
J Sci Comput (2017) 71:195–218
DOI 10.1007/s10915-016-0296-4

A Weak Galerkin Method with an Over-Relaxed
Stabilization for Low Regularity Elliptic Problems

Lunji Song1,2 · Kaifang Liu1 · Shan Zhao2

Received: 2 April 2016 / Revised: 9 August 2016 / Accepted: 16 September 2016 /
Published online: 27 September 2016
© Springer Science+Business Media New York 2016

Abstract A new weak Galerkin (WG) finite element method is developed and analyzed for
solving second order elliptic problems with low regularity solutions in the Sobolev space
W 2,p(�) with p ∈ (1, 2). A WG stabilizer was introduced by Wang and Ye (Math Comput
83:2101–2126, 2014) for a simpler variational formulation, and it has been commonly used
since then in the WG literature. In this work, for the purpose of dealing with low regularity
solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive
relaxation index to the mesh size h. The relaxed stabilization gives rise to a considerable
flexibility in treating weak continuity along the interior element edges. When the norm index
p ∈ (1, 2], we strictly derive that the WG error in energy norm has an optimal convergence

order O(hl+1− 1
p − p

4 ) by taking the relaxed factor β = 1+ 2
p − p

2 , and it also has an optimal

convergence order O(hl+2− 2
p ) in L2 norm when the solution u ∈ W l+1,p with p ∈ [1, 1 +

2
p − p

2 ] and l ≥ 1. It is recovered for p = 2 that with the choice of β = 1, error estimates

in the energy and L2 norms are optimal for the source term in the sobolev space L2. Weak
variational forms of the WG method give rise to desirable flexibility in enforcing boundary
conditions and can be easily implemented without requiring a sufficiently large penalty factor
as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that
the proposed WGmethod with an over-relaxed factor β(≥ 1) converges at optimal algebraic
rates for several low regularity elliptic problems.
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1 Introduction

The goal of this paper is to formulate and analyze a weak Galerkin method for solving an
elliptic problem with low regularity solution. We consider a second order elliptic equation
with a homogeneous Dirichlet boundary condition as follows:

− ∇ · A∇u = f, in �, (1.1)

u = 0, on ∂�, (1.2)

where� ⊂ R
2 is an open bounded polygonal domain, the coefficient A is a positive piecewise

constant or a uniformly symmetric positive definite function matrix A := {ai j (x)}, ai j =
a ji ∈ W 1,∞(�) in R

2×2, i.e., there exists a positive constant γ > 0 such that

2∑

i j=1

ai j (x)ξiξ j ≥ γ
(
ξ21 + ξ22

)
, ∀ ξ := (ξ1, ξ2) ∈ R

2, x ∈ �̄.

And the force term f ∈ L p(�) is a given function for some p in (1,∞].
We shall use standard notation for Sobolev spaces (see [1]). For any nonnegative integer

s and r ≤ 1, the classical Sobolev space on a bounded domain D ⊂ R
2 is

W s,r (D) = {
v ∈ Lr (D)| ∂nv ∈ Lr (D), ∀ |n| ≤ s

}
,

where ∂nv are the partial derivatives of v of order n and Lr (D) is the space of all (scalar-
valued) functions on D for which the corresponding L p-norm

‖v‖L p(D) =
{( ∫

D |v(x)|pdx
)1/p

, p ∈ [1,∞),

ess supx∈D|v(x)|, p = ∞,

is bounded. The corresponding norm in W s,r (D) is denoted by ‖·‖W s,r (D) and the semi-norm
by | · |W s,r (D). The L2 inner-product is denoted by (·, ·)D and by (·, ·) if D = �. For the
Hilbert space Hs(D) = W s,2(D), the norm is denoted by ‖ · ‖L2(D). We define by H1

0 (D)

the subspace of functions in H1(D) that vanish on ∂ D. Throughout the paper, boldface
characters denote vector quantities.

The standard weak formulation of (1.1)–(1.2) is to find u ∈ H1
0 (�) such that

(A∇u,∇v) = ( f, v), ∀ v ∈ H1
0 (�). (1.3)

Continuous and piecewise polynomials are used in the classical (conforming) finite element
methods, but the use of discontinuous functions in the finite element approximations often
provides much required flexibility in handling complex problems.

There are a variety of articles which deal with discontinuousGalerkin (DG) discretizations
of elliptic problems under standard regularity assumptions (e.g., for solutions in W 2,2(�)

or W
3
2+ε,2(�) with ε > 0) in [2,3,13] and the references therein for different types of DG

methods. There are a great deal of difficulties in derivation of algebraic convergence rates for
DGmethods for low regularity solutions, even though the numerical flux is treated delicately.
With solutions belonging to someweightedSobolev spaces (based on aweightedW 2,2-norm),
DGmethods have been analyzed inmanypapers for elliptic problemswith corner singularities
in polygons. In Ref. [16], interior penalty DG methods including symmetric interior penalty
Galerkin (SIPG) and non-symmetric interior penalty Galerkin (NIPG) schemes have been
presented and error analysis has been conducted in an energy norm for solutions in W 2,p ,
p ∈ (1, 2].
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Recently, with a well-defined weak gradient, Wang and Ye [15] developed a new weak
Galerkin finite element (WG) method for second order elliptic equations formulated as a
system of two first order linear equations, and presented optimal a priori error estimates in
both discrete H1 and L2 norms, as well as a residual type a posteriori error estimator [4]. In
most studies, the weak Galerkin finite element methods are analyzed for analytic solutions
defined in the Sobolev space W k+1,2(�) (see [8–10,14]). For high regularity solutions, a
stable and efficient stabilization term has been presented in [15]. Compared to DG finite
element methods, WG methods have some main features, such as continuous normal flux
across element interfaces, less unknowns, and no need for choosing penalty factors.

The motivation of the paper is to use a relaxed stabilizer in the weak Galerkin method
to provide an improved approximation to the low regularity solution of problem (1.1)–(1.2).
Here we introduce a relaxed power index β on mesh size h for the stabilization in [15].
Without adding any penalty factor, particular investigation will be carried out on optimal
error estimates of low regularity solutions in the L p space with 1 < p ≤ 2. There is a great
interest in what values of the index β would be an optimal choice in numerical analysis for
low regularity solutions, and in the question if the choice of β = 1 can be recovered in the
case of high regularity solutions. In this paper, we will investigate a WG method with an
over-relaxed stabilization term for solutions existing in H1(�) ∩ W 2,p(�) with p ∈ (1, 2],
and develop a priori error estimates in the standard energy norm and in the L2, L p norms.
Furthermore, we will prove that the over-relaxed WG method converges at an (optimal)
algebraic rate even if p ∈ (1, 2].

The following Sobolev embedding and regularity results will be used in our analysis.

Lemma 1.1 ([1, Theorem 4.12]) For p ∈ [1,∞], let D ⊂ R
2 be a bounded open Lipschitz

domain. Then, the embedding W 1,p(D) ↪→ Lq(D) is continuous for all q ∈ [1,∞), if p ≥ 2,
and for all q ∈ [1, 2p

2−p ] if p < 2.

Lemma 1.2 ([7,16]) The variational formulation (1.3) has a unique solution in W 1,2(�)

(equivalently, in H1(�)) for any f ∈ L p(�) with p ∈ (1,∞).

Lemma 1.3 ([16]) Given μ > 1, for any f ∈ L p(�) with p ∈ (1, μ), the solution of
(1.1)–(1.2) belongs to X := W 2,p(�) ∩ H1

0 (�) and the regularity estimate holds

‖u‖X ≤ C‖ f ‖L p(�), (1.4)

where C is a positive constant independent of u.

