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Abstract The main goal of this article is to improve upon a previous model used to simulate
the evolution of oil spots in the open sea and the effect of a skimmer ship pumping oil out from
the spots. The concentration of the pollutant is subject to the effects of wind and sea currents,
diffusion, and the pumping action of a skimmer (i.e., cleaning) ship that follows a pre-assigned
trajectory. This implies that the mathematical model is of the advection–diffusion–reaction
type. A drawback of our previous model was that diffusion was propagating with infinite
velocity; in this article, we use an improved model relying on a nonlinear diffusion term,
implying that diffusion propagates with finite velocity. To reduce numerical diffusion when
approximating the advection part of the model, we consider second order discretization
schemes with nonlinear flux limiters. We consider also absorbing boundary conditions to
insure accurate results near the boundary. To reduce CPU time we use an operator-splitting
scheme for the time discretization. Finally, we also introduce the modeling of coastlines and
dynamic sources of pollutant. The novel approach we advocate in this article is validated by
comparing our numerical results with real life measurements from the Oleg Naydenov and
the Prestige oil spills, which took place in Spain in 2015 and 2002, respectively.
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1 Introduction

Oil spill contamination in open sea has been at the origin of some of the worst environmental
disasters in history (see [27,35]). The ecological and economical impact of such hazards
are generally important and should be controlled as quickly as possible. For instance in
1989, the Exxon Valdez tanker sank near Alaska, spilling more than 10 million gallons of
crude oil [29]. It was estimated that more than 50% of the sea birds and otters of the area
were killed. The cost of depolluting the contaminated zone has been estimated to US$ 287
million.

One of the major cleaning techniques [14] for these hazards is the use of skimmer ships
[6]. Those ships use various pumps distributed along its waterline to suck the oil from the
surface of the water directly into storage units. Those vessels move inside the oil spots to
clean them as quickly as possible.

In previous works, we have been interested in improving this process. To do so, we first
introduce a numerical model to simulate the effect the skimmer ship on the evolution of the
oil spill [2]. This model, based on a first order finite volume approximation of an advection–
diffusion–reaction equation [15,19], took into consideration: the motion of oil spots resulting
from the combined effects of diffusion and of transport by wind and sea currents, and also
the physical phenomena associated with the action of the pumping ship, assuming that it
follows a pre-assigned trajectory. In a second article [16], we have designed the trajectory of
a skimmer ship in order tomaximize the amount of recovered oil in open sea or near coastline.
Finally, we have validated our approach by considering numerical experiments based on real
oil spill data [17]. Actually, the model and methodology we used in these previous studies
require various modifications and improvements, such as:

– Use a diffusion model leading to diffusion propagating at finite speed.
– Reduce the numerical diffusion resulting from the discretization of the advection term in

the model.
– Reduce the computational complexity.
– Use boundary conditions with better absorbing properties.
– Modeling of coastlines.
– Consider dynamic sources of pollutant.

These various issues will be addressed in this article. We introduce in particular a non-
linear diffusion term to obtain a diffusion propagating at finite speed. Next, we discuss an
absorbing boundary condition [3,12,23], to handle those situations when the oil is exiting the
computational domain. Then, to reduce numerical diffusion, we use second order numerical
schemes for the discretization of the advection terms of the model. Finally, we discuss the
use of splitting and un-split schemes and their impact on the computational complexity.

To validate this new methodology, we compare the numerical results with measurements
from the Prestige [25] and the Oleg Naydenov [21,24] oil spill hazards, which occurred in
Spain in 2002 and 2015, respectively.

The content of this article is as follows: In Sect. 2, we present the old and new math-
ematical models we consider to simulate the motion of the oil spots and the action of
the pumping ship. In Sect. 3, we discuss the numerical methods considered for these
simulations. Finally, in Sect. 4, we describe the numerical experiments and discuss
their results, including comparisons with measurements from the two real life disasters
mentioned above.
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2 Mathematical Models

2.1 Generalities

We consider a spatial domain Ω ⊂ (xmin, xmax) × (ymin, ymax) ⊂ IR2, large enough to
ensure that the pollutant will stay in Ω during the corresponding fixed time interval (0, T ).
We denote by ∂Ωo the boundary of Ω in the open sea and by ∂Ωc the boundary in the coast
(land domains are not included in Ω).

We assume that the density of the pollutant is smaller than the one of the sea water (so
that it remains at the top); we assume also that the layer-thickness of the pollutant is a
known constant that we will denote by h [27]. We denote by c(x, t) the pollutant superficial
concentration, measured as the volume of pollutant per surface area at {x, t} ∈ Ω × (0, T ).
We assume that the evolution of c is governed by five main effects, namely:

– The diffusion of the pollutant.
– The wind induced transport.
– The sea current induced transport.
– The transport and sink resulting from the pumping.
– The spill of oil due to a source of pollutant.

Moreover, we assume that the pumping ship and the source of pollutant follow trajectories
γ and ζ ∈ C0([0, T ], IR2), respectively, such that γ (t) and ζ(t) ∈ Ω, for all t ∈ [0, T ].

From a practical point of view, a skimmer ship is composed of multiple pumps, cleaning
thewater along the vesselwaterline. For simplicity (as in the numerical experiments discussed
in Sect. 4), we neglect the length of the ship compared to the size of Ω . We suppose also that
there is only one pump, which is a circle of radius Rp , pumping the fluid with velocity Q in
the radial direction. Finally, the source of pollutant is taken as a circle of radius Rs , spilling
an amount of oil S(t) per unit of time.

2.2 The Previous Model

In [2], a simple model, assuming linear diffusion and homogeneous boundary conditions was
considered. More precisely, we proposed the following system of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂c

∂t
− ∇ · d∇c + ∇ · c (w + s) + ∇ · c p =

− 2Q

Rp
cχB(γ (t),Rp), in Ω × (0, T ),

c = 0, on ∂Ω × (0, T ),

c(0) = c0,

(1)

where:

– c(t) denotes the function x → c(x, t).
– B(γ (t), Rp) is the ball of center γ (t) and radius Rp .

– p(ξ, t) =

⎧
⎪⎪⎨

⎪⎪⎩

QRp

−−−→
γ (t)ξ

(
‖−−−→
γ (t)ξ‖2

)2 , if ξ ∈ Ω\B(γ (t), Rp),

0, if ξ ∈ B(γ (t), Rp),

see details in [2].

– χB(γ (t),Rp)(ξ) =
{
0, if ξ ∈ Ω\B(γ (t), Rp),

1, if ξ ∈ B(γ (t), Rp).
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– The function c0 is the initial superficial concentration; we assume that c0 has a compact
support in Ω .

– d =
(
d1 0
0 d2

)

, d1, d2 (both >0) being the diffusion coefficients in the west–east and

south–north directions.
– w = [w1, w2] is the horizontal component of the wind velocity multiplied by a suitable

drag factor and s = [s1, s2] is the surface velocity of the sea.

2.3 An Improved Model

Six important drawbacks of themodel described inSection 2.2 are: (i) the diffusion propagates
at infinite speed, (ii) if the advection terms in (1) are discretized using a first order up-
winding scheme, artificial diffusion is generated, (iii) the combined effects of thewind and sea
velocities on the oil spots can be larger than the effect of the wind or sea alone, (iv) coastlines
were omitted, (v) source of pollutantwere not considered, (v) theDirichlet boundary condition
(c = 0) makes sense only as long as the pollutant does not reach the boundary of Ω (or if
only small quantities reach that boundary).

