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Abstract We investigate implicit–explicit (IMEX) general linear methods (GLMs) with
inherent Runge–Kutta stability (IRKS) for differential systems with non-stiff and stiff
processes. The construction of such formulas starts with implicit GLMs with IRKS which
are A- and L-stable, and then we ‘remove’ implicitness in non-stiff terms by extrapolating
unknown stage derivatives by stage derivatives which are already computed by the method.
Then we search for IMEX schemes with large regions of absolute stability of the ‘explicit
part’ of the method assuming that the ‘implicit part’ of the scheme is A(α)-stable for some
α ∈ (0, π/2]. Examples of highly stable IMEX GLMs are provided of order 1 ≤ p ≤ 4.
Numerical examples are also given which illustrate good performance of these schemes.
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1 Introduction

Consider the initial value problem for the system of ordinary differential equations (ODEs)
of the form {

y′(t) = f (y(t)) + g (y(t)) , t ∈ [t0, T ],
y(t0) = y0 ∈ R

m,
(1.1)

where f : Rm → R
m represents the non-stiff processes, and g : Rm → R

m represents stiff
processes. Such systems arise in many practical applications in science and engineering, for
example in semidiscretization of time-dependent advection-diffusion-reaction partial differ-
ential equations (PDEs), where f (y) represents the semidiscretization in space variables of
advection terms, and g(y) represents the semidiscretization in space variables of diffusion
or chemical reaction terms, compare [29].

For efficient integration of such systems we will consider the class of implicit–explicit
(IMEX) methods, where the non-stiff part f (y) of (1.1) is integrated by explicit numerical
scheme, and stiff part g(y) of (1.1) is integrated by implicit numericalmethod. In this paperwe
will investigate the class of IMEXgeneral linearmethods (GLMs)with inherent Runge–Kutta
stability (IRKS). For these formulas the stability matrix has only one nonzero eigenvalue,
which is an approximation of order p to the exponential function exp(z). As a consequence,
the stability behavior of such methods is similar to that of Runge–Kutta formulas of the same
order.

We will start with diagonally implicit GLMs for (1.1) of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y [n+1]
i = h

i∑
j=1

ai j
(
f
(
Y [n+1]
j

)
+ g

(
Y [n+1]
j

))
+

r∑
j=1

ui j y
[n]
j , i = 1, 2, . . . , s,

y[n+1]
i = h

s∑
j=1

bi j
(
f
(
Y [n+1]
j

)
+ g

(
Y [n+1]
j

))
+

r∑
j=1

vi j y
[n]
j , i = 1, 2, . . . , r,

(1.2)
n = 0, 1, . . . , N − 1, h = (T − t0)/N , with some desirable accuracy and linear stability
properties. GLMs will be reviewed in Sect. 2, GLMs with RK and IRKS properties will
be discussed in Sect. 3, and the algorithm for construction of GLMs with IRKS properties
is then described in Sect. 4. Then we will ‘remove’ the implicitness in non-stiff terms by
extrapolating f (Y [n+1]

j ) by linear combinations of f (Y [n]
k ), k = 1, 2, . . . , s, and f (Y [n+1]

k ),
k = 1, 2, . . . , j − 1, which are already known. This extrapolation-based approach was first
proposed by Cardone et al. [20,21] (see also the report [19] for more details) in the context
of diagonally implicit multistage integration methods (DIMSIMs) and Runge–Kutta (RK)
methods, and it will be applied in Sect. 5 to the class of GLMs with IRKS. Convergence and
error analysis of IMEX GLMs with IRKS is presented in Sect. 6. Linear stability analysis of
IMEX GLMs with respect to the test equation with linear terms corresponding to non-stiff
and stiff parts of (1.1) is presented in Sect. 7. Construction of IMEX methods with large
regions of absolute stability of the ‘explicit part’ of the method, assuming that the ‘implicit
part’ of the method is A(α)-stable for 0 < α ≤ π/2, is described in Sect. 8. Examples of
such methods are given in Sects. 8.1–8.4 for p = q up to four, and r = s = p+ 1 up to five.
Here, p is the order, q is the stage order, r is the number of external approximations and s is
the number of internal approximations in (1.2). The results of some numerical experiments
with IMEX GLMs with IRKS are presented in Sect. 9. Concluding remarks and plans for
future work are described in Sect. 10.

123



J Sci Comput (2017) 70:1105–1143 1107

2 A Short Introduction to GLMs

In this section we reviewGLMswith IRKS. Consider the initial-value problem for the system
of ODEs {

y′(t) = F (y(t)) , t ∈ [t0, T ],
y(t0) = y0 ∈ R

m,
(2.1)

where the function F : Rm → R
m is assumed to be sufficiently smooth. Let N be a positive

integer and define the stepsize h = (T −t0)/N . On the uniform grid t0 < t1 < · · · < tN = T,

tn = t0 + nh, n = 0, 1, . . . , N , the GLMs for (2.1) are defined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y [n+1]
i = h

i∑
j=1

ai j F
(
Y [n+1]
j

)
+

r∑
j=1

ui j y
[n]
j , i = 1, 2, . . . , s,

y[n+1]
i = h

s∑
j=1

bi j F
(
Y [n+1]
j

)
+

r∑
j=1

vi j y
[n]
j , i = 1, 2, . . . , r,

(2.2)

n = 0, 1, . . . , N −1, compare [12,13,26,27,33]. Here, the quantities Y [n+1]
i are approxima-

tions of stage order q to the solution y of (2.1) at the points tn + ci h, i.e.,

Y [n+1]
i = y(tn + ci h) + O(hq+1), i = 1, 2, . . . , s, (2.3)

and y[n]
i are approximations of order p to the linear combinations of scaled derivatives of y

at the point tn , i.e.,

y[n]
i =

p∑
k=0

qikh
k y(k)(tn) + O(h p+1), i = 1, 2, . . . , r. (2.4)

The GLMs (2.2) are characterized by the abscissa vector c = [c1, c2, . . . , cs]T , four coef-
ficient matrices A = [ai j ], U = [ui j ], B = [bi j ], V = [vi j ], where A ∈ R

s×s, U ∈
R
s×r , B ∈ R

r×s, V ∈ R
r×r , the vectors qk = [q1,k, q2,k, . . . , qr,k]T , k = 0, 1, . . . , p,

appearing in (2.4), and the four integers: the order of the method p [compare (2.4)], the stage
order q [compare (2.3)], the number of external approximations r , and the number of internal
approximations or stages s.