The rest of this paper is organized as follows. In Sect. 2, we recall the definition of weak
gradient and its discrete approximation, and then present an over-relaxedWG approximation.
In Sect. 3, we estimate an a priori WG error in energy norm and some key inequalities are
presented. In Sect. 4, error estimates in L p and L2 norms are derived by a dual argument.
In the last Section, we present some numerical experiments including three low-regularity
problems to show the effectiveness and convergence rates of the over-relaxed weak Galerkin
method.

2 Weak Garlerkin Methods with an Over-Relaxed Stabilization

Let Th be a triangulation of the domain � into any polygons, Eh be all edges, and E0
h be

all interior edges. For any T ∈ Th , we denote its diameter by hT and the boundary by ∂T .
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Further, let h = maxT ∈Th hT denote a characteristic mesh size of the whole partition. We
assume that the partition is shape regular, see [15].

On the partition Th , we define a broken Sobolev space, for s ∈ N and r ∈ [1,∞], by
W s,r (Th) = {v ∈ Lr (�)|v ∈ W s,r (T ), ∀ T ∈ Th}.

On an element T , we define a weak function by v = {v0, vb} such that v0 ∈ L2(T ) and
vb ∈ L2(∂�), where v0 and vb represent the values of v in the interior and on the boundary
of T , respectively. Let P j (T ) be the set of polynomials on T with degree no more than j. For
a given finite element mesh Th and polynomial degrees j, l ≥ 1, we consider the following
finite element spaces

Vh = {v = {v0, vb} : v|T ∈ P j (T ) × Pl(e), e ∈ ∂T, ∀ T ∈ Th},
V 0

h = {v = {v0, vb} : v ∈ Vh, v|e = 0, e ∈ ∂�},
Uh= {v0 ∈ L2(�) : v0|T ∈ P j (T ), ∀ T ∈ Th}.

Herewe take j = l = k for a fixed positive integer k ≥ 1 and the function vb is not necessarily
the trace of v0 on ∂T . The component v0 is defined element-wise and may be discontinuous
with respect to vb. The idea of polynomial reduction [12] presents an optimal combination
for the polynomial spaces. For instance, one can use (Pk(T ),Pk−1(e), [Pk−1(T )]2) instead
of (Pk(T ),Pk(e), [Pk−1(T )]2), to minimize the number of unknowns in the WG scheme
without compromising the accuracy of the stabilized approximations [11,12].

We denote by Q0 and Qb the L2 projection operators from L2(T ) onto Pk(T ) and from
L2(e) onto Pk(e), respectively. We write Qh = {Q0, Qb}. Moreover, let Qh be the L2 pro-
jection from [L2(T )]2 onto the local discrete gradient space [Pk−1(T )]2. The weak gradient
is defined by ∇wv ∈ [Pk−1(T )]2 for any function v ∈ Vh satisfying

(∇wv, q)T = −(v0,∇ · q)T + 〈vb, q · n〉∂T , ∀ q ∈ [Pk−1(T )]2, (2.1)

where 〈·, ·〉∂T stands for the usual inner product in L2(∂T ). For any uh = {u0, ub}, vh =
{v0, vb} ∈ Vh , we introduce the following bilinear form

(A∇wuh,∇wvh) :=
∑

T ∈Th

(A∇wuh,∇wvh)T .

Weak Galerkin Algorithm. A numerical approximation for (1.1)–(1.2) can be obtained by
seeking uh = {u0, ub} ∈ V 0

h such that for any vh = {v0, vb} ∈ V 0
h ,

a(uh, vh) := (A∇wuh,∇wvh) +
∑

e∈Eh

1

hβ
〈u0 − ub, v0 − vb〉e = ( f, v0), (2.2)

where β is a positive number to be defined later.
Next, we justify the well-posedness of the scheme (2.2). For any v ∈ Vh , we define an

energy norm by

�v� := √
a(v, v).

Note that � · � define a semi-norm in Vh . However, it defines a norm in V 0
h . To verify this,

it suffices to check the positivity property for � · �. To this end, assume that v ∈ V 0
h and

�v� = 0. It follows that

(A∇wv,∇wv) +
∑

e∈Eh

1

hβ

∫

e
|Qbv0 − vb

∣∣2ds = 0,
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which implies that ∇wv = 0 on each element K and Qbv0 = vb on e. By the definition of
the weak gradient, it holds

(∇wv, τ)T = (∇v0, τ )T − 〈v0 − vb, τ · n〉e = (∇v0, τ )T − 〈Qbv0 − vb, τ · n〉e.

Thus, v0 = const on every K ∈ Th . For any edge e ∈ E0
h , there exist two elements K1 and

K2 in Th such that e = ∂K1 ∩ ∂K2. This, together with fact that Qbv0|∂K e
1

= vb|∂K e
2
and

vb = 0 on ∂�, implies that v0 = vb = 0.

Lemma 2.1 The weak Galerkin finite element scheme (2.2) has a unique solution.

Proof It suffices to prove the uniqueness. If u(1)
h and u(2)

h are two solutions of (2.2), then

eh = u(1)
h − u(2)

h would satisfy the following equation

a(eh, v) = 0, ∀ v ∈ V 0
h .

Note that eh ∈ V 0
h . Then by letting v = eh in the above equation we arrive at

�eh�2 = a(eh, eh) = 0.

It follows that eh ≡ 0, or equivalently, u(1)
h ≡ u(2)

h . This completes the proof of the lemma.
��

3 Error Estimate in Energy Norm

Analogously to Lemma 5.1 in [11], the following lemma will be used for multiple times.

Lemma 3.1 Let Qh and Qh be the L2 projection operators as defined above. Then, on each
element T ∈ Th, we have the following properties: for any v ∈ X, τ ∈ [Pk−1(T )]2,

(A∇w(Qhv), τ )T = (Qh(A∇v), τ )T . (3.1)

Proof It follows from the definition of ∇w , the symmetry of A, and integration by parts that

(A∇w(Qhv), τ )T = (∇w(Qhv), Aτ)T

= −(Q0v,∇ · (Aτ))T + 〈Qbv, (Aτ) · n〉∂T

= −(v,∇ · (Aτ))T + 〈v, (Aτ) · n〉∂T

= (A∇v, τ )T

= (Qh(A∇v), τ )T .

��
Let eh = {e0, eb} = {Q0u − u0, Qbu − ub}. We have the error equation between Qhu

and uh as follows:

a(eh, vh) = (A∇weh,∇wvh) +
∑

e∈Eh

1

hβ
〈e0 − eb, v0 − vb〉e

=
∑

e∈E0
h

〈(A
∂u

∂n
− Qh(A∇u) · n)

, v0 − vb〉e +
∑

e∈Eh

1

hβ
〈Q0u − Qbu, v0 − vb〉e

: = l1(u, vh) + l2(u, vh). (3.2)
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Indeed, for any vh ∈ V 0
h , testing (1.1) with v0, and using integration by parts, the continuity

of ∇u · n on interior edge e and Lemma 3.1 leads to

(−∇ · (A∇u), v0) =
∑

T ∈Th

(A∇u,∇v0)T −
∑

T ∈Th

〈v0, A∇u · n〉∂T

=
∑

T ∈Th

(Qh(A∇u),∇v0)T −
∑

T ∈Th

〈v0 − vb, A∇u · n〉∂T +
∑

∂T ∈∂�

〈vb, A∇u · n〉∂T

=
∑

T ∈Th

(Qh(A∇u),∇wvh)T −
∑

e∈Eh

〈v0 − vb, A
∂u

∂n
− Qh(A∇u) · n〉e

= (A∇w(Qhu),∇wvh)T −
∑

e∈Eh

〈v0 − vb, A
∂u

∂n
− Qh(A∇u) · n〉e, (3.3)

where in the last second identity we have used the fact vb|∂� = 0 and

(Qh(A∇u),∇wvh)T = −(v0,∇ · Qh(A∇u))T + 〈vb,Qh(A∇u) · n〉∂T

= (Qh(A∇u),∇v0)T − 〈v0 − vb,Qh(A∇u) · n〉∂T .

