
the quadratic form

VN ,W ({Fu}) =
N∑

l=1

∫

�l

|Lul(x, y)|2dxdy

+
∑

γl,i⊆�\∂�

⎛

⎝||[u]||20,γl,i +
∑

1≤|α|≤2

||[(∂αu)]||20,γl,i +
∑

|α|=3

||[(∂αu)]||21/2,γl,i

⎞

⎠

+
∑

γs⊆∂�

(
||ul ||27/2,γs +

∣∣∣∣

∣∣∣∣
∂ul
∂ν

∣∣∣∣

∣∣∣∣
2

5/2,γs

)
. (3.3)

The fractional Sobolev norms used above are as defined in [22].
Since γl,i , corresponding to ξ = 1, is the image of the interval I = (−1, 1), in η coordi-

nates

‖w‖2σ,γl,i
= ‖w‖20,I +

∫

I

∫

I

(
w(η) − w(η′)

)2

(η − η′)1+2σ dη dη′ (3.4)
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for 0 < σ < 1. Moreover,

‖w‖21+σ,γl,i
= ‖w‖20,I +

∥∥∥∥
∂w

∂η

∥∥∥∥
2

σ,I
. (3.5)

Next, we define the quadratic form

UN ,W ({Fu}) =
N∑

l=1

∫

S=(Ml )
−1(�l )

∑

0≤|α|≤4

∣∣ ∂αul
∣∣2 dξdη . (3.6)

We now state our main stability estimate theorem.

Theorem 3.1 Consider the fourth order elliptic boundary value problem (2.1). Then

UN ,W ({Fu}) ≤ C(lnW )4VN ,W ({Fu}).
At the same time there exists a constant K (using trace theorems) such that

1

K
VN ,W ({Fu}) ≤ UN ,W ({Fu}) ≤ C(lnW )4VN ,W ({Fu}).

Proof By Lemma 3.2, there exists {Fv} such that w = u + v ∈ H4(�). Using Minkowski’s
inequality, we can write the following estimate

N∑

l=1

||ul ||24,S ≤ C

(
N∑

l=1

||ul + vl ||24,S +
N∑

l=1

||vl ||24,S
)

. (3.7)

Hence, by regularity result stated in Theorem 2.1, the estimate

N∑

l=1

||ul ||24,S ≤C

(
N∑

l=1

||Lul ||24,�l
+ ||w||27

2 ,∂�
+

∣∣∣∣

∣∣∣∣
∂w

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,∂�

+
N∑

l=1

||vl ||24,�l

)
(3.8)

holds.
Inserting the results from Lemma 3.1 and 3.2 in Eq. (3.8), the desired result follows. ��

3.1 Technical Results

Lemma 3.1 Let {Fu} ∈ SN ,W (�). Then there exists {Fv} such that vl ∈ H4(S), for l =
1, 2, . . . , N and u + v ∈ H4(�). Moreover, the estimate

N∑

l=1

||vl ||24,S

≤ C(lnW )4
∑

γl,i⊆�\∂�

⎛

⎝||[u]||20,γl,i +
∑

1≤|α|≤2

||[(∂αu)]||20,γl,i +
∑

|α|=3

||[(∂αu)]||21/2,γl,i

⎞

⎠

+ εW

N∑

l=1

||ul(ξ, η)||24,S

holds. Here, εW is exponentially small in W.

Proof Proof of Lemma 3.1 is very similar to the proof of Lemma 7.1 of [18] and we omit
the details. ��
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Lemma 3.2 Letw = u+v ∈ H4(�). Here, {Fu} ∈ SN ,W (�) and {{vl(ξ, η)}l} is as defined
in Lemma 3.1. Then the estimate

||w||27
2 ,∂�

+
∣∣∣∣

∣∣∣∣
∂w

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,∂�

≤ C(lnW )4

⎛

⎝
∑

γs⊆∂�

(
||u|| 7

2 ,γs
+

∣∣∣∣

∣∣∣∣
∂u

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,γs

)

+
∑

γl,i⊆�\∂�

⎛

⎝||[u]||20,γl,i +
∑

1≤|α|≤2

||[(∂αu)]||20,γl,i +
∑

|α|=3

||[(∂αu)]||21/2,γl,i

⎞

⎠

⎞

⎠

+ εW

N∑

l=1

||ul(ξ, η)||24,S .

holds. Here, εW is exponentially small in W.

Proof By the Lemma 3.1, there exists {Fv} such that vl ∈ H4(S), for l = 1, 2, . . . , N and
u + v ∈ H4(�). Using Minkowski’s inequality, the following estimate

||w||27
2 ,∂�

+
∣∣∣∣

∣∣∣∣
∂w

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,∂�

≤ C
∑

γs⊆∂�

(
||u + v|| 7

2 ,γs
+

∣∣∣∣

∣∣∣∣
∂u

∂ν
+ ∂v

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,γs

)

≤ C
∑

γs⊆∂�

(
||u|| 7

2 ,γs
+

∣∣∣∣

∣∣∣∣
∂u

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,γs

+ ||v|| 7
2 ,γs

+
∣∣∣∣

∣∣∣∣
∂v

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,γs

)
.

