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Abstract A new weak Galerkin (WG) finite element method is developed and analyzed for
solving second order elliptic problems with low regularity solutions in the Sobolev space
W2 (Q) with p € (1,2). A WG stabilizer was introduced by Wang and Ye (Math Comput
83:2101-2126, 2014) for a simpler variational formulation, and it has been commonly used
since then in the WG literature. In this work, for the purpose of dealing with low regularity
solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive
relaxation index to the mesh size #. The relaxed stabilization gives rise to a considerable
flexibility in treating weak continuity along the interior element edges. When the norm index
p € (1, 2], we strictly derive that the WG error in energy norm has an optimal convergence

1
order O (hl+1757%) by taking the relaxed factor § = 1 % — £, and it also has an optimal

2
convergence order 0(hl+275) in L? norm when the solution u € W/*1-7 with p € [1,1 +
2

i %] and / > 1. It is recovered for p = 2 that with the choice of § = 1, error estimates

in the energy and L? norms are optimal for the source term in the sobolev space L. Weak
variational forms of the WG method give rise to desirable flexibility in enforcing boundary
conditions and can be easily implemented without requiring a sufficiently large penalty factor
as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that
the proposed WG method with an over-relaxed factor S(> 1) converges at optimal algebraic
rates for several low regularity elliptic problems.
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1 Introduction

The goal of this paper is to formulate and analyze a weak Galerkin method for solving an
elliptic problem with low regularity solution. We consider a second order elliptic equation
with a homogeneous Dirichlet boundary condition as follows:

~V-AVu=f inQ, (1.1)
u=0, ond, (1.2)

where Q C R? is an open bounded polygonal domain, the coefficient A is a positive piecewise
constant or a uniformly symmetric positive definite function matrix A := {a;;(x)}, a;; =
aji € W1’°°(Q) in R?*2_ j.e., there exists a positive constant y > 0 such that

2
D aijEE =y (7 +8), VE=(1L8) R, xeQ,

ij=1

And the force term f € LP(£2) is a given function for some p in (1, co].
We shall use standard notation for Sobolev spaces (see [1]). For any nonnegative integer
s and r < 1, the classical Sobolev space on a bounded domain D C R? is

W' (D) = {v e L"(D)|d"v € L"(D), ¥|n| <s},

where 0" v are the partial derivatives of v of order n and L" (D) is the space of all (scalar-
valued) functions on D for which the corresponding L”-norm

1/
lvllLrpy = [ (fD |v(x)|”dx) P’ p € [1, 00),

ess sup,plv(x)|, p = o0,

is bounded. The corresponding norm in W*-" (D) is denoted by || - || ws.» (p) and the semi-norm
by | - lwsr(py. The L? inner-product is denoted by (-, -)p and by (-, -) if D = Q. For the
Hilbert space H*(D) = W*2(D), the norm is denoted by | - [|;2(p). We define by H; (D)
the subspace of functions in H'(D) that vanish on 9D. Throughout the paper, boldface
characters denote vector quantities.

The standard weak formulation of (1.1)—(1.2)is to find u € HO1 (£2) such that

(AVu, Vv) = (f, v), Vv e Hy(Q). (1.3)

Continuous and piecewise polynomials are used in the classical (conforming) finite element
methods, but the use of discontinuous functions in the finite element approximations often
provides much required flexibility in handling complex problem:s.

There are a variety of articles which deal with discontinuous Galerkin (DG) discretizations
of elliptic problems under standard regularity assumptions (e.g., for solutions in W>2()
or W%“'Z(Q) with € > 0) in [2,3,13] and the references therein for different types of DG
methods. There are a great deal of difficulties in derivation of algebraic convergence rates for
DG methods for low regularity solutions, even though the numerical flux is treated delicately.
With solutions belonging to some weighted Sobolev spaces (based on a weighted W22-norm),
DG methods have been analyzed in many papers for elliptic problems with corner singularities
in polygons. In Ref. [16], interior penalty DG methods including symmetric interior penalty
Galerkin (SIPG) and non-symmetric interior penalty Galerkin (NIPG) schemes have been
presented and error analysis has been conducted in an energy norm for solutions in W27,
pe(,2].
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Recently, with a well-defined weak gradient, Wang and Ye [15] developed a new weak
Galerkin finite element (WG) method for second order elliptic equations formulated as a
system of two first order linear equations, and presented optimal a priori error estimates in
both discrete H' and L? norms, as well as a residual type a posteriori error estimator [4]. In
most studies, the weak Galerkin finite element methods are analyzed for analytic solutions
defined in the Sobolev space W*T1:2(Q) (see [8-10,14]). For high regularity solutions, a
stable and efficient stabilization term has been presented in [15]. Compared to DG finite
element methods, WG methods have some main features, such as continuous normal flux
across element interfaces, less unknowns, and no need for choosing penalty factors.

The motivation of the paper is to use a relaxed stabilizer in the weak Galerkin method
to provide an improved approximation to the low regularity solution of problem (1.1)—(1.2).
Here we introduce a relaxed power index 8 on mesh size & for the stabilization in [15].
Without adding any penalty factor, particular investigation will be carried out on optimal
error estimates of low regularity solutions in the L? space with 1 < p < 2. There is a great
interest in what values of the index 8 would be an optimal choice in numerical analysis for
low regularity solutions, and in the question if the choice of 8 = 1 can be recovered in the
case of high regularity solutions. In this paper, we will investigate a WG method with an
over-relaxed stabilization term for solutions existing in H L(Q) N W2P(Q) with p e (1,2],
and develop a priori error estimates in the standard energy norm and in the L2, L? norms.
Furthermore, we will prove that the over-relaxed WG method converges at an (optimal)
algebraic rate even if p € (1, 2].

The following Sobolev embedding and regularity results will be used in our analysis.

Lemma 1.1 ([1, Theorem 4.12]) For p € [1, o0], let D C R2 be a bounded open Lipschitz

domain. Then, the embedding W1-P (D) < L1(D) is continuous for allg € [1,00),ifp > 2,
2p .

and forall g € [1, H] ifp <2

Lemma 1.2 ([7,16]) The variational formulation (1.3) has a unique solution in wh2(Q)
(equivalently, in H' () for any f € LP(Q) with p € (1, 00).

Lemma 1.3 ([16]) Given n > 1, for any f € LP(Q2) with p € (1, n), the solution of
(1.1)—~(1.2) belongs to X := W2P(©) N HO1 (R2) and the regularity estimate holds

lullx < ClfllLr), (1.4)

where C is a positive constant independent of u.