Consequently, subtracting (2.2) from (3.3) arrives at (3.2).
For any two neighboring elements K1, K2 ∈ Th sharing an edge e ∈ Eh , let �e =

(K̄1 ∪ K̄2)
0 and p ∈ (1, 2]. Note that if w ∈ W 1,p(�e), then w is continuous on e; if

w ∈ W 2,p(�e), then ∇w is continuous on e.

Lemma 3.2 For q ∈ [2,+∞), and ∀ e ∈ Eh, v ∈ Vh, there holds

‖h− 1
q (v0 − vb)‖Lq (e) ≤ C‖h− 1

2 (v0 − vb)‖L2(e), ∀ e ∈ Eh, v ∈ Vh, (3.4)

equivalently,

∑

e∈Eh

∫

e
h−1|v0 − vb|qds ≤ C

∑

e∈Eh

( ∫

e
h−1|v0 − vb|2ds

) q
2
. (3.5)

Proof To prove (3.4), we first writeψ = v0−vb and define a reference element by (ê, ψ̂, P̂k)

with an invertible affine mapping such that the two finite elements (e, ψ,Pk) and (ê, ψ̂, P̂k)

affine-equivalent (see the details in [5]). It holds by Theorems 3.1.2 and 3.1.3 in [5] and by
norm equivalence for ψ̂

h− 1
q ‖ψ‖Lq (e) ≤ C‖ψ̂‖Lq (ê) ≤ C‖ψ̂‖L2(ê) ≤ Ch− 1

2 ‖ψ‖L2(e).

Thus, (3.4) follows.
Next, it suffices to verify (3.5). By using the fact

( n∑

j=1

as
j

)1/s ≤
( n∑

j=1

ar
j

)1/r
, for 0 < r ≤ s, a j ≥ 0,

and taking r = 1, s = q
2 ≥ 1, we have

( ∑

e∈Eh

( ∫

e
h−1|v0 − vb|2ds

) q
2
) 2

q ≤ C
∑

e∈Eh

∫

e
h−1|v0 − vb|2ds,

which completes the proof of (3.5). ��
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We need the following lemma of interpolation [16].

Lemma 3.3 Let p ∈ (1, 2], and u ∈ W l+1,p(�) with l ≥ 1. Then there exists an interpolant
� : W l+1,p(�) → Uh such that for all T ∈ Th there holds

|u − �u|W m,p(T ) ≤ Chl+1−m
T ‖u‖Wl+1,p(T ), 0 ≤ m ≤ l + 1, (3.6)

where l ≥ 1 is the polynomial degree in the approximation space Vh. Furthermore,

∑

T ∈Th

(
h−2

T ‖u − �u‖2L2(T )
+ ‖∇(u − �u)‖2L2(T )

)
≤ C

( ∑

T ∈Th

h p(l+1)−2
T ‖u‖p

Wl+1,p(T )

) 2
p
.

(3.7)

Now we give the main optimal convergence theorem for the error eh in the energy norm.

Theorem 3.1 Let uh ∈ Vh be the weak Galerkin finite element solution of (2.2) arising from
the problem (1.1)–(1.2). Assume that the exact solution satisfies u ∈ W l+1,p(Th)∩W 2,p(�),
where l ≥ 1 and p ∈ (1, 2]. Then there exists a constant C such that

�Qhu − uh� ≤ C
(

h(
β+1
2 +l− 2

p ) + h(
1−β
2 +l+1− p

2 )
)
‖u‖Wl+1,p(Th). (3.8)

When the index β = 1 + 2
p − p

2 is taken, we have the optimal estimate in the energy norm

�Qhu − uh� ≤ Chl+1− 1
p − p

4 ‖u‖Wl+1,p(�). (3.9)

Especially, if p = 2, then β = 1 and it holds

�Qhu − uh� ≤ Chl‖u‖Wl+1,2(�). (3.10)

Proof In particular, (3.10) follows from (3.8). Therefore, it suffices to prove the validity of
(3.8).

Taking vh = eh in equation (3.2), we get

�eh� = a(eh, eh) = l1(u, eh) + l2(u, eh). (3.11)

Thus we need to estimate the upper bounds of the terms l1 and l2. For the term l1, by Hölder
inequality and the boundedness of A, it holds

|l1(u, eh)|
=

∣∣∣
∑

e∈Eh

〈(A∇u − Qh(A∇u)
) · n, e0 − eb〉e

∣∣∣

≤ C
( ∑

T ∈Th

h p−c̄
T

∫

∂T

∣∣(A∇u − Qh(A∇u)) · n∣∣p
ds

) 1
p
( ∑

T ∈Th

∫

∂T

1

hβ
|e0 − eb|p∗

ds
) 1

p∗

≤ C
( ∑

T ∈Th

h p−c̄
T

∫

∂T

∣∣(∇u − Qh(∇u)) · n∣∣p
ds

) 1
p
( ∑

T ∈Th

∫

∂T

1

hβ
|e0 − eb|p∗

ds
) 1

p∗
,

(3.12)

where 1
p + 1

p∗ = 1 with p∗ ∈ [2,∞) and c̄ = p − (p − 1)β.
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We then give the following estimate from Lemma 3.2

( ∑

T ∈Th

∫

∂T

1

hβ
|e0 − eb|p∗

ds
) 1

p∗

≤ Ch
1−β

p∗
( ∑

T ∈Th

∫

∂T
h−1|e0 − eb|p∗

ds
) 1

p∗

≤ Ch
1−β

p∗
( ∑

T ∈Th

∫

∂T
h−1|e0 − eb|2ds

) 1
2

≤ Ch
( 12− 1

p∗ )(β−1)
( ∑

T ∈Th

∫

∂T
h−β |e0 − eb|2ds

) 1
2

≤ Ch
( 12− 1

p∗ )(β−1)
� eh � . (3.13)

Applying the trace inequality and scaling argument results in
∑

T ∈Th

h p−c̄
T

∥∥(∇u − Qh∇u) · n∥∥p
L p(∂T )

≤ C
∑

T ∈Th

h(p−1)β
T

(
h

− 1
p

T ‖∇u − Qh∇u‖L p(T ) + h
1− 1

p
T ‖∇(∇u − Qh∇u)‖L p(T )

)p
,

which implies by applying (3.6)
∑

T ∈Th

h p−c̄
T

∥∥(∇u − Qh∇u) · n∥∥p
L p(∂T )

≤ C
∑

T ∈Th

h(p−1)β+pl−1
T

∥∥u‖p
Wl+1,p(T )

. (3.14)

Then, inserting (3.13)–(3.14) into (3.12) results in

|l1(u, eh)| ≤ Ch
β+1
2 +l− 2

p ‖u‖Wl+1,p(Th) � eh � . (3.15)

