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Abstract This work is concerned with the study of two-level penalty finite element method
for the 2D/3D stationary incompressiblemagnetohydrodynamics equations. The newmethod
is an interesting combination of the Newton iteration and two-level penalty finite element
algorithm with two different finite element pairs P1b-P1-P1b and P1-P0-P1. Moreover, the
rigorous analysis of stability and error estimate for the proposed method are given. Numer-
ical results verify the theoretical results and show the applicability and effectiveness of the
presented scheme.
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1 Introduction

MHDmainly studies the dynamics of electrically conducting fluids and theseMHDflows are
governed by the Navier–Stokes equations and coupled with the pre-Maxwell equations. In
addition,MHD is of great importance inmany problems of engineering. The design of cooling
systems with liquid metals for a nuclear reactor, MHD generators, accelerators, pumps and
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flowmeters are all such applications. Therefore, it is necessary to devise efficient numerical
strategy for solving the MHD problem. Resources [1,2] provide more physical background
knowledge.

In this paper, we consider the stationary incompressible MHD model as follows:
⎧
⎪⎪⎨

⎪⎪⎩

−R−1
e �u + (u · ∇)u + ∇ p − SccurlB × B = f, in �,

divu = 0, in �,

ScR−1
m curl(curlB) − Sccurl(u × B) = g, in �,

divB = 0, in �,

(1)

along with the boundary conditions:
{
u|∂� = 0, (no-slip condition),
B · n|∂� = 0, n × curlB|∂� = 0, (perfectly wall),

(2)

where � represents a polyhedral domain in R
d , d =2 or 3, with boundary ∂�, u the velocity

field, B the magnetic field, f and g the external force terms, p the pressure, Re the hydrody-
namic Reynolds number, Rm the magnetic Reynolds number, Sc the coupling number, and n
is the outer unit normal of ∂�. Correspondingly, the functions u, B, f and g can be described
by:

u = (u1(x), u2(x)), B = (B1(x), B2(x)),

f = ( f1(x), f2(x)), g = (g1(x), g2(x)),

for d = 2, and

u = (u1(x), u2(x), u3(x)), B = (B1(x), B2(x), B3(x)),

f = ( f1(x), f2(x), f3(x)), g = (g1(x), g2(x), g3(x)),

for d = 3.
Investigations for theMHDequations from the perspective of variousmathematical expec-

tations thrives in the recent years. For instance, references [3–6] gave some study of well
posedness, regularity and long-time behaviors of solutions and [3,7,8] devoted to the MHD
problems from the numerical aspects. To our knowledge, the basic research for the MHD
equations can be traced back to Sermange et al. [9]. And Gunzburger et al. [1] proposed
the standard Galerkin finite element discretization for the stationary MHD equations. Then,
Gerbeau et al. studied a stabilized finite element method for the steady MHD equations in
[10]. For more extensive investigation of the steady MHD equations, please see [11–13] and
their references.

It is well known that the stationary MHD equations is a strong coupled nonlinear system
and it is still very difficulty to process to this system. It is because that equations (1)–(2)
contain three nonlinear terms (u · ∇)u, curlB × B, curl(u × B) and velocity u, pressure
p and B are coupled together. Hence, great attentions have been paid on iterative method
in recent years. Besides, Newton iterative method for its high precision and fast resolving
speed has attracted a lot of attention. For example, Newton iterative method is considered
for the stationary Navier–Stokes equations by He [14], Xu and He [15]. Then, the Newton
iterative method in finite element approximation for the incompressible MHD equations are
investigated and analyzed in [16–18].

In addition, velocityu andpressure p are coupled together by the incompressible constraint
“divu=0”, which makes the system difficult to solve numerically. To overcome this difficulty,
the usual practice is to relax the incompressibility constraint in an approximate way, resulting
in a class of pseudo-compressibility methods, among which are the penalty method, the

123



1146 J Sci Comput (2017) 70:1144–1179

pressure stabilizationmethod, the artificial compressibilitymethod and the projectionmethod
[19–22], etc. In this study, we consider the penalty method to decouple the strong coupled
stationary incompressible MHD equations.

The penalty method applied to (1) is to approximate the solution (u, p,B) by (uε, pε,Bε)

satisfying the following stationary MHD equations:
⎧
⎪⎪⎨

⎪⎪⎩

−R−1
e �uε + (uε · ∇)uε − SccurlBε × Bε + ∇ pε = f, in �,

divuε + ε
νe
pε = 0, in �,

ScR−1
m curl(curlBε) − Sccurl(uε × Bε) = g, in �,

divBε = 0, in �,

(3)

and with the homogeneous boundary conditions:
{

uε |∂� = 0, (no-slip condition),
Bε · n|∂� = 0, n × curlBε |∂� = 0, (perfectly wall),

(4)

where 0 < ε < 1 is a penalty parameter and νe = 1/Re.
Although, the penalty method is to decouple (u,B) and p, the resulting system is still a

large problem to solve. Two-level scheme is very efficient to save a large amount of computing
time and give reasonable results. The main idea is to solve a small problem on a coarse mesh
and correct the solution with a large linear problem on a fine mesh. This idea is put forward
by Xu for the nonlinear elliptic boundary value problem in [23,24]. Currently, some two-
level strategy has been studied for the MHD equations, such as Layton et al. studied a
two-level method for the reduced MHD problem in [25,26] and Zhang studied a two-level
coupled correction and decoupled parallel correction finite element methods for solving the
stationary MHD equations in [27].

The present paper uses penalty finite element with two-level strategy based on two finite
element discretizations for the 2D/3D stationary incompressible MHD equaions. The two-
level penaltyNewton iterativemethod involves solvingm linearized variable coefficientMHD
problems on the coarse mesh and a linear MHD problem with positive definite symmetric
matrix. In brief, we mainly consider the finite element space pair Xh × Mh × Wh which
satisfies the discrete inf-sup condition (P1b-P1-P1b) or does not satisfy the discrete inf-sup
condition (P1-P0-P1). Furthermore, the rigorous analysis of the stability and error estimate
are given for the proposed scheme. Numerical tests verify the theoretical results.

The paper is organized as follows. In Sect. 2, some basic results are given. Penalty mixed
finite element method is given in Sect. 3. Section 4 is devoted to the Newton penalty iterative
finite element scheme. Section 5 devotes to uniform stability and convergence of the two-
level Newton penalty iterative method. Section 6 is reported to show numerical performance
and accuracy of our algorithm. Finally, the article is concluded in the last section.

2 Functional Setting of the Stationary MHD Equations

To obtain the weak forms of system (1) and (3), we introduce the following notations

X := H1
0 (�)d = {u ∈ H1(�)d : u|∂� = 0},

W := H1
n (�)d = {v ∈ H1(�)d : v · n|∂� = 0},

V := {u ∈ X : divu = 0 in �},
Vn := {v ∈ W : divv = 0 in �},
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M := L2
0(�) =

{

q ∈ L2(�) :
∫

�

qdx = 0

}

.

For simplicity, we employ the product space W0n = H1
0 (�)d × H1

n (�)d with the usual

graph norm ‖(v,B)‖1, where ‖(v,B)‖i = (‖v‖2i + ‖B‖2i )
1
2 for all v ∈ Hi (�)d ∩ X,B ∈

Hi (�)d ∩W (i = 0, 1, 2).X′,W′ are the dual space ofX andW, respectively. And H−1(�)d

denotes the dual of H1
0 (�)d with the norm:

‖f‖−1 = sup
0 �=w∈H1

0 (�)d

〈f,w〉
‖w‖1 ,

where 〈·, ·〉 denotes duality product between the function space H1
0 (�)d and its dual.

Now, it is convenient to introduce the following forms:

A0((v,�), (w,�)) = a0(v,w) + b0(�,�),

a0(v,w) = R−1
e (∇v,∇w),

b0(�,�) = ScR
−1
m (curl�, curl�) + ScR

−1
m (div�, div�),

d((v,�), q) = (divv, q),

〈F, (v,�)〉 = 〈f, v〉 + (g,�),

A1((u,B), (v,�), (w,�)) = a1(u, v,w) + c(�,B, v) − c(�,B,w),

a1(u, v,w) = 1

2
((u · ∇)v,w) − 1

2
((u · ∇)w, v),

c(�,B, v) = Sc(curl� × B, v).