The rest of this paper is organized as follows. In Sect. 2, we recall the definition of weak
gradient and its discrete approximation, and then present an over-relaxed WG approximation.
In Sect. 3, we estimate an a priori WG error in energy norm and some key inequalities are
presented. In Sect. 4, error estimates in L” and L? norms are derived by a dual argument.
In the last Section, we present some numerical experiments including three low-regularity
problems to show the effectiveness and convergence rates of the over-relaxed weak Galerkin
method.

2 Weak Garlerkin Methods with an Over-Relaxed Stabilization

Let 7;, be a triangulation of the domain €2 into any polygons, &, be all edges, and 82 be
all interior edges. For any T € 7;, we denote its diameter by 27 and the boundary by d7.
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Further, let 7 = maxrc7;, ht denote a characteristic mesh size of the whole partition. We
assume that the partition is shape regular, see [15].
On the partition 7, we define a broken Sobolev space, for s € Nand r € [1, oo], by

W5 (Th) = {v e L'(Q)|v € W' (T), VT € Tp).

On an element 7', we define a weak function by v = {vg, vp} such that vy € L*(T) and
vp € L2(8 2), where vg and v, represent the values of v in the interior and on the boundary
of T, respectively. Let P; (T') be the set of polynomials on 7" with degree no more than j. For
a given finite element mesh 75 and polynomial degrees j, [ > 1, we consider the following
finite element spaces

Vi ={v ={vo, v} : vlr € Pj(T) x Pi(e),e € 0T, VT € T},
V) ={v={vg, vp} : v E Vp,v|l, =0, e € I},
Up={vo € L*(Q) : volr € P;(T), VT € Tp,}.

Here we take j = [ = k for a fixed positive integer k > 1 and the function vy, is not necessarily
the trace of vp on d7. The component vy is defined element-wise and may be discontinuous
with respect to vp. The idea of polynomial reduction [12] presents an optimal combination
for the polynomial spaces. For instance, one can use (Px(T), Pr—1(e), [Pi— (D)%) instead
of (Px(T), Py (e), [Px—1(T)]?), to minimize the number of unknowns in the WG scheme
without compromising the accuracy of the stabilized approximations [11,12].

We denote by Q¢ and Q) the L? projection operators from L2(T) onto P;(7T") and from
L2(e) onto Py (e), respectively. We write O, = {Qo, Op}. Moreover, let 9y be the L? pro-
jection from [L2(T)]* onto the local discrete gradient space [Px_1(7)]?. The weak gradient
is defined by Vv € [Pr_; (T)]2 for any function v € Vj, satisfying

(Vou, )1 = =0, V- @)1 + (vp, ¢ - n)ar, Yq € [Pre1(T)1%, 2.1)

where (-, )7 stands for the usual inner product in L2(3T). For any up = {uog, up}, vy =
{vo, vp} € Vi, we introduce the following bilinear form

(AVyup, Viyvp) = D (AVyltp, Vay0h)7.
TeT),

Weak Galerkin Algorithm. A numerical approximation for (1.1)—(1.2) can be obtained by
seeking uy, = {uo, up} € V}? such that for any v, = {vg, vp} € V}?,

1
a(up. vp) = (AVyup, Viyvp) + 78 o —up, vo = vp)e = (frv0),  (22)

eegy

where S is a positive number to be defined later.
Next, we justify the well-posedness of the scheme (2.2). For any v € Vj, we define an
energy norm by

vl == va(v, v).

Note that || - ||| define a semi-norm in Vj,. However, it defines a norm in V. To verify this,
it suffices to check the positivity property for ||| - |||. To this end, assume that v € V}? and
[Jvlll = 0. It follows that

1 2
(AVo, Vur) + 3 h7/|gbuo s =0,
e

ee&y
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which implies that V,,v = 0 on each element K and Qpv9 = vp on e. By the definition of
the weak gradient, it holds

(Vyv, )7 = (Vvg, )7 — (Vo — vp, T - 1) = (Vvo, T)7 — (Qpvo — Up, T - R)e.

Thus, vo = const on every K € 7j,. For any edge e € 5,9, there exist two elements K and
K> in 7 such that e = 9K N dK>. This, together with fact that Qpvolyxe = vplaks and
vp = 0 on 9L2, implies that vg = v = 0.

Lemma 2.1 The weak Galerkin finite element scheme (2.2) has a unique solution.

(1) (2
h h

Proof 1t suffices to prove the uniqueness. If #; * and u
ep = u;ll) — uﬁf)

are two solutions of (2.2), then
would satisfy the following equation
alep,v) =0, Vve V,?.
Note that e, € V,? . Then by letting v = ¢;, in the above equation we arrive at
llenll* = aten. en) = 0.
M _
B =

uglz). This completes the proof of the lemma.
O

It follows that e, = 0, or equivalently, u

3 Error Estimate in Energy Norm

Analogously to Lemma 5.1 in [11], the following lemma will be used for multiple times.

Lemma 3.1 Letr Qj, and Q, be the L? projection operators as defined above. Then, on each
element T € Tj,, we have the following properties: for any v € X, T € [Pr_1(T)]%,

(AVy (Qpv), )7 = (L (AVY), T)7. (3.1
Proof 1t follows from the definition of V,,, the symmetry of A, and integration by parts that
(AVy(Qnv), T)1 = (Vi (Qnv), AD)T
= —(Qov, V- (A1))1 + (Qpv, (AT) - n)sT
—(v, V- (A1) + (v, (A7) - m)y7
(AVv, 1)1
= (Qn(AVv), T)1.

[m}

Let ey, = {eo, ep} = {Qou — up, Qpu — up}. We have the error equation between Qju
and uy, as follows:

1
alen, vn) = (AVwen, Vuun) + D -5 (€0 = en, v = vp)e

665;,
= Z<(Aa—” — Qu(AVu) - n), vo —vp)e + D L (o = 0yt vo — )
on ’ ¢ hB ’ ¢
eef,',? ee&y
c=0(u, vp) + L(u, vp). (3.2)
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Indeed, for any vy, € V,? , testing (1.1) with vg, and using integration by parts, the continuity
of Vu - n on interior edge e and Lemma 3.1 leads to

(—=V - (AVu), v0) = D (AVu, Voo)r — »_ (vo, AVu - n)yr

TeT, TeT,

= D> (Qu(AVu), Vvo)r — D (o — vy, AVu -m)ar + D (05, AVi - n)yr

TeTy TeTy AT €l

ou

= > (Qu(AVW), Vo) = D (o = vp, A — Qu(AV) - ).

TeTy ee&y

ou
= (AV (Qu0), Vavn)r = D {00 = vp, Az = Qn(AVa) - )., (3.3)
eeéy,

where in the last second identity we have used the fact vp|30 = 0 and
(Qn(AVu), Vyvp)r = —(vo, V - Qp(AVu))7 + (vp, Qn(AVu) - n)sr
= (Qr(AVu), Vo)t — (vo — vp, Qn(AVu) - n)sr.