Next, we estimate the bound of the term l2. It follows

|l2(u, eh)| =
∣∣∣

∑

K∈Th

1

hβ
〈Q0u − Qbu, v0 − vb〉e

∣∣∣

=
∣∣∣

∑

K∈Th

1

hβ
〈Q0u − u, v0 − vb〉e

∣∣∣

≤ C
( ∑

e∈Eh

1

hβ
‖Q0u − u‖2L2(e)

) 1
2
( ∑

e∈Eh

1

hβ
‖v0 − vb‖2L2(e)

) 1
2

(3.16)

By the trace inequality and elementwise scaling, we get

( ∑

e∈Eh

1

hβ
‖Q0u − u‖2L2(e)

) 1
2

≤ C
∑

T ∈Th

(
h−1−β

T ‖Q0u − u‖2L2(T )
+ h1−β

T ‖∇Q0u − ∇u‖2L2(T )

) 1
2

≤ Ch
1−β
2 +(l+1)− p

2 ‖u‖Wl+1,p(Th), (3.17)
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where in the last inequality we have used (3.7). Then substituting (3.17) into (3.16) gives

|l2(u, eh)| ≤ Ch
1−β
2 +(l+1)− p

2 ‖u‖Wl+1,p(�)

( ∑

e∈Eh

1

hβ
‖v0 − vb‖2L2(e)

) 1
2

≤ h
1−β
2 +(l+1)− p

2 ‖u‖Wl+1,p(Th) � eh � . (3.18)

Consequently, combining (3.11) with (3.15) and (3.18) arrives at

�eh� ≤ C
(

h
β+1
2 +l− 2

p + h
1−β
2 +(l+1)− p

2

)
‖u‖Wl+1,p(Th). (3.19)

This completes the proof of the theorem. ��

Remark 3.1 Note that we prove the optimal convergence rate O(hl+1− 1
p − p

4 ) of the error
Qhu −uh in the energy norm, with β = 1+ 2

p − p
2 chosen. When p is close to 1, the optimal

rate is up to the order O(hl− 1
4 ) with β = 5

2 , which means that the flexible stabilization term
is available for the low regularity solutions.

Remark 3.2 From (3.17), we notice that the convergence rate h
1−β
2 +(l+1)− p

2 mainly comes
from the oscillations of u and ∇u. Therefore, when u is smooth enough (at least p = 2)
and β = 1, the error estimate in the energy norm maintains optimal, up to O(hl), which is
matched with the theoretical results in [14].

4 Error Estimate in L p and L2 Norms

In this section, we mainly derive the error estimate (Q0u − u0) in the L p norm and suitable
choices for β to be defined later.

First, a duality argument will be employed in our analysis for the weak Glerkin finite
element approximation. To this end, we consider a dual problem that seeks w ∈ H1

0 (�) ∩
W 2,q(�) satisfying

−∇ · (A∇w) = |Q0u − u0|p−1sign(Q0u − u0), in �, (4.1)

w = 0, on ∂�, (4.2)

where p ∈ (1, 2] and Q0u − u0 ∈ W 2,p(�). Assume that the above dual problem has the
W 2,q -regularity. Set Y := W 2,q(�) ∩ W l+1,q(Th) ∩ H1

0 (�). There exists a constant C such
that

‖w‖Y ≤ C‖Q0u − u0‖p−1
L p(�). (4.3)

The space Hdiv(�) is defined as the set of vector-valued functions on�which, together with
their divergence, are square integrable. We denote by �h a projection for τ0 ∈ Hdiv(�) such
that �hτ0Hdiv(�), and on each T ∈ Th , �hτ0 ∈ RTk(T ) as well as the following identity

(∇ · τ0, v0)T = (∇ · (�hτ0), v0)T , ∀ v0 ∈ Pk(T ), T ∈ Th,

where RTk(T ) is the Raviart-Thomas element of order k.

Lemma 4.1 For any w ∈ W 2,q(�) ∩ H1
0 (�) and u ∈ W l+1,p(�), for which 1

p + 1
q = 1

and p ∈ (1, 2], there holds
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∑

e∈Eh

1

hβ

(
〈eb − e0, Q0w − w〉e + 〈Q0u − u, Q0w − w〉e

)

≤ Chl+1‖u‖Wl+1,p(Th)‖w‖W 2,q (�), (4.4)

where β ∈ [1, 1 + 2
p − p

2 ].

Proof From the Cauchy–Schwarz inequality, the definition of � · �, and the trace inequality
[15, Lemma A.3], it follows that

∑

e∈Eh

1

hβ
〈eb − e0, Q0w − w〉e

≤ C
( ∑

T ∈Th

h−β
T ‖e0 − eb‖2L2(∂T )

) 1
2 ·

( ∑

T ∈Th

h−β
T ‖Q0w − w‖2L2(∂T )

) 1
2

≤ Ch
1−β
2

( ∑

T ∈Th

h−β
T ‖e0 − eb‖2L2(∂T )

) 1
2 ·

( ∑

T ∈Th

h−1
T ‖Q0w − w‖2L2(∂T )

) 1
2

≤ Ch
1−β
2 � eh �

( ∑

T ∈Th

h−2
T ‖Q0w − w‖2L2(T )

+ ‖∇(Q0w − w)‖2L2(T )

) 1
2

≤ C
(

h(1− 2
p +l) + h(2−β+l− p

2 )
)
‖u‖Wl+1,p(Th)

( ∑

T ∈Th

h2q−2
T ‖w‖2W 2,q (T )

) 1
q

≤ C
(

h(l+1) + h(2−β+l− p
2 + 2

p )
)
‖u‖Wl+1,p(Th)‖w‖W 2,q (�), (4.5)

where in the fourth inequality we have used (3.7) and Theorem 3.1.
Analogously, with the use of the Cauchy–Schwarz inequality and (3.17), we have

∑

e∈Eh

1

hβ
〈Q0u − u, Q0w − w〉e

≤ Ch
1−β
2

( ∑

T ∈Th

h−β
T ‖Q0u − u‖2L2(∂T )

) 1
2
( ∑

T ∈Th

h−1
T ‖Q0w − w‖2L2(∂T )

) 1
2

≤ Ch
1−β
2

∑

T ∈Th

h
1−β
2 +(l+1)− p

2 ‖u‖2Wl+1,p(T )

( ∑

T ∈Th

h2q−2
T ‖w‖2W 2,q (T )

) 1
q

≤ Ch(2−β+l− p
2 + 2

p )‖u‖Wl+1,p(Th)‖w‖W 2,q (�). (4.6)

Due to β ∈ [1, 1 + 2
p − p

2 ] resulting in

hl+1+ 2
p − p

2 ≤ h(2−β+l− p
2 + 2

p ) ≤ h(l+1), (4.7)

adding (4.5) and (4.6) completes the proof of (4.4). ��

Theorem 4.1 Let uh be the weak Galerkin finite element solution to (2.2) arising from
the problem (1.1). Given the factor β ∈ [1, 1 + 2

p − p
2 ], assume the exact solution u ∈

W 2,p(�) ∩ W l+1,p(Th) with l ≥ 1, p ∈ (1, 2] and 1
p + 1

q = 1. In addition, assume that the

dual problem (4.1)–(4.2) has a W 2,q(�) ∩ H1
0 (�)-regularity. Then, there exists a constant
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C independent of h and β such that

‖Q0u − u0‖L p(Th) ≤ C
(

h2‖ f − Q0 f ‖L p(Th) + hl+1‖u‖Wl+1,p(Th)

)
, (4.8)

and

‖Q0u − u0‖L2(Th) ≤ Ch1− 2
p

(
h2‖ f − Q0 f ‖L p(Th) + hl+1‖u‖Wl+1,p(Th)

)
, (4.9)

where C is independent of the mesh size h and u.