(3.9)

holds.
Applying trace theorem, we obtain

||w||27
2 ,∂�

+
∣∣∣∣

∣∣∣∣
∂w

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,∂�

≤ C

⎛

⎝
∑

γs⊆∂�

(
||u|| 7

2 ,γs
+

∣∣∣∣

∣∣∣∣
∂u

∂ν

∣∣∣∣

∣∣∣∣
2

5
2 ,γs

)
+

N∑

l=1

||vl ||24,S
⎞

⎠ . (3.10)

Using the result from Lemma 3.1 in Eq. (3.10), we get the final result. ��

4 Numerical Scheme

Let fl = f (Xl(ξ, η), Y l(ξ, η)), for 1 ≤ l ≤ N . Let f̃l(ξ, η) denote the polynomial of
degree 2W − 1 in ξ and η which is the orthogonal projection of fl(ξ, η) into the space
of polynomials of degree 2W − 1 with respect to the usual inner product on H4(S). Let
γl,i = γi ∩ ∂�l be the image of ξ = −1 under the mapping Ml : S → �l . Let
�(Xl(−1, η), Y l(−1, η)) = �l(η) and let �̃l(η) denote the orthogonal projection of �l(η)

into the space of polynomials of degree 2W − 1 in η with respect to the usual inner product
in H4(−1, 1). Let �(Xl(−1, η), Y l(−1, η)) = �l(η) and let �̃l(η) denote the orthogonal
projection of �l(η) into the space of polynomials of degree 2W − 1 in η with respect to the
usual inner product in H4(−1, 1). Let Jl denote the Jacobian of the mapping Ml as before.
Define

F̃l(ξ, η) = f̃l(ξ, η)
√
Jl and Ll ul(ξ, η) = Lul(Ml(ξ, η))

√
Jl .
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We now define the least-squares functional

RN ,W ({Fu}) =
N∑

l=1

||(Ll)
aul − F̃l ||20,S

+
∑

γl,i⊆�\∂�

⎛

⎝||[u]||20,γl,i +
∑

1≤|α|≤2

||[(∂αu)a]||20,γl,i +
∑

|α|=3

||[(∂αu)a]||21/2,γl,i

⎞

⎠

+
∑

γs⊆∂�

(
||ul − �̃l ||27/2,γs +

∣∣∣∣

∣∣∣∣

(
∂ul
∂ν

)a

− �̃l

∣∣∣∣

∣∣∣∣
2

5/2,γs

)
. (4.1)

Our numerical scheme may now be formulated as

Theorem 4.1 Find Fs ∈ SN ,W (�) which minimizes the functional RN ,W ({Fu}) over all
Fu ∈ SN ,W (�).

This functionalRN ,W ({Fu}) is closely related to quadratic form in the stability estimate in
Theorem 3.1. Using quadratures we can exactly evaluate the functionalRN ,W ({Fu}). Thus,
we find a solution which minimizes the sum of L2 norm of residuals in the partial differential
equation and fractional Sobolev norm of the residuals in the boundary conditions and enforce
continuity by a adding a term which measures the sum of the squares of the jumps in the
function and its derivatives at the inner-element boundaries in appropriates Sobolev norm.

Now

RN ,W (U + εV ) = RN ,W (U ) + 2εV t (SU − TG) + o(ε2)

for all V , where U is a vector assembled from the values of {(ul(ξ, η))}.
Similarly V is a vector assembled and G is assembled from the data. Here S and T denote

matrices. Thus we have to solve SU − TG = 0.
The method is essentially a least-squares method and the normal equations can be solved

using the preconditioned conjugate gradient method (PCGM). To be able to do so wemust be
able to compute the residuals in the Normal equation inexpensively. Let the normal equations
be

AT AU = AT G.

Thus at each iteration of the PCGM we have to compute the action of a matrix on a vector.
The feasibility of such a process depends on the ability to compute AT AU efficiently and
inexpensively for any vectorU . As in [18–20] it can be shown that AT AU can be computed
inexpensively without computing the mass and stiffness matrices.

However, in addition to this it is imperative that we should be able to construct an effective
preconditioner for the matrix AT A so that the condition number of the preconditioned system
is as small as possible. If this can be done then it will be possible to compute (AT A)−1G
efficiently using the PCGM for any vector G.

4.1 Parallelization and Preconditioning

This quadratic form VN ,W ({Fv}) is equivalent to the functionalRN ,W ({Fv}) with zero data.
Define a quadratic form U N ,W ({Fv}), where

U N ,W ({Fv}) =
N∑

l=1

||v̌l ||2H4(S)
. (4.2)
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Here, U N ,W ({Fv}) is the preconditioner for VN ,W ({Fv}). Now, we find the estimate of
condition number of the preconditioner U N ,W ({Fv}).