In this article, we have improved the model developed in [2] (namely the model given by
(1)). To do so, we have : (i) replaced the linear diffusion term by a nonlinear one, (ii) replaced
the boundary condition c = 0 on ∂Ω × (0, T ) by one with better absorbing properties,
(iii) included the possibility of considering coastline, (iv) included a dynamic source of
contaminant, and (v) using a more realistic transport term. The new model is the following

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
− ∇ · cκ

cκ
ref

d∇c + ∇ · c o

+∇ · c ptol = −2Q

Rp
c χB(γ (t),Rp),

+ S

2πRS
χB(ζ(t),Rs ), in Ω × (0, T ),

L
∂c

∂t
+

[
− (w + s + ptol)c + cκ

cκ
ref

d∇c
]

· n = 0, on ∂Ωo × (0, T ),

( cκ

cκ
ref

d∇c
)

· n = 0, on ∂Ωc × (0, T ),

c(0) = c0,

(2)

where:

– ptol(ξ, t) = max
(‖p(ξ, t)‖2 − tol

Q − tol
, 0

)
·p(ξ, t) is a corrected approximation of the veloc-

ity pump. This expression means that (i) the effect of the velocity field p on oil particles
is neglected (i.e., ptol = 0) when ‖p(ξ, t)‖2 <tol, for which the pump velocity is con-
sidered negligible regarding the diffusion coefficients; (ii) ptol(ξ, t) = p(ξ, t), when

‖−−−→
γ (t)ξ‖2 ≤ Rp; and (iii) ptol(ξ, t) < p(ξ, t) and ptol(ξ, t) is a smooth function, when

‖−−−→
γ (t)ξ‖2 > Rp .

– cref is a reference pollutant concentration (here, cref = 1), and κ > 0 (typical values of
κ being 1, 2 and 3).

– L is a length, characteristic of the size of the domain Ω , typically the diameter of Ω(
that is L = √

(xmax − xmin)2 + (ymax − ymin)2
)

.

– o = [min(s1 + w1,max(s1, w1)),min(s2 + w2,max(s2, w2))].
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In order to solve (2), we introduce in the next section, a numerical model that includes
(a) second order schemes with linear and nonlinear limiters for the discretization of the
advective terms, and (b) a time discretization by operator splitting to treat separately the
diffusion-sea-wind and the pumping.

3 Numerical Methods

In Sect. 3.1wepresent the numerical schemes used to solve numerically (2). Then, in Sect. 3.2,
we describe the splitting technique used to improve the computational efficiency of the
algorithm.

3.1 Approximation of Problems (1) and (2)

In order to introduce the notations used in this work, in Appendix we recall the basis of the
piecewise linear FiniteVolume schemewith limiters in the 1D casewith constant velocity [10,
18]. In the following, we develop a 2D version of scheme (26) with non constant velocities.

The Finite Volume method is well-suited to the space-time discretization of problem (1).
For simplicity, we assume the spatial domain Ω = (x1,min, x1,max)× (x2,min, x2,max). Given
two positive integers I and J , we divide Ω into I J control volumes Ωi, j . More precisely,
for i = 1, . . . , I , j = 1, . . . , J , we define Ωi, j by

Ωi, j = (x1,min + (i − 1)
x1, x1,min + i
x1)

×(x2,min + ( j − 1)
x2, x2,min + j
x2), (3)

with 
x1 = x1,max − x1,min

I
, 
x2 = x2,max − x2,min

J
.

For simplicity, we will present only a fully explicit scheme, of the forward Euler type, for
the time discretization of problem (1); constructing implicit or semi-implicit variants of the
scheme to be described below is pretty easy.

The time step at the n-th step of the scheme is given by


tn = C
x1
x2


x1(V
n
1 + d1) + 
x2(V

n
2 + d2) + 2πQ

, (4)

where C ∈ [0, 1] is a constant (C = 1, typically, for explicit schemes), V
n
1 =

max(i=1,...,I+1; j=1,...,J ) V n
1,i− 1

2 , j
and V

n
2 = max(i=1,...,I ; j=1,...,J+1) V n

2,i, j− 1
2
, with V n

1,i−1/2, j

and V n
2,i, j−1/2 defined below. We point out that 
tn is defined by considering a condition

similar to the Courant–Friedrichs–Lewy (CFL) [8]. The role of such a condition is to ensure
that the flow due to the advection, diffusion and reaction processes cannot make a particle in
the boundary of one grid element to travel to the opposite grid element in less that one time
step.

We note that for an implicit time discretization scheme, there is no limitation on the time
step as long as stability is concerned; of course accuracy requires small time steps.

Let C0
i, j = c0(ξi, j ) with ξi, j being the center of cell Ωi, j . On each cell Ωi, j , for i =

1, . . . , I and j = 1, . . . , J at time step n we compute Cn+1
i, j = Cn+1(ξi, j ) as follows.
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For the diffusion term in (2), we consider the discretization scheme:

D(i, j, n) = 2
tn
(
Cn
i, j

cref

)κ (
d1

(
x1)2
+ d2

(
x2)2

)

Cn
i, j

− d1
tn

(
x1)2

((
Cn
i+1, j

cref

)κ

Cn
i+1, j +

(
Cn
i−1, j

cref

)κ

Cn
i−1, j

)

− d2
tn

(
x2)2

((
Cn
i, j+1

cref

)κ

Cn
i, j+1 +

(
Cn
i, j−1

cref

)κ

Cn
i, j−1

)

(5)

For the transport term, we consider the scheme with limiters described below.

A+
V(1, i, j, n) = [

σ+
1,i, j,n + φ(q1,i, j,n)ϑ(σ+

1,i, j,n)
]
Cn
i, j

− [
σ+
1,i−1, j,n + (

φ(q1,i, j,n)ϑ(σ+
1,i, j,n)

+φ(q1,i−1, j,n)ϑ(σ+
1,i−1, j,n)

)]
Cn
i−1, j

+ [
φ(q1,i−1, j,n)ϑ(σ+

1,i−1, j,n)
]
Cn
i−2, j ,

and

A−
V(1, i, j, n) = [

σ−
1,i, j,n + φ(r1,i, j,n)ϑ(σ−

1,i, j,n)
]
Cn
i, j

− [
σ−
1,i+1, j,n + (

φ(r1,i, j,n)ϑ(σ−
1,i, j,n)

+φ(r1,i+1, j,n)ϑ(σ−
1,i+1, j,n)

)]
Cn
i+1, j

+ [
φ(r1,i+1, j,n)ϑ(σ−

1,i+1, j,n)
]
Cn
i+2, j ,

and

A+
V(2, i, j, n) = [

σ+
2,i, j,n + φ(q2,i, j,n)ϑ(σ+

2,i, j,n)
]
Cn
i, j

− [
σ+
2,i, j−1,n + (

φ(q2,i, j,n)ϑ(σ+
2,i, j,n)

+φ(q2,i, j−1,n)ϑ(σ+
2,i, j−1,n)