Proof Testing (4.1) with e0 we obtain

‖e0‖p
L p(�) = (−∇ · (A∇w), Q0u − u0)

=
∑

T ∈Th

(−∇ · (�h A∇w), Q0u − u0)T
(4.10)

It is well known that ∀ vh ∈ Vh, τ ∈ V 2
h

∑

T ∈Th

(−∇ · �hτ, v0)T =
∑

T ∈Th

(�hτ,∇wvh)T −
∑

T ∈Th

〈vb,�hτ · n〉∂T ,

which infers from (4.10)

‖Q0u − u0‖p
L p(�)

=
∑

T ∈Th

(�h(A∇w),∇w(Qhu − uh))T −
∑

T ∈Th

〈Qbu − ub,�h(A∇w) · n〉∂T

=
∑

T ∈Th

(�h(A∇w),∇w(Qhu − uh))T −
∑

T ∈Th

〈Qbu,�h(A∇w) · n〉∂T

=
∑

T ∈Th

(�h(A∇w),∇w(Qhu − uh))T −
∑

T ∈Th

〈u,�h(A∇w) · n〉∂T

=
∑

T ∈Th

(�h(A∇w),∇w(Qhu − uh))T := I3, (4.11)

where we have used the fact that both �h(A∇w) and u are continuous across each interior
edge and ub = 0 on ∂�.

Thanks to the fact

(∇w(Qhu), τ )T = (Qh(∇u), τ )T , ∀ τ ∈ [Pk−1(T )]2, (4.12)

(4.11) follows as

I3 =
∑

T ∈Th

(�h(A∇w),Qh(∇u) − ∇wuh))T

=
∑

T ∈Th

(�h(A∇w) − A∇w,Qh(∇u) − ∇wuh))T +
∑

T ∈Th

(A∇w,Qh(∇u) − ∇wuh))T

=
∑

T ∈Th

(�h(A∇w) − A∇w,Qh(∇u) − ∇wuh))T +
∑

T ∈Th

(A∇w,Qh(∇u) − ∇wuh))T

(4.13)
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With the use of the Cauchy–Schwarz inequality, we estimate the first term of the right hand
side of I3 in (4.13)

∑

T ∈Th

(�h(A∇w) − A∇w,Qh(∇u) − ∇wuh))T

≤ C
( ∑

T ∈Th

‖�h(A∇w) − A∇w‖2L2(T )

) 1
2
( ∑

T ∈Th

‖Qh(∇u) − ∇wuh‖2L2(T )

) 1
2
. (4.14)

Applying the Sobolev embedding W 1,q(T ) ↪→ L2(D) for all T ∈ Th, q ≥ 2, and employing
a scaling argument yields

∑

T ∈Th

h−2
T ‖�h(A∇w) − A∇w‖2L2(T )

≤ C
∑

T ∈Th

h
2− 4

q
T ‖w‖2W 2,q (T )

,

which infers

( ∑

T ∈Th

‖�h(A∇w) − A∇w‖2L2(T )

) 1
2 ≤ Ch2− 2

q ‖w‖W 2,q (�).

And notice that

∑

T ∈Th

‖Qh(∇u) − ∇wuh‖2L2(T )
=

∑

T ∈Th

‖∇w(Qhu) − ∇wuh‖2L2(T )
≤ C � Qhu − uh �2 .

Then, substituting the estimates above with Theorem 3.1 into (4.14) and taking β ∈ [1, 1 +
2
p − p

2 ] results in

∑

T ∈Th

(�h(A∇w) − A∇w,Qh(∇u) − ∇wuh))T

≤ Ch2− 2
q � Qhu − uh � ‖w‖W 2,q (�)

≤ C
(

h(
β+1
2 +l) + h(

1−β
2 +l+1− p

2 + 2
p )

)
‖u‖Wl+1,p(Th)‖w‖W 2,q (�)

≤ Chl+1‖u‖Wl+1,p(Th)‖Q0u − u0‖p−1
L p(�), (4.15)

where we have recalled the following estimates in the last inequality:

hl+1+ 1
p − p

4 ≤ h(
β+1
2 +l) ≤ h(l+1),

hl+1− p
2 + 2

p ≤ h(
1−β
2 +l+1− p

2 + 2
p ) ≤ hl+1− p

4 + 1
p ,

and (4.15) holds amaximumorderwith β+1
2 +l = 1−β

2 +l+1− p
2 + 2

p = l+1+ 1
p − p

4 (≥ l+1).
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For the second term of the right hand side of I3 in (4.13), by using (4.12) and the weak
Galerkin formulation (2.2) with vh = Qh(∇w) being taken, we can derive

∑

T ∈Th

(A∇w,Qh(∇u) − ∇wuh))T

=
∑

T ∈Th

(A∇w,Qh(∇u) − ∇u)T +
∑

T ∈Th

(A∇w,∇u − ∇wuh)T

=
∑

T ∈Th

(A∇w,Qh(∇u) − ∇u)T + (A∇w,∇u) −
∑

T ∈Th

(Qh(A∇w),∇wuh)T

=
∑

T ∈Th

(A∇w,Qh(∇u) − ∇u)T + (A∇w,∇u) −
∑

T ∈Th

(A∇w(Qhw),∇wuh)T

=
∑

T ∈Th

(A∇w − Qh(A∇w),Qh(∇u) − ∇u)T + ( f, w) − ( f, Q0w)

+
∑

e∈Eh

1

hβ
〈u0 − ub, Q0w − Qbw〉e

=
∑

T ∈Th

(A∇w − Qh(A∇w),Qh(∇u) − ∇u)T + ( f − Q0 f, w − Q0w)

+
∑

e∈Eh

1

hβ
〈u0 − ub, Q0w − w〉e.

We bound the terms by the Hölder inequality

∑

T ∈Th

(A∇w − Qh(A∇w),Qh(∇u) − ∇u)T

≤ C‖A∇w − Qh(A∇w)‖Lq (Th)‖Qh(∇u) − ∇u‖L p(Th)

≤ Chl+1‖w‖W 2,q (�)‖u‖Wl+1,p(Th), (4.16)

and

( f − Q0 f, w − Q0w) ≤ C‖w − Q0w‖Lq (Th)‖ f − Q0 f ‖L p(Th)

≤ Ch2‖w‖W 2,q (Th)‖ f − Q0 f ‖L p(Th).
(4.17)

It follows from (4.4) that

∑

e∈Eh

1

hβ
〈u0 − ub, Q0w − w〉e

=
∑

e∈Eh

1

hβ

(
〈(u0 − Q0u) − (ub − Qbu), Q0w − w〉e + 〈Q0u − Qbu, Q0w − w〉e

)

=
∑

e∈Eh

1

hβ

(
〈eb − e0, Q0w − w〉e + 〈Q0u − u, Q0w − w〉e

)

≤ Chl+1‖u‖Wl+1,p(Th)‖w‖W 2,q (Th). (4.18)
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Then combining (4.16)–(4.18), we get the following estimate
∑

T ∈Th

(A∇w,Qh(∇u) − ∇wuh))T

≤ C
(

h2‖ f − Q0 f ‖L p(Th) + hl+1‖u‖Wl+1,p(Th)

)
‖w‖W 2,q (�)

≤ C
(

h2‖ f − Q0 f ‖L p(Th) + hl+1‖u‖Wl+1,p(Th)

)
‖Q0u − u0‖p−1

L p(�). (4.19)

Substituting (4.15) and (4.19) into (4.13) yields the desired error estimate (4.8) with the
choice β ∈ [1, 1 + 2

p − p
2 ] from Lemma 4.1. Furthermore, (4.9) holds from (4.8) and the

fact (see [6]) that for all φ ∈ Vh, T ∈ Th

‖φ‖L2(T ) ≤ h
1− 2

p
T ‖φ‖L p(T ).