Then, the standard weak form of (1) reads: find ((u,B), p) ∈ W0n × M such that

A0((u,B), (v,�)) − d((v,�), p) + d((u,B), q) + A1((u,B), (u,B), (v,�))

= 〈F, (v,�)〉, (5)

for all ((v,�), q) ∈ W0n ×M and the variational formulation of (3) is: find ((uε,Bε), pε) ∈
W0n × M such that for all ((v,�), q) ∈ W0n × M,

A0((uε,Bε), (v,�)) − d((v,�), pε) + d((uε,Bε), q) + A1((uε,Bε), (uε,Bε), (v,�))

+ ε

νe
(pε, q) = 〈F, (v,�)〉. (6)

The following properties of A0(·, ·) and A1(·, ·, ·) are important to give the theoretical
analysis [1]: ∀ (u,B), (v,�), (w,�) ∈ W0n , there holds

A0((v,�), (w,�)) ≤ max{R−1
e , (2 + d)ScR

−1
m }‖(v,�)‖1‖(w,�)‖1, (7)

A0((v,�), (v,�)) ≥ min{R−1
e , ScC1R

−1
m }‖(v,�)‖21, (8)

A1((u,B), (v,�), (w,�)) ≤ √
2C2

0 max{1,√2Sc}‖(u,B)‖1‖(v,�)‖1‖(w,�)‖1, (9)

A1((u,B), (v,�), (v,�)) = 0, (10)

whereC1 (only dependent on�) an embedding constant of H1
n (�)d ↪→ H1(�)d (↪→ denotes

the continuous embedding), i.e.,

‖curlB‖20 + ‖divB‖20 ≥ C1‖B‖21, ∀B ∈ W, (11)

where
√
2 and d comes from the following two inequalities

‖curlv‖0 ≤ √
2‖∇v‖0, ‖divv‖0 ≤ √

d‖∇v‖0. (12)
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and C0 (only dependent on �) an embedding constant of H1(�)d ↪→ L4(�)d , i.e.

‖w‖L4 ≤ C0‖∇w‖0, ∀w ∈ X.

Next, we define the Stokes operator A1 = −P�, and � (see [28] for details) as

−(�u, v) = (∇u,∇v), ∀u, v ∈ X,

where P : L2(�)d → {v ∈ L2(�)d , divv = 0, v · n|∂� = 0} is a L2-orthogonal projector
and define A1ε := ∇u − 1

ε
∇divu.

Similarly, define operator A2B = R0(∇ × ∇ × B + ∇∇ · B) ∈ W as follows

(A2B,�) = (∇ × B,∇ × �) + (∇ · B,∇ · �), ∀B,� ∈ W,

where R0 : L2(�)d → W is a L2-orthogonal projector and define A2ε := A2.
Then,we shallmakeuse of the following assumption for the regularity estimate of (u, p,B)

(see [29]). Assume that the boundary of � is smooth and if ∂� is of C2, or if � is a convex
polygon/polyhedron, we have the following results:

Assumption A The unique solution (v, q) of the steady Stokes problem

�v + ∇q = f, divv = 0, in �,

v|∂� = 0,

for the prescribed f ∈ L2(�)d satisfies

‖v‖2 + ‖q‖1 ≤ C‖f‖0,
and the Maxwell’s equations

curlcurlB = g, divB = 0, in �,

curlB × n = 0, B · n = 0, on ∂�,

for the prescribed g ∈ L2(�)d admits a unique solution B ∈ Vn which satisfies

‖B‖2 ≤ C‖g‖0.
Besides, we set

‖F‖−1 = sup
(0,0)�=(v,�)∈W0n

〈F, (v,�)〉
‖(v,�)‖1 , ‖F‖2∗ = ‖f‖2−1 + ‖g‖20, (13)

and we know that ‖F‖−1 ≤ ‖F‖∗.
And we introduce two properties of trilinear form in [16]:

|A1((u,B), (w,�), (v,�))| ≤ C
√
2C2

0 max{1,√2Sc}‖(u,B)‖0‖(w,�)‖2‖(v,�)‖1,
∀(u,B) ∈ L2(�)d × L2(�)d , (w,�) ∈ H2(�)d × H2(�)d , (v,�) ∈ W0n(�),

|A1((u,B), (w,�), (v,�))| ≤ C
√
2C2

0 max{1,√2Sc}‖(u,B)‖2‖(w,�)‖1‖(v,�)‖0,
∀(u,B) ∈ H2(�)d × H2(�)d , (w,�) ∈ W0n(�), (v,�) ∈ L2(�)d × L2(�)d . (14)

For the sake of convenience in writing, we set

‖|(w,�)‖|i = min{R−1
e , ScC1R

−1
m }(‖w‖2i + ‖�‖2i )

1
2 ,

∀w ∈ Hi (�)d ∩ X, � ∈ Hi (�)d ∩ W, i = 0, 1, 2,
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and

ν̂ := min{R−1
e , ScC1R

−1
m }, ν := max{R−1

e , (2 + d)ScR
−1
m }, N := √

2C2
0 max{1,√2Sc}.

Here and after, C or c (with or without a subscript) will denotes a generic positive constant.
Furthermore, we recall the following lemma given in [20].

Lemma 2.1 There exists a constant c0 > 0, depending only on � and such that if εc0 ≤ 1

‖A1v‖0 ≤ c0‖A1εv‖0. (15)

The following existence and uniqueness of the solution of (5) are classical results [16].

Theorem 2.1 If Re, Rm and Sc satisfy the uniqueness condition

0 < σ := N‖F‖−1

ν̂2
< 1, (16)

the problem (5) has a unique solution ((u,B), p) ∈ W0n × M which satisfies

‖|(u,B)‖|1 ≤ ‖F‖−1. (17)

Moreover, suppose that f, g ∈ L2(�)d , then solution ((u,B), p) of the problem (5)
satisfies the following regularity

‖|(u,B)‖|2 + ‖p‖1 ≤ C‖F‖0. (18)

Theorem 2.2 If Re, Rm and Sc satisfy the uniqueness condition

0 < σ < 1 (19)

and εc0 ≤ 1, then the problem (6) has a unique solution ((uε,Bε), pε) ∈ W0n × M which
satisfies

‖|(uε,Bε)‖|1 ≤ ‖F‖−1. (20)

Moreover, suppose that f, g ∈ L2(�)d , then solution ((uε,Bε), pε) of the problem (5)
satisfies the following regularity

‖|(uε,Bε)‖|2 + ‖pε‖1 ≤ C‖F‖0. (21)

Proof We can finish the proof by the same technique used in the proof of Theorem 2.1 or
refer to [18]. ��

The optimal bounds of the error (u − uε,B − Bε) and p − pε are stated in the following
theorem (see [18] for detail).

Theorem 2.3 Under the assumptions of Theorem 2.2, we have

‖|(u − uε,B − Bε)‖|1 + ‖p − pε‖0 ≤ Cε. (22)
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3 Penalty Finite Element Discretizations

We consider the mixed finite element method for (5) and (6). Let {KH } be a family of
triangulations or tetrahedrons of� into affine-equivalent finite elements K with �̄ = ⋃

K∈Kμ

K ,

which is assumed to be a regular and quasi-uniform partition of the domain � in usual sense
as μ → 0. Let XH ⊂ X, MH ⊂ M and WH ⊂ W and (XH ,MH ,WH ) ⊂ (Xh,Mh,Wh).
For simplicity sake, we denote the set of all polynomials on K by Pl(K ), l ≥ 0 and Wμ

0n =
Xμ × Mμ, μ = h or H .

In order to investigate the relation of penalty parameter with the finite element pair, we
consider the following finite element pairs to approximate the velocity, pressure andmagnetic
fields. Note that Xμ × Mμ × Wμ satisfies the following properties [11,14,16,22,30]:

Let ρμ denote the L2-orthogonal projection which defined by

(ρμq, qμ) = (q, qμ), ∀q ∈ M, qμ ∈ Mμ. (23)

(P1). Firstly, we consider the unstable finite element pair

Xμ = {u ∈ C0(�̄)d ∩ X : u|K ∈ P1(K )d , ∀K ∈ Kμ},
Mμ = {q ∈ C0(�̄) ∩ M : q|K ∈ P0(K ), ∀K ∈ Kμ},
Wμ = {B ∈ C0(�̄)d ∩ W : B|K ∈ P1(K )d , ∀K ∈ Kμ}.