In what follows we consider the class of GLMs (2.2) such that p = q and r = s = p+ 1.
We will also assume that the coefficient matrix A is lower triangular with the same element
λ > 0 on the diagonal. Denote by y[n] and y[n+1] vectors of dimension mr with vector
components y[n]

i and y[n+1]
i , i = 1, 2, . . . , r , of dimension m. We will assume that y[n] and

y[n+1] are approximations of order q = p to the vectors z(tn, h) and z(tn+1, h), where the
so-called Nordsieck vector z(t, h) is defined by

z(t, h) =

⎡
⎢⎢⎢⎣
z1(t, h)

z2(t, h)
...

zs(t, h)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(t)
hy′(t)

...

h p y(p)(t)

⎤
⎥⎥⎥⎦ ∈ R

m×(p+1). (2.5)

It can be demonstrated (compare [31–33,46]) that the method (2.2) has stage order q = p
and order p if and only if

ecz = zAecz + UZ + O(z p+1), (2.6)

and
ezZ = zBecz + VZ + O(z p+1), (2.7)

123



1108 J Sci Comput (2017) 70:1105–1143

where the vector Z is defined by Z = [1, z, . . . , z p]T . In particular, comparing to zero
constant terms in (2.6) and (2.7) we obtain the so-called preconsistency conditions

Ue1 = e, Ve1 = e1, (2.8)

where e1 = [1, 0, . . . , 0]T ∈ R
s and e = [1, 1, . . . , 1]T ∈ R

s .

3 GLMs with RK and IRKS Properties

In this section we will review stability properties of GLMs (2.2) with respect to the linear
test equation

y′ = ξ y, t ≥ 0, (3.1)

where ξ ∈ C. Applying (2.2) to (3.1) we obtain the vector recurrence relation y[n+1] =
M(z)y[n], n = 1, 2, . . . , z = hξ , where the stability matrix M(z) is defined by

M(z) = V + zB (I − zA)−1 U, (3.2)

and I is the identity matrix of dimension s. We also define the stability function p(w, z) of
(2.2) by the formula

p(w, z) = det (wI − M(z)) , (3.3)

where I is now the identity matrix of dimension r . The GLM (2.2) is said to have RK stability
if p(w, z) has only one nonzero root, i.e., if

p(w, z) = wr−1 (w − R(z)) , (3.4)

where R(z) is the stability function of RK method of the same order.
Following [17,46] we say that two matrices A and B are equivalent, written as A ≡ B,

if and only if they are identical except possibly their first rows. This equivalence relation
plays an important role in the definition of IRKS. The GLM (2.2) with r = s satisfying
preconsistency conditions Ue1 = e and Ve1 = e1 is said to have IRKS property if there
exists some matrix X such that

BA ≡ XB, (3.5)

BU ≡ XV − VX, (3.6)

and
det(wI − V) = w p(w − 1). (3.7)

The importance of these relations follows from the theorem proved by Butcher and Wright
[17,46] that if the GLM (2.2) has IRKS property, i.e., if the relations (3.5), (3.6), and (3.7)
hold, then GLM (2.2) has RK stability, i.e., its stability function p(w, z) satisfies (3.4). It was
also proved in [17,46] that the stability function R(z) appearing in (3.4) can be computed
from the formula

R(z) = eT1 (I − zX)M(z)(I − zX)−1e1.
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Moreover, for GLMs (2.2) with p = q and r = s = p + 1 the matrix X appearing in (3.5)
and (3.6) is a doubly companion matrix of the form

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 −α2 −α3 · · · −αp−1 −αp −αp+1 − βp+1

1 0 0 · · · 0 0 −βp

0 1 0 · · · 0 0 −βp−1
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 −β3

0 0 0 · · · 1 0 −β2

0 0 0 · · · 0 1 −β1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.8)

which depends on free parameters αi and βi , i = 1, 2, . . . , p + 1.
In this paper we are interested in a subclass of GLMs (2.2) with the following properties:

– The GLM (2.2) has order p and stage order q = p.
– The number of external stages r and the number of internal stages s are equal to r = s =

p + 1.
– The GLM (2.2) is nonconfluent, i.e., the abscissa vector c = [c1, c2, . . . , cs]T satisfies

ci �= c j for i �= j .
– The GLM (2.2) satisfies the preconsistency conditions (2.8).
– The coefficient matrix A is lower triangular with diagonal elements each equal to λ ≥ 0.
– The vectors y[n] and y[n+1] are approximations of order p to theNordsieck vectors z(tn, h)

and z(tn+1, h), respectively. This implies that the vectors qk are equal to q0 = e1, q1 =
e2, . . . qp = ep+1, where e1, e2, . . . , ep+1 is the canonical basis of the space Rp+1.

– The method (2.2) satisfies IRKS properties (3.5), (3.6), and (3.7), with the doubly com-
panion matrix X of the form (3.8) which has a one point spectrum σ(X) = {λ}, where λ

is the diagonal element of the coefficient matrix A.