)]
Cn
i, j−1

+ [
φ(q2,i, j−1,n)ϑ(σ+

2,i, j−1,n)
]
Cn
i, j−2,

and

A−
V(2, i, j, n) = [

σ−
2,i, j,n + φ(r2,i, j,n)ϑ(σ−

2,i, j,n)
]
Cn
i, j

− [
σ−
2,i, j+1,n + (

φ(r2,i, j,n)ϑ(σ−
2,i, j,n)

+φ(r2,i, j+1,n)ϑ(σ−
2,i, j+1,n)

)]
Cn
i, j+1

+ [
φ(r2,i, j+1,n)ϑ(σ−

2,i, j+1,n)
]
Cn
i, j+2,

where

– ϑ(a) = a

2
(1 − a);

– σ+
1,i, j,n = (max(0, V n

1,i, j− 1
2
)
tn)/
x1;

– σ−
1,i, j,n = (|min(0, V n

1,i, j− 1
2
)|
tn)/
x1;

– σ+
2,i, j,n = (max(0, V n

2,i− 1
2 , j

)
tn)/
x2;
– σ−

2,i, j,n = (|min(0, V n
2,i− 1

2 , j
)|
tn)/
x2;
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– q1,i, j,n = Cn
i+1, j − Cn

i, j

Cn
i, j − Cn

i−1, j
;

– q2,i, j,n = Cn
i, j+1 − Cn

i, j

Cn
i, j − Cn

i, j−1
;

– rk,i, j,n = 1

qk,i, j,n
,with k = 1, 2;

– V n
1,i, j− 1

2
= V1((x1,min + i
x1, x2,min + ( j − 1

2
)
x2),

∑n
i=1 
t i );

– V n
2,i− 1

2 , j
= V2((x1,min + (i − 1

2
)
x1, x2,min + j
x2),

∑n
i=1 
t i ).

– V(x, t) = (V1(x, t), V2(x, t)) = w(x, t) + s(x, t) + ptol(x, t), is the velocity field with
x ∈ Ω and t ∈ [0, T ].
Then, we denote

AV(i, j, n) = A+
V(1, i, j, n) + A−

V(1, i, j, n) + A+
V(2, i, j, n) + A−

V(2, i, j, n)

For the (kind of) reaction term associatedwith the pumping process, we have the following
scheme:

R(i, j, n) = 
tn
(
2πRpQ


x1
x2
Cn
ip, jpχ

p,n
i, j − Sn


x1
x2
χ
s,n
i, j

)

, (6)

where Ωi p,n , jp,n is the cell containing γp(n
t), χ p,n
i, j = 0 if {i, j} �= {i p,n, jp,n}, χ p,n

i, j = 1

if {i, j} = {i p,n, jp,n}, Ωis,n , js,n is the cell containing ζ(n
t), χ
s,n
i, j = 0 if {i, j} �= {is,n,

js,n} and χ
s,n
i, j = 1 if {i, j} = {is,n, js,n}.

Thus, the complete discretized scheme proposed for system (1) is:

Cn
i, j = Cn−1

i, j − D(i, j, n − 1) − AV(i, j, n − 1) − R(i, j, n − 1). (7)

This scheme is completed by the following discrete version of the boundary conditions
(assuming ∂Ω = ∂Ωo) of system (2).

for i = 1, . . . , I and j = 1, . . . , J , we have

Cn
I+1, j = 
tn

L

[(
L


tn
+ min

(

0, V n−1
1,I, j− 1

2

) )

Cn−1
I+1, j

+ max

(

0, V n−1
1,I, j− 1

2

)

Cn−1
I, j

−
(Cn−1

I+1, j + Cn−1
I, j

2cref

)κ d1

x1

(
Cn−1
I+1, j − Cn−1

I, j

)]

,

Cn
0, j = 
tn

L

[(
L


tn
+ max

(

0, V n−1
1,0, j− 1

2

) )

Cn−1
0, j

+ min

(

0, V n−1
1,0, j− 1

2

)

Cn−1
1, j

−
(Cn−1

0, j + Cn−1
1, j

2cref

)κ d1

x1

(
Cn−1
1, j − Cn−1

0, j

)]

,

Cn
i,J+1 = 
tn

L

[(
L


tn
+ min

(

0, V n−1
2,i− 1

2 ,J

) )

Cn−1
i,J+1

+ max

(

0, V n−1
2,i− 1

2 ,J

)

Cn−1
i,J
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−
(Cn−1

i,J+1 + Cn−1
i,J

2cref

)κ d2

x2

(
Cn−1
i,J+1 − Cn−1

i,J

)]

,

Cn
i,0 = 
tn

L

[(
L


tn
+ max

(

0, V n−1
2,i− 1

2 ,0

) )

Cn−1
i,0

+ min

(

0, V n−1
2,i− 1

2 ,0

)

Cn−1
i,1

−
(Cn−1

i,0 + Cn−1
i,0

2cref

)κ d2

x2

(
Cn−1
i,1 − Cn−1

i,0

)]

.

Remark 1 In Sect. 3.1, we are assuming, for the sake of simplicity, that ∂Ω = ∂Ωo. The
discretization scheme for the boundary conditions in ∂Ωs can be easily recovered (e.g., see
[15]). The presentation of the general case (i.e., including ∂Ωo and ∂Ωs) would require a
large amount of storage. Therefore, it is omitted in this document and only the discretization
of the new absorbing condition in (2) is detailed.

We note that if in scheme (7) we take

– φ(r) = 0 we obtain the first order upwind scheme,

– φ(r) = 1

2
(1 + r) we obtain the Fromm scheme,

– φ(r) = 1 we obtain the Lax–Wendroff scheme,
– φ(r) = r we obtain the Beam–Warming scheme,
– φ(r) = minmod(1, r) we obtain the minmod scheme,
– φ(r) = max(0,min(1, 2r),min(2, r)) we obtain the superbee scheme,
– φ(r) = max(0,min((1 + r)/2, 2, r)) we recover the monotonized central scheme,
– φ(r) = (r + |r |)/(1 + |r |) we recover the Van Leer scheme,
– φ(r) = (r2 + r)/(r2 + 1) we recover the Van Albada 1 scheme.

3.2 An Alternative Splitting Scheme

If an explicit scheme is used to treat the advection part of the mathematical model given by
(1), the numerical model discussed in Sect. 3.1 is computationally quite expensive. In order
to reduce the computational time we propose to consider a splitting technique.

Basically, the velocity field can be divided in two main components:

– the first one is the sea and wind currents w(x, t) + s(x, t),
– the second one is the advection generated by the pump ptol(x, t).

As shown in the numerical experiments presented in the next section, the velocity ptol is
much higher than w+ s generating small time steps due to the CFL condition. However, the
effect of the pumping process is quite limited in space.