It is known that Xμ × Mμ does not satisfy the discrete inf-sup condition,

sup
(0,0)�=(vμ,Bμ)∈Wμ

0n

d((vμ,Bμ), q)

‖(vμ,Bμ)‖1 ≥ β0‖qμ‖0, ∀qμ ∈ Mμ. (24)

However, there exists a mapping πμ : H2(�)d ∩ V → Xμ and ρμ : M → Mμ satisfy

‖∇(v − πμv)‖0 ≤ Cμ‖v‖2, ‖q − ρμq‖0 ≤ Cμ‖q‖1, (25)

for all v ∈ H2(�)d ∩ V, q ∈ H1(�) ∩ M, and a mapping Rμ : H2(�)d ∩ Vn → Wμ

satisfying

(∇ × Rμ�,∇ × �) + (∇ · Rμ�,∇ · �) = (∇ × �,∇ × �) + (∇ · �,∇ · �)

= (∇ × �,∇ × �), ∀� ∈ Wμ,

‖� − Rμ�‖0 + μ‖� − Rμ�‖1 ≤ Cμ2‖�‖2,∀� ∈ H2(�)d ∩ Vn . (26)

Meanwhile, there holds the following relation:

divXμ = Mμ. (27)

(P2). Then, we may employ a stable finite element pair to approximate the velocity,
pressure and magnetic field:

Xμ = (Pb
1,μ)d ∩ X,

Mμ = {q ∈ C0(�̄) ∩ M : q|K ∈ P1(K ), ∀K ∈ Kμ},
Wμ = (Pb

1,μ)d ∩ W,

where

(Pb
1,μ) = {vμ ∈ C0(�̄) : vμ|K ∈ P1(K ) ⊕ span{b̂}, ∀K ∈ Kμ}.
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In this case,Xμ ×Mμ satisfies the discrete inf-sup condition (24). However, (27) does not
hold. Besides, there exists a mapping πμ : H2(�)d ∩ X → Xμ, and ρμ : M → Mμ satisfy
(25) and

(∇ · (v − πμv), q) = 0, ∀v ∈ H2(�)d ∩ V, q ∈ Mμ. (28)

Besides, mapping Rμ : H2(�)d ∩ Vn → Wμ satisfies (26).
Now, the corresponding discrete weak form of (6) is recast: find ((uεμ,Bεμ), pεμ) ∈

Wμ
0n × Mμ such that

A0((uεμ,Bεμ), (v,�)) + A1((uεμ,Bεμ), (uεμ,Bεμ), (v,�)) − d((v,�), pεμ)

+ d((uεμ,Bεμ), q) + ε

νe
(pεμ, q) =< F, (v,�) > . (29)

Next, we introduce the discrete analogue of space V as

Vμ = {v ∈ Xμ : d((v,�), q) = 0,∀q ∈ Mμ, � ∈ Wμ}.
Denote Pμ : L2(�)d → Vμ and R0μ : L2(�)d → Wμ by L2-orthogonal projectors.
Here, we define discrete Stokes operator A1μ = −Pμ�μ, and �μ (see [28])

−(�μuμ, vμ) = (∇uμ,∇vμ), ∀uμ, vμ ∈ Xμ,

and define discrete operator A2μBμ = R0μ(∇μ × ∇ × Bμ + ∇μ∇ · Bμ) ∈ Wμ as follows
(see [30])

(A2μBμ,�) = (∇ × Bμ,∇ × �) + (∇ · Bμ,∇ · �), ∀Bμ,� ∈ Wμ.

Theorem 3.1 Under the assumptions of Theorem 2.2 and if Xμ ×Mμ satisfies property Pk ,
k = 1, 2, then (29) admits a unique solution ((uεμ,Bεμ), pεμ) ∈ Wμ

0n × Mμ such that

‖|(uεμ,Bεμ)‖|1 ≤ ‖F‖−1,

and

‖pεμ‖0 ≤
( νe

εν̂

) 1
2 ‖F‖−1, f or P1,

‖pεμ‖0 ≤ C‖F‖−1, f or P2.

Proof Refer to the proof of Theorem 3.3 in [18] for details. ��
3.1 H1-Error Estimate for Penalty Finite Element Galerkin Method

Theorem 3.2 Under the assumptions of Theorem 2.2 and if Xμ ×Mμ satisfies property Pk ,
k = 1, 2, then we have the following error estimate

‖|(uε − uεμ,Bε − Bεμ)‖|1 + ε
1
2 ‖pε − pεμ‖0 ≤ Cε− 1

2 μ, f or P1,

‖|(uε − uεμ,Bε − Bεμ)‖|1 + ‖pε − pεμ‖0 ≤ Cμ, f or P2.

Proof Subtracting (29) from (6), we have the error equation

A0((uε − uεμ,Bε − Bεμ), (v,�)) + A1((uε − uεμ,Bε − Bεμ), (uε,Bε), (v,�))

+ A1((uεμ,Bεμ), (uε − uεμ,Bε − Bεμ), (v,�)) − d((v,�), pε − pεμ)

+ d((uε − uεμ,Bε − Bεμ), q) + ε

νe
(pε − pεμ, q) = 0. (30)
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Taking (v,�) = (e,b) and q = η in (30) with (e,b) = (πμuε − uεμ, RμBε − Bεμ) and
η = ρμ pε − pεμ. According to (10) and (23), we can get

A0((e,b), (e,b)) + A1((e,b), (uε,Bε), (e,b)) + ε

νe
(η, η)

= A0((πμuε − uε, RμBε − Bε), (e,b))

+ A1((πμuε − uε, RμBε − Bε), (uε,Bε), (e,b))

+ A1((uεμ,Bεμ), (πμuε − uε, RμBε − Bε), (e,b))

+ d((e,b), pε − ρμ pε) − d((uε − πμuε,Bε − RμBε), η). (31)

Combining (8)–(9) with (16), gives

A0((e,b), (e,b)) + A1((e,b), (uε,Bε), (e,b)) + ε

νe
(η, η)

≥ ν̂(1 − σ)‖(e,b)‖21 + ε

νe
‖η‖20. (32)

Together with (7), (9) and (16), we can derive

A0((πμuε − uε, RμBε − Bε), (e,b)) + A1((πμuε − uε, RμBε − Bε), (uε,Bε), (e,b))

+A1((uεμ,Bεμ), (πμuε − uε, RμBε − Bε), (e,b))

≤ C‖(e,b)‖1‖(πμuε − uε, RμBε − Bε)‖1. (33)

For P1, we use (27) to get

|d((e,b), pε − ρμ pε)| + |d((uε − πμuε,Bε − RμBε), η)|
= |d((uε − πμuε,Bε − RμBε), η)|
≤ ε

2νe
‖η‖20 + νe

2ε
‖(uε − πμuε,Bε − RμBε)‖21, (34)

applying (32)–(34) and assumption P1 gives

ν̂(1 − σ)‖(e,b)‖21 + ε

νe
‖η‖20 ≤ C2

ν̂(1 − σ)
‖(πμuε − uε, RμBε − Bε)‖21

+ νe

ε
‖(πμuε − uε, RμBε − Bε)‖21

≤ Cε−1‖(πμuε − uε, RμBε − Bε)‖21, (35)

which imply that

‖|(uε − uεμ,Bε − Bεμ)‖|1 + ε
1
2 ‖pε − pεμ‖0 ≤ Cε− 1

2 μ. (36)

For P2, we use (28) to get

|d((e,b), pε − ρμ pε)| + |d((uε − πμuε,Bε − RμBε), η)|
= |d((e,b), pε − ρμ pε)|
≤ ν̂(1 − σ)

4
‖(e,b)‖21 + 2

ν̂(1 − σ)
‖pε − ρμ pε‖20, (37)

which and (32)–(33), P2 give

ν̂‖(e,b)‖21 + ε
νe

‖η‖20 ≤ 4C2

ν̂
‖(πμuε − uε, RμBε − Bε)‖21 + 4

ν̂(1−σ)
‖pε − ρμ pε‖20, (38)
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and using (25), (26) imply that

‖|(uε − uεμ,Bε − Bεμ)‖|1 ≤ Cμ. (39)

Finally, combining the discrete inf-sup condition (24) with (7), (9), (30), (39), Theorems
2.2 and 3.1, gives

β0‖η‖0 ≤ ν‖(uε − uεμ,Bε − Bεμ)‖1 + N
(‖(uεμ,Bεμ)‖1 + ‖(uε,Bε)‖1

)

×‖(uε − uεμ,Bε − Bεμ)‖1 + ‖pε − ρμ pε‖0
≤ C(‖|(uε − uεμ,Bε − Bεμ)‖|1 + ‖pε − ρμ pε‖0), (40)

which imply that

‖η‖0 ≤ Cμ. (41)

This completes the proof. ��
3.2 L2-Error Estimate for Penalty Finite Element Galerkin Methods

In order to analyze the error (u − uεμ,B − Bεμ) with L2-norm, we now use the standard
duality argument. Before that, we will give the duality form of (3).