This completes the proof of the theorem. ��

5 Numerical Experiments

In this section, we report on results of numerical tests meant to assess the theoretical a priori
error estimates and to illustrate the performance of the over-relaxed WG method (2.2) when
dealing with low regularity elliptic problems.

In the following numerical studies, all examples will be investigated on uniformly
refined triangulations of �, and will apply the WG method to find a solution uh =
{u0, ub} where u0|T ∈ P1(T ), and ub|e ∈ P1(e). Using the piecewise linear elements
(P1(T ),P1(e), [P0(T )]2), we test four examples on triangular meshes of regular pattern,
and the third example also on locally refined meshes. The error for the over-relaxed WG
solution of (2.2) shall be measured in the following two norms defined by

� eh�2 =
∑

T ∈Th

( ∫

T

∣∣A
1
2 ∇we0

∣∣2dx + h−β
T

∫

∂T
|e0 − eb|2ds

)
,

‖eh‖2 =
∑

T ∈Th

∫

T
|e0|2dx .

We first investigate an example with a smooth solution to testify the choices of β of the
stabilizer in the weak Galerkin method and apply the incomplete LU (ILU) preconditioning
to the discrete linear algebraic systems as β > 1.

Example 1 We consider the domain � = (0, 1)2 and the elliptic problem (1.1)–(1.2) with

the diffusion coefficient matrix bing given by A =
[

x2 + y2 + 1 xy
xy x2 + y2 + 1

]
such that the

exact solution is

u(x, y) = sin(πx) cos(πy).

The errors in the norms ‖eh‖ and �eh� as well as the rates of convergence are presented
in Tables 1 and 2. Due to the smoothness of the solution in W l+1,2(�) with l = 1, as β

increases, we notice that the convergence rates in the L2 and energy norms are optimal with
β = 1, showing superconvergence in the energy norm as β = 2, 3. Figure 1 suggests that
the choice of β greater than 1 generally results in a better convergence rate in the energy
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Table 1 Errors for example 1 with β = 0.5 and 0.8

h β = 0.5 β = 0.8

�eh� ‖eh‖ �eh� ‖eh‖
1/8 1.7079e+00 1.4642e−01 1.3692e+00 8.8955e−02

1/16 9.9850e−01 5.1306e−02 7.2640e−01 2.5382e−02

1/32 5.8586e−01 1.8022e−02 3.8518e−01 7.2451e−03

1/64 3.4495e−01 6.3427e−03 2.0441e−01 2.0696e−03

1/128 2.0365e−01 2.2354e−03 1.0858e−01 5.9162e−04

Rate 0.7669 1.5083 0.9142 1.8081

Table 2 Errors for example 1 with β = 1, 2, 3

h β = 1 β = 2 β = 3

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 1.1938e+00 6.4322e−02 7.0184e−01 1.5638e−02 4.5774e−01 4.6454e−03

1/16 5.9860e−01 1.6097e−02 3.0062e−01 2.4884e−03 1.4155e−01 4.2258e−04

1/32 2.9951e−01 4.0249e−03 1.2704e−01 3.8230e−04 3.8231e−02 1.8648e−04

1/64 1.4978e−01 1.0063e−03 5.1890e−02 5.0844e−05 9.7695e−03 5.5301e−05

1/128 7.4893e−02 2.5157e−04 2.0313e−02 6.6568e−06 2.4562e−03 1.4420e−05

Rate 0.9988 1.9996 1.2756 2.8009 1.8941 1.9597
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Fig. 1 Convergence rates for different values of β. Left Error in the H1 norm. Right Error in the L2 norm

norm, but when β = 3, the WG method has a comparable convergence rate in the L2 norm
as β = 1.

To attack the ill-conditioned effect from the discrete linear algebraic systems for β > 1,
we employ the ILU preconditioning and a restarted Generalized Minimum Residual method
(GMRES) to drive relative residual to less than a tolerance. All our tests in this section are
started from zero vector and terminated when the iteration satisfies r (n)/r (0) ≤ 1e−6, where
r (n) is the residual of the n-th iteration. To limit the amount of memory required to execute
the method, we set a restart number up to 100. Tables 3 and 4 show the outer iteration (outer
it.), inner iteration (inner it.) and CPU time of the restarted GMRESmethod with and without
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Table 3 GMRES method for example 1 with β = 2

h Non-preconditioning Preconditioning

Outer it. Inner it. CPU time (s) Outer it. Inner it. CPU time (s)

1/8 2 7 0.1255 1 43 0.0346

1/16 3 41 0.7293 1 7 0.0140

1/32 8 17 7.7649 1 5 0.0345

1/64 27 9 85.3568 1 3 0.0582

1/128 105 73 8988.11 1 4 0.7188

Table 4 GMRES method for example 1 with β = 3

h Non-preconditioning Preconditioning

Outer it. Inner it. CPU time (s) Outer it. Inner it. CPU time (s)

1/8 2 83 0.1985 1 88 0.1012

1/16 7 63 2.1588 1 3 0.0099

1/32 29 24 30.2606 1 4 0.0301

1/64 107 3 361.1554 1 4 0.0710

1/128 141 49 12,037.42 1 2 0.4688

ILU preconditioning. It is observed that a preconditioned GMRES method has produced a
very efficient and robust performance.

Example 2 The example is originated from [16]. Taking a coefficient matrix A =
[
1 0
0 1

]
,

we now test the method for problem (1.1)–(1.2) with the low regularity solution

u(x, y) = x(x − 1)y(y − 1)r−2+α,

where α ∈ (0, 1] is a constant, and r = √
x2 + y2 denotes the distance to the origin. Note

that u ∈ W 1,2
0 (�) ∩ W 2,p(�) for all p ∈ (1, 2

2−α
) ⊆ (1, 2). As α changes, the errors from

the theory in this work are expected to be

‖Q0u − u0‖L2 ∼ o(h3− 2
p ) ∼ o(h1+α),

and � Qhu − uh� ∼ o(h2− 1
p − p

4 ) ∼ o(h
3−α2
4−2α ),

where the optimal value of β is 1 + 2
p − p

2 .