Thus, in order to reduce the computational effort we propose to split our scheme in those
two velocities components. More precisely, to compute the solution from time tn−1 up to
time tn we first consider the intermediate step that handle the evolution of the solution Cn−1

i, j

considering only the effect of the wind and sea currents and diffusion from time tn−1 up to
tn :

C̃n
i, j = Cn−1

i, j − D(i, j, n − 1) − AV(i, j, n − 1), (8)

with 
tn = C
x1
x2


x1(V
n
1 + d1) + 
x2(V

n
2 + d2)

and V = w + s.
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Then, starting from the intermediate solution C̃n
i, j , we compute the evolution of the general

solution from time tn−1 up to tn by considering only the effect of the pump.
To do so, we consider the smallest square domain, denoted by S(t), containing

B(γ (t), Rtol), the ball of center γ (t) and radius Rtol in which ptol > 0.
Next, we use the following scheme

C̄
n p
i, j = C̄

n p−1
i, j − Aptol (i, j, n p − 1) − R(i, j, n p − 1), in Sn p , (9)

where n p = 1, . . . , nmax
p , C̄0

i, j = C̃n
i, j , Sn p = S(tn−1 + n p
t ptol ), ptol = (ptol,1 , ptol,2),


t ptol = C
x1
x2

x1 ptol,1 + 
x2 ptol,2 + 2πQ

, nmax
p =ceil(

tn − tn−1


t ptol
), ceil(ξ ) rounds ξ upwards

to the nearest integer.
Finally,

Cn
i, j = C

nmax
p

i, j .

4 Numerical Experiments

Here, in this Sect. 4.1, we will check the efficiency of the computational methods discussed
in Sect. 3. It will be done by performing a variety of numerical experiments, all related to
real life situations. Also the results obtained frommodels (1) and (2) will be compared. Then
in Sect. 4.2, to validate our model, we reproduce the evolution of two real oil spills that took
place near Spain: the Prestige and the Oleg Naydenov hazards in 2002 and 2015, respectively.

Remark 2 Anticipating on the results to be presented in Sect. 4.1.1, we would like to note
that in order to obtain numerical results as accurate as possible, only fully explicit schemes
are considered there, avoiding those additional errors produced by the solution of the linear
systems associated with implicit schemes. Moreover, after performing various additional
experiments (not presented here) relying on implicit or hybrid implicit–explicit schemes, we
observed that the time steps 
tn required to obtain an accuracy comparable to the accuracy
of the explicit scheme were much smaller than 
tn (from the explicit scheme CFL stability
condition), another reason for favoring explicit schemes.

4.1 Comparison of Different Schemes of the Model

4.1.1 The Pollution Scenario Considered for the Numerical Simulations

We have considered numerical experiments and model parameters based on real data. More
precisely, the initial shape and characteristics of the oil spill and the wind and sea currents
are based on the Prestige hazard [25]. This event was caused by the sinking of an oil tanker
in 2002 near the coast of the Spanish province of Galicia. Around 6.3× 104 tons of oil were
spilled on the open sea (at 200 km from the nearest coast).

The domain Ω is defined by x1,min = 0, x1,max = 8 × 104 m, x2,min = 0 and x2,max =
8 × 104 m. The characteristic length L occurring in the boundary conditions of model (2) is
given by L = 11.3 × 104 m.

The simulation time is equal to one day, T = 86,400 s.
The diffusion coefficient of the oil in sea water is set to d1 = d2 = 0.5ms−1 [26]. The oil

density is 870 kg m−3 [9] and its average thickness is 2 ×10−4 m [30]. The tolerance value
is tol= 0.05 m s−1. The initial position of the oil spill in Ω , presented in Fig. 1, is given by
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Fig. 1 Position of the pollutant spot at time t = 0. The initial (X) and final (o) positions and the trajectory
(–) of the skimmer ship are also shown (in gray)

c(ξ, 0) = χE(17,000,49,000,4700,10,000)(ξ) + χE(22,000,38,000,7000,13,000)(ξ), (10)

where ξ = (ξ1, ξ2) ∈ Ω and χE(a,b,c,d)(ξ) = 1 if (ξ1 − a)2/c + (ξ2 − b)2/d ≤ 1 and 0
elsewhere.

The wind plus sea velocity field V(x, t) = (V1(x, t), V2(x, t)) = s(x, t) + w(x, t),
expressed in ms−1, is inspired from observations provided by [1,7]. It is defined by

V1(x, t) = 2

9
− 1

9
sin

(
π
t

172,800

)

+ x1
540,000

V2(x, t) =
(
1

5
− 1

10
cos(

π
t

172,800
)

)
2

3
sin

(

π(
1

2
+ x2

60,000
)

)

, (11)

for t ∈ [0, T ] and x = (x1, x2) ∈ Ω .
The skimmer ship characteristics are based on the A-Whale Super Tanker Vessel [34].

This ship was used during the BP Deepwater Horizon oil spill in the Gulf of Mexico hazard
in 2010. The pump parameters are Q = 6.5ms−1 and Rp = 113m. The pumping ship
follows the trajectory described in Fig. 1 which is generated by cubic spline interpolation
trough the points (17,000,52,000) a time t = 0 s, (23,000, 38,000) at t = 28,200 s, (33,000,
47,500) at time t = 56,400 s and (25,000, 41,000) at t = 84,600 s.

4.1.2 Linear Versus Nonlinear Diffusion Models

Our goal in this section is to compare the results obtained from the linear diffusion model
(1) and the nonlinear diffusion model (2).

To do so, we performed four numerical experiments. In each one we considered a spatial
discretization mesh using (I, J ) = (100, 100). The time discretization scheme was explicit
(to avoid -see Remark 2- the numerical errors produced by the solution of linear systems);
the time step was set at 
t = 864s (considered small enough to produce accurate results
[2]).
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In the first experiment, denoted by Diff lin, we solved numerically the linear diffusion
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂c

∂t
− ∇ · d∇c = 0, in Ω × (0, T ),

∂c

∂t
+ d∂c

L∂n
= 0, on ∂Ω × (0, T ),

c = c0, in Ω × {0},
(12)

with the parameters provided in Sect. 4.1.1.
In the second, third and fourth experiments, denoted by Diff nlκ with κ = 1, 2 and 3, we

solved numerically the nonlinear diffusion problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂c

∂t
− ∇ · cκ

cκ
ref

d∇c = 0, in Ω × (0, T ),

∂c

∂t
+ cκ

cκ
ref

d∂c

L∂n
= 0, on ∂Ω × (0, T ),

c = c0, in Ω × {0},

(13)

with the parameters provided in Sect. 4.1.1 and cref = 1.
In each of these experiments, we are interested in computing

– CPUT: The CPU time needed to solve numerically the initial value problems (12) and
(13).

– LOSS: The numerical mass loss in percentage of the oil concentration between the initial
and final times. It is computed as:

100

⎛

⎝
I,J∑

i, j=1

CN
i, j

/ I,J∑

i, j=1

C0
i, j

⎞

⎠ , (14)

where N is the value of n associated with the last time step of the numerical scheme (that

is N = T


t
). This quantity measures the conservation property of our numerical scheme.

– NFVδ: The number of volume elements filled with an oil concentration greater than δ (a
nonnegative real number suitably small).NFVδ is a measure of the effect on the polluted
spots expansion due to the diffusion velocity and artificial diffusion of the schemes under
consideration.

In Table 1, we present the results obtained when performing the experiments Diff lin,
Diff nl1, Diff nl2 and Diff nl3. Regarding the NFVδ values, choosing in this case δ = 0,
we see that the final concentration for the linear diffusion model reaches the boundary of
the whole domain Ω . This is due to the infinite speed of propagation of linear diffusion.
When using the nonlinear schemes this value is reduced by 90% compared to the linear
one and do not reach this boundary. Furthermore, as expected, the larger is κ the lower is
the expansion of the oil spots due to diffusion effects (velocity and artificial). This can be
seen on Fig. 2, where the final concentration distribution and zero-contours generated by the
nonlinear diffusion models are depicted. As a consequence, the numerical mass loss values
of the nonlinear schemes are null. Moreover, the CPU time resulting from the linear model
is four times larger than the one taken by the nonlinear ones.