Using Theorem 3.1, the following result holds

1

C(logW )4
U N ,W ({Fv}) ≤ VN ,W ({Fv}) ≤ KU N ,W ({Fv}) , (4.3)

where K is a constant. From (4.3), we observe that the condition number of the preconditioned
system is O((logW )4). Now v̌l is defined in terms of Legendre polynomials in ξ and η. The
form of v̌l is

v̌l(ξ, η) =
W∑

i=0

W∑

j=0

ai, j Li (ξ)L j (η). (4.4)

The coefficients ai, j are arranged lexicographically in i and j . The detail of the computa-
tion of preconditioner is given in [17,23]. Each element is mapped to a single processor
for ease of parallelism. During the PCGM process, communication between neighbouring
processors is confined to the interchange of information consisting of the value of function
and its derivatives at inter-element boundaries. In addition we need to compute two global
scalars to update the approximate solution and the search direction. Hence inter-processor
communication is quite small.

5 Error Estimates

In this section we obtain the error estimates for the proposed method. If u is smooth then
the proposed method gives spectral accuracy in W , however if u is analytic then the method
gives exponential accuracy in W . The optimal rate of convergence with respect to Wdof , the
number of degrees of freedom is also provided.

Let {Fz} minimizeRN ,W ({Fu}) over all {Fu} ∈ SN ,W (�). We write one more represen-
tation for {Fz} as {Fz} = {{zl(ξ, η)}Nl=1

}
.

Consider a typical quadrilateral �l into which � is divided. Let

Ul(ξ, η) = u(Ml(ξ, η)),

where the general form of the mapping Ml = (Xl(ξ, η), Y l(ξ, η)) from S to �̄l has been
defined in [4]. Then the following has been proved in Lemma 5.1 of [4].

Theorem 5.1 (Lemma 5.1 of [4]) If Ul is analytic on S̄ then for some constant C and d
independent of l and |α| = m, m = 1, 2, . . ., we have

∣∣DαUl(ξ, η)
∣∣ ≤ Cm!dm .

Our main theorem on error estimates is now stated.

Theorem 5.2 Let {Fz} minimizeRN ,W ({Fu}) over all {Fu} ∈ SN ,W (�). Then there exist a
constant Cs such that

EN ,W ({F(z−U )}
) ≤ CsW

−2s+12 (I). (5.1)

Here, EN ,W
({F(z−U )}

)
is as defined in (3.3) and (I) =

N∑

l=1

||Ul ||2s,S.
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Proof Here, Ul(ξ, η) = u(Ml(ξ, η)). Then using the results on approximation theory as in
Section 5 of [4] it follows that there exists a polynomial φl(ξ, η) of degreeW in each variable
separately such that

||Ul − φl ||2m,S ≤ CsW
4+2m−2s ||Ul ||2s,S (5.2)

for 0 ≤ m ≤ 4 and all W > s, where Cs = Ce2s . Hence

||Ul − φl ||24,S ≤ CsW
−2s+12||Ul ||2s,S . (5.3)

Let f̃l be thepolynomial of degree (2W−1) in eachvariable separatelywhich is the orthogonal
projection of fl in H4(S) into the space of polynomials of degree (2W − 1). Then

|| fl − f̃l ||20,S ≤ Ct (2W − 1)−2t+12||Ul ||2t,S . (5.4)

Next, we examine the error committed in the boundary data. Let �l(η) = �(Xl(−1, η),

Y l(−1, η)) for −1 ≤ η ≤ 1. Let �̃l(η) be the polynomial of degree (2W − 1) in each
variable separately which is the orthogonal projection of �l(η) in H4(−1, 1) into the space
of polynomials of degree (2W − 1). Then we have

||�l − �̃l ||27/2,γs ≤ Ct (2W − 1)−2t+12||Ul ||2t,S (5.5)

for t < 2W − 1.
Let �l(η) = �(Xl(−1, η), Y l(−1, η)) for 0 ≤ η ≤ 1. Let �̃l(η) be the polynomial of

degree (2W − 1) in each variable separately which is the orthogonal projection of �l(η) in
H4(−1, 1) into the space of polynomials of degree (2W − 1). Then we have

||�l − �̃l ||25/2,γs ≤ Ct (2W − 1)−2t+12||Ul ||2t,S (5.6)

for t < 2W − 1.
Nowconsider the set of functions {φl(ξ, η)}.Wewish to showRN ,W ({φl(ξ, η)}) as defined

in (3.3) is exponentially small in W .
It remains then to estimate the terms

RN ,W ({Fφ}) =
N∑

l=1

∣∣∣
∣∣∣(Ll)

aφl(ξ, η) − f̃l(ξ, η)

∣∣∣
∣∣∣
2

0,S

+
∑

γl,i⊆�\∂�

⎛

⎝||[φ]||20,γl,i +
∑

1≤|α|≤2

∣∣∣∣[(∂αφ)a]∣∣∣∣20,γl,i +
∑

|α|=3

∣∣∣∣[(∂αφ)a]∣∣∣∣21/2,γl,i

⎞

⎠

+
∑

γs⊆∂�

(∣∣∣
∣∣∣(φl)

a(−1, η) − �̃l(η)

∣∣∣
∣∣∣
2

7/2,γs
+

∣∣∣∣

∣∣∣∣

(
∂φl

∂ν

)a

(−1, η) − �̃l(η)

∣∣∣∣

∣∣∣∣
2

5/2,γs

)
.