On the uniform triangularmeshes, we present the errors and convergence rates for different
values of β in Tables 5, 6, and 7, respectively. As α tends to 0, the convergence rates tend
to 0 in the energy norm and to 1 in the L2-norm for the errors from the WG method with
β = 1. When β = 1 is taken, the convergence rates in the L2 and energy norms become
optimal for the high-regularity solution, which is consistent with the theory. In Fig. 2, we
compare the convergence rates for different β and fixed α (=1). It is clear from Fig. 2 that
the overall convergence behavior is very similar to that of Fig. 1 and the choice β = 2 gives
better convergence rates than the other two β = 1, 3. In the case α = 2−5, it is observed
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Table 5 Errors for example 2 with different α = 1, 2−1, 2−5 and β = 0.5

h α = 1, β = 0.5 α = 2−1, β = 0.5 α = 2−5, β = 0.5

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 2.7501e−01 2.4834e−02 1.7309e+00 1.4358e−01 1.1432e+01 9.1311e−01

1/16 1.7318e−01 9.2510e−03 1.4701e+00 7.2418e−02 1.3449e+01 6.3854e−01

1/32 1.0812e−01 3.4165e−03 1.2420e+00 3.6325e−02 1.5733e+01 4.4399e−01

1/64 6.7136e−02 1.2559e−03 1.0465e+00 1.8177e−02 1.8356e+01 3.0788e−01

1/128 4.1532e−02 4.6040e−04 8.8066e−01 9.0861e−03 2.1387e+01 2.1323e−01

Rate 0.6821 1.4387 0.2440 0.9958 −0.2256 0.8571

Table 6 Errors for example 2 with different α = 1, 2−1, 2−5 and β = 0.8

h α = 1, β = 0.8 α = 2−1, β = 0.8 α = 2−5, β = 0.8

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 2.1979e−01 1.5737e−02 1.3411e+00 8.6387e−02 8.8225e+00 5.4447e−01

1/16 1.2659e−01 4.8674e−03 1.0285e+00 3.5519e−02 9.3567e+00 3.0948e−01

1/32 7.2017e−02 1.4824e−03 7.8401e−01 1.4499e−02 9.8665e+00 1.7484e−01

1/64 4.0591e−02 4.4648e−04 5.9568e−01 5.8964e−03 1.0375e+01 9.8486e−02

1/128 2.2714e−02 1.3340e−04 4.5179e−01 2.3932e−03 1.0894e+01 5.5397e−02

Rate 0.8190 1.7211 0.3927 1.2938 −0.0758 0.8246

Table 7 Errors for example 2 with different α = 1, 2−1, 2−5 and β = 1

h α = 1, β = 1 α = 2−1, β = 1 α = 2−5, β = 1

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 1.9096e−01 1.1814e−02 1.1329e+00 6.1810e−02 7.4246e−00 3.8609e−01

1/16 1.0463e−01 3.2842e−03 8.1300e−01 2.2267e−02 7.3501e−00 1.9131e−01

1/32 5.6657e−02 8.9899e−04 5.7989e−01 7.9609e−03 7.2345e−00 9.4203e−02

1/64 3.0386e−02 2.4311e−04 4.1213e−01 2.8333e−03 7.1004e−00 4.6243e−02

1/128 1.6167e−02 6.5103e−05 2.9229e−01 1.0057e−03 6.9587e−00 2.2665e−02

Rate 0.8908 1.8763 0.4889 1.4857 0.0237 1.0229

in Fig. 3 that the WG methods with β = 0.5, 0.8 are not convergent in the H1 norm but
converge slowly with β = 1. Furthermore, as the value of β increases from 1 to 3 and the
values of α decrease, it is observed in Tables 7, 8, and 9 that the WG methods with β = 2, 3
produce better convergence rates and accuracy in the energy norm for all values of α and, in
the case β = 1, the method has the best convergence rate in the L2 norm just for the smooth
solution (α = 1). Especially, when α = 2−5 and β ≥ 1, for the low-regularity solution, the
WG method has the first-order optimal convergence rate in the L2 norm and orders 0.5023,
0.6963 in the energy norm for β = 2 and β = 3, respectively. Due to the condition numbers
in the discrete linear algebraic systems from the WG approximation up to O(h−2), O(h−3)

and O(h−4) for β = 1, 2, 3, respectively, the ILU preconditioning is indispensable in our
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Fig. 2 Convergence rates for different values of β and α = 1. Left Error in the H1 norm. Right Error in the
L2 norm
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Fig. 3 Convergence rates for different values of β and α = 2−5. Left Error in the H1 norm. Right Error in
the L2 norm

Table 8 Errors for example 2 with different α = 1, 2−1, 2−5 and β = 2

h α = 1, β = 2 α = 2−1, β = 2 α = 2−5, β = 2

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 1.0584e−01 3.4354e−03 5.0123e−01 1.2517e−02 3.1507e−00 7.0810e−02

1/16 4.9194e−02 5.8704e−04 2.6817e−01 2.4813e−03 2.2276e−00 1.8190e−02

1/32 2.2152e−02 8.0056e−05 1.4397e−01 4.9634e−04 1.5708e−00 4.8315e−03

1/64 9.5227e−03 1.4671e−05 7.7111e−02 1.4957e−04 1.1075e−00 1.5960e−03

1/128 3.9294e−03 6.2863e−06 4.1335e−02 6.5476e−05 7.8353e−01 7.4871e−04

Rate 1.1872 2.3511 0.8998 1.9210 0.5023 1.6637

computation. Table 10 shows the best convergence rates in the energy and L2 norms when
some critical values of β are chosen for different values of α = 2−3, 2−4, 2−5, respectively.

Moreover, since u ∈ W 2,p(�) only, linear elements are investigated for computing. In
Fig. 4, the profiles of numerical solutions illustrate that the solutions havemore slope surfaces
close to the origin as the values of α become less. Considering the convergence rates in the
energy norm, we compare the WG methods (β = 1, 2, 3) with the non-symmetric interior

123



J Sci Comput (2017) 71:195–218 213

Table 9 Errors for example 2 with α = 1, 2−1, 2−5 and β = 3

h α = 1, β = 3 α = 2−1, β = 3 α = 2−5, β = 3

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 6.0196e−02 8.0782e−04 2.3164e−01 3.1592e−03 1.3526e−00 1.5049e−02

1/16 2.0439e−02 3.3422e−04 9.5540e−02 1.4199e−03 6.9724e−01 6.0930e−03

1/32 6.8741e−03 1.2572e−04 4.3927e−02 6.3686e−04 3.8266e−01 3.4527e−03

1/64 2.6001e−03 3.7899e−05 2.4677e−02 2.4675e−04 2.4946e−01 1.7963e−03

1/128 1.1398e−03 1.0652e−05 1.6127e−02 9.0743e−05 2.0244e−01 8.9958e−04

Rate 1.4420 1.5630 0.9642 1.2768 0.6963 0.9891

Table 10 Errors for example 2 with α = 2−3, 2−4, 2−5 and optimal values of β

h α = 2−3, β = 2.3417 α = 2−4, β = 2.4214 α = 2−5, β = 2.4608

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 1.6179e−00 2.7545e−02 1.9417e−00 3.0961e−02 2.1310e−00 3.3031e−02

1/16 9.6057e−01 5.8269e−03 1.1709e−00 6.7367e−03 1.2963e−00 7.2635e−03

1/32 5.7239e−01 2.0948e−03 7.0887e−01 2.6988e−03 7.9143e−01 3.0473e−03

1/64 3.4689e−01 1.0719e−03 4.3839e−01 1.4439e−03 4.9453e−01 1.6684e−03

1/128 2.1974e−01 5.3495e−04 2.8664e−01 7.4210e−04 3.2861e−01 8.7227e−04

Rate 0.7230 1.3815 0.6937 1.2987 0.6784 1.2608

penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG) and continuous finite
element (FEM) methods by linear elements presented in Ref. [16], and obtain comparable
results in Table 11. It is observed that when β = 2, 3, theWGmethods give more impressive
convergence rates than the other methods.

Example 3 The next example is an elliptic problem of corner singularities in the L-shaped
domain � = (0, 1)2\[1/2, 1)2 with A = I2×2, an identity matrix. Under a polar coordinate
system (r, θ) with the origin ( 12 ,

1
2 ), the solution is

u(r) = r
2
3 sin

(2θ − π

3

)
,

π

2
≤ θ ≤ 2π.