Those results show the efficiency of the nonlinear scheme in controlling the undesired
effects of the linear diffusion. The choice of κ is an important issue (and also a complicated
one, since κ varies with the crude oil under consideration), however we failed at finding
numerical values of this parameter in the open literature (it is likely that oil companies have
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Table 1 Results obtained for the
experiments presented in
Sect. 4.1.2: CPUT, LOSS and
NFV0 values of the different
types of diffusion

Experiment CPUT LOSS NFV0

Diff lin 198 10−12 10,000

Diff nl1 53 0 1349

Diff nl2 51 0 1106

Diff nl3 50 0 1002

Fig. 2 Distribution of the final oil concentration and zero-concentration contours, generated by the nonlinear
diffusion models Diff nl1, Diff nl2 and Diff nl3

quantitative information about κ , but they do not tell). From now on, wewill use the nonlinear
scheme with κ = 1.

4.1.3 Comparison of the Computational Methods

Now, we compare the performances of the different advection schemes presented in Sect. 1.
We consider the advection equation:

{
∂c

∂t
+ ∇ · c (w + s) = 0, in Ω × (0, T ),

c = c0, in Ω × {0},
(15)

with the parameters provided in Sect. 4.1.1. Here, we assume that the support of the initial
condition is compact and strictly inside our domain of integration, and that the support of the
solution at time t does not reach the boundary either.

We perform various numerical experiments corresponding to the following nine numerical
schemes for the numerical solution of (15): Adv DC (Donor Cell), Adv BW (Beam and
Warming), Adv LW (Lax–Wendroff), Adv FR (Fromm), Adv MM (Min–Mod), Adv SB
(Super Bee),AdvMC (monotonized central),AdvVL (VanLeer) andAdvVA (VanAlbada).

In all those experiments we consider (I, J ) = (100, 100) and an explicit time discretiza-
tion scheme with 
t = 864s (lower than the 1-CFL condition time step ≈ 2000 s). For each
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Table 2 Results obtained for the
experiments presented in
Sect. 4.1.3: CPUT, LOSS, NVC
and NFV10−8 values of the
different schemes for the
advection

Experiment CPUT NVC LOSS NFV10−8

Adv DC 442 1 10−14 3275

Adv BW 543 0 10−10 4392

Adv LW 482 0 10−10 2826

Adv FR 504 0 10−10 3321

Adv MM 542 1 10−14 2345

Adv SB 631 1 10−14 1416

Adv MC 636 1 10−14 1457

Adv VL 489 1 10−14 1637

Adv VA 484 1 10−14 2198

one, we compute the CPUT, LOSS, NFVδ values as defined in Sect. 4.1.1 and 4.1.2. In this
case δ = 10−8, which is a value small enough to measure the artificial diffusion of the con-
sidered schemes. Moreover, we also check the apparition of negative values or concentration
provoked by the non monotonicity of a scheme by defining NVC=0 if the concentration at
each time step is non negative and 1 otherwise).

In Table 2, we show the obtained results. We observe that the CPU times are of the
same order but the faster one is the Donor Cell linear scheme. However, the artificial dif-
fusion of this scheme produces the higher NFV10−8 value. This spot expansion measure is
reduced when considering second order schemes. When regarding the linear second order
schemes (i.e., BW, LW and FR), we observe the occurrence of unwanted negative con-
centration values and a higher LOSS value due to the numerical oscillations generated by
those schemes (i.e., non monotonicity). This can be also observed in Fig. 3, where the final
concentration distributions of the oil and their 10−8-contours obtained by Adv DC, Adv
FR and Adv SB (chosen as representative cases) are depicted. We observe that the shape
of the spot generated with Adv DC is more diffuse than with second order schemes. How-
ever, regarding the contours, we observe the oscillations produced by the linear second order
model Adv FR. The solution produced with the nonlinear second order model Adv SB
clearly shows that this kind of scheme controls artificial diffusion and monotonicity. Thus,
the nonlinear second order schemes should be preferred. Among them, the Super Bee (SB)
exhibits the lowest spot expansion value and will be used for the next experiments presented
here.

4.1.4 Dirichlet Versus Absorbing Boundary Condition

In this section we discuss the advantage of using an absorbing boundary condition, instead
of a Dirichlet one, to better simulate those cases where the oil spot crosses the boundary of
the computational domain.

To do so, we introduceΩh = [0, 4×104]×[0, 8×104]m, representing half of the domain
Ω in the x1-direction, and we solve the initial value problems (1) and (2) on Ωh , without
pumping (i.e. Q = 0), the other parameters being those provided in Sect. 4.1.1. The resulting
solutions are denoted byADDH (Advection–Diffusion Dirichlet condition Half domain) and
ADAH (Advection–Diffusion Absorbing condition Half domain), respectively. We observe
that in these cases, the oil spot crosses the right boundary of Ωh .
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Fig. 3 Distribution of the final
oil concentration and
10−8-concentration contours
(dotted line), generated by the
advection models Adv DC
(top-left), Adv FR (top-right)
and Adv SB (bottom)
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We compare previous solutions obtained onΩh with the solution of problem (2), computed
in the whole domain Ω without pumping (i.e. Q = 0), the other parameters being like those
provided in Sect. 4.1.1. The solution is denoted by ADAF (Advection–Diffusion Absorbing
condition Full domain). Here, the oil spot does not reach the boundary of Ω; the related
solution can be considered as a reference solution.

The three initial value problems associated with ADDH, ADAH and ADAF were solved
taking (I, J )=(100,100), κ = 1 in the nonlinear diffusion term, and using the nonlinear Super
Bee scheme to treat the advection; no splitting was employed. Once these simulations were
performed, we computed the differences between these solutions near the right boundary of
Ωh ; to be more precise, we computed

EAA =
∫ 40km

38km

∫ 80km

0km
|ADAF − ADAH|dx1dx2 (16)

and

EDI =
∫ 40km

38km

∫ 80km

0km
|ADAF − ADDH|dx1dx2, (17)

respectively.
We obtained EAA= 1.1 × 106 kg and EDI= 2.9 × 106 kg, implying that the difference

associated with the absorbing boundary condition is-approximately-three times smaller than
the one for the Dirichlet condition. This improvement appears clearly on Fig. 4 where some
contours of the ADDH, ADAH and ADAF solutions have been visualized; we observe that
the ADAH contours fit better the ADAF contours than the ADDH ones.

From these results it appears that the absorbing boundary condition that we use produces
a better approximation of the physical solution close to the boundary of the computational
domain, than the Dirichlet’s one.

4.1.5 Splitting Versus Un-split Schemes

Finally, we want to verify if it is advantageous to use splitting schemes. In order to achieve
that goal, we performed the following numerical experiments, taking into account the results
presented in Sects. 4.1.2 and 4.1.3:

– ADR DC: Solution of problem (1), using the linear first order donor-cell scheme to treat
the advection, no splitting being used.