Lemma 3.1 For some given G := (G1,G2) ∈ L2(�)d × L2(�)d and the solution of
((uε,Bε), pε) of (3), the duality form of (3) is find (w, s,�) ∈ X × M × W by

A0((v,�), (w,�)) + A1((v,�), (uε,Bε), (w,�)) + A1((uε,Bε), (v,�), (w,�))

− d((w,�), q) + d((v,�), s) + ε

νe
(q, s) = ((v,�),G). (42)

Proof The duality form of (3) can be derived by the following technique.
Subtract (29) from (6) to get the error equation

A0((uε − uεμ,Bε − Bεμ), (vμ,�μ))

+ A1(uε − uεμ,Bε − Bεμ), (uε,Bε), (vμ,�μ))

+ A1((uεμ,Bεμ), (uε − uεμ,Bε − Bεμ), (vμ,�μ)) − d((vμ,�μ), pε − pεμ)

+ d((uε − uεμ,Bε − Bεμ), qμ) + ε

νe
(pε − pεμ, qμ) = 0,

which is

A0((uε − uεμ,Bε − Bεμ), (vμ,�μ)) + A1(uε − uεμ,Bε − Bεμ), (uε,Bε), (vμ,�μ))

+ A1((uε,Bε), (uε − uεμ,Bε − Bεμ), (vμ,�μ)) − d((vμ,�μ), pε − pεμ)

+ d((uε − uεμ,Bε − Bεμ), qμ) + ε

νe
(pε − pεμ, qμ)

= A1((uε − uεμ,Bε − Bεμ), (uε − uεμ,Bε − Bεμ), (vμ,�μ)).

Let (uε − uεμ,Bε − Bεμ) = (v,�), pε − pεμ = q and (vμ,�μ) = (w,�), qμ = s in
the above equation, we have

A0((v,�), (w,�)) + A1((v,�), (uε,Bε), (w,�))

− d((w,�), q) + d((v,�), s) + ε

νe
(q, s)

= A1((v,�), (v,�), (w,�)),
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and let A1((v,�), (v,�), (w,�)) = (((v,�),G), then we can derive the duality form of
(3). ��

As for (42), we can prove the following existence, uniqueness and regularity results.

Theorem 3.3 Under the assumptions of Theorem 3.2, (42) admits a unique solution
(w, s,�) ∈ X × M × W, and (w,�) satisfies the following estimate:

‖|(w,�)‖|1 ≤ C‖G‖−1. (43)

Moreover, the solution (w,�) of (42) satisfies the following regularity:

‖(A1w,A2�)‖0 + ‖s‖1 ≤ C‖G‖0. (44)

Proof If f ∈ X′ and g ∈ W′, then (uε,Bε) satisfies Theorem 2.2. Then, taking (v,�) =
(w,�) and q = s in

A0((v,�), (w,�)) + A1((v,�), (uεh,Bεh), (w,�)) + A1((uεh,Bεh), (v,�), (w,�))

− d((w,�), q) + d((v,�), s) + ε

νe
(q, s), (45)

we can have

A0((w,�), (w,�)) + A1((w,�), (uεh,Bεh), (w,�)) + ε

νe
(s, s)

≥ ν̂‖(w,�)‖21 − N‖(uε,Bε)‖1‖(w,�)‖21 + ε

νe
‖s‖20

≥ 1 − σ

ν̂
‖|(w,�)‖|21 + ε

νe
‖s‖20, (46)

thenwe can prove that (45) is (W0n,M)-coercive. By the Lax-Milgram’s Lemma, (42) admits
a unique solution. Using (42) and (46), we can have (43).

Moreover, we derive from (42) that
{
R−1
e A1εw + ā′

1(uε,w) − ā1(uε,w) + Sccurl� × Bε = G1,

ScR−1
m A2ε� + Sccurl(w × Bε) − c′(Bε,w) + c′(�,uε) = G2,

(47)

where ā′
1(v,w) and c′(B, w) are defined as

〈u, B ′(v,w)〉X,X′ = a1(u, v,w), 〈�, c′(Bε,w)〉W,W′ = c(Bε,�,w).

Taking the scalar product of (47) with (A1εw,A2ε�) in L2(�)d yields

R−1
e (A1εw,A1εw) + ScR

−1
m (A1ε�,A2ε�) + A1((A1εw,A2ε�), (uε,Bε), (w,�))

−A1((uε,Bε), (w,�), (A1εw,A2ε�)) = (G,A1εw,A2ε�). (48)

It follows from (14), Theorem 2.1 and (43) that

1
4min{R−1

e ,Sc R
−1
m } ‖(A1εw,A2ε�)‖20 ≤ C(‖(w,�)‖21 + ‖G‖20) ≤ C‖G‖20.

Taking q = 0 in (42) with Assumption A, (14) yields

‖∇s‖0 ≤ max{R−1
e , ScR

−1
m }‖(A1εw,A2ε�)‖0

+CN‖(uε,Bε)‖1‖(w,�)‖1
+C‖(A1uε,A2Bε)‖0‖(w,�)‖1

≤ C‖G‖0,
Then, we can finish the proof with the above estimations and Lemma 2.1. ��
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From (44) and the property P1 or P2, we deduce that ((πμw, Rμ�), ρμs) satisfies the
following error estimate results:

‖(w − πμw,� − Rμ�)‖1 + ‖s − ρμs‖0 ≤ Cμ‖G‖0. (49)

Theorem 3.4 Under the assumptions ofTheorem3.2, there holds the following error bound:

‖(uε − uεμ,Bε − Bεμ)‖0 ≤ Cε−1μ2, f or P1,

‖(uε − uεμ,Bε − Bεμ)‖0 ≤ Cμ2, f or P2.

Proof TakingG = (uε −uεμ,Bε −Bεμ) and (v,�) = (uε −uεμ,Bε −Bεμ), q = pε − pεμ

in (42), we can get

A0((uε − uεμ,Bε − Bεμ), (w,�)) + A1((uε − uεμ,Bε − Bεμ), (uε,Bε), (w,�))

+ A1((uε,Bε), (uε − uεμ,Bε − Bεμ), (w,�)) − d((w,�), pε − pεμ)

+ d((uε − uεμ,Bε − Bεμ), s) + ε

νe
(pε − pεμ, s)

= ((uε − uεμ,Bε − Bεμ), (uε − uεμ,Bε − Bεμ)). (50)

Next, we derive from (6) and (29) with (v,�) = (πμw, Rμ�), q = ρμs that

A0((uε − uεμ,Bε − Bεμ), (πμw, Rμ�))

+ A1((uε,Bε), (uε − uεμ,Bε − Bεμ), (πμw, Rμ�))

+ A1((uε − uεμ,Bε − Bεμ), (uε,Bε), (πμw, Rμ�))

− A1((uε − uεμ,Bε − Bεμ), (uε − uεμ,Bε − Bεμ), (πμw, Rμ�))

+ d((uε − uεμ,Bε − Bεμ), ρμs) − d((πμw, Rμ�), pε − pεμ)+ ε

νe
(pε − pεμ, ρμs) = 0.

(51)

Subtracting (51) from (50), yields

‖(uε − uεμ,Bε − Bεμ)‖20 ≡
6∑

i=1

(I )i

= A0((uε − uεμ,Bε − Bεμ), (w − πμw,� − Rμ�))

+ A1((uε − uεμ,Bε − Bεμ), (uε,Bε), (w − πμw,� − Rμ�))

+ A1((uε,Bε), (uε − uεμ,Bε − Bεμ), (w − πμw,� − Rμ�))

+ A1((uε − uεμ,Bε − Bεμ), (uε − uεμ,Bε − Bεμ), (πμw, Rμ�))

+ d((uε − uεμ,Bε − Bεμ), s − ρμs) − d((w − πμw,� − Rμ�), pε − pεμ)

+ ε

νe
(pε − pεμ, s − ρμs). (52)

From (7), (9) and (49), we can get

(I )1 = A0((uε − uεμ,Bε − Bεμ), (w − πμw,� − Rμ�))

≤ max{R−1
e , 5ScR

−1
m }‖(uε − uεμ,Bε − Bεμ)‖1‖(w − πμw,� − Rμ�)‖1

≤ Cμ‖(uε − uεμ,Bε − Bεμ)‖1‖(uε − uεμ,Bε − Bεμ)‖0. (53)

Applying (9), (49) and Theorem 2.2, yields
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(I )2 + (I )3 = A1((uε − uεμ,Bε − Bεμ), (uε,Bε), (w − πμw,� − Rμ�))

+A1((uε,Bε), (uε − uεμ,Bε − Bεμ), (w − πμw,� − Rμ�))

≤ 2N‖(uε − uεμ,Bε − Bεμ)‖1‖(uε,Bε)‖1‖(w − πμw, � − Rμ�)‖1
≤ Cμ‖(uε − uεμ,Bε − Bεμ)‖1‖(uε − uεμ,Bε − Bεμ)‖0, (54)