Consequently, subtracting (2.2) from (3.3) arrives at (3.2).

For any two neighboring elements K1, K» € 7 sharing an edge e € &, let Q, =
(121 U K»)? and p € (1,2]. Note that if w € WwLP(Q,), then w is continuous on e; if
w e W2P(,), then Vw is continuous on e.

Lemma 3.2 Forq € [2,+00), andV e € &,, v € V), there holds

_1 1
A 7 (vo —vp)llLaey < CIlh™2(vo — vp)llf2e), Ve € En, v E Vp, (3.4)

equivalently,

q

> /h—1|u0 —wpllds <C Y (/h—1|v0 - vb|2ds)7. (3.5)
e e

e€&y e€&y

Proof To prove (3.4), we first write ¢ = vg — vp and define a reference element by (¢, 1&, ]f"k)
with an invertible affine mapping such that the two finite elements (e, ¥, Px) and (e, ¥, Pr)
affine-equivalent (see tpe details in [5]). It holds by Theorems 3.1.2 and 3.1.3 in [5] and by
norm equivalence for v
_1 A ~ _1
hoallYliLae = ClliYiiLae = Cliviigee = Chm21¥ 2.

Thus, (3.4) follows.
Next, it suffices to verify (3.5). By using the fact

n 1/s " 1/r
(Zaj) S(Za;) , for 0<r<s,a;>0,

g2
(Z (/h—1|v0 - vb|2ds)2)q <cC Z/h—1|vo — up|2ds,

ee&y, ¢ ec&y V€

which completes the proof of (3.5). O
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We need the following lemma of interpolation [16].

Lemma 3.3 Letp € (1,2], andu € W!HLP(Q) withl > 1. Then there exists an interpolant
I1: WHLP(Q) — Uy, such that for all T € T;, there holds

lu = Mulwmrry < CRF " ullyieipery, 0<m <I+1, (3.6)

where | > 1 is the polynomial degree in the approximation space Vy,. Furthermore,

2

[+1)-2 P
> (h7 e = Tl + 19 = Tl ) < (20 R0 20l )
TeT), TeT,

3.7

Now we give the main optimal convergence theorem for the error ¢, in the energy norm.

Theorem 3.1 Letuy, € Vj, be the weak Galerkin finite element solution of (2.2) arising from
the problem (1.1)—(1.2). Assume that the exact solution satisfies u € WHLP (TN WP (Q),
wherel > 1 and p € (1, 2]. Then there exists a constant C such that

B+l gy 2 -8 _r
IQnut — upl|| < C(h( THEY) g z>) Nl i1 (75 - (3.8)
When the index p = 1 + % — g is taken, we have the optimal estimate in the energy norm

I+1-1_»2
N1 Qnte — unlll < CH 727 3 ull i1 (- (3.9)
Especially, if p = 2, then 8 = 1 and it holds

1| Qnu — unlll < ChHlullyis12(q)- (3.10)

Proof In particular, (3.10) follows from (3.8). Therefore, it suffices to prove the validity of
(3.8).
Taking v, = e, in equation (3.2), we get

llenlll = alen, en) = i (u, en) + o (u, ey). 3.11)

Thus we need to estimate the upper bounds of the terms /; and /,. For the term /1, by Holder
inequality and the boundedness of A, it holds

11, en)|
= | > ((AVu - 0 (aVW) - m, e — ey
ee&y
_ 1 1
< C( > h;‘c/ |(AVu — Q;(AVu)) ~ny"ds ” Z/ ﬁ|eo—eb|p ds) ”
TeTy, aT TeTy
1 1
(Z hy / (Vi — Qn(Vu)) - n|”ds ” Z/ hﬁ|e0—e,,|1’ ds) :
TeT, TeT,

(3.12)

where%—l—#:lwithp*e[Z,oo)andE:p—(p—l),B.
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We then give the following estimate from Lemma 3.2

1 . \F
e — en|P P
(z /3T P leo — ep| ds)
TeTy
1= N
<Ch"» (Z/ h ey — ep|? ds)’
aT

TeT;,
E -1 2,2
<Ch/r (Z/ h™" leg — ep| ds)
fez, T
11 i
<ch2T D(Z/ ffﬁleo—ehlzds)2
ez, Jor
1 1
< ch 7 e ). (3.13)

Applying the trace inequality and scaling argument results in

Z h[TJ_E H (Vu = QpVu) - "sz(ar)
TeTy
1

1
-1 -5 - p
= C 3 BT (" IVU = Q4 Vulliory + by TNV (Vi = QpVWle) )
TeT),

which implies by applying (3.6)

> Vu = V) m ]y < € DRI gL B4
TeT, TeT,

Then, inserting (3.13)—(3.14) into (3.12) results in

M+l,;
(s el < Ch T 0 ullyin g Il en |- (3.15)

Next, we estimate the bound of the term [;. It follows

1
b enl = | X+ (Qou = Qo vo = vp)e

KeTy,

= ’ > h%(Qou — U, V0 = Upe

KeTy,
1 3 1 !
2 2
=c(X 71l Qou — ulZ) (X 5l wikg) (3.16)
eeé’h 665;,

By the trace inequality and elementwise scaling, we get

1 2 )2

(> 70Qum —ulis,)

8651,

1

—1- 1- 2
=C >0 (7 PN Qou = ulld gy + 1y IV Qo = Vuls g )
TeTy

1
< Ch 2 DS i g (3.17)
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where in the last inequality we have used (3.7). Then substituting (3.17) into (3.16) gives

1

-5 _p 1 2
e enl = Ch D o (3 7o = wlag,)

ec&y

1-8 _p
R P D= syl en - (3.18)

IA

Consequently, combining (3.11) with (3.15) and (3.18) arrives at

Bl 2 1-8 _r
llenlll < C(h T H=G 4 e 2)||u||w1+1,p(7—h). (3.19)
This completes the proof of the theorem. O
1
Remark 3.1 Note that we prove the optimal convergence rate O(hlﬂ_?_%) of the error

Qnu —uy, in the energy norm, with § = 1+ % — g chosen. When p is close to 1, the optimal

. _1 . . e
rate is up to the order O(h'~7) with B = %, which means that the flexible stabilization term

is available for the low regularity solutions.

. 1-p .
Remark 3.2 From (3.17), we notice that the convergence rate 12 +( +th-% mainly comes
from the oscillations of # and Vu. Therefore, when u is smooth enough (at least p = 2)
and B = 1, the error estimate in the energy norm maintains optimal, up to O (h'), which is
matched with the theoretical results in [14].