(5.7)

Let Ll denote the differential operator with analytic coefficients such that
∫ ∫

�l

(
�2u(x, y)

)
dxdy =

∫ ∫

S

(Ll u(ξ, η))2dξdη,

where

Ll u(ξ, η) = Al uξξξξ + Bluξξξη + Cluξξηη + Dluξηηη + El uηηηη + Fluξξξ + Gluξξη

+ Hluξηη + Iluηηη + Jluξξ + Kluξη + Lluηη + Mluξ + Nluη + Olu.
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We can show as in [4] that there exists constants C and d such that

|Dα1
ξ Dα2

η Al | ≤ Cdmm!
for all (ξ, η) ∈ S, |α| ≤ m. Similarly, we can estimate all other coefficients of Ll .
Now,

(Ll)
au(ξ, η) = (Al)

auξξξξ + (Bl)
auξξξη + (Cl)auξξηη + (Dl)

auξηηη + (El)auηηηη

+ (Fl)
auξξξ + (Gl)auξξη + (Hl)

auξηη + (Il)auηηη + (Jl)
auξξ + (Kl)

auξη

+ (Ll)
auηη + (Ml)

auξ + (Nl)
auη + (Ol)

au.

Here, (Al)
a is the orthogonal projection of Al in H4(S) into the space of polynomials of

degree W − 1. The other coefficients of (Ll)
a are obtained in a similar way. Therefore,

|Al − (Al)
a | ≤ √

Cs (W − 1)−s+6 (Cdss!).
Same relation holds for all other coefficients. Now

∣∣∣
∣∣∣(Ll)

aφl − f̃l
∣∣∣
∣∣∣
2

0,S

≤ 3

(∣∣∣∣LlUl − (Ll)
aUl

∣∣∣∣2
0,S + ∣∣∣∣(Ll)

aUl − (Ll)
aφl

∣∣∣∣2
0,S +

∣∣∣
∣∣∣ fl − f̃l

∣∣∣
∣∣∣
2

0,S

)
.

Hence,

||(Ll)
aφl − f̃l ||20,S ≤ Cs W

−2s+12 ||Ul ||2s,S .
Finally, we show how to estimate the jump term (at inter-element boundary)

||[φ]||20,γl,i +
∑

1≤|α|≤2

∣∣∣∣[(∂αφ)a]∣∣∣∣20,γl,i +
∑

|α|=3

∣∣∣∣[(∂αφ)a]∣∣∣∣21/2,γl,i

for any γl,i ⊆ �̄\∂�.
The other boundary terms can be handled in a similar fashion. Clearly, γl,i is a side which

is common to �m and �n for some m and n. Let us assume that γl,i is the image of the side
ξ = 1 of the square S under the mapping Mm and ξ = −1 of the square S under the mapping
Mn . Then

||[φ]||20,γl,i =
∫ 1

−1
(φm(1, η) − φn(−1, η))2 dη ≤ Cs

(
W−2s+12(Cdss!)2) .

Now,
∣∣∣∣[(φ)ax ]

∣∣∣∣2
0,γl,i

=
∣∣∣
∣∣∣
(
(φm)ξ (ξ̂m)x + (φm)η(η̂m)x

)
(1, η)

−
(
(φn)ξ (ξ̂n)x + (φn)η(η̂n)x

)
(−1, η)

∣∣∣
∣∣∣
2

0,(−1,1)
.

Also,

(Um)x (1, η) =
(
(Um)ξ (ξm)x + (Um)η(ηm)x

)
(1, η),

(Un)x (−1, η) =
(
(Un)ξ (ξn)x + (Un)η(ηn)x

)
(−1, η).

Moreover,

(Um)x (1, η) = (Un)x (−1, η).
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Now (ξm)x , (ηm)x , (ξm)y and (ηm)y are analytic functions of ξ and η and satisfy

|Dα1Dα2((ξm)x )| ≤ Cdmm!
for (ξ, η) ∈ S and |α| ≤ m. Similar estimates hold for the functions (ηm)x , (ξm)y and (ηm)y .
So we can show

∣∣∣
∣∣∣
(
(ξm)x − (ξ̂ )x

)∣∣∣
∣∣∣
2

0,(−1,1)
≤ Cs

(
W−2s+12(Cdss!)2) .

Combining all these estimates, we conclude that
∑

γl,i⊆�\∂�

||[(φ)ax ]||20,γl,i ≤ Cs
(
W−2s+12 (I)

)
.

Similarly, we can show that
∑

γl,i⊆�\∂�

||[(φ)ay]||20,γl,i ≤ Cs
(
W−2s+12 (I)

)
,

and
∑

γl,i⊆�\∂�

∑

|α|=2

∣∣∣∣[(∂αφ)a]∣∣∣∣20,γl,i ≤ Cs
(
W−2s+12 (I)

)
.