(I )4 = A1((uε − uεμ,Bε − Bεμ), (uε − uεμ,Bε − Bεμ), (πμw, Rμ�))

≤ √
2max{1,√2Sc}‖(uε − uεμ,Bε − Bεμ)‖21‖(πμw, Rμ�)‖0

≤ C‖(uε − uεμ,Bε − Bεμ)‖21‖(uε − uεμ,Bε − Bεμ)‖0, (55)

(I )5 = |d((uε − uεμ,Bε − Bεμ), s − ρμs)| + |d((w − πμw, � − Rμ�), pε − pεμ)|
≤ C

(‖(uε − uεμ,Bε − Bεμ)‖1 + ‖pε − pεμ‖0
)

× (‖(w − πμw, � − Rμ�)‖1 + ‖s − ρh�‖0
)

≤ Cμ
(‖(uε − uεμ,Bε − Bεμ)‖1 + ‖pε − pεμ‖0

) ‖(uε − uεμ,Bε − Bεμ)‖0,
(56)

(I )6 = ε

νe
(pε − pεμ, s − ρμs) ≤ Cμ‖pε − pεμ‖0‖(uε − uεμ,Bε − Bεμ)‖0. (57)

Finally, from P1 and P2, we can derive that

‖(uε − uεμ,Bε − Bεμ)‖0 ≤ Cε−1μ2, f or P1,

‖(uε − uεμ,Bε − Bεμ)‖0 ≤ Cμ2, f or P2.

Then, the proof ends. ��

4 Newton Iterative Method

Newton iterative method in penalty finite element method based on finite element pair P1

and P2 is introduced as follows.

Algorithm 4.1 Find ((unεμ,Bn
εμ), pnεμ) ∈ Wμ

0n ×Mμ such that for all ((v,�), q) ∈ Wμ
0n ×

Mμ

A0((unεμ,Bn
εμ), (v,�)) − d((v,�), pnεμ) + d((unεμ,Bn

εμ), q) + ε

νe
(pnεμ, q)

+ A1((un−1
εμ ,Bn−1

εμ ), (unεμ,Bn
εμ), (v,�)) + A1((unεμ,Bn

εμ), (un−1
εμ ,Bn−1

εμ ), (v,�))

= 〈F, (v,�)〉 + A1((un−1
εμ ,Bn−1

εμ ), (un−1
εμ ,Bn−1

εμ ), (v,�)). (58)

Here, ((u0εμ,B0
εμ), p0εμ) is defined by the discrete penalty equations:

A0((u0εμ,B0
εμ)(v,�)) − d((v,�), p0εμ) + d((u0εμ,B0

εμ), q) + ε

νe
(p0εμ, q)

= 〈F, (v,�)〉, (59)

for all ((v,�), q) ∈ Wμ
0n × Mμ.

Next, we establish the stability of the iterative method for (en,bn) = (uεμ − unεμ,Bεμ −
Bn

εμ) and ηn = pεμ − pnεμ. Firstly, we give a key lemma from [16].
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Lemma 4.1 The trilinear term A1(·, ·, ·) satisfies the following estimate

|A1((uμ,Bμ), (wμ,�μ), (vμ,�μ))| + |A1((wμ,�μ), (uμ,Bμ), (vμ,�μ))|
≤ C‖(uμ,Bμ)‖

1
2
1 ‖(A1μuμ,A2μBμ)‖

1
2
0 ‖(wμ,�μ)‖1‖(vμ,�μ)‖0, (60)

for all (uμ,Bμ), (wμ,�μ), (vμ,�μ) ∈ Wμ
0n.

Theorem 4.1 Under the assumptions of Theorem 2.2 and suppose that P1 and P2 are valid,
if

0 < σ <
5

11
, (61)

then (umεμ,Bm
εμ) and pmεμ defined by the Newton iterative method satisfy

‖|(umεμ,Bm
εμ)‖|1 ≤ 4

3
‖F‖−1, ‖|(A1μumεμ,A2μBm

εμ)‖|1 ≤ C‖F‖0, (62)

‖pmεμ‖0 ≤
(
9νe
5εν̂

) 1
2 ‖F‖−1, f or P1, (63)

‖pmεμ‖0 ≤
(
4ν

3ν̂
+ 17

10

)

‖F‖−1, f or P2 (64)

and (em, bm), ηm satisfy the following bounds:

‖|(em, bm)‖|1 ≤ (
33

13
σ)2

m−1 5

11
‖F‖−1, (65)

‖ηm‖0 ≤
( νe

εν̂

) 1
2
σ 2(

33

13
σ)2

m− 3
2 (

5

11
)
3
2 ‖F‖−1, f or P1, (66)

‖ηm‖0 ≤ β−1
0

(
5ν

11ν̂
+ 3σ 2

) (
33

13
σ

)2m−1

‖F‖−1, f or P2, (67)

for all m ≥ 0.

Proof We can derive the estimate (62)–(66) with the similar technique used in [18]. ��

5 Two-Level Newton Iterative Penalty Finite Element Method

In this part, we consider the two-level penalty finite element method. The method includes
two algorithms: m steps by Newton iteration on the coarse mesh H and once correction by
Stokes iteration on the fine mesh h.

Algorithm 5.1 Step I. Find a coarse grid iterative solution ((umεH ,Bm
εH ), pmεH ) ∈ WH

0n×MH

defined by

A0((unεH ,Bn
εH ), (v,�)) + A1((u

n−1
εH ,Bn−1

εH ), (unεH ,Bn
εH ), (v,�))

+ A1((unεH ,Bn
εH ), (un−1

εH ,Bn−1
εH ), (v,�)) − d((v,�), pnεH )

+ d((unεH ,Bn
εH ), q) + ε

νe
(pnεH , q)

= A1((u
n−1
εH ,Bn−1

εH ), (un−1
εH ,Bn−1

εH ), (v,�)) + 〈F, (v,�)〉, (68)
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for n = 1, 2, . . . ,m, where ((u0εH ,B0
εH ), p0εH ) is determined by

A0((u0εH ,B0
εH ), (v,�)) − d((v,�), p0εH ) + d((u0εH ,B0

εH ), q) + ε

νe
(p0εH , q)

= 〈F, (v,�)〉, (69)

for all ((v,�), q) ∈ WH
0n × MH .

Step II. Find a fine grid solution ((uεmh,Bεmh), pεmh) ∈ Wh
0n × Mh defined by

A0((uεmh,Bεmh), (v,�)) − d((v,�), pεmh) + d((uεmh,Bεmh), q) + ε

νe
(pεmh, q)

= A1((umεH ,Bm
εH ), (umεH ,Bm

εH ), (v,�)) + 〈F, (v,�)〉, (70)

for all ((v,�), q) ∈ WH
0n × MH .

For the simplicity, we take (eh,bh) = (uεh − uεmh,Bεh − Bεmh), ηh = pεh − pεmh .
Then, we have the following theorem.

Theorem 5.1 Under the assumptions of Theorem 4.1, then ((uεmh,Bεmh), pεmh) of (69)–
(70) satisfy

‖|(uεmh,Bεmh)‖|1 ≤ 2‖F‖−1, (71)

‖pεmh‖0 ≤
(
10νe

ε

) 1
2 ‖F‖−1, f or P1, (72)

‖pεmh‖0 ≤ 2β0

(
max{R−1

e , 5ScR−1
m }

ν̂
+ 1

)

‖F‖−1, f or P2, (73)

and (eh, bh), ηh satisfy the following bounds:

‖|(eh, bh)‖|1 ≤ C

(

σ
ν̂2‖F‖0

min{R−1
e , ScR

−1
m }‖F‖−1

ε−1H2 + (
15

13
σ)2

m−1 5

11
‖F‖−1

)

, (74)

‖ηh‖0 ≤ C

(

ε
−3
2 H2 + (

15

13
σ)2

m−1 5

11
‖F‖−1

)

f or P1, (75)

‖|(eh, bh)‖|1 ≤ C

(

σ
ν̂2‖F‖0

min{R−1
e , ScR

−1
m }‖F‖−1

H2 + (
15

13
σ)2

m−1 5

11
‖F‖−1

)

, (76)

‖ηh‖0 ≤ Cβ0

(

H2 + (
15

13
σ)2

m−1 5

11
‖F‖−1

)

, f or P2. (77)

Proof Taking (v,�) = (uεmh,Bεmh) and q = pεmh in (70) with (8), (9), (61) and (62), we
arrive at

ν̂‖(uεmh,Bεmh)‖21 + ε

νe
‖pεmh‖20 ≤ N‖(umεH ,Bm

εH )‖21‖(uεmh,Bεmh)‖1
+‖F‖−1‖(uεmh,Bεmh)‖1, (78)

then, we can have

‖|(uεmh,Bεmh)‖|1 ≤ ( 169 σ + 1)‖F‖−1 ≤ 2‖F‖−1. (79)

And for P1, from (78), we can have
ε

νe
‖pεmh‖20 ≤ N‖(umεH ,Bm

εH )‖21‖(uεmh,Bεmh)‖1 + ‖F‖−1‖(uεmh,Bεmh)‖1

≤
(

2 × (
3

4
)4σ + 2

)

‖F‖2−1 ≤ 10‖F‖2−1,
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which is that

‖pεmh‖0 ≤ ( 10νe
ε

)
1
2 ‖F‖−1.