4 Error Estimate in L? and L? Norms

In this section, we mainly derive the error estimate (Qou — ug) in the L? norm and suitable
choices for § to be defined later.

First, a duality argument will be employed in our analysis for the weak Glerkin finite
element approximation. To this end, we consider a dual problem that seeks w € HO1 ()N
W24 () satisfying

—V - (AVw) = |Qou — ug|P~'sign(Qou — ug),  in Q, 4.1)
w =0, on 9%, 4.2)

where p € (1,2] and Qou — ug € WP (). Assume that the above dual problem has the
Wzvq—regularity. SetY := W24(Q)nwitha(T;)n HO1 (€2). There exists a constant C such
that

-1
lwlly < CllQou — uoll} g 4.3)

The space H;ji, ($2) is defined as the set of vector-valued functions on €2 which, together with
their divergence, are square integrable. We denote by I a projection for 79 € Hgiy(€2) such
that IT;, 79 Hgiv(2), and on each T € 7y, 1,79 € RT(T) as well as the following identity

(V-70,v0)7 = (V- (TIp70), vo)r,  VYwo € Pp(T), T € T,
where RTy(T) is the Raviart-Thomas element of order k.
Lemma 4.1 For any w € W>4(Q) N H} (Q) and u € W!T1-P(Q), for which % + 3 =1
and p € (1, 2], there holds

@ Springer



204 J Sci Comput (2017) 71:195-218

> (ten 0, Qow — wie + (Qou —u, Qow —w.)

eeéy,

< Ch M ullwrsnp oz lwllwaa gy (4.4)
where B € [1,1+ % -5l

Proof From the Cauchy—Schwarz inequality, the definition of ||| - |||, and the trace inequality
[15, Lemma A.3], it follows that

ee&y
1 1
_ b - 2
< C( > il - ehlliz(m) : ( > P 100w — w“iz(zm)
Texz*h TE’Z;,
1 1
1= - 2 - :
<Ch> ( Z hTﬁHeo - eb”%z(i)T)) ' ( Z hz 'l Qow — w”iQ(f?T))
TeT), TeT,

1

1-8 _ 2

= ch 2 llenll (D h721Q0w = wlidagpy + 19(Qow = w22 p))°
TeTy

1

1-241 _Bal_2 2g—2 7

5C(h< D pCptl 2))||u||W1+1,p(Th)(§ h24 ||w||%v2<qm)"
TeT,

2—B+l-L+2
Ec(h(lﬂ)-l-h( P 2+”))||M||Wl+1,p(7,,)||w||w2~q(sz): 4.5)

where in the fourth inequality we have used (3.7) and Theorem 3.1.
Analogously, with the use of the Cauchy—Schwarz inequality and (3.17), we have

1
2 55 Qo —u, Qow —w).

ee&y
1 1
1-8 — 2 2 —1 2 2
=< Ch™ ( Z hTﬂ”QOM - u||L2(3T)) ( Z hT ” QOw - w”L2(3T))
TeTy TeTy,
1
18 = _ 2g-2 a
<Ch2 > pzteh z||u||%v,+1,,,(T)( >yt ”w”%vzq(r))"
TeT, TeT),
2-B+—L+2
< CRO P o o Nl - (4.6)

Dueto B e[1,1+ % — 51 resulting in

pHHEE < pCopH=EE D i, (4.7)

adding (4.5) and (4.6) completes the proof of (4.4). ]

Theorem 4.1 Let uj, be the weak Galerkin finite element solution to (2.2) arising from
the problem (1.1). Given the factor B € [1,1 + % - %], assume the exact solution u €

w2 Q) N WHLP () withl > 1, p € (1,2] and % + % = 1. In addition, assume that the
dual problem (4.1)—-(4.2) has a w24(Q) N H(} (2)-regularity. Then, there exists a constant
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C independent of h and B such that

100t = uollzrzy = C(HNf = Qof oy +HH ulwerpez ). @48)
and
1-2 (.2 I+1
1Qout = woll 2y = Ch' 7 (K f = Qo flunczyy +h M ullwiernezy),  49)
where C is independent of the mesh size h and u.

Proof Testing (4.1) with eg we obtain

lleoll} p(qy = (=V - (AVw), Qou — uo)

= > (~V - (4AVw), Qou — uo)r 4.10)
TeT),

It is well known that ¥ v, € Vj, T € V}?

D=Vt v)r = D (. Vs — D (vp, Tt - n)ar,

TeTy TeTy TeTy

which infers from (4.10)

| Qou — ug ”ip(Q)

= > (Mi(AVW), Viy(Quu — up))r — D (Qpt — up, T, (AVW) - m)ar

TeT, TeT;,
= > (M (AVW), Viy(Qnu — up)) 7 — D (Qput, T (AVW) - m)or
TeT), TeT)
= D (My(AVw), Vi (Qpu — up))r — D {u, T (AVw) - m)yr
TeT), TeT,
= > (My(AVw), Vi (Qput — up))7 = I3, .11
TeTy

where we have used the fact that both I1,(AVw) and u are continuous across each interior
edge and u;, = 0 on 9€2.
Thanks to the fact

(Vo (Qnu), )7 = (Qu(Vu), 0)7, V7 € [Pt (T, (4.12)
(4.11) follows as

I= )" (My(AVw), O (Vi) = Vyyun))1

TeTy,

= > (Mi(AVw) — AVw, Qu(Vu) — Vyun))r + Y (AVw, Qu(Vue) = Voyup))r
TeT, TeTy

= D> (My(AVw) — AVw, Q4 (Vi) = Voyun))r + D, (AVw, Qu(Vu) = Voyun))r
TeT, TeT,

(4.13)

@ Springer



206 J Sci Comput (2017) 71:195-218

With the use of the Cauchy—Schwarz inequality, we estimate the first term of the right hand
side of /3 in (4.13)

> (M (AVw) — AVw, (V) — V)1
TE,Z?I

1

= (D2 Imaave) = aVwids ) (X 196V = Vaunls ) (414)

TeT, TeT,

Applying the Sobolev embedding W'4(T) < L*(D)forall T € 7;,, g > 2, and employing
a scaling argument yields

_ 2-4
D IR (AVW) — AVw3, 0y < C D hy wlfag s
TeT;, TeT;,

which infers

2 2-2
(> Imuavw) — AVwldy ;)" = CH 1wl )
TeTy

And notice that

D 1Qn(Vi) = VuunllFa iy = D IVu(Qnte) = Vatunl oy < C Il Qnte = un |-
TeTy, TeTy

Then, substituting the estimates above with Theorem 3.1 into (4.14) and taking 8 € [1, 1 +

2_r»p i
5 5] results in

> (M, (AVw) — AVw, Q(Vu) — Vi) 1
TeT),

-2
< Ch™ || Quu —up ||| lwllw2a(g)
£+l LEiv1-842
< C(h( T (5 : p))||u||W,+1.,,(Th)||w||W2,q(Q)

-1
< CH* M ullyrerp () 1 Qou — ol 7 gy (4.15)

where we have recalled the following estimates in the last inequality:

1_»p B+l
hl ! p 4 <h( 2 Z)<h(l 1)5

_py2 1-8 _py2 _py1
hl+1 2+p<h( 5 +l+1 2+P)<ll+] 4+[,’

and (4.15) holds a maximum order with e S G S G Y R
2 2

> =I+14+1-2(=1+1).