Finally, we estimate the term ||[(φ)axxx ]||21/2,γl,i . We have

||[(φ)axxx ]||21/2,γl,i = ||(φm)axxx (1, η) − (φn)
a
xxx (−1, η)||21/2,(−1,1),

where

(φ j )
a
xxx = (φ j )ξξξ (ξ̂ j )

3
x + 3(φ j )ξξη(ξ̂ j )

2
x (η̂ j )x + 3(φ j )ξηη(ξ̂ j )x (η̂ j )

2
x + (φ j )ηηη(η̂ j )

3
x

+ 3(φ j )ξξ (ξ̂ j )x (ξ̂ j )xx + 3(φ j )ξη((ξ̂ j )xx (η̂)x + (ξ̂ j )x (η̂ j )xx )

+ 3(φ j )ηη(η̂ j )x (η̂ j )xx + (φ j )ξ (ξ̂ j )xxx + (φ j )η(η̂ j )xxx .

for j = m, n. We have

(Um)xxx (1, η) = (
(Um)ξξξ (ξm)3x + 3(Um)ξξη(ξm)2x (ηm)x + 3(Um)ξηη(ξm)x (ηm)2x

+ (Um)ηηη(ηm)3x + 3(Um)ξξ (ξm)x (ξ)xx + 3(Um)ξη((ξm)xx (ηm)x

+ (ξm)x (ηm)xx ) + 3(Um)ηη(ηm)x (ηm)xx + (Um)ξ (ξm)xxx

+ (Um)η(ηm)xxx
)
(1, η).

and

(Un)xxx (−1, η) = (
(Un)ξξξ (ξn)

3
x + 3(Un)ξξη(ξn)

2
x (ηn)x + 3(Un)ξηη(ξn)x (ηn)

2
x

+ (Un)ηηη(ηn)
3
x + 3(Un)ξξ (ξn)x (ξn)xx + 3(Un)ξη((ξn)xx (ηn)x

+ (ξn)x (ηn)xx ) + 3(Un)ηη(ηn)x (ηn)xx + (Un)ξ (ξn)xxx

+ (Un)η(ηn)xxx
)
(−1, η).

Moreover,

(Um)xxx (1, η) = (Un)xxx (−1, η)

123



316 J Sci Comput (2017) 71:303–328

and

||ab||1/2,(−1,1) ≤ ||a||1,∞,(−1,1)||b||1/2,(−1,1).

Now, (ξm)3x , (ξm)2x (ηm)x , (ξm)x (ηm)2x , (ηm)3x , (ξm)x (ξm)xx , (ηm)x (ξm)xx , (ξm)x (ηm)xx ,
(ηm)x (ηm)xx , (ξm)xxx and (ηm)xxx are analytic functions of ξ and η on S and satisfy

|Dα1
ξ Dα2

η ((ξm)3x )| ≤ Cdmm!
for (ξ, η) ∈ S and |α| ≤ m. All other terms can be estimated similarly. So we can show that

∣∣∣
∣∣∣(ξm)3x − (ξ̂m)3x

∣∣∣
∣∣∣
2

1/2,(−1,1)
≤ Cs(W

−2s+12 (Cdss!)2).
Putting all these estimate together we conclude that

∑

γl,i⊆�\∂�

||[(φ)axxx ]||21/2,γl,i ≤ Cs W
−2s+12 (I).

Similarly,
∑

γl,i⊆�\∂�

||[(φ)axxy]||21/2,γl,i ≤ Cs W
−2s+12 (I),

∑

γl,i⊆�\∂�

||[(φ)axyy]||21/2,γl,i ≤ Cs W
−2s+12 (I),

∑

γl,i⊆�\∂�

||[(φ)ayyy]||21/2,γl,i ≤ Cs W
−2s+12 (I).

Hence, we can conclude that

RN ,W ({Fφ}) ≤ Cs W
−2s+12 (I).

Let {Fz} minimizes RN ,W ({Fu}) over all {Fu} ∈ SN ,W . Then we have

RN ,W ({Fφ}) = RN ,W ({Fz}) + VN ,W ({Fφ−z}
)
.

Therefore, we conclude that

VN ,W ({Fφ−z}
) ≤ RN ,W ({Fφ}) ≤ Cs W

−2s+12 (I) .

Hence, using stability theorem 3.1, we obtain

N∑

l=1

||φl(ξ, η) − zl(ξ, η)||4,S ≤ Cs W
−2s+12 (I) . (5.8)

It is easy to show that

N∑

l=1

||φl(ξ, η) −Ul(ξ, η)||4,S ≤ Cs W
−2s+12 (I) . (5.9)

Combining the results (5.8) and (5.9), we obtain

N∑

l=1

||Ul(ξ, η) − zl(ξ, η)||4,S ≤ Cs W
−2s+12 (I) , (5.10)

which is the desired result. ��
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Theorem 5.3 Let {Fz} minimize RN ,W ({Fu}) over all {Fu} ∈ SN ,W (�). If u is analytic
then there exist constants C and b (independent of N) such that

EN ,W ({F(z−U )}
) ≤ Ce−bW . (5.11)

Here, EN ,W
({F(z−U )}

)
is as defined in (3.3).