TheGLMswhich satisfy the above conditions have been introduced in [17,46], and further
investigated in [15,33,47]. In particular, they have RK stability, i.e., their stability function
p(w, z) satisfies the condition (3.4). Moreover, as demonstrated in [17,46] (see also [33])
the stability function R(z) appearing in (3.4) has the form

R(z) = P(z)

(1 − λz)p+1 , (3.9)

where
P(z) = exp(z)(1 − λz)p+1 − Ez p+1 + O(z p+2)

=
p∑

n=0

Mn,p+1(λ)zn + εz p+1,
(3.10)

and
ε = Mp+1,p+1(λ) − E . (3.11)

Here, E is the error constant of the method and the polynomials Mn,m(λ) are defined by

Mn,m(λ) =
n∑

i=0

(
m
i

)
(−λ)i

(n − i)! . (3.12)

We will also define polynomials Ni (λ) by the formula

Ni (λ) =
i−1∑
k=0

(
i − 1
k

)
(−λ)k

(i − k)! . (3.13)
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As in [33] let us partition the coefficient matrices A, U, B, and V as follows

[
A U
B V

]
=
⎡
⎣ A e U

bT 1 vT

B 0 V

⎤
⎦ ,

where e = [1, 1, . . . , 1]T ∈ R
s , b ∈ R

s , v ∈ R
s−1, U ∈ R

s×(s−1), B ∈ R
(s−1)×s , V ∈

R
(s−1)×(s−1). Then the error constant E of GLM (2.2) is given by

E = 1

(p + 1)! − bT cp

p! + vT θ, (3.14)

where

θ = (I − V )−1
(

tp − B
cp

p!
)

, tp =
[

1

p!
1

(p − 1)! · · · 1

1!
]T

,

compare [16,33].
It is quite remarkable that the explicit or implicit GLMs of any order with the properties

listed above can be constructed using only linear operations. Such an algorithm for construc-
tion of these methods, which was discovered by Butcher and Wright [17,46], is described in
the next section.

4 Algorithm for Construction of GLMs with IRKS

In this sectionwe describe the practical algorithm, discovered byButcher andWright [17,46],
for the construction of GLMs with IRKS which have properties discussed in Sect. 3. Since
the construction of extrapolated IMEX schemes starts with an implicit GLM,we describe this
algorithm adapted to the case of diagonally implicit GLMs. As in [17,33,46] we introduce
the following notation. For a square matrix
we denote byΔ(
) the lower triangular part of
the matrix 
, which includes also the diagonal. We also use the notation L(
) and U(
) for
unit lower triangular and upper triangular matrix, respectively, such that 
 = L(
)U(
),
assuming that this LU decomposition exists.

The description of the algorithm, which is presented below, for construction of GLMs
with IRKS and the properties specified in Sect. 3, follows closely the presentation in the
monograph [33]. This algorithm consists of the following steps.

1. Choose the order p and the vector c = [c1, c2, . . . , cs]T ∈ R
s , s = p + 1, with distinct

abscissas ci . It is usually assumed that 0 ≤ ci ≤ 1, i = 1, 2, . . . , s. The typical choice
are abscissas uniformly distributed on the interval [0, 1], i.e., ci = (i − 1)/(s − 1),
i = 1, 2, . . . , s.

2. Choose the diagonal element λ of the coefficient matrix A. This parameter is usually
chosen in such a way that the resulting GLM with stability function R(z) given by (3.9),
where the numerator P(z) is given by (3.10), is A-stable.

3. Choose the z p+1 coefficient ε of the numerator P(z) given by (3.10) of the stability
function R(z) (3.9). Choosing ε = 0 leads to methods which are L-stable.

4. Choose the parameters β1, β2, . . . , βp appearing in the doubly companion matrix X
(3.8). In this paper we consider two strategies for choosing these parameters. The first
strategy is based on choosing these parameters by maximizing the area of stability of
the explicit GLM or of the IMEX scheme assuming that the implicit part of the method
is A(α)-stable for some 0 < α ≤ π/2, preferably for α = π/2. The second strategy
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consists of assuming that β1 = β2 = · · · = βp = E, where E is the error constant of
the method. The rationale for his strategy was given in [15], see also [17,33,46].

5. Compute the matrix � = β(K) exp(λK−), where

K =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, K− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p 0 · · · 0 0 0
0 0 p − 1 · · · 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...

0 0 0 · · · 0 2 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K, K− ∈ R
(p+1)×(p+1), and

β(K) := β1 K + β2 K2 + · · · + βp+1 Kp+1 ∈ R
(p+1)×(p+1).

6. Compute the matrix X = �(J + λI)�−1, where J = KT . Then, clearly, this matrix has
a one point spectrum σ(X) = {λ}. Moreover, as demonstrated in [17,46] (see also [33]),
this matrix has a doubly companion form (3.8).

7. Compute the matrix F = exp(−λK−) exp(K) exp(λK−).

8. Compute the matrix 
 = C
(
β(K) ep+1 eT1 + K �

)
, where

C =
[

e c
c2

2! · · · cp

p!
]

∈ R
(p+1)×(p+1).

9. Compute the matrix  = Ir Ic F Ir Ic + δ eT1 , where

Ir =
[

0
I

]
∈ R

(p+1)×p, Ic = [
0 I

] ∈ R
p×(p+1),

0 is a row or column vector of dimension p, and I ∈ R
p×p is the identity matrix.

Moreover, the vector δ is given by

δ = [
ε + λMp,p(λ) Np(λ) · · · N1(λ)

]T ∈ R
p+1,

where the polynomial Mp,p(λ) is defined by (3.12), and the polynomials Nk(λ), k =
1, 2, . . . , p, are defined by (3.13).