2
p p
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For the second term of the right hand side of /3 in (4.13), by using (4.12) and the weak
Galerkin formulation (2.2) with v, = Q;(Vw) being taken, we can derive

> (AVw, Qu(Vu) = V)1

TeTy
= Z (AVw, 9, (Vu) — Vu)r + Z (AVw, Vu — Vyup)r
TeTy TeTy
= D (AVw, Qu(Vu) — Vu)r + (AVw, V) — >~ (Qp(AVW), Vyyup)7
TeT), TeT,
= D (AVw, Qy(Vu) — Vi) + (AVw, Vu) = D" (AVy, (Qpw), Vutt)7
TeTy TeTy,
= D> (AVw — Q4(AVW), Qu(Vu) — V)T + (f, w) = (f, Qow)
TeTy
1
+) 78 (o — up, Qow — Opw)e
eeéy
= D (AVw — Q4(AVw), Qu(Vu) = Vi)r + (f = Qof. w — Qow)
TeTy,
1
+ Z hfﬂ(uo — up, Qow — W)e.
ecé&)y

We bound the terms by the Holder inequality

> (AVw — Qu(AVw), Q;(Vu) — Vu)r

TeTy
< CllAVw — Qu(AVW) | La 7y 1 Qn (Vu) — VullLr(z;,)
< Ch™ M wll oo lull wisir(z; - (4.16)

and

(f = Qofiw— Qow) < Cllw— QowllLazpllf — QofllLr(z)

) (4.17)
<Ch ||w||W2~q(7h)||f — QofllLr(z)-

It follows from (4.4) that

1
> 78 (1o — up. Qow — w)e

ee&y

1
= >~ 25 ({0 = Qow) = s = Qpin). Qow — w)e + (Qou — Qyu. Qow — w). )

ec&y
1
=" = (ter — 0. Qow = w)e + (Qout — . Qow — w).)
ee&y,
< CH*  ullyrsrp gy lwllw2a oz - 4.18)
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Then combining (4.16)—(4.18), we get the following estimate

> (AVw, Qu(Vu) = V)1

TeTy

= C(RUf = QoS lreziy + K ullwiesrezy ) 10 l2o )

<c(m?If - hit! —uolly 4.19
< C(P?1f = Qof Loy + 1 ity )1 Qou — ol oy (4419)

Substituting (4.15) and (4.19) into (4.13) yields the desired error estimate (4.8) with the
choice g € [1,1 + % — %] from Lemma 4.1. Furthermore, (4.9) holds from (4.8) and the
fact (see [6]) that forall¢ € V), T € Ty,

-2
ol 2y < hy "lllLrar).

This completes the proof of the theorem. O

5 Numerical Experiments

In this section, we report on results of numerical tests meant to assess the theoretical a priori
error estimates and to illustrate the performance of the over-relaxed WG method (2.2) when
dealing with low regularity elliptic problems.

In the following numerical studies, all examples will be investigated on uniformly
refined triangulations of €2, and will apply the WG method to find a solution u; =
{uo, up} where ug|r € P1(T), and up|, € Pi(e). Using the piecewise linear elements
(P (T), Pi(e), [Po(T)]?), we test four examples on triangular meshes of regular pattern,
and the third example also on locally refined meshes. The error for the over-relaxed WG
solution of (2.2) shall be measured in the following two norms defined by

1 2 _
Il enll* = Z (/ |A2Vwe0| dx-}-hTﬁ/ Ieo—eblzds),
T aT

TeTy

fenl? = 3 [ feoix.
T

TeTy

We first investigate an example with a smooth solution to testify the choices of S of the
stabilizer in the weak Galerkin method and apply the incomplete LU (ILU) preconditioning
to the discrete linear algebraic systems as 8 > 1.

Example 1 We consider the domain Q = (0, 1)2 and the elliptic problem (1.1)—(1.2) with
x4y +1 Xy

Xy 24241 such that the

the diffusion coefficient matrix bing givenby A = [

exact solution is
u(x,y) = sin(mwx) cos(my).

The errors in the norms ||e, || and |||ep ||| as well as the rates of convergence are presented
in Tables 1 and 2. Due to the smoothness of the solution in W/T1-2(Q) with I = 1, as B
increases, we notice that the convergence rates in the L> and energy norms are optimal with
B = 1, showing superconvergence in the energy norm as 8 = 2, 3. Figure 1 suggests that
the choice of B greater than 1 generally results in a better convergence rate in the energy
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Table 1 Errors for example 1 with 8 = 0.5 and 0.8

h B =05 g =08
lllen I llenl lIfen]l llen

1/8 1.7079¢+00 1.4642e—01 1.3692e+00 8.8955¢—02
1/16 9.9850e—01 5.1306e—02 7.2640e—01 2.5382e—02
1/32 5.8586e—01 1.8022e—02 3.8518e—01 7.2451e—03
1/64 3.4495¢—01 6.3427e—03 2.0441e—01 2.0696e—03
1/128 2.0365¢—01 2.2354e—03 1.0858e—01 5.9162e—04
Rate 0.7669 1.5083 0.9142 1.8081

Table 2 Errors for example 1 with 8 =1,2,3

h p=1 B=2 B=3
lllen I llenl lllen I llen I (el llepl

1/8 1.1938e+00 6.4322e—02 7.0184e—01 1.5638e—02 4.5774e—01 4.6454e—03
1/16 5.9860e—01 1.6097e—02 3.0062e—01 2.4884e—03 1.4155e—01 4.2258e—04
1/32 2.9951e—01 4.0249e—03 1.2704e—01 3.8230e—04 3.8231e—02 1.8648e—04
1/64 1.4978e—01 1.0063e—03 5.1890e—02 5.0844e—05 9.7695e—03 5.5301e—05
1/128 7.4893e—02 2.5157e—04 2.0313e—02 6.6568e—06 2.4562e—03 1.4420e—05
Rate 0.9988 1.9996 1.2756 2.8009 1.8941 1.9597

8 ol 1 & 0
= e H‘ norm (B=0.5) ] —+— L2 norm (=0.5)
—*—H' norm (B=0.8) ——2
) . L® norm (B=0.8)
—+—H" norm (B=1) 10 —+— L2 norm (B=1)
1072k —*—H" norm (B=2) —+— L2 norm (B=2)
——H' norm (B=3) 107 —+— L2 norm (B=3)
-3 ©
10 10
1072 107 10° 102 107" 10°
h h

Fig. 1 Convergence rates for different values of S. Left Error in the H ! norm. Right Error in the L2 norm

norm, but when g = 3, the WG method has a comparable convergence rate in the L? norm
as B =1.