Proof Combining Theorem 5.1 and 5.2, we obtain

EN ,W ({F(z−U )}
) ≤ Cs W

−2s+12 (s! ds)2 , (5.12)

for W > s.
Applying Stirling’s formula

n! ∼ √
2πn nn e−n

in Eq. (5.12) and choosing s = γW with 0 < γ < 1, implies

EN ,W ({F(z−U )}
) ≤ CW 12(2πγW )(dγ )2γW .

Select γ so that (dγ ) < 1. Then there exists a constant b > 0 such that the following result
holds:

EN ,W ({F(z−U )}
) ≤ Ce−b W .

��
Remark 5.1 After having obtained the non-conforming spectral element solution we can
make a correction to it so that the corrected solution is conforming and the error in the H2

norm is exponentially small in W . These corrections are similar to those for second order
problems as explained in [33,37].

Let us now estimate the error in terms of number of degrees of freedom. There are O(1)
number of elements in � and each element has O(W 2) degrees of freedom.

Theorem 5.4 Let {Fz} minimize RN ,W ({Fu}) over all {Fu} ∈ SN ,W (�). Then there exist
constants C and b (independent of N and W) such that

UN ,W ({F(z−U )}
) ≤ Ce−bW 1/2

dof . (5.13)

Here, UN ,W
({F(z−U )}

)
is as defined in (5) and Wdof = dim(SN ,W (�)) = # degrees of

freedom.

6 Numerical Results

Let uapprox . be the spectral element solution obtained from the minimization problem and
uexact be the exact solution. Then the relative error is defined as

||E ||rel(%) = ||uapprox . − uexact ||H2

||uexact ||H2
× 100.

The numerical results presented in this Section have been obtained with a FORTRAN90
code. All our computations are carried out using a 372-node HPC cluster which is based on
Intel Xeon Quadcore processors with a total of 2944 cores having a peak performance of 34.5
TF. In all examples of this section we have mapped each element onto a single processor.
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Table 1 Performance of the method for Example 6.1 on Mesh 2

W Erel (%) (H2 norm) Max error Iterations CPU time(S)

2 0.60127084675731879 1.4886821601824529 × 10−2 6 2.721 × 10−3

4 1.06044786148565859 × 10−3 2.1758722107367845 × 10−4 33 2.124 × 10−2

6 1.31553806687696946 × 10−5 6.6246807017833476 × 10−7 98 0.1209

8 4.46245599057767725 × 10−8 1.2972756202600522 × 10−10 339 1.0475

10 5.16801183756960632 × 10−9 2.2275514766079141 × 10−13 750 4.804

The library used for inter processor communication is Message Passing Interface (MPI). To
show the exponential rate of convergence the relative error is plotted on a log−scale.

We perform the PCGM until a stopping criterion on the relative norm of the residual
vector for the normal equations becoming less than ε, a specified number, is satisfied. Since

we would need to perform O
(√

κ

2 | log ( 2
ε

) |
)
iterations of the PCGM to satisfy the stopping

criterion, we would need to perform O(W (lnW )2) iterations of the PCGM to obtain the
approximate solution to an accuracy of O(e−bW ). Here, κ denotes condition number of the
preconditioner. Each iteration requires O(W 3) operation-time on a parallel computer with
O(N ) processors. Thus, the method requires O(W 4(lnW )2) operation-time on a parallel
computer with O(N ) processors to compute the solution to an accuracy of O(e−bW ).

Let� = S be the master square with boundary ∂�. In all our examples we have used three
different meshes with uniform mesh size h = 2.0, 1.0 and 0.5 in each direction (corresponds
to N = 1, 4 and 16 respectively).

Remark 6.1 In general singularities arise at the corners for 2D square domain. However,
we choose our data selectively so that the solution is not singular at the corners.

Example 6.1 (Biharmonic problem with Dirichlet boundary conditions):Consider the bihar-
monic problem with Dirichlet BCs on � = (−1, 1)2,

�2w = f in �,

w = g on ∂�

∂w

∂ν
= h on ∂�.

We choose f, g and h such that the exact solution is

w(x, y) = x4ey .

Results are presented in the Table 1 and the corresponding plots are shown in Fig. 3. A
uniform mesh of size h = 1 is used which corresponds to the Mesh 2 (Fig. 2). In Fig. 3a, the
relative error is plotted againstW . Fig. 3c contains iterations vs.W and shows growth of iter-
ations almost O(W (log(W ))2) with increase in polynomial order. This is in agreement with
our condition number estimates obtained in [23]. It is clear that the error decays exponentially
and satisfies (5.1). Relative error as a function of iterations is shown in Fig. 3b. It validate the
result which require O(W (logW )2) iterations to achieve the accuracy of O(e−bW ) (Fig. 4).
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h=2.0

(a)
h=1.0
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(b)
h=0.5

h=0.5

(c)

Fig. 2 The domain � = S = (−1, 1)2 with uniform refinements a Mesh 1, b Mesh 2, c Mesh 3
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Fig. 3 a Error vs. W , b error vs. iterations (log scale), c iterations vs. W (log scale), for Example 6.1