10. Choose a unit lower triangular matrix L ∈ R
p×p and compute the LU decomposition of

the matrix 
 L = L(
L)U(
L), where

L =
[
1 0
0 L

]
∈ R

(p+1)×(p+1).

11. Compute the matrix B̃ from B̃ = L Δ
(
L−1  LU(
L)−1

) L(
L)−1.

12. Compute the coefficient matrices B, A, U, and V of GLM (2.2) from the formulas B =
� B̃, A = B−1 X B, U = C − A C K, V = exp(K) − B C K.

We would like to reiterate again that the GLM with abscissa vector c and coefficients
matrices A, U, B, and V, computed by the above algorithm has IRKS and the properties
given in Sect. 3.

This algorithmwill fail if thematrix
L is singular or it does not admit LU decomposition,
or if the matrix B̃, and as a result the matrix B, is singular. However, it was demonstrated in
[15,17,33,46,47] that the overall algorithm can be carried out successfully for many choices
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of the abscissa vector c, the parameter λ, the coefficient ε, the parameters β1, β2, . . . , βs ,
and the unit lower triangular matrix L . The examples of implicit GLMs with IRKS obtained
by this algorithm are given in Sect. 8.

5 Extrapolated IMEX GLMs with IRKS

In this section we follow the approach, first proposed by Cardone et al. in the case of IMEX
DIMSIMs [19,20] and IMEX RK methods [21], to derive new extrapolation-based GLMs
with IRKS. Assume that the GLM (2.2) is derived using the algorithm presented in Sect. 4,
i.e., it has IRKS and additional properties listed in Sect. 3. As in [19–21] consider the
extrapolation formula for f [n+1]

j depending on stage values Y [n]
k , k = 1, 2, . . . , s, and Y [n+1]

k ,
k = 1, 2, . . . , j − 1, at two consecutive steps

f [n+1]
j =

s∑
k=1

α jk f
(
Y [n]
k

)
+

j−1∑
k=1

β jk f
(
Y [n+1]
k

)
, j = 1, 2, . . . , s. (5.1)

As in [19,20], substituting (5.1) into (1.2), then changing the order of summation in the
resulting double sums, and interchanging the indices j and k leads to the class of IMEX
GLMs with IRKS of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y [n+1]
i = h

s∑
j=1

ai j f
(
Y [n]
j

)
+ h

i−1∑
j=1

a∗
i j f

(
Y [n+1]
j

)

+ h
i∑

j=1

ai j g
(
Y [n+1]
j

)
+

r∑
j=1

ui j y
[n]
j , i = 1, 2, . . . , s,

y[n+1]
i = h

s∑
j=1

bi j f
(
Y [n]
j

)
+ h

s−1∑
j=1

b∗
i j f

(
Y [n+1]
j

)

+ h
s∑

j=1

bi j g
(
Y [n+1]
j

)
+

r∑
j=1

vi j y
[n]
j , i = 1, 2, . . . , r,

(5.2)

n = 0, 1, . . . , N − 1. Here, the coefficients ai j , a∗
i j , bi j , and b∗

i j are defined by

ai j =
i∑

k=1

aikαk j , a∗
i j =

i∑
k= j+1

aikβk j , bi j =
s∑

k=1

bikαk j , b∗
i j =

s∑
k= j+1

bikβk j .

Put A = [
ai j

] ∈ R
s×s, A∗ =

[
a∗
i j

]
∈ R

s×s, B = [
bi j

] ∈ R
r×s, B∗ =

[
b∗
i j

]
∈ R

r×s,

α = [
αi j

] ∈ R
s×s, β = [

βi j
] ∈ R

s×s . Then

A = A α, A∗ = A β, B = B α, B∗ = B β. (5.3)
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Observe that the matrix A∗ is strictly lower triangular and that the last column of the matrix
B∗ is equal to a zero vector. Introducing the notation

Y [n] =
⎡
⎢⎣
Y [n]
1
...

Y [n]
s

⎤
⎥⎦ , y[n] =

⎡
⎢⎣
y[n]
1
...

y[n]
r

⎤
⎥⎦ ,

f
(
Y [n]) =

⎡
⎢⎢⎢⎣

f
(
Y [n]
1

)
...

f
(
Y [n]
s

)

⎤
⎥⎥⎥⎦ , g

(
Y [n]) =

⎡
⎢⎢⎢⎣
g
(
Y [n]
1

)
...

g
(
Y [n]
s

)

⎤
⎥⎥⎥⎦ ,

the IMEX method (5.2) can be written in a more compact vector form⎧⎪⎪⎨
⎪⎪⎩

Y [n+1] = h(A ⊗ I) f
(
Y [n]) + h(A∗ ⊗ I) f

(
Y [n+1])

+ h(A ⊗ I)g
(
Y [n+1]) + (U ⊗ I)y[n],

y[n+1] = h(B ⊗ I) f
(
Y [n]) + h(B∗ ⊗ I) f

(
Y [n+1])

+ h(B ⊗ I)g
(
Y [n+1]) + (V ⊗ I)y[n],

(5.4)

n = 0, 1, . . . , N − 1, where I is the identity matrix of dimension m.
Assuming that g(y) = 0 we obtain a two-step method of the form{

Y [n+1] = h(A ⊗ I) f
(
Y [n]) + h(A∗ ⊗ I) f

(
Y [n+1]) + (U ⊗ I)y[n],

y[n+1] = h(B ⊗ I) f
(
Y [n]) + h(B∗ ⊗ I) f

(
Y [n+1]) + (V ⊗ I)y[n], (5.5)

n = 0, 1, . . . , N − 1. This two-step method can be represented as a single GLM extended
over two steps from tn−1 to tn and from tn to tn+1 with the abscissa vector c̃ = [(c−e)T , cT ]T
and ⎡

⎢⎢⎣
Y [n]
Y [n+1]
Y [n+1]
y[n+1]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 I 0
A ⊗ I A∗ ⊗ I 0 U ⊗ I
A ⊗ I A∗ ⊗ I 0 U ⊗ I
B ⊗ I B∗ ⊗ I 0 V ⊗ I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

h f
(
Y [n])

h f
(
Y [n+1])
Y [n]
y[n]

⎤
⎥⎥⎦ . (5.6)

Here, 0 stands for the zero matrix of dimension ms ×ms and I in the first row is the identity
matrix of dimension ms.