To attack the ill-conditioned effect from the discrete linear algebraic systems for g > 1,
we employ the ILU preconditioning and a restarted Generalized Minimum Residual method
(GMRES) to drive relative residual to less than a tolerance. All our tests in this section are
started from zero vector and terminated when the iteration satisfies / r©® < 1¢—6, where
r is the residual of the n-th iteration. To limit the amount of memory required to execute
the method, we set a restart number up to 100. Tables 3 and 4 show the outer iteration (outer
it.), inner iteration (inner it.) and CPU time of the restarted GMRES method with and without
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Table 3 GMRES method for example 1 with g = 2

h Non-preconditioning Preconditioning
Outer it. Inner it. CPU time (s) Outer it. Inner it. CPU time (s)
1/8 2 7 0.1255 1 43 0.0346
1/16 3 41 0.7293 1 7 0.0140
1/32 8 17 7.7649 1 5 0.0345
1/64 27 9 85.3568 1 3 0.0582
1/128 105 73 8988.11 1 4 0.7188
Table 4 GMRES method for example 1 with 8 =3
h Non-preconditioning Preconditioning
Outer it. Inner it. CPU time (s) Outer it. Inner it. CPU time (s)
1/8 2 83 0.1985 1 88 0.1012
1/16 7 63 2.1588 1 3 0.0099
1/32 29 24 30.2606 1 4 0.0301
1/64 107 3 361.1554 1 4 0.0710
1/128 141 49 12,037.42 1 2 0.4688

ILU preconditioning. It is observed that a preconditioned GMRES method has produced a
very efficient and robust performance.

Example 2 The example is originated from [16]. Taking a coefficient matrix A = |:(1) ?],

we now test the method for problem (1.1)—(1.2) with the low regularity solution
u(x, y) = x(x = Dy(y = Dr=*e,

where o € (0, 1] is a constant, and r = /x2 + y2 denotes the distance to the origin. Note
that u € Wy>(2) N W2P(R) forall p € (1, y2;) € (1,2). As « changes, the errors from
the theory in this work are expected to be

2
1Qou — M()”Lz ~ ()(h375) ~ 0(h1+a),
2—l_ﬂ 3—2
and ||| Qnu — upl|| ~ o(h™ P~ %) ~ o(h*2z),

where the optimal value of B is 1 4+ = — g.

2
p

On the uniform triangular meshes, we present the errors and convergence rates for different
values of § in Tables 5, 6, and 7, respectively. As « tends to 0, the convergence rates tend
to 0 in the energy norm and to 1 in the L?-norm for the errors from the WG method with
B = 1. When B = 1 is taken, the convergence rates in the L2 and energy norms become
optimal for the high-regularity solution, which is consistent with the theory. In Fig. 2, we
compare the convergence rates for different 8 and fixed o (=1). It is clear from Fig. 2 that
the overall convergence behavior is very similar to that of Fig. 1 and the choice 8 = 2 gives
better convergence rates than the other two 8 = 1, 3. In the case o = 275 it is observed
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Table 5 Errors for example 2 with different o = 1, 2_1, 275 and B =05

h a=1,8=05 a=2"1 =05 a=278=05
lllex llenll Il llenll lllenll llenl

1/8 2.7501e—01 2.4834e—02 1.7309e+-00 1.4358e—01 1.1432e4-01 9.1311e—01
1/16 1.7318e—01 9.2510e—03 1.4701e+00 7.2418e—02 1.3449e+-01 6.3854e—01
1/32 1.0812e—01 3.4165e—03 1.2420e+00 3.6325e—02 1.5733e+01 4.4399e—01
1/64 6.7136e—02 1.2559e—03 1.0465e+00 1.8177e—02 1.8356e+01 3.0788e—01
1/128 4.1532e—02 4.6040e—04 8.8066e—01 9.0861e—03 2.1387e+01 2.1323e—01
Rate 0.6821 1.4387 0.2440 0.9958 —0.2256 0.8571

Table 6 Errors for example 2 with different o = 1, 2_1, 275 and B =038

h a=1,8=038 0{:271’/3=0.8 012275,,3=0.8
llex I llel eI llel el llenll

1/8 2.1979e—01 1.5737e—02 1.3411e+00 8.6387e—02 8.8225e+00 5.4447e—01
1/16 1.265%9e—01 4.8674e—03 1.0285e+00 3.5519e—02 9.3567e+00 3.0948e—01
1732 7.2017e—02 1.4824e—03 7.8401e—01 1.4499e—02 9.8665e+00 1.7484e—01
1/64 4.0591e—02 4.4648e—04 5.9568e—01 5.8964e—03 1.0375e4-01 9.8486e—02
1/128 2.2714e—02 1.3340e—04 4.5179e—01 2.3932e—03 1.0894e+-01 5.5397e—02
Rate 0.8190 1.7211 0.3927 1.2938 —0.0758 0.8246

Table 7 Errors for example 2 with different o« = 1, 21 s 275 and B=1

h a=1,8=1 a=2"1 =1 =273 8=1
lllex Il llenll lllex Il llenll lllex Il llenll

1/8 1.9096e—01 1.1814e—02 1.1329e+00 6.1810e—02 7.4246e—00 3.8609e—01
1/16 1.0463e—01 3.2842e—03 8.1300e—01 2.2267e—02 7.3501e—00 1.9131e—01
1/32 5.6657e—02 8.9899¢—04 5.7989e—01 7.9609e—03 7.2345e—00 9.4203e—02
1/64 3.0386e—02 2.4311e—04 4.1213e—01 2.8333e—03 7.1004e—00 4.6243e—02
1/128 1.6167e—02 6.5103e—05 2.9229e—01 1.0057e—03 6.9587e—00 2.2665e—02
Rate 0.8908 1.8763 0.4889 1.4857 0.0237 1.0229