Note that the solution in example 3 has a corner singularity at the node (1/2, 1/2) as well as
the other five vertices of the L-shaped domain. With the reentrant corner of the interior angle

3π/2. Therefore, the solution has the global regularity H
5
3−ε(�), where ε is any positive

number and p = 2. Some tests are made on uniform grids and locally refined grids to
investigate errors and convergence rates. From Table 12, we observe that as the values of β

increase from 0.5 up to 1, the weak Galerkin method with β = 1 has optimal convergence
rates in the L2 and energy norms for the singular problem. The WG solutions for β = 2, 3
have better accuracy and convergence rates in the energy norm in Table 13, although the
convergence rate of the WG method with β = 1 in the L2 norm is the best from Tables 12
and 13.

We also employ locally refined grids to illustrate the numerical error in Fig. 5, and verify
convergence rates σ of the error �eh� with respect to the number of degrees of freedom
(Dof), defined by
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Table 11 Comparison on convergence rates of�eh� by using different methods for example 2 with different
α

α SIPG in [16] NIPG in [16] FEM in [16] WG (β = 1) WG (β = 2) WG (β = 3)

1 0.905 0.918 0.924 0.8909 1.1872 1.4420

2−1 0.491 0.494 0.500 0.4889 0.8998 0.9642

2−2 0.245 0.247 0.249 0.2424 0.7039 0.8104

2−3 0.121 0.122 0.124 0.1175 0.5917 0.7439

2−4 0.0587 0.0602 0.0618 0.0550 0.5326 0.7119

Table 12 Errors for example 3 with β = 0.5, 0.8 and 1.

h β = 0.5 β = 0.8 β = 1

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
1/8 1.7310e−01 7.1699e−03 1.7145e−01 6.9561e−03 1.6984e−01 6.7521e−03

1/16 1.1224e−01 2.6452e−03 1.1097e−01 2.5437e−03 1.0954e−01 2.4312e−03

1/32 7.1978e−02 9.9602e−04 7.1120e−02 9.5251e−04 6.9981e−02 8.9613e−04

1/64 4.5857e−02 3.8215e−04 4.5311e−02 3.6458e−04 4.4464e−02 3.3794e−04

1/128 2.9097e−02 1.4866e−04 2.8764e−02 1.4185e−04 2.8159e−02 1.2976e−04

Rate 0.6437 1.3975 0.6443 1.4034 0.6486 1.4250

Table 13 Errors for example 3 with β = 2 and 3

h β = 2 β = 3

�eh� ‖eh‖ �eh� ‖eh‖
1/8 1.5094e−01 4.6542e−03 1.0853e−01 2.3067e−03

1/16 8.7451e−02 1.0914e−03 4.6727e−02 1.4684e−03

1/32 4.8148e−02 2.9052e−04 2.1612e−02 7.6808e−04

1/64 2.5416e−02 1.7262e−04 1.1804e−02 3.3615e−04

1/128 1.3123e−02 9.7637e−05 7.1113e−03 1.3897e−04

Rate 0.8830 1.3810 0.9849 1.0233

�eh� := O(Dof σ ). (5.1)

Table 14 shows theWGmethod has better approximation behavior in the locally refined grids
than in the uniform meshes, and the choice of β = 2 gives the best convergence rate in the
energy norm.

Example 4 In this case, we employ the same analytic solution as in Example 2 and
in the domain with a narrow line crack of size 2e-5 (see Fig. 6), defined by � =
(−2, 2)2\[−2, 0.00001]×(−0.00001, 0.00001). We notice that the problemwith a Dirichlet
boundary condition has low regularity and singularity at the corners of the origin.

In Fig. 7, it is observed that the solution around the line crack is discontinuous and has
sharp slopes along the bottom-left diagonal direction, but the error mainly distributes around

123



216 J Sci Comput (2017) 71:195–218

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−8

−6

−4

−2

0

2

x 10
−3

x
y

u−
u h

Fig. 5 A locally refined grid (left) and error profile in 3D (right) with β = 1

Table 14 Convergence rates of �eh� and ‖eh‖ with respect to Dof for example 3 on locally refined grids,
with β = 1, 2, 3

Dof β = 1 β = 2 β = 3

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
2516 4.9221e−02 5.6648e−04 2.7865e−02 2.6550e−04 1.1741e−02 2.5186e−04

10168 2.7504e−02 1.5741e−04 1.1943e−02 7.9844e−05 4.8508e−03 8.9586e−05

40880 1.5699e−02 4.5672e−05 5.1826e−03 3.0310e−05 2.6496e−03 3.3099e−05

163936 9.1729e−03 1.4198e−05 2.4084e−03 1.1953e−05 1.6184e−03 1.2521e−05

656576 5.4737e−03 4.7562e−06 1.2412e−03 4.7085e−06 1.0137e−03 4.8276e−06

σ −0.3948 −0.8603 −0.5625 −0.7164 −0.4312 −0.7101
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Fig. 6 An initial grid with a crack (left) and a locally zoomed area around the origin (right)
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Fig. 7 Numerical solution in 3D (left) and the corresponding numerical error profile (right) with the initial
grid refined by three times

Table 15 Errors for example 4 with β = 2, 2.4608 and 3 on the uniform grids

Dof β = 2 β = 3 β = 2.4608

�eh� ‖eh‖ �eh� ‖eh‖ �eh� ‖eh‖
max{h} 5.1228e−01 1.0301e−01 5.1193e−01 5.1855e−02 5.1207e−01 7.1868e−02

max{h}/2 3.6223e−01 3.2502e−02 3.6183e−01 1.7604e−02 3.6202e−01 2.2469e−02

max{h}/4 2.9709e−01 1.1098e−02 2.9642e−01 9.3168e−03 2.9687e−01 9.1544e−03

max{h}/8 2.1513e−01 5.3365e−03 2.1289e−01 7.0780e−03 2.1475e−01 6.4784e−03

max{h}/16 1.5292e−01 3.9304e−03 1.4516e−01 5.5536e−03 1.5204e−01 5.6170e−03

Rate 0.4240 1.2030 0.4402 0.7760 0.4257 0.9149

the origin. From Table 15, it is shown that when α = 2−5, the rate in the L2 norm with
β = 2.4608 is better than that with β = 3, and the convergence rates in the energy norm are
comparable in the three cases to the low regularity solutions in the cracked domain.

All numerical examples above are in good agreement with the theoretical analysis, which
validates optimal convergence rates of the stabilized WG finite element method (2.2) with
the suitable choices of the over-relaxed factor.

6 Conclusions

In this work, we have proposed and analyzed the a priori energy-norm and L p, L2 error
estimates of the over-relaxed weak Galerkin method for solving low regularity elliptic prob-
lems. In the cases of low regularity elliptic solutions, an over-relaxed factor β > 1 in the
over-relaxed stabilization term has been stated with respect to p ∈ (1, 2) to implement weak
continuity in the WG method. The WG method with the over-relaxed stabilization is opti-
mally convergent, and the rates exhibit an impressive performance in the energy norm. The
optimal relaxed factor for p ∈ (1, 2) has been derived and in the case p = 2, optimal error
estimates in the energy and L2 norms can be recovered when β = 1 is taken. The relaxed fea-
tures for low regularity solutions have been verified by some numerical results. Furthermore,
an ILU preconditioning technique for the over-relaxed WG scheme is employed through the
restarted GMRES method to reduce iterations and save computational cost.
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