– ADR SB: Solution of problem (2) with κ = 1 in the nonlinear diffusion term, using the
nonlinear second order Super Bee scheme to treat the advection, no splitting being used.

– ADRSB-S: Solution of problem (2) with κ = 1 in the nonlinear diffusion term, using the
nonlinear second order Super Bee scheme to treat the advection. This time, the operator-
splitting method described in Sect. 3.2 was used.

These numerical experiments were performed using four different meshes, namely
(I, J )=(50, 50), (100,100), (150,150) and (200,200), the associated 1-CFL condition giv-
ing 500, 125, 56 and 31s, respectively, for the maximal value of 
tn .

For each experiment, we computed the values of CPUT and NFV10−8 (both defined in
Sect. 4.1.3). Actually, we also computed:

– PPUM: The percentage of pumped oil at the end of the simulation with respect to its
initial quantity.
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Fig. 4 Some contours of the oil concentration distribution generated by the ADAF (solid lines), ADAH
(dashed lines) and ADDH (dotted lines) numerical models introduced in Sect. 4.1.4. Upper domain (2 ×
104, 4 × 104) × (2.5 × 104, 6 × 104)m. Lower near boundary domain (3.9 × 104, 4 × 104) × (4.6 ×
104, 4.8 × 104)m

– LOCV: The percentage of remaining oil at the end of the simulation with respect to
its initial quantity plus the PPUM value. It measures the conservation property of our
numerical models.

Results are presented in Table 3. They show the same behavior for the four grids we
considered. The NFV10−8 values of the ADR SB and ADR SB-S models are of the same
order and between twice and three times smaller than ADR DC. In addition, employing
splitting allows us to drastically reduce the CPU time in comparison to the other two models.
Also, the LOCV values of ADR SB and ADR SB-S are lower than theADRDC ones. Thus,
ADR SB-S provides major improvements with respect to ADR SB. This can also be noted
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Table 3 Results from the
experiments described in
Sect. 4.1.5: values of PPUM,
CPUT, LOCV and NFV10−8 for
the three models and four meshes
which have been considered

Experiment I = J PPUM CPUT LOCV NFV10−8

ADR DC 50 45 183 10−7 1387

ADR SB 50 51 238 10−13 510

ADR SB-S 50 50 62 10−13 528

ADR DC 100 47 4179 10−12 3675

ADR SB 100 50 5450 10−13 1310

ADR SB-S 100 49 427 10−13 1395

ADR DC 150 47 31,961 10−14 6664

ADR SB 150 49 43,361 10−14 2392

ADR SB-S 150 49 1720 10−14 2549

ADR DC 200 48 144,365 10−14 10,254

ADR SB 200 49 176,028 10−14 3764

ADR SB-S 200 49 4312 10−14 4004

on Fig. 5, where the final pollutant concentration and the 10−8-contour obtained by those
three models are presented. ModelsADRSB andADRSB-S clearly exhibit similar behavior
whereas the linear model ADR DC is more diffusive.

4.2 Validation of the Model with Real Cases

In this section, we aim to validate model (2) by comparing its solutions to real observations
from two hazards that took place near Spain: The Prestige and the Oleg Naydenov cases in
2002 and 2015, respectively.

To do so, and regarding the results presented in Sect. 4.1, we have considered the following
numerical schemes and parameters to compute a numerical approximation of the model
solutions:

– We use a 100 × 100 spatial mesh and a time step of 1 hour (satisfying condition (4) with
C = 1) [2].

– Since for the considered hazards and dates no cleaning processes with skimmer ships
were applied, we set Q = 0.

– The diffusion coefficient d is set to 0.5 (ms−1) [2,9].
– For the numerical schemes, we have used Super Bee, non linear diffusion with κ = 1

and the absorbing boundary condition.
– No initial pollution in the domain is considered (i.e., c0 = 0).
– The velocity fieldsw and s are estimated by considering historical discrete data provided

by Mercator Ocean (http://www.mercator-ocean.fr)) and completed by 2D spline inter-
polation to be able to obtain values at points with no data. The considered drag factor for
the wind velocities is 0.022 [2].

In next sections, we present the results obtained for each case.

4.2.1 Prestige Case

On November 13th, 2002, the ’Prestige’ ship starts to spill oil in open sea near the Galician
coasts, Spain [29]. Authorities decided to send the ship far from the Spanish coasts. The ship
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Fig. 5 Distribution of the final
oil concentration and
10−8-concentration contours (..),
generated by the advection
models ADR DC (top), ADR SB
(middle) and ADR SB-S
(bottom). The initial position (X),
the final position (o) and
trajectory (–) of the pump are
also shown

sank in the Atlantic Ocean the 19th of November, 2002. Around 10 million gallons of crude
oil were spilled, polluting thousands of kilometers of coastline in Spain, France and Portugal
[4]. This spill is considered the largest environmental disaster in the history of both Spain
and Portugal and the cost of this hazard was evaluated to more than 770 million euros [23].
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Fig. 6 Left Satellite image of the Prestige oil spill situation taken by the Envisat ASAR satellite (European
Spatial Agency) on November 17th, 2002. Right oil concentration simulated bymodel (2), with the parameters
introduced in Sect. 4.2, for the same date. The coastline is represented in green (Color figure online)

We simulate the oil concentration evolution of this event from the beginning, on the 13th
of November 2002, to the 17th of November 2002 (date of the only available clear satellite
image of the situation, before the Prestige ship broke up). Considering this time interval, we
use the following model parameters:

– Ω ⊂ [−12.5,−7.5] × [42, 44.5] (in longitude–latitude coordinate system) which is
assumed to be large enough to avoid the oil concentration leaving this domain during the
considered time interval. Domain Ω and the considered Spanish coastline are showed in
Fig. 6.

– The trajectory followed by the Prestige ship was taken from the literature [7,25].
– To our knowledge, the exact amount of oil S spilled by the Prestige ship into the ocean

remains unknown [1,7,25]. It is only known that around 54.000 tons of oil were spilled
into the sea before the Prestige ship broke on the 19th of November 2002. Thus, we have
used the value of S(t) = 22 (kg.s−1), ∀t .
Taking into consideration those values, we present in Fig. 6 the solution given by our

numerical model on the 17th of November 2002. In the same figure, we also show the satellite
image taken by the Envisat ASAR satellite (European Spatial Agency: https://earth.esa.int)
on the same date. We can observe graphical similarities between both images regarding the
general behavior of the oil spill shape. This seems to indicate that our model predicts a
reasonable evolution of the oil concentration of the Prestige case. However, this figure also
illustrates some of the limitations of our model due to the omission of complex physical
effects of the sea currents on the oil spill. For instance, our model does not allow to predict
the splitting of the main oil spot in two branches.