Assuming that f (y) = 0 the IMEX scheme (5.4) reduces to the underlying GLM (2.2).
A different approach to the construction of IMEX GLMs is discussed in [4,22,34,49,50].

IMEXRunge–Kutta methods are discussed in [1,2,18,29,30,35,38,39,42], and IMEX linear
multistep methods in [3,23,25,29]. IMEX two-step Runge–Kutta methods are discussed in
the paper [51].

6 Convergence and Error Analysis of IMEX GLMs

In this section we present error analysis of the interpolation formula defined by (5.1),
investigate order of convergence of IMEX scheme (5.4), and discuss Prothero–Robinson
convergence of (5.4).

6.1 Error Analysis for the Interpolant

As in [19,20] we define the local discretization error η(tn +c j h) of the extrapolation formula

(5.1) as the residuum obtained by replacing in (5.1) f [n+1]
j by f (y(tn + c j h)), Y [n]

k by
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y(tn−1 + ckh), and Y [n+1]
k by y(tn + ckh). This leads to

f
(
y(tn + c j h)

) =
s∑

k=1

αi j f (y(tn−1 + ckh))

+
j−1∑
k=1

β jk f (y(tn + ckh)) + η(tn + c j h),

(6.1)

j = 1, 2, . . . , s. Putting ϕ(t) = f (y(t)) (6.1) can be written in the form

η(tn + c j h) = ϕ(tn + c j h) −
s∑

k=1

α jkϕ(tn−1 + ckh) −
j−1∑
k=1

β jkϕ(tn + ckh),

j = 1, 2, . . . , s. Expanding ϕ(tn + c j h), ϕ(tn + (ck − 1)h), and ϕ(tn + ckh) into Taylor
series around tn leads to

η(tn + c j h) =
p∑

l=0

⎛
⎝clj

l! −
s∑

k=1

α jk
(ck − 1)l

l! −
j−1∑
k=1

β jk
clk
l!

⎞
⎠ hlϕ(l)(tn) + O(h p+1).

We assume that the extrapolation procedure given by (5.1) has order p, i.e., η(tn + c j h) =
O(h p). This leads to the system of equations for the coefficients α jk and β jk

s∑
k=1

α jk(ck − 1)l = clj −
j−1∑
k=1

β jkc
l
k,

l = 0, 1, . . . , p − 1, j = 1, 2, . . . , s, or in vector form

α(c − e)l = (I − β)cl , l = 0, 1, . . . , p − 1. (6.2)

For methods with s = p+ 1 this is a system of sp = s(s − 1) equations, and we will solve it
with respect to α jk , j = 1, 2, . . . , s, k = 1, 2, . . . , s − 1, i.e., with respect to the first s − 1
columns of the coefficient matrix α. Putting

Q = [
e c − e (c − e)2 · · · (c − e)p−1

] ∈ R
s×(s−1),

C̃ = [
e c c2 · · · cp−1

] ∈ R
s×(s−1),

the system (6.2) can be rewritten as

α Q = (I − β)C̃. (6.3)

Partitioning the matrices α and Q in the form

α = [
α̃ α∗ ] , Q =

[
Q̃
Q∗

]
,

where α̃ ∈ R
s×(s−1), α∗ ∈ R

s×1, Q̃ ∈ R
(s−1)×(s−1), and Q∗ ∈ R

1×(s−1), the system (6.3)
takes the form α̃ Q̃ + α∗ Q∗ = (I − β)C̃. This leads to

α̃ = (
(I − β) C̃ − α∗ Q∗) Q̃−1. (6.4)
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6.2 Convergence and Order Analysis of IMEX Scheme

To analyze the order and stage order of IMEX GLMs (5.2) we will impose some conditions
on the local discretization errors of the internal and external stages of the underlying GLM
(2.2) and on the accuracy of the extrapolation procedure (5.1). These local discretization
errors hd(tn + ci h) and hd̂(tn+1) of the internal and external stages Y [n+1]

i and y[n+1]
i of

the GLM (2.2) are defined as the residua obtained by substitution into (2.2) of y(tn + ci h)

instead of Y [n+1]
i , z j (tn, h) instead of y[n]

j , and z j (tn+1, h) instead of y[n+1]
j , where z j (t, h)

are components of the Nordsieck vector defined by (2.5). This leads to

y(tn + ci h) = h
i∑

j=1

ai j y
′(tn + c j h) +

r∑
j=1

ui j z j (tn, h) + hd(tn + ci h), (6.5)

i = 1, 2, . . . , s, and

zi (tn+1, h) = h
s∑

j=1

bi j y
′(tn + c j h) +

r∑
j=1

vi j z j (tn, h) + hd̂(tn+1), (6.6)

i = 1, 2, . . . , r . In this paper we will examine only methods of order p and stage order
q = p, i.e., methods which satisfy the conditions hd̂(tn+1) = O(h p+1), and hd(tn + ci h) =
O(hq+1), i = 1, 2, . . . , s, where q = p. The order and stage order conditions for such
GLMs can be obtained by expanding y(tn + ci h), y′(tn + c j h), zi (tn, h), and zi (tn+1, h) in
(6.5) and (6.6) into Taylor series around the point tn and comparing to zero the coefficients of
the successive powers of h up to the required order. These order and stage order conditions
were derived in [11] and [14] (compare also [33]), using the theory of functions of a complex
variable z, and they are listed as conditions (2.6) and (2.7) in Sect. 2.