Example 6.2 (Homogeneous boundary conditions): In order to demonstrate the efficiency of
the method and to compare our scheme with those existing in the literature, we now consider
the biharmonic problem:

−�w + 2�2w = f in � = (−1, 1)2,

w = 0 on ∂�,

∂w

∂ν
= 0 on ∂�,
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Fig. 4 a Exact solution, b approximate solution for W = 10 in Example 6.1

Table 2 Performance of the method for Example 6.2 on Mesh 1

W Erel (%) (H2 norm) Max error Iterations CPU time (S)

2 3.62870228556854343 × 10−2 1.6542093809179998 × 10−3 3 1.851 × 10−3

4 9.86996446748267290 × 10−13 3.2841768825801339 × 10−15 22 1.322 × 10−2

6 1.60900967939701450 × 10−12 9.5399834196338258 × 10−18 68 4.937 × 10−2

8 1.33335695643902808 × 10−12 5.8526518165640814 × 10−17 162 0.345

10 2.32562845079669455 × 10−13 3.1955712628823149 × 10−18 394 2.673

Table 3 Table from Ben-Artzi et al. [9]

n 32 64 128 256

||w − wh ||L2 2.0763(−6) 1.2735(−7) 7.9604(−9) 4.9762(−10)

||∂xw − wx,h ||L2 3.4466(−6) 2.1542(−7) 1.3465(−8) 8.173(−10)

||∂yw − wy,h ||L2 3.4466(−6) 2.1542(−7) 1.3465(−8) 8.173(−10)

and test the performance of our method. Consider the case when the exact solution is

w(x, y) = (1 − x2)2)(1 − y2)2.

In this case we have homogeneous boundary conditions. This example was reported in [9].
Table 2 summarizes the results. Comparing Tables 2 and 3, it can be observed that:

1. Ben-Artzi et al. achieved 10−10 accuracy with grid point n = 256 while our proposed
method LSQ-SEM obtain 10−13 accuracy with total grid point n = 5.

2. The proposed method takes only 1.3 × 10−2 second to achieve 3.2 × 10−15 accuracy.
3. As expected we received zero error up to the machine accuracy, however, with much

fewer degree of freedom as compared to 3, this is in agreement with the fact that our
method is exact for polynomials.

4. Plots among various parameters are plotted in Fig. 5. It is clear from the plots that the
method give accuracy up to machine precision for polynomial solutions and is very
effective in comparison to other methods.

5. The graphs of exact solution and approximate solution for W = 10 are given in Fig. 6.
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Fig. 5 a Error vs. W , b error vs. iterations (log scale), c iterations vs. W (log scale) for Example 6.2
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Fig. 6 a Exact solution, b approximate solution for W = 10 in Example 6.2

Example 6.3 (Non-homogeneous boundary conditions): We consider an additional example
by choosing our exact solution as

w(x, y) = sin x ey
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Table 4 Performance of the method for Example 6.3 on Mesh 2

W Erel (%) (H2 norm) Max error Iterations CPU time (S)

2 2.67502911305649814 × 10−2 4.8902248027385298 × 10−3 3 1.612 × 10−3

4 4.02859793585439406 × 10−3 5.8463514573992015 × 10−5 19 3.4240 × 10−3

6 5.78216635837976056 × 10−5 1.0368376726077599 × 10−7 61 4.47933×10−2

8 9.26620066284744865 × 10−8 4.1968957198434964 × 10−10 195 0.4402

10 4.43112499040186328 × 10−9 2.7706725802545407 × 10−13 466 2.9855
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Fig. 7 a Error vs. W , b error vs. iterations (log− log scale), c iterations vs. W (log scale) for Example 6.3

This solves the equation

−�w + �2w = f (x, y) in � = (−1, 1)2,

with non-zero boundary conditions where the forcing term f (x, y) = 0. Performance of the
method on Mesh 2 (Fig. 2) is presented in Table 4.

Plots of relative error and iterations against polynomial orders and other parameters are
depicted in Fig. 7. The relative error decays rapidly to≈ 10−7 whenW = 8. The error profile
is nearly a straight line for W = 2, . . . , 10. This shows exponential convergence (Fig. 8).
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Fig. 8 a Exact solution, b approximate solution for W = 10 in Example 6.3

Table 5 Performance of the method for Example 6.4 on Mesh 3

W Erel (%) (H2 norm) Max error Iterations CPU time (S)

2 3.41380391572896347 × 10−2 2.8270052310783389 × 10−3 4 2.8900 × 10−4

4 1.2257864840169817 × 10−4 4.1213438439768879 × 10−8 25 4.3330 × 10−3

6 7.1566154102613402 × 10−6 2.0951638202149070 × 10−9 67 4.0098 × 10−2

8 7.2191879756800845 × 10−7 2.1539658945357587 × 10−11 198 0.4387

10 9.9711674340331277 × 10−9 6.7057470687359455 × 10−14 454 2.939

Table 6 Performance of the
method from Altas et al. [1]

Meshsi ze 3-cycle FMG error Disc. error W-cycle

16 × 16 8.3 × 10−8 8.9 × 10−8 17

32 × 32 5.8 × 10−9 5.8 × 10−9 17

64 × 64 4.8 × 10−10 4.1 × 10−10 17

Example 6.4 (Non-separable biharmonic problem): In Table 5we report results of numerical
simulations of our solver on Mesh 3 of Fig. 2 for a non-separable biharmonic problem in
� = (0, 1)2 (see also [1,9]) with exact solution

w(x, y) = x3 log(1 + y) + y

1 + x
.