For P2, taking q = 0 in (70) with (7), (9), (24), (79), (61) and (62), we can have

β0‖pεmh‖0 ≤ d((v,�), pεmh)

‖(v,�)‖1
≤ max{R−1

e , 5ScR
−1
m }‖(uεmh,Bεmh)‖1 + N‖(umεH ,Bm

εH )‖21 + ‖F‖−1

≤ 2

(
max{R−1

e , 5ScR−1
m }

ν̂
+ 1

)

‖F‖−1.

Next, we will give the error estimate.
Subtracting (70) from (29) with μ = h, we can have the following error equation

A0((uεh − uεmh,Bεh − Bεmh), (v,�)) − d((v,�), pεh − pεmh)

+ d((uεh − uεmh,Bεh − Bεmh), q)

+ ε

νe
(pεh − pεmh, q) + A1((uεh − uεH ,Bεh − BεH ), (uεh,Bεh), (v,�))

+ A1((uεH ,BεH ), (uεh − uεH ,Bεh − BεH ), (v,�))

+ A1((uεH − umεH ,BεH − umεH ), (uεH ,BεH ), (v,�))

+ A1((umεH ,Bm
εH ), (uεH − umεH ,BεH − Bm

εH ), (v,�)) = 0. (80)

Take (v,�) = (eh,bh), q = ηh in (80) with (8), (9), (14) and Theorem 3.1, we have

ν̂‖(eh,bh)‖21 + ε

νe
‖ηh‖20

≤ N‖(uεh − uεH ,Bεh − BεH )‖0
{
‖(A1huεh,A2hBεh)‖0

+‖(A1huεh,A2hBεh)‖0
}
‖(eh,bh)‖1

+ N‖(uεH − umεH ,BεH − Bm
εH )‖1

{
‖(uεH ,BεH )‖1

+‖(umεH ,Bm
εH )‖1

}
‖(eh,bh)‖1,

which guarantees that

‖|(eh,bh)‖|1
≤ CN‖(uεh − uεH ,Bεh − BεH )‖0

{
‖(A1huεh,A2hBεh)‖0 + ‖(A1huεh,A2hBεh)‖0

}

+ N‖(uεH − umεH ,BεH − Bm
εH )‖1

{
‖(uεH ,BεH )‖1 + ‖(umεH ,Bm

εH )‖1
}

≤ C
N‖F‖0

min{R−1
e , ScR

−1
m }‖(uεh − uεH ,Bεh − BεH )‖0

+ N‖F‖−1

ν̂2
‖(uεH − umεH ,BεH − Bm

εH )‖1

≤ Cσ
ν̂2‖F‖0

min{R−1
e , ScR

−1
m }‖F‖−1

‖(uεh − uεH ,Bεh − BεH )‖0
+ σ‖|(uεH − umεH ,BεH − Bm

εH )‖|1. (81)
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For P1, from Theorems 3.4, 4.1 and (81), we derive that

‖|(eh,bh)‖|1 ≤ C
(
σ

(ν̂)2‖F‖0
min{R−1

e ,Sc R
−1
m }‖F‖−1

ε−1H2 + ( 1513σ)2
m−1 5

11‖F‖−1

)
, (82)

and with (82), we have

ε

νe
‖ηh‖20 ≤ CN‖(uεh − uεH ,Bεh − BεH )‖0 ×

{
‖(A1huεh,A2hBεh)‖0

+‖(A1huεh,A2hBεh)‖0
}
‖(eh,bh)‖1 + N‖(uεH − umεH ,BεH − Bm

εH )‖1
×

{
‖(uεH ,BεH )‖1 + ‖(umεH ,Bm

εH )‖1
}
‖(eh,bh)‖1

≤ Cε−2H4 + C
{
(
15

13
σ)2

m−1 5

11
‖F‖−1

}2
,

which is that

‖ηh‖0 ≤ C
(
ε

−3
2 H2 + ( 1513σ)2

m−1 5
11‖F‖−1

)
. (83)

And for P2, with the aids of P1, from Theorem 3.4, Theorem 4.1 and (81),

‖|(eh,bh)‖|1 ≤ C
(
σ

ν̂2‖F‖0
min{R−1

e ,Sc R
−1
m }‖F‖−1

H2 + ( 1513σ)2
m−1 5

11‖F‖−1

)
, (84)

and with (24), (81), (7), (84), Theorem 3.4 and Theorem 4.1, we deduce that

β0‖ηh‖0 ≤ max{R−1
e , 5ScR−1

m }
ν̂

‖|(eh,bh)‖|1 + CN‖(uεh − uεH ,Bεh − BεH )‖0
×

{
‖(A1huεh,A2hBεh)‖0 + ‖(A1huεh,A2hBεh)‖0

}

+ N‖(uεH −umεH ,BεH −Bm
εH )‖1

{
‖(uεH ,BεH )‖1+‖(umεH ,Bm

εH )‖1
}
+‖F‖−1

≤ max{R−1
e , 5ScR−1

m }
ν̂

‖|(eh,bh)‖|1

+Cσ
ν̂2‖F‖0

min{R−1
e , ScR

−1
m }‖F‖−1

‖(uεh − uεH ,Bεh − BεH )‖0
+ σ‖|(uεH − umεH ,BεH − Bm

εH )‖|1 + ‖F‖−1

≤ C

(

H2 + (
15

13
σ)2

m−1 5

11
‖F‖−1

)

. (85)

Then, we complete the proof. ��

Theorem 5.2 Under the assumptions of Theorem 3.2, for the two-level Newton iterative
penalty finite element method with P1, the optimal error estimate is

‖|(u − uεmh,B − Bεmh)‖|1 ≤ Cε + Cε− 1
2

(
h + ε

1
2 H2

)
+

(
15

13
σ

)2m−1 5

11
‖F‖−1,

‖p − pεmh‖0 ≤ Cε + Cε−1
(
h + ε

1
2 H2

)
+

(
15

13
σ

)2m−1 5

11
‖F‖−1, (86)
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ε and H can be taken as ε = O(h
1
2 ), H2 = O(ε

1
2 h) and the convergence rate is O(h

1
2 );

for the two-level Newton iterative penalty finite element method with P2, the optimal error
estimates are

‖|(u − uεmh,B − Bεmh)‖|1+‖p − pεmh‖0 ≤ C

(

ε+h+H2+
(
33

13
σ

)2m−1 5

11
‖F‖−1

)

, (87)

ε and H can be taken as ε = O(h), H2 = O(h) and the convergence rate is O(h).

Proof We can finish the proof by Theorems 2.3, 3.2 and 5.1, triangle inequality and some
simple calculations. ��

6 Numerical Results

In this section we report on the numerical performance of the method established in this
paper with two finite element pairsPk (k = 1, 2) for the 2D/3DMHD cases. The first one is a
flow problem with a smooth solution. The second one is a Hartmann flow problem. And the
last one is a driven cavity flow problem. The iterative tolerance is set as 10−10 for numerical
implementations.

Remark 6.1 (1) The penalty parameter ε is selected as ε = O(h
1
2 ) for P1 and ε = O(h) for

P2 based on Theorem 5.2 in all the following numerical tests.
(2) Re, Rm and Sc are optional constants in uniqueness condition σ which defined in (16).
(3) The constant C0 can be obtained by the Ladyzhenskaya inequalities and the Poincaré

inequality (see [18])

C0 =
⎧
⎨

⎩

(2κ)
1
4 , d = 2,

(
2κ

1
4

) 1
2
, d = 3,

(88)

for the bounded domain, the κ is given by

κ = 1

λmin
,

where λmin is the smallest eigenvalue of Laplace operator. And, for the unit domain [0, 1]d

λmin =
{
2π2, d = 2,
3π2, d = 3.