in Fig. 3 that the WG methods with 8 = 0.5, 0.8 are not convergent in the H I norm but
converge slowly with § = 1. Furthermore, as the value of 8 increases from 1 to 3 and the
values of o decrease, it is observed in Tables 7, 8, and 9 that the WG methods with 8 = 2, 3
produce better convergence rates and accuracy in the energy norm for all values of & and, in
the case 8 = 1, the method has the best convergence rate in the L norm just for the smooth
solution (o = 1). Especially, when o = 275 and B > 1, for the low-regularity solution, the
WG method has the first-order optimal convergence rate in the L2 norm and orders 0.5023,
0.6963 in the energy norm for 8 = 2 and B = 3, respectively. Due to the condition numbers
in the discrete linear algebraic systems from the WG approximation up to O (h=2), 0(h™3)
and O(h~*) for B = 1, 2, 3, respectively, the ILU preconditioning is indispensable in our
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o=1

o=1

5 . 5 .
510 E 10 ; , HEEL
. —+—H' norm (B=0.5)| . —+— L2 norm (B=0.5)
10 ——H" norm (3=0.8) 10 —+— L2 norm ($=0.8)
——H"norm (B=1) | —— L2 norm (B=1)
10°F ——H"nom (8=2) | 107 ; | —— 12 norm (p=2)
H' norm (B=3) L2 norm (B=3)
6 -6
10 ; H ; 10 ; ; ;
10? 107" 10° 10* 107 10°
h h
Fig. 2 Convergence rates for different values of B and « = 1. Left Error in the H ! norm. Right Error in the
L? norm
=275 a=2"°
by ‘
10 F T 10 F
100 ko »/./:ja/‘/‘//: 10° b
107k 107k
3 s
= -2 1 - = -2
w 10"k —— H‘ norm ($=0.5) w 10k 12 norm (3=05)
—*—H' norm (B=0.8) 2
& W 4 & —+—L° norm ($=0.8)
107k SHE ! ut norm (B_z) 107k —+— L2 norm (B=1)
RS : : : d " norm (st) —+— 12 norm (p=2)
" - 4
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107 10” 10° 107 107 10°
h h

Fig. 3 Convergence rates for different values of 8 and o = 273, Left Error in the H ! norm. Right Error in
the L2 norm

Table 8 Errors for example 2 with different o« = 1, 2’1, 275 and pB=2

h a=1,8=2 a=2"1p=2 a=273 =2
lllex llenll lllex I llenll lllexnll llenll

18 1.0584e—01  3.4354e—03  5.0123e—01  12517e—02  3.1507e—00  7.0810e—02
116 49194e—02  5.870de—04  2.6817e—01  2.4813e—03  2.2276e—00  1.8190e—02
132 22152e—02  8.0056e—05  14397e—01  4.9634e—04  1.5708e—00  4.8315e—03
/64  9.5227e—03  14671e—05  7.7111e—02  1.4957e—04  1.1075¢—00  1.5960e—03
1128 3.9294e—03  6.2863e—06  4.1335¢—02  6.5476e—05  7.8353e—01  7.4871e—04
Rate  1.1872 2.3511 0.8998 1.9210 0.5023 1.6637

computation. Table 10 shows the best convergence rates in the energy and L? norms when
some critical values of § are chosen for different values of @ = 273 2=4 25 respectively.

Moreover, since u € W>7?(2) only, linear elements are investigated for computing. In
Fig. 4, the profiles of numerical solutions illustrate that the solutions have more slope surfaces
close to the origin as the values of o become less. Considering the convergence rates in the
energy norm, we compare the WG methods (8 = 1, 2, 3) with the non-symmetric interior
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Table 9 Errors for example 2 witha = 1, 2-1 s 275 and B=3

h a=18=3 a=2"1 =3 a=27 =3
lllex Il lle | lllen Il llen lllen Il llen

1/8 6.0196e—02 8.0782e—04 2.3164e—01 3.1592e—03 1.3526e—00 1.5049¢—02
1/16 2.0439e—02 3.3422e—04 9.5540e—02 1.4199¢—03 6.9724e—01 6.0930e—03
1/32 6.8741e—03 1.2572e—04 4.3927e—02 6.3686e—04 3.8266e—01 3.4527e—03
1/64 2.6001e—03 3.7899e—05 2.4677e—02 2.4675e—04 2.4946e—01 1.7963e—03
1/128 1.1398e—03 1.0652e—05 1.6127e—-02 9.0743e—05 2.0244e—01 8.9958e—04
Rate 1.4420 1.5630 0.9642 1.2768 0.6963 0.9891

Table 10 Errors for example 2 with o = 273,274 275 and optimal values of

h a=2"3p=23417 a=2"%p=24214 o« =275 8 =2.4608
lllenll llenll lllenll llenll lllenll llenl
1/8 1.6179e—00  2.7545¢—02  1.9417¢—00  3.0961e—02  2.1310e—00  3.3031e—02

1/16 9.6057e—01 5.8269e—03 1.1709e—00 6.7367e—03 1.2963e—00 7.2635e—03
1732 5.7239e—01 2.0948e—03 7.0887e—01 2.6988e—03 7.9143e—01 3.0473e—03
1/64 3.4689e—01 1.0719e—03 4.3839e—-01 1.4439e—-03 4.9453e—01 1.6684e—03
1/128 2.1974e—01 5.3495e—04 2.8664e—01 7.4210e—04 3.2861e—01 8.7227e—04
Rate 0.7230 1.3815 0.6937 1.2987 0.6784 1.2608

penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG) and continuous finite
element (FEM) methods by linear elements presented in Ref. [16], and obtain comparable
results in Table 11. It is observed that when 8 = 2, 3, the WG methods give more impressive
convergence rates than the other methods.

Example 3 The next example is an elliptic problem of corner singularities in the L-shaped

domain = (0, 1)>\[1/2, 1)> with A = I,,», an identity matrix. Under a polar coordinate

system (r, 6) with the origin (%, %), the solution is

20 —
3

Note that the solution in example 3 has a corner singularity at the node (1/2, 1/2) as well as
the other five vertices of the L-shaped domain. With the reentrant corner of the interior angle

2 b4
u(r):rjsin( ), 556‘527‘[.

3 /2. Therefore, the solution has the global regularity H e (£2), where € is any positive
number and p = 2. Some tests are made on uniform grids and locally refined grids to
investigate errors and convergence rates. From Table 12, we observe that as the values of
increase from 0.5 up to 1, the weak Galerkin method with § = 1 has optimal convergence
rates in the L2 and energy norms for the singular problem. The WG solutions for 8 = 2, 3
have better accuracy and convergence rates in the energy norm in Table 13, although the
convergence rate of the WG method with 8 = 1 in the L? norm is the best from Tables 12
and 13.