Similarly as in the case of GLMs (2.2) we define the local discretization errors hξ(tn+ci h)

and hξ̂ (tn+1) of internal and external approximations Y [n+1]
i and y[n+1]

i of IMEXGLMs (5.2)
or (5.4) by the relations

y(tn + ci h) = h
s∑

j=1

ai j f
(
y(tn + c j h)

) + h
i−1∑
j=1

a∗
i j f

(
y(tn + c j h)

)

+ h
i∑

j=1

ai j g
(
y(tn + c j h)

) +
r∑
j=1

ui j z j (tn, h) + hξ(tn + ci h),

(6.7)

j = 1, 2, . . . , s, and

zi (tn+1, h) = h
s∑

j=1

bi j f
(
y(tn + c j h)

) + h
s−1∑
j=1

b∗
i j f

(
y(tn + c j h)

)

+ h
s∑

j=1

bi j g
(
y(tn + c j h)

) +
r∑
j=1

vi j z j (tn, h) + hξ̂ (tn+1),

(6.8)

i = 1, 2, . . . , r . Then the IMEX GLM (5.2) has order p and stage order q = p if and only if
hξ̂ (tn+1) = O(h p+1), and hξ(tn +ci h) = O(h p+1), i = 1, 2, . . . , s.We have the following
theorem.

Theorem 1 Assume that GLM (2.2) has order p and stage order q = p, and that the
extrapolation procedure (5.1) has order p, i.e., η(tn + c j h) = O(h p), j = 1, 2, . . . , s. Then
the IMEX GLM (5.2) has order p and stage order q = p.
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Proof This theorem follows from [50] or [20], but for the sake of completeness we present
below a somewhat simpler, new proof of this result.

Using the definitions of ai j , a∗
i j , bi j , b

∗
i j , and reversing the process which led to the

derivation of IMEX GLMs (5.2) we obtain

y(tn + ci h) = h
i∑

j=1

ai j

⎛
⎝ s∑

k=1

α jk f (y(tn−1 + ckh)) +
j−1∑
k=1

βk j f (y(tn + ckh))

⎞
⎠

+ h
s∑

j=1

ai j g
(
y(tn + c j h)

) +
r∑
j=1

ui j z j (tn, h) + hξ(tn + ci h),

i = 1, 2, . . . , s, and

zi (tn+1, h) = h
s∑

j=1

bi j

⎛
⎝ s∑

k=1

α jk f (y(tn−1 + ckh)) +
j−1∑
k=1

βk j f (y(tn + ckh))

⎞
⎠

+ h
s∑

j=1

bi j g
(
y(tn + c j h)

) +
r∑
j=1

vi j z j (tn, h) + hξ̂ (tn+1),

i = 1, 2, . . . , r . Taking into account (6.1) and the relations

y′(tn + c j h) = f (y(tn + c j h)) + g(y(tn + c j h)), j = 1, 2, . . . , s,

leads to

y(tn + ci h) = h
i∑

j=1

ai j y
′(tn + c j h) +

r∑
j=1

ui j z j (tn, h)

− h
i∑

j=1

ai jη(tn + c j h) + hξ(tn + ci h),

i = 1, 2, . . . , s, and

zi (tn+1, h) = h
s∑

j=1

bi j y
′(tn + c j h) +

r∑
j=1

vi j z j (tn, h)

− h
s∑

j=1

bi jη(tn + c j h) + hξ̂ (tn+1),

i = 1, 2, . . . , r . Using the relations (6.5) and (6.6) which define local discretization errors
of GLM (2.2) it follows that

hξ(tn + ci h) = hd(tn + ci h) + h
i∑

j=1

ai jη(tn + c j h),

i = 1, 2, . . . , s, and

hξ̂ (tn+1) = hd̂(tn+1) + h
s∑

j=1

bi jη(tn + c j h),

i = 1, 2, . . . , r . Hence, the relations d(tn + ci h) = O(h p+1), hd̂(tn+1) = O(h p+1), and
η(tn + c j h) = O(h p), imply that hξ(tn + ci h) = O(h p+1), and hξ̂ (tn+1) = O(h p+1). This
shows that the IMEX GLM (5.2) has order p and stage order q = p. ��
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6.3 Prothero–Robinson Convergence of IMEX GLMs

Wewill demonstrate in this section that contrary to the methods of low stage order, the IMEX
schemes (5.2) considered in this paper, do not suffer from order reduction phenomenon
when applied to stiff systems of differential equations. Following [10,50,51] we consider the
Prothero–Robinson (PR) [41] test problem of the form

{
y′(t) = μ (y(t) − φ(t)) + φ′(t), t ≥ 0,
y(0) = φ(0),

(6.9)

where μ ∈ C has a large and negative real part and φ(t) is a slowly varying function. Here,
φ′(t) corresponds to the non-stiff part andμ(y(t)−φ(t)) to the stiff part of (6.9). The solution
to (6.9) is y(t) = φ(t). The IMEX scheme (5.2) is said to be PR-convergent if the application
of (5.2) to the Eq. (6.9) leads to the numerical solution y[n] whose global error defined by

eh(tn) = ∥∥y[n] − z(tn, h)
∥∥,

where z(t, h) is the Nordsieck vector defined by (2.5), satisfies eh(tn) = O(h p) as h → 0
and hμ → −∞. The PR-convergence of Runge–Kutta formulas was investigated by Butcher
[10], of a class of IMEX DIMSIMs by Zhang et al. [50], and of a class of IMEX two-step
Runge–Kutta methods by Zharovsky et al. [51]. We have the following theorem.