4.2.2 Oleg Naydenov

The ship ’Oleg Naydenov’ sank near the Canary Islands coasts, Spain, on April 14th, 2015.
The tanks of this ship were filled with around 1400 tons of oil. This oil spilled into the sea
with flow estimated between [5,10] liters per hour (see [24]). During several weeks, this oil
spill provoked the pollution of the ’Gran Canaria’ Island with several oil spots reaching its
coastline (see [21]).
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Fig. 7 Computational domain Ω

considered for the numerical
experiments presented in
Sect. 4.2.2. The land is presented
in green. The position of the Oleg
Naydenov ship is represented by
a blue star (Color figure online)
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Fig. 8 Left NASA satellite image presenting the Oleg Naydenov oil spill situation at April 21th, 2015. The
zone of interest is inside the red square. The ship position is represented by a blue circle and the oil spill
with a black line. Right oil concentration simulated by the model presented in this work for the same date,
considering the computational domain Ωz . The coastline is represented in green and the position of the Oleg
Naydenov ship by a blue star (Color figure online)

We consider model (2) and we simulate the oil concentration evolution from the beginning
of this hazard on 14th to 21th of April, 2015 (date for which a satellite image is available).
We use the following model parameters:

– Ω ⊂ [−18,−13]×[24, 29.5] (in longitude–latitude coordinate system)which is assumed
to be large enough to avoid the oil concentration leaving this domain during the considered
time interval. Domain Ω and the considered coastline are showed in Fig. 7. In addition,
another computational domain focusing on themain part of the oil spill, denoted byΩz ⊂
[−17,−15] × [26, 29], is also considered in order to give a more precise representation
of the contamination in the most affected areas.

– The position of the ship is (−15.5,27.5) (in longitude–latitude coordinate system). We
assume that the tanks of the ship were filled with 1400 tons of oil. The oil spill started on
April 14th, 2015 with around 7.5 litters of pollutant per hour being spilled into the sea
until reaching 1400 tons. Thus, we set S(t) = 0.08639(kgs−1), t ∈ [0, 1.63 × 106] (s).
Taking into consideration those values, we present in Fig. 8 the solution given by our

numerical model on April 21th, 2015 and the satellite image taken by a NASA satellite on
the same date (http://www.nasa.gov/topics/earth/features/oilspill/). Again, we can observe
that both images present similarities regarding the main behavior of the oil spill shape. In this
case, we can also observe some limitations of our model, which predicts a smooth movement
of the oil spill whereas the real oil spill has a meander shape (due to sea current vortexes
present in this area and not considered in our numerical simulations by our model).
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Fig. 9 Oleg Naydenov oil concentration simulated by the model, considering the computational domains left
Ω and right Ωz for the following dates: top April 27, 2015, middle April 29, 2015 and bottom May 1, 2015.
The coastline is also represented in green. The position of the Oleg Naydenov ship is represented by a blue
star (Color figure online)

We point out that, by using this model, on May 27th, 2015 we published a forecast of
the possible oil spill evolution [20], which matched most of the real observations performed
during this hazard [5,11,13].We present in Fig. 9 the solutions given by our numerical model
for the following dates: April 27th, April 29th and May 1th, 2015. We can observe, on April
29th, 2015, that the oil spill is close to south-western coasts of ’Gran Canaria’ Island with a
risk of high contamination on this date. Then, the main oil spot is moving to the West and
reach around May 1th, 2015 an area near the south coasts of the ’Tenerife’ Island. Eastern
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Canary Islands seem to be safe from pollution. We observe that reduced oil concentration (in
light grey) reaches the south of the computational domain and may produce a contamination
in open sea.

On April 30th, 2015 several oil spots were observed near the western coasts of ’Gran
Canaria’ and were cleaned by authorities [5]. On May 2nd, 2015 additional small oil spots
reached various southern and south-western beaches of ’Gran Canaria’, in areas highlighted
by the model [13]. Finally, it has been reported (see, e.g., [11]) that the main part of the
oil spill moved toward the south and disaggregated on the sea. Those observations seem to
indicate that our model provides good results for the simulation of the evolution of oil spills.

5 Conclusions

In this article we have presented an improved version of the model discussed in [2,16,17], for
simulating the evolution of oil spots in the open sea, taking into account: wind, sea currents
and the effect of a skimmer ship used for the oil cleaning by pumping. Our objectives were
to better control the artificial diffusivity, the velocity of the diffusion propagation, and the
behavior of the computed solution at the boundary of the computational domain.

To achieve the goals listed above, we have: (i) Introduced a nonlinear diffusion term
leading to diffusion effects propagating at finite velocity. (ii) Used second order accurate
time discretization schemes with nonlinear limiters to treat the advection; these schemes
have little artificial diffusion and good monotonicity conservation properties. (iii) Used an
absorbing boundary condition to improve (with respect to the Dirichlet boundary condition)
the behavior of the computed solutions near the boundary of the computational domain,
particularly when the drifting oil spot crosses this boundary. (iv) Reduced the computational
time required for the simulations, by using an operator-splitting method. (v) Considered the
modeling of coastlines. (vi) Included dynamic sources of pollutant.

To verify the efficiency of the approach based on model (2), by comparison to the initial
approach, based on model (1), and thoroughly discussed in [2] and [16], we have performed
a large variety of numerical experiments based on realistic parameters.

First, we observed that the nonlinear diffusionmodel (2) leads to a diffusion propagating at
finite velocity, unlike the diffusion associatedwithmodel (1). Furthermore, the computational
time is smaller.

Secondly,we compared various linear andnonlinear secondorder accurate finite difference
schemes to treat the advection terms in (2). The best resultswere obtained using a second order
scheme based on the Super-Bee nonlinear limiter, a scheme producing very little artificial
diffusion, when applied to model (2).

Thirdly, the introduction in (2) of boundary conditions, with good absorbing properties,
on the boundary of the computational domain, produce a simulation method which creates
little disturbance when the oil spot comes near the above boundary, and even crosses it: a
behavior very different from the one which is observed if one prescribes a homogeneous
Dirichlet condition at the boundary of the computational domain.

Finally, we have validated our approach by comparing the results given by the model with
real observation from the the 2002 Prestige and 2015 Oleg Naydenov hazards (which took
place on the coasts of Spain). We have observed that the general behavior of the simulated
oil spills is similar to the real observed ones. Some minor discrepancies were also observed,
highlighting the limitations of this model due to the omission of some physical effects.
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As illustrated in [16] and [17], this model could be applied for optimizing skimmer ships
trajectories in order to maximize the amount of recovered oil in open sea or near coastline.
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Appendix: Review of the Piecewise Linear Schemes and of the Limiters

Suppose that we want to approximate the solution of the following 1-D equation

∂c

∂t
+ ∂(vc)

∂x
= 0 in Θ × (0, T ). (18)

Here c is the concentration, v is the velocity andΘ = [Θ,Θ], whereΘ andΘ belong both to
IR, and are, respectively, the lower and upper boundaries of the intervalΘ . Next, intervalΘ is
decomposed into I finite volume cells (intervals here), that we denote byΘi = [xi− 1

2
, xi+ 1

2
].

For simplicity of notation, we assume first that v > 0 is constant and that the lengths of the
intervals Θi are all the same, and equal to 
x .

One way to obtain such an approximation is, for instance, to assume that in each finite
volume Θi , with i = 1, . . . , I , the concentration c is constant throughout the volume. This
simplification allows to generate first order numerical schemes, such as the upwind scheme
used in [2]. However, it was observed that this scheme produces a high level of artificial
diffusion. To address this issue, it would be better to assume that the concentration within
each volume Θi is an affine function of the position (see [32]).