(4) The constant C1 can be estimated by (11) and (12),

C1 ≤ ‖curlB‖20 + ‖divB‖20
‖B‖21

≤ 3. (89)

(5) The negative norm ‖F‖−1 by
(‖f‖2−1 + ‖g‖2∗

) 1
2 , where ‖f‖−1 and ‖g‖∗ are evaluated

by the following two problems (refer to [16] for details):

• Solving the following Poisson’s equation

− �ϒ = f, in �, (90)

with the homogeneous Drichlet boundary condition. So that we have

‖f‖−1 = ‖∇ϒ‖0. (91)
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Table 1 Algorithm 5.1 with ε = O(h
1
2 ) for P1-P0-P1 element (2D)

1/H 1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

10 80 2.55e−1 / 1.64e−1 / 1.96e−2 / 1.53e−6 1.61e−6 7.69e0

11 94 2.34e−1 0.52 1.51e−1 0.54 1.67e−2 0.99 1.04e−6 9.90e−7 1.06e1

12 108 2.18e−1 0.52 1.39e−1 0.54 1.45e−2 0.99 7.39e−7 6.53e−7 1.40e1

13 122 2.04e−1 0.52 1.30e−1 0.54 1.29e−2 0.99 5.49e−7 4.53e−7 1.81e1

Table 2 Algorithm 4.1 with ε = O(h
1
2 ) for P1-P0-P1 element (2D)

1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

80 2.48e−1 / 1.57e−1 / 1.96e−2 / 1.52e−6 1.61e−6 4.31e1

94 2.29e−1 0.50 1.45e−1 0.50 1.67e−2 0.99 1.03e−6 9.90e−7 6.20e1

108 2.13e−1 0.50 1.36e−1 0.50 1.45e−2 0.99 7.35e−7 6.52e−7 8.10e1

122 2.01e−1 0.50 1.27e−1 0.50 1.28e−2 0.99 5.46e−7 4.53e−7 1.05e2

Table 3 Algorithm 5.1 with ε = O(h) for P1b-P1-P1b element (2D)

1/H 1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

8 64 1.15e−1 / 5.83e−2 / 2.33e−2 / 2.08e−7 4.23e−6 8.28e0

9 81 9.26e−2 0.94 4.65e−2 0.97 1.84e−2 1.0 1.01e−7 2.09e−6 1.33e1

10 100 7.62e−2 0.94 3.79e−2 0.98 1.49e−2 1.0 5.30e−8 1.10e−6 2.05e1

11 121 6.38e−2 0.95 3.14e−2 0.98 1.23e−2 1.0 3.03e−8 6.27e−7 3.03e1

Table 4 Algorithm 4.1 with ε = O(h) for P1b-P1-P1b element (2D)

1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

64 5.43e−2 / 6.29e−3 / 2.33e−2 / 3.54e−7 3.13e−6 3.48e1

81 4.29e−2 1.00 4.92e−3 1.02 1.84e−2 1.00 1.77e−7 1.55e−6 5.49e1

100 3.47e−2 1.00 3.96e−3 1.01 1.49e−2 1.00 9.53e−8 8.22e−7 8.52e1

121 2.87e−2 1.00 3.26e−3 1.01 1.23e−2 1.00 5.42e−8 4.64e−7 1.28e2

• Solving the problem

⎧
⎪⎪⎨

⎪⎪⎩

curlcurl� = g, in �,

div� = 0, in �,

� · n = 0, on ∂�,

curl� × n = 0, on ∂�,

(92)

results in

‖g‖∗ = ‖curl�‖0.
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Table 5 Algorithm 5.1 with ε = O(h
1
2 ) for P1-P0-P1 element (3D)

1/H 1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

2 4 1.49e−1 / 8.88e−1 / 1.72e−1 / 2.27e−4 1.78e−3 6.48e−1

3 6 1.00e−1 0.98 6.98e−1 0.40 1.14e−1 0.99 8.13e−5 5.39e−4 2.08e0

4 10 6.07e−2 0.98 5.31e−1 0.47 6.88e−2 0.99 2.63e−5 1.11e−4 8.71e0

5 14 4.37e−2 0.98 4.42e−1 0.50 4.91e−2 0.99 1.12e−5 4.21e−05 2.63e1

Table 6 Algorithm 4.1 with ε = O(h
1
2 ) for P1-P0-P1 element (3D)

1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

4 1.53e−1 / 8.85e−1 / 1.71e−1 / 1.21e−4 4.91e−4 1.48e0

6 1.02e−1 0.98 7.54e−1 0.59 1.14e−1 1.0 6.83e−5 1.29e−4 4.95e0

10 6.20e−2 0.98 5.95e−1 0.54 6.88e−2 1.0 2.50e−5 2.35e−5 2.50e1

14 4.46e−2 0.98 5.04e−1 0.54 4.91e−2 1.0 1.04e−5 6.91e−6 7.81e1

Table 7 Algorithm 5.1 with ε = O(h) for P1b-P1-P1b element (3D)

1/H 1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

2 4 1.15e−1 / 5.83e−2 / 2.33e−2 / 2.08e−7 4.23e−6 8.28e0

3 9 9.26e−2 1.0 4.65e−2 1.1 1.84e−2 0.99 1.01e−7 2.09e−6 1.33e1

4 16 7.62e−2 1.0 3.79e−2 1.1 1.49e−2 0.99 5.30e−8 1.10e−6 2.05e1

5 20 6.38e−2 1.0 3.14e−2 1.7 1.23e−2 1.0 3.03e−8 6.27e−7 3.03e1

Table 8 Algorithm 4.1 with ε = O(h) for P1b-P1-P1b element (3D)

1/h ‖∇(u−uh )‖0‖∇u‖0 Rate ‖p−ph‖0‖p‖0 Rate ‖∇(B−Bh )‖0‖∇B‖0 Rate Kdivu KdivB CPU(s)

4 5.43e−2 / 6.29e−3 / 2.33e−2 / 3.54e−7 3.13e−6 3.48e1

9 4.29e−2 1.0 4.92e−3 1.4 1.84e−2 1.0 1.77e−7 1.55e−6 5.49e1

16 3.47e−2 1.0 3.96e−3 1.5 1.49e−2 1.0 9.53e−8 8.22e−7 8.52e1

20 2.87e−2 1.0 3.26e−3 1.5 1.23e−2 1.0 5.42e−8 4.64e−7 1.28e2

6.1 Problems with Smooth Solutions

In this case, we test the accuracy performance of our proposed methods with a smooth
solution. On the square domain � = [0, 1]d , d = 2, 3 and the exact solutions be given by

⎧
⎨

⎩

u1 = αx2(x − 1)2y(y − 1)(2y − 1), u2 = αy2(y − 1)2x(x − 1)(2x − 1),
B1 = α sin(πx) cos(πy), B2 = −α sin(πy) cos(πx),
p = α(2x − 1)(2y − 1),

123



1164 J Sci Comput (2017) 70:1144–1179

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

y

u(
y)

Analytical solution
Ha=10 with P1
Ha=10 with P2
Analytical solution
Ha=40 with P1
Ha=40 with P2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

y

B
(y

)

Analytical solution
Ha=10 with P1
Ha=10 with P2
Analytical solution
Ha=40 with P1
Ha=40 with P2

(b)

Fig. 1 (2D) Slices along x = 5, −1 < y < 1: computed (points) and theoretical (lines)

for d = 2 and
⎧
⎨

⎩

u1 = α(y4 + z), u2 = α(x + z3), u3 = α(x2 + y2)
B1 = α sin(yz), B2 = −α sin(x + z), B3 = −αy sin(x2)
p = α(2x − 1)(2y − 1)(2z − 1),

for d = 3. α is chosen such that 0 < σ < 5
11 and the body forces f, g are determined

accordingly for any Re, Rm and Sc.
Firstly, we consider the convergence performance of Algorithm 5.1 with Re = 1, Rm = 1

and Sc = 1.According toTheorem5.2, the settings of coarse, finemesh andpenalty parameter
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Fig. 2 (3D) Slices along x = 5, −2 < y < 2, z = 0: computed (points) and theoretical (lines)

scales are based on ε = O(h
1
2 ), H2 = O(ε

1
2 h) forP1 and ε = O(h), H2 = O(h) forP2. To

illustrate the property ofAlgorithm5.1,we compare the numerical resultswithAlgorithm4.1.
Tables 1, 2, 3, 4, 5, 6, 7 and 8 present the convergence performances of Algorithm 5.1

and Algorithm 4.1 with P1 and P2 for 2D/3D cases, in which Kdivu = max
Kh(�)

| ∫K divuhdx |
and KdivB = max

Kh(�)
| ∫K divBhdx |. From the comparison results, we can conclude that the

relative errors are almost the same for the same finite element pair for Algorithm 5.1 and
Algorithm 4.1, respectively. And the relative errors of P1 is smaller than P2 with decrease of
mesh size h. Moreover, the proposed scheme remain much the same property (i.e. divu = 0,
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Fig. 3 Errors ‖|(em ,bm )‖|1 versus iterative number m by a log–log plot: 2D (a); 3D (b)

divB = 0) as the original equations. However, the computing CPU time of Algorithm 5.1
takes a lot less time than Algorithm 5.1 and the method with P1 save much computational
time than the one with P2.