Theorem 2 Assume that the implicit GLM (2.2) given by the abscissa vector c and coefficient
matrices A, U, B, and V, has order p and stage order q = p, and that the extrapolation
formula (5.1) has order p, i.e., η(tn + c j h) = O(h p), j = 1, 2, . . . , s, where η(tn + c j h)

is defined by (6.1). Then the IMEX scheme (5.2) is PR-convergent with order p as h → 0,
hμ → −∞, and hμ ∈ SI . Here, SI is the stability region of the implicit GLM (2.2).

Proof It was already observed in Sect. 5 that the explicit two-stepmethod (5.5) corresponding
to g(y) = 0 can be written as a single GLM extended over two steps (5.6), where the matrices
A, A∗, B, and B∗ are defined in Sect. 5. It follows from Theorem 1 that this method has order
p and stage order q = p. Similarly, the implicit part of the IMEX scheme (5.2) corresponding
to f (y) = 0 and extended over two steps from tn−1 to tn and tn to tn+1 assumes the form

⎡
⎢⎢⎣

Y [n]
Y [n+1]
Y [n+1]
y[n+1]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 I 0
0 A ⊗ I 0 U ⊗ I
0 A ⊗ I 0 U ⊗ I
0 B ⊗ I 0 V ⊗ I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

g
(
Y [n])

g
(
Y [n+1])
Y [n]
y[n]

⎤
⎥⎥⎦ . (6.10)

Thismethod has also order p and stage orderq = p. The explicitmethod (5.6) and the implicit
method (6.10) have the same abscissa vector c̃ given by c̃ = [(c − e)T , cT ]T . Moreover, the
explicit method (5.6) and the implicit method (6.10) have the same matrices

Uexp = Uimp =
[

I 0
0 U

]
, Vexp = Vimp =

[
0 U
0 V

]
.

It follows from these properties that the IMEX GLMs (5.2) form a partitioned GLM of
the type considered by Zhang et al. in a recent paper [50]. Since as proved in [50], these
partitioned methods are PR-convergent we can conclude that IMEX GLMs (5.2) are also
PR-convergent with order p. This argument completes the proof of the theorem. ��
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7 Stability Analysis of IMEX GLMs

In this section we analyze stability properties of IMEX GLMs (5.2) with respect to the linear
test equation

y′(t) = λ0y(t) + λ1y(t), t ≥ 0, (7.1)

where λ0 and λ1 are complex parameters corresponding to the non-stiff f (y) and stiff g(y)
parts of the system (1.1). Applying (5.2) to (7.1) and putting z0 = hλ0, z1 = hλ1, we obtain
the vector recurrence relation of the form[

Y [n+1]
y[n+1]

]
= M(z0, z1)

[
Y [n]
y[n]

]
, (7.2)

with the stability matrix M(z0, z1) defined by

M(z0, z1) =
[
m11(z0, z1) m12(z0, z1)
m21(z0, z1) m22(z0, z1)

]
,

where

m11(z0, z1) = z0 (I − (z0A∗ + z1A))−1 A,

m12(z0, z1) = (I − (z0A∗ + z1A))−1 U,

m21(z0, z1) = z0
(

B + (z0B∗ + z1B) (I − (z0A∗ + z1A))−1 A
)

,

m22(z0, z1) = V + (z0B∗ + z1B) (I − (z0A∗ + z1A))−1 U.

Let SE ⊂ C and SI ⊂ C be the stability regions of the explicit GLM (5.6) and the
implicit GLM (6.10), respectively. It was observed in [29] that large stability region of
explicit method and desirable stability properties of the implicit method are not necessarily
sufficient to guarantee good stability properties of the overall IMEX scheme (5.2). In practice
it is necessary to investigate these stability properties when both explicit and implicit method
operate in tandem as IMEX scheme (5.2). Following [50] we define the combined stability
region of (5.2) by{

(z0, z1) ∈ SE × SI : ρ (M(z0, z1)) ≤ 1
}

⊂ SE × SI ⊂ C × C.

Here, ρ(M) stands for the spectral radius of M. Then we define a desired stiff stability
region, for example the region corresponding to implicit method which is A(α)-stable for
some α ∈ (0, π/2], i.e., the region given by

Aα =
{
z1 ∈ C : ∣∣Im(z1)

∣∣ ≤ tan(α)
∣∣Re(z1)∣∣

}
,

and compute numerically the corresponding non-stiff region of the ‘explicit part’ of IMEX
scheme (5.2), i.e., the region given by

Sα =
{
z0 ∈ C : ρ (M(z0, z1)) ≤ 1 for all z1 ∈ Aα

}
.

It follows from the maximum principle for analytic functions [24] that this region has a
simpler representation given by

Sα =
{
z0 ∈ C : ρ (M(z0, z1)) ≤ 1 for all z1 = −|y|/ tan(α) + iy, y ∈ R

}
.

The boundary ∂Sα of Sα can be computed by the variant of boundary locus method which
was described in [19–21]. This variant of boundary locus method is based on the relation
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Sα = ⋂
y∈R Sα,y, where

Sα,y =
{
z0 ∈ C : ρ (M(z0, z1)) ≤ 1 for fixed z1 = −|y|/ tan(α) + iy

}
.