We also employ locally refined grids to illustrate the numerical error in Fig. 5, and verify
convergence rates o of the error |||ey ||| with respect to the number of degrees of freedom
(Dof), defined by
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Table 11 Comparison on convergence rates of |||ey, ||| by using different methods for example 2 with different

o SIPGin[16] NIPGin[l6] FEMin[l6] WG(B=1 WG@B=2) WG(B=3)
1 0.905 0.918 0.924 0.8909 1.1872 1.4420
2=l 0491 0.494 0.500 0.4889 0.8998 0.9642
2 0245 0.247 0.249 0.2424 0.7039 0.8104
273 0121 0.122 0.124 0.1175 0.5917 0.7439
2=4  0.0587 0.0602 0.0618 0.0550 0.5326 0.7119

Table 12 Errors for example 3 with 8 = 0.5, 0.8 and 1.

h B =05 B =038 B=1
eI llenll el llenll el llenll

1/8 1.7310e—01 7.1699e—03 1.7145e—01 6.9561e—03 1.6984e—01 6.7521e—03
1/16 1.1224e—01 2.6452e—03 1.1097e—01 2.5437e—03 1.0954e—01 2.4312e—03
1/32 7.1978e—02 9.9602e—04 7.1120e—02 9.5251e—04 6.9981e—02 8.9613e—04
1/64 4.5857e—02 3.8215e—04 4.5311e—02 3.6458e—04 4.4464e—02 3.3794e—04
1/128 2.9097e—02 1.4866e—04 2.8764e—02 1.4185e—04 2.815%e—02 1.2976e—04
Rate 0.6437 1.3975 0.6443 1.4034 0.6486 1.4250

Table 13 Errors for example 3 with 8 =2 and 3

h =2 B=3
lllen Il lenll [llen !l llen

1/8 1.5094e—01 4.6542¢e—03 1.0853e—01 2.3067e—03

1/16 8.7451e—02 1.0914e—03 4.6727e—02 1.4684e—03

1/32 4.8148e—02 2.9052e—04 2.1612e—02 7.6808e—04

1/64 2.5416e—02 1.7262¢—04 1.1804e—02 3.3615e—04

1/128 1.3123e—02 9.7637e—05 7.1113e—03 1.3897e—04

Rate 0.8830 1.3810 0.9849 1.0233
[le|| := O (Dof %). (5.1)

Table 14 shows the WG method has better approximation behavior in the locally refined grids
than in the uniform meshes, and the choice of 8 = 2 gives the best convergence rate in the
energy norm.

Example 4 In this case, we employ the same analytic solution as in Example 2 and
in the domain with a narrow line crack of size 2e-5 (see Fig. 6), defined by Q@ =
(=2, 2)2\[—2, 0.00001] x (—0.00001, 0.00001). We notice that the problem with a Dirichlet
boundary condition has low regularity and singularity at the corners of the origin.

In Fig. 7, it is observed that the solution around the line crack is discontinuous and has
sharp slopes along the bottom-left diagonal direction, but the error mainly distributes around
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Fig. 5 A locally refined grid (left) and error profile in 3D (right) with 8 = 1

Table 14 Convergence rates of |||ley ||| and |ley || with respect to Dof for example 3 on locally refined grids,

withg =1, 2, 3
Dof B=1 pB=2 B=3
lllen I llenll lllen I llenll lllen I llen
2516 4.9221e—02 5.6648e—04 2.7865e—02 2.6550e—04 1.1741e—-02 2.5186e—04
10168 2.7504e—02 1.5741e—04 1.1943e—02 7.9844e—05 4.8508e—03 8.9586e—05
40880 1.5699¢—02 4.5672e—05 5.1826e—03 3.0310e—05 2.6496e—03 3.3099¢—05
163936 9.1729¢—03 1.4198e—05 2.4084e—03 1.1953e—05 1.6184e—03 1.2521e—05
656576 5.4737e—03 4.7562e—06 1.2412e—-03 4.7085e—06 1.0137e—03 4.8276e—06
o —0.3948 —0.8603 —0.5625 —0.7164 —0.4312 —0.7101
x10™
5 5
4
1.5
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1
2
0.5 1
0 0 X
-0.5 -
-2
-1
-3
15 4
) -5
) 1 1 2 -10 -8 -6 -4 -2 0

Fig. 6 An initial grid with a crack (left) and a locally zoomed area around the origin (right)
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Fig. 7 Numerical solution in 3D (left) and the corresponding numerical error profile (right) with the initial
egrid refined by three times

Table 15 Errors for example 4 with 8 = 2, 2.4608 and 3 on the uniform grids

Dof =2 g =3 B = 2.4608
[lle I llen lllen llen | [lle I llen

max{h} 5.1228e—01  1.030le—01  5.1193e—01  5.1855e—02  5.1207e—01  7.1868e—02
max{h}/2 3.6223e—01  3.2502e—02  3.6183e—01  1.7604e—02  3.6202e—01  2.2469e—02
max{h}/4 2.9709e—01  1.1098e—02  2.9642e—01 9.3168¢e—03  2.9687e—01  9.1544e—03
max{h}/8 2.1513e—01  5.3365e—03  2.1289e—01  7.0780e—03  2.1475e—01  6.4784e—03
max{h}/16  1.5292e—01  3.9304e—03  1.4516e—01  5.5536e—03  1.5204e—01  5.6170e—03
Rate 0.4240 1.2030 0.4402 0.7760 0.4257 0.9149

the origin. From Table 15, it is shown that when o = 275, the rate in the L2 norm with
B = 2.4608 is better than that with 8 = 3, and the convergence rates in the energy norm are
comparable in the three cases to the low regularity solutions in the cracked domain.

All numerical examples above are in good agreement with the theoretical analysis, which
validates optimal convergence rates of the stabilized WG finite element method (2.2) with
the suitable choices of the over-relaxed factor.

6 Conclusions

In this work, we have proposed and analyzed the a priori energy-norm and L”, L? error
estimates of the over-relaxed weak Galerkin method for solving low regularity elliptic prob-
lems. In the cases of low regularity elliptic solutions, an over-relaxed factor § > 1 in the
over-relaxed stabilization term has been stated with respect to p € (1, 2) to implement weak
continuity in the WG method. The WG method with the over-relaxed stabilization is opti-
mally convergent, and the rates exhibit an impressive performance in the energy norm. The
optimal relaxed factor for p € (1, 2) has been derived and in the case p = 2, optimal error
estimates in the energy and L? norms can be recovered when 8 = 1 is taken. The relaxed fea-
tures for low regularity solutions have been verified by some numerical results. Furthermore,
an ILU preconditioning technique for the over-relaxed WG scheme is employed through the
restarted GMRES method to reduce iterations and save computational cost.
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