In this case, in Θi at time tn the concentration can be linearly approximated by:

c(x, tn) = cni + σ n
i (x − xi ), for x ∈ Θi , (19)

where xi is the center of Θi , cni = c(xi , tn) and σ n
i is the slope of the linear approximation.

We note that σ n
i can be defined in several ways. For instance

– σ n
i = cni+1 − cni−1

2
x
, in this case we obtain the Fromm method.

– σ n
i = cni − cni−1


x
, in this case we obtain the Beam–Warming method.

– σ n
i = cni+1 − cni


x
, in this case we obtain the Lax–Wendroff method.

For these three cases, cni is equal to the average of c(x, tn) over Θi .
At the boundary xi− 1

2
, the flux fi− 1

2
(t), with t in the time interval [tn, tn+1], is:

fi− 1
2
(t) = vc(xi− 1

2
, t) = vc(xi− 1

2
− v(t − tn), tn)

= vcni−1 + vσ n
i−1

(
1

2

x − v(t − tn)

)

.
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At the boundary xi+ 1
2
, the flux fi+ 1

2
(t), with t in the time interval [tn, tn+1], is:

fi+ 1
2
(t) = vc(xi+ 1

2
, t) = vc(xi+ 1

2
− v(t − tn), tn)

= vcni + vσ n
i

(
1

2

x − v(t − tn)

)

.

Thus, on the time interval [tn, tn+1] the variation of concentration over the volume Θi is
given by

cn+1
i − cni


t
=

f
n+ 1

2

i− 1
2

− f
n+ 1

2

i+ 1
2


x
,

where f
n+ 1

2

i± 1
2

= 1


t

∫ tn+1
tn

fi± 1
2
(t)dt denotes the flux average during the time interval [tn, tn+1]

which is similar to the flux at
tn+1 + tn

2
.

Considering that

f
n+ 1

2

i− 1
2

− f
n+ 1

2

i+ 1
2

= v(cni−1 − cni ) + 1

2
v(σ n

i−1 − σ n
i )(
x − v
t),

we obtain the following space-time discretization scheme:

cn+1
i = cni + 
t


x

(

v(cni−1 − cni ) + 1

2
v(σ n

i−1 − σ n
i )(
x − v
t)

)

(20)

Now, we generalize scheme (20) to the case of non constant velocities v : Θ → IR.
In this case

f
n− 1

2

i− 1
2

= 1

2
vi− 1

2

[
(1 + βi− 1

2
)cni−1 + (1 − βi− 1

2
)cni

]

+ 1

4
|vi− 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi− 1
2

t


x

∣
∣
∣
∣
∣

)


x
[
(1 + βi− 1

2
)σ n

i−1 + (1 − βi− 1
2
)σ n

i

]
, (21)

and

f
n+ 1

2

i+ 1
2

= 1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

+ 1

4
|vi+ 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi+ 1
2

t


x

∣
∣
∣
∣
∣

)


x
[
(1 + βi+ 1

2
)σ n

i + (1 − βi+ 1
2
)σ n

i+1

]
, (22)

where βi± 1
2

= 1 if vi± 1
2

≥ 0 or = −1 if vi± 1
2

< 0.
Thus, scheme (20) becomes:

cn+1
i = cni + 
t


x

(
1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

+ 1

4
|vi− 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi− 1
2

t


x

∣
∣
∣
∣
∣

)


x
[
(1 + βi− 1

2
)σ n

i−1 + (1 − βi− 1
2
)σ n

i

]

− 1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

− 1

4
|vi+ 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi+ 1
2

t


x

∣
∣
∣
∣
∣

)


x
[
(1 + βi+ 1

2
)σ n

i + (1 − βi+ 1
2
)σ n

i+1

]
)

. (23)
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The previous scheme (23) is known to be conservative but not necessarily monotonous [10,
18]. This non-monotonicity may produce numerical solutions with unrealistic oscillations.
These oscillations are due to the high variation of the concentration slopes σ n

i near jumps of
the concentration. A way to measure these oscillations is to use the concept of Total Variation
(TV) defined as

T V
(
{cni }Ii=1

)
=

I∑

i=1

|cni − cni−1|.

We are interested in creating numerical schemes with the property of Total Variation Dimin-
ishing (TVD), that is T V ({cni }Ii=1) ≥ T V ({cn+1

i }Ii=1). That property ensures that the scheme
will not develop oscillations. Thus, we now introduce a variation of the scheme (23) that
guarantee TVD.

To do so, we introduce the concept of flux limiters. In (21), we replace


x
[
(1 + βi− 1

2
)σ n

i−1 + (1 − βi− 1
2
)σ n

i

]
by φ(rn

i− 1
2
)(cni − cni−1), and we obtain

f
n− 1

2

i− 1
2

= 1

2
vi− 1

2

[
(1 + βi− 1

2
)cni−1 + (1 − βi− 1

2
)cni

]

+ 1

4
|vi− 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi− 1
2

t


x

∣
∣
∣
∣
∣

)

φ(rn
i− 1

2
)(cni − cni−1), (24)

where φ(r) is called flux limiter and rn
i− 1

2
= cni−1 − cni−2

cni − cni−1
if vi− 1

2
≥ 0 or = cni+1 − cni

cni − cni−1
if

vi− 1
2

< 0. In a similar way we can rewrite

f
n+ 1

2

i+ 1
2

= 1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

+ 1

4
|vi+ 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi+ 1
2

t


x

∣
∣
∣
∣
∣

)

φ(rn
i+ 1

2
)(cni+1 − cni ), (25)

where rn
i− 1

2
= cni − cni−1

cni+1 − cni
if vi+ 1

2
≥ 0 or = cni+2 − cni+1

cni+1 − cni
if vi+ 1

2
< 0.

Then, scheme (23) can be rewritten as

cn+1
i = cni + 
t


x

(
1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

+ 1

4
|vi− 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi− 1
2

t


x

∣
∣
∣
∣
∣

)

φ(rn
i− 1

2
)(cni − cni−1)

− 1

2
vi+ 1

2

[
(1 + βi+ 1

2
)cni + (1 − βi+ 1

2
)cni+1

]

− 1

4
|vi+ 1

2
|
(

1 −
∣
∣
∣
∣
∣

vi+ 1
2

t


x

∣
∣
∣
∣
∣

)

φ(rn
i+ 1

2
)(cni+1 − cni )

)

. (26)

We note that if in scheme (26) we take:

– φ(r) = 0, we recover the first order upwind scheme (a scheme producing a high level of
artificial diffusion).

– φ(r) = 1

2
(1 + r), we recover the Fromm scheme.
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– φ(r) = 1, we recover the Lax–Wendroff scheme.
– φ(r) = r , we recover the Beam–Warming scheme.

The first scheme is first order accurate and TVD. The second, third and fourth schemes are
second order accurate, but non-TVD.

Let us consider the following nonlinear flux limiters:

– φ(r) =minmod(1, r), we obtain the minmod scheme [28].
– φ(r) = max(0,min(1, 2r),min(2, r)), we obtain the superbee scheme [28].
– φ(r) = max(0,min((1+ r)/2, 2, r)), we recover the monotonized central scheme [33].
– φ(r) = (r + |r |)/(1 + |r |), we recover the Van Leer scheme [32].
– φ(r) = (r2 + r)/(r2 + 1), we recover the Van Albada 1 scheme [31].

The five above schemes are TVD.
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