And we can see that all kinds of methods work well and keep the convergence rates just
like the theoretical analysis in Theorem 5.2. In details, the method with P1 converge with a
rate of 1/2 and the method with P2 converge with 1. Specifically, the magnetic field B and
the velocity field u has an improved convergence rate, it is even higher than the theoretical
result O(h1/2).
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Fig. 4 Comparison results versus Re by a log–log plot

6.2 Hartman Flow

In this example, we consider both 2D and 3DHartmann flowwith Ha = √
ReRmSc. For 2D,

we treat a steady undirectional flow in the channel� = [0, 10]× [−1, 1] under the influence
of the transverse magnetic field B0 = (0, 1). The analytical solutions are:
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Fig. 5 Comparison results versus Rm by a log–log plot

{
u(x, y) = (u(y), 0), B(x, y) = (B(y), 1),
p(x, y) = −Gx − ScB2(y)/2 + p0,

with

u(y) = ReG
Ha·tanh(Ha)

(
1 − cosh(yHa)

cosh(Ha)

)
, B(y) = G

Sc

(
sinh(yHa)
sinh(Ha)

− y
)

.

123



J Sci Comput (2017) 70:1144–1179 1169

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

u(
0,

y)

reference curve

Sc=1

reference curve

Sc=103

reference curve

Sc=105

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

y

B
(0

,y
)

reference curve
Sc=1
reference curve

Sc=103

reference curve

Sc=105

(b)

Fig. 6 Comparison results versus Sc by a log–log plot

We impose the following boundary conditions:

⎧
⎨

⎩

u = 0, on y = ±1,(
pI − R−1

e ∇u
)
n = pdn, on x = 0 and x = 10,

n × B = n × Bd , on ∂�,

where pd(x, y) = p(x, y), p0 is a constant and I is identity matrix. Whilst, 3D Hartmann
flow in a rectangular duct � = [0, L] × [−y0, y0] × [−z0, z0] with L = 10, y0 = 2, z0 = 1
under the influence od a magnetic field Bd = (0, 1, 0) has the following form
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Fig. 7 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with Re = 1

{
u(x, y, z) = (u(y, z), 0, 0), B(x, y, z) = (B(y, z), 1, 0),
p(x, y, z) = −Gx − ScB2(y, z)/2 + p0,

with

u(y, z) = − 1
2GRe(z2 − z20) +

+∞∑
i=0

ui (y) cos(λi z), B(y, z) =
+∞∑
i=0

bi (y) cos(λi z),
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Fig. 8 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with Re = 5 · 102

where

ui (y) = Ai cosh(p1y) + Bi cosh(p2y),

bi (y) = 1

ReSc

(

Ai
λ2i − p21

p1
sinh(p1y) + Bi

λ2i − p22
p1

sinh(p2y)

)

,

λi = (2i + 1)π

2z0
, ui (y0) = −2GRe

λ3i z0
sin(λi z0),
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Fig. 9 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with Re = 5 · 103
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Fig. 10 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with
Rm = 5 · 102

p21,2 = λ2i + Ha2/2 ± Ha
√

λ2i + Ha2/4,

γi = p2(λ
2
i − p21) sinh(p1y0) cosh(p2y0) − p1(λ

2
i − p22) sinh(p2y0) cosh(p1y0),

Ai = −p1(λ2i − p22)

γi
ui (y0) sinh(p2y0), Bi = −p2(λ2i − p21)

γi
ui (y0) sinh(p1y0),

the boundary conditions are imposed by
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Fig. 11 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with
Rm = 5 · 103

⎧
⎨

⎩

u = 0, on y = ±y0 and z = ±z0(
pI − R−1

e ∇u
)
n = pdn, on x = 0 and x = L ,

n × B = n × Bd , on ∂�.

Take G = 0.1 and choose the following two cases to simulate 2D problem:

(a) Ha = 10 : Re = 5, Rm = 5, Sc = 4;
(b) Ha = 40 : Re = 10, Rm = 10, Sc = 16.
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Fig. 12 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with Sc = 103

and choose the following two cases to simulate 3D problem:

(c) Ha = 1 : Re = 1, Rm = 0.1, Sc = 10;
(d) Ha = 10 : Re = 10, Rm = 1, Sc = 10.

For the 2D problem, the analytical solutions of u(y) and B(y) along with numerical ones
u(yk) and B(yk) (yk = −1+0.1k, k = 0, . . . , 20) obtained byAlgorithm5.1 forPi (i = 1, 2)
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Fig. 13 Numerical streamlines
(a); the isobars (b); and
isodynamic (c) with Sc = 105

with parameters (a)–(b) are presented in Fig. 1. And the analytical solutions u(y, z) and
B(y, z) along with numerical ones u(yk, 0) and B(yk, 0)(yk = −2 + 0.1k, k = 0, . . . , 40)
with parameters (c)–(d) for the 3D problem are shown in Fig. 2. It can be inferred that Algo-
rithm 5.1 can achieve the desired results with Pi (i = 1, 2) for different Hartmann numbers.

The following work is to investigate the convergence exponent m in (76). It is known that
( 1513σ)2

m−1 will converge gradually under 15
13σ < 1with the increase ofm. But it is difficult to

give the direct verification ofm. Figure 3 presents the relation between the error ‖|(em,bm)‖|1
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and the iterative number m by a log–log plot compared with a reference curve defined by
f (m) = c(σ )2

m−1, where c is constant. Thereout, we can see that the curve by ‖|(em,bm)‖|1
have almost the same shape as the curve f (m). Then, we finished the verification of the
relation in (76) indirectly.

6.3 Driven Cavity Flow

Let us consider a classic 2D test problem used in fluid dynamics, known as driven cavity
flow. It is a model of the flow in a cavity with the lid moving in one direction: In this example,
we consider the two-dimensional domain � = (−1, 1) × (−1, 1) with �D = ∂�, and set
the source terms to be zero. The boundary conditions are prescribed as follows:

⎧
⎨

⎩

u = 0, on x ± 1 and y = −1,
u = (1, 0), on y = 1,
n × B = n × BD, on ∂�,

where BD = (1, 0).
In this case, we consider the deep research on the relation between Re, Rm and Sc.

According to the experiment 6.1, we know that finite element pair P1 is of low measurement
accuracy. Here we only test the method withP2 for different equation parameters. Numerical
results of Algorithm 5.1 are compared with the standard two-level Newton iterative method
to show the merits of the proposed scheme.

Figures 4, 5 and 6 present the horizontal velocity, pressure and magnetic field distribution
at the mid-width for various Re, Rm and Sc. It can be concluded that our results show an
excellent agreement with the standard two-level Newton iterative method. And the numerical
streamline, isobar and isodynamic of the cavity flow for different hydrodynamic Reynolds
numbers, magnetic Reynolds numbers and coupling coefficients are presented in Figs. 7, 8,
9, 10, 11, 12 and 13.

Figures 7, 8 and 9 illustrate the numerical results ofAlgorithm5.1 for Re = 1, 5·102, 5·103
with Rm = 1 and Sc = 1. As can be seen that the velocity main vortex grows into several
small ones and become more complex with the increase of Re. The experiment results of the
proposed method for Rm = 5 · 102, 5 · 103 with Rm = 1 and Sc = 1 are reported in Figs. 10
and 11. We can see that the velocity vortex and isobar remain almost unchanged, but the
isodynamic has changed a lot. And the numerical results for Sc = 103, 105 with Re = 1 and
Rm = 1 are presented in Figs. 12 and 13. It can be inferred that more resolved vortexes may
captured with the increase of Sc.

7 Conclusions

Combining the best algorithmic features of two-level scheme and Newton iterative technique
based on penalty method, we presented a two-level Newton penalty finite element method
for the 2D/3D stationary incompressible MHD equations. The main idea includes three part:
firstly, to decouple the strong coupled system with a penalty term in the incompressible
constraint; secondly, to save large amount of CPU time with two-level strategy; last, to deal
with the nonlinear termwithNewton iteration. Stability and error estimates of themethodwas
analysed. Numerical results illustrated the theoretical results and demonstrated the efficiency
of the proposed method. Besides, this method can be extended to time-dependent problems
and more decoupling method will be discussed in the future.
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