Comparing the Tables 5 and 6, we can easily see that

1. Altas et al. [1] obtained 10−10 accuracy for mesh size 32× 32 while LSQ-SEM achieve
10−11 accuracy with mesh 3 for W = 8.

2. The proposed method takes only 0.4387 second to achieve 10−11 accuracy.
3. Plots for various parameters are presented in Fig. 9. Percentage relative error against

polynomial degrees and iterations is plotted in Figs. 9a, b respectively on a log-scale.
4. The graphs of exact solution and approximate solution for W = 10 are given in Fig. 10.
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Fig. 9 a Error vs. W , b error vs. iterations (log− log scale), c iterations versus W (log scale) for Example
6.4
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Fig. 10 a Exact solution, b approximate solution for W = 10 in Example 6.4

5. It is evident from the graphs the approximate solutions converge exponentially to the
exact solution.

Remark 6.2 It is clear from these examples that the method is efficient in dealing problems
with homogeneous as well as non-homogeneous boundary conditions.
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Table 7 Performance of the method for Example 6.5 on Mesh 3

W Erel (%) (H2 norm) Max error Iterations CPU time (S)

2 4.9926302142486962 1.5937829051950736 × 10−3 4 2.9800 × 10−4

4 0.36097800115978257 1.7543143313092369 × 10−4 23 2.3010 × 10−3

6 3.4780996426294966 × 10−2 1.9430816851073729 × 10−6 64 3.84859× 10−2

8 7.8767553973230816 × 10−4 1.0277597661811910 × 10−8 159 0.1206

10 5.7174121699445833 × 10−6 2.2909341090837643 × 10−11 332 1.8214

12 8.6162040406699433 × 10−8 1.7491597170682383 × 10−13 510 5.1138

Table 8 Table from Shen [34]

W 16 32 64 128

L∞ Error 1.48E − 2 7.45E − 12 2.04E − 14 2.81E − 14

Table 9 Table from Bialecki et al. [11]

W 16 20 24 28 32

||u −U ||L∞ 0.25(−1) 0.26(−3) 0.16(−5) 0.45(−8) 0.71(−11)

||v − V ||L∞ 0.44(+1) 0.59(−1) 0.36(−3) 0.11(−5) 0.16(−8)

Example 6.5 (Periodic boundary conditions): In our next example we take � = (−1, 1)2

and solve (2.1). We choose f, g and h such that the exact solution is

w(x, y) = sin2(2πx) sin2(2πy).

This example was considered in [1,9,12]. The source term is �2w(x, y) and the boundary
conditions are zeros on the four sides of the square. Table 7 depicts the numerical results.

Here, we are comparing our result in Table 7 from Tables 8 and 9. The observations are
as follows:

1. Shen [34] and Bialecki et al. [11] achieved the accuracy 10−12 for W = 32 while LSQ-
SEM obtain 10−13 accuracy for W = 12.

2. In Fig. 11a, relative error is plotted against polynomial order W on a log−scale. The
curve is almost a straight line and it confirms the theoretical estimates obtained.

3. In Fig. 11b, the error is drawn as a function of iterations on a log scale. It satisfy the
criteria to achieve the O(e−bW ) accuracy with O(W (log(W ))2) iteration.

4. In Fig. 11c, iteration is plotted against polynomial order W on a log−scale. The growth
of the iterations is almost O(W (log(W ))2).

5. The graphs of exact solution and approximate solution for W = 10 are given in Fig. 12.
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Fig. 11 a Error vs. W , b error vs. iterations (log scale), c iterations vs. W (log scale) for Example 6.5
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Fig. 12 a Exact solution, b approximate solution for W = 12 in Example 6.5

7 Conclusions

In this article we have presented a fully non-conforming least-squares spectral element
method for fourth order elliptic problems on smooth domains. It is shown that the con-
dition number of the preconditioned system is O((lnW )4). It is also clear from giving test
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problems that the error in the computed solution decays exponentially in W , the number
of elements in the mesh. The computational complexity of the method is O(W 4(lnW )2)

operations on a parallel computer with O(N ) processors.
Numerical results for a number of test problems on rectangular domains with analytic

solutions confirm the estimates obtained for the error and computational complexity. The
algorithm is quite simple and easy to implement on parallel computers since the bottlenecks
of our algorithm are matrix-vector multiplications. Themethod works for variable coefficient
problems too and can be extended to three dimensional problems with less efforts. We plan
to develop numerical schemes for fourth order problems with various types of singularities
on polygonal and polyhedral domains in future work.
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