Numerical techniques to compute numerically the regionSα were also discussed in [7,29,38].
Observe that the region Sα,0 is independent of α and that Sα,0 = SE . We have Sα ⊂ SE , and
we will try to construct IMEX GLMs (5.2) for which the intersection of the area of Sα with
negative complex plane C− is as large as possible for fixed value of α ∈ (0, π/2], preferably
for α = π/2. The search for such IMEX schemes of order and stage order 1 ≤ p = q ≤ 4
is described in the next section.

8 Construction of Highly Stable IMEX GLMs

In this section we describe the construction of IMEX GLMs (5.2) with large areas of the
intersection of SE and Sα , for some α ∈ (0, π/2], with negative complex plane C

−. The
construction starts with the derivation of implicit GLMs with IRKS and the properties dis-
cussed in Sect. 3, by the algorithm described in Sect. 4. Then we solve the minimization
problems

− area
(SE ∩ C

−) −→ min, (8.1)

or
− area

(Sα ∩ C
−) −→ min (8.2)

for some α ∈ (0, π/2], with respect to the remaining free parameters of IMEX scheme (5.2).
This is described in more details in Sects. 8.1–8.4.

8.1 IMEX GLMs with p = q = 1 and r = s = 2

Choosing c = [0, 1]T , λ = 1/2, ε = 0, and applying the algorithm described in Sect. 4
lead to the family of A- and L-stable GLMs with error constant E = −1/4, and coefficients
depending on the free parameter β1

[
A U
B V

]
=

⎡
⎢⎢⎢⎢⎣

1
2 0 1 − 1

2
1

4β1(β1−1)
1
2 1

1−2β1+2β2
1

4β1(β1−1)
1+2β2

1+4β3
1

4β1
(β1−1)(1+2β1)

2 1
−1+2β1−4β2

1
4β1

β1 1 − β1 0 0

⎤
⎥⎥⎥⎥⎦ .

Wewill search next for IMEXGLMswithmaximal area ofSE∩C
− andSα∩C

− forα = π/2.
Computing the first column α̃ of the matrix α appearing in the interpolation formula (5.1)
from the formula (6.4) we obtain α11 = 1 − α12, α21 = 1 − α22 − β21, where α12, α22, and
β21 are free parameters. Then solving the minimization problem (8.1) with respect to α12,
α22, β21, and β1, we get

α12 = 0.2222226649982025, α22 = −0.2956312425361826,
β21 = 1.8879980487393651, β1 = 0.7645871196918129,

(8.3)

and for the corresponding IMEX GLMwe have area
(SE ∩ C

−) = 24.45, area
(Sπ/2 ∩ C

−)
= 16.49. We have plotted on Fig. 1 stability region SE (thick line), stability regions Sπ/2,y

for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.3).
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Fig. 1 Stability region SE (thick line), Sπ/2,y for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.3)
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Fig. 2 Stability region SE (thick line), Sπ/2,y for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.4)

Solving instead of (8.1) the minimization problem (8.2) corresponding to α = π/2 we
get

α12 = 0.2864217188168783, α22 = −0.3291557174423694,
β21 = 1.8454940193701925, β1 = 0.7149171519838775,

(8.4)

and for the corresponding IMEX GLMwe have area
(SE ∩ C

−) = 21.75, area
(Sπ/2 ∩ C

−)
= 19.19. We have plotted on Fig. 2 stability region SE (thick line), stability regions Sπ/2,y

for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.4).

We will assume next that β1 = E = −1/4. Then the implicit GLM (2.2) takes the form

[
A U
B V

]
=

⎡
⎢⎢⎣

1
2 0 1 − 1

2− 4
5

1
2 1 13

10
− 17

16
5
16 1 7

4
− 1

4
5
4 0 0

⎤
⎥⎥⎦ .

(Please note that there are some misprints in [33]). We will search again for IMEX GLMs
with maximal area of SE ∩C

− and Sα ∩C
− for α = π/2. Solving the minimization problem

(8.1) with respect to α12, α22, and β21, we get

α12 = −0.1728737643890062, α22 = 0.5728653112511124,
β21 = 0.2634077885901063,

(8.5)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=4.50, area
(Sπ/2 ∩ C

−)
= 2.58. We have plotted on Fig. 3 stability region SE (thick line), stability regions Sπ/2,y
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Fig. 3 Stability region SE (thick line), Sπ/2,y for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.5)
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Fig. 4 Stability region SE (thick line), Sπ/2,y for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.6)

for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.5).

Solving instead of (8.1) the minimization problem (8.2) corresponding to α = π/2 we
get

α12 = −0.3131623044071503, α22 = −0.0990668397968741,
β21 = 0.7806559944423810,

(8.6)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=3.73, area
(Sπ/2 ∩ C

−)
= 2.85. We have plotted on Fig. 4 stability region SE (thick line), stability regions Sπ/2,y

for y = −2.0,−1.6, . . . , 2.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.6).

8.2 IMEX GLMs with p = q = 2 and r = s = 3

Choosing c = [0, 1/2, 1]T , λ = 1/4, ε = 0, and applying the algorithm described in Sect. 4
lead to the family of A- and L-stableGLMswith error constant E = −7/192, and coefficients
depending on three free parameters β1, β2, and l21. These coefficients are not listed here,
but can be easily computed by symbolic manipulation packages following the algorithm
described in Sect. 4.

As in Sect. 8.1 we will search next for IMEX GLMs with maximal area of SE ∩ C
− and

Sα ∩ C
− for α = π/2. Computing the first two columns α̃ of the matrix α from the formula

(6.4) we obtain a family of methods depending on free parameters α13, α23, α33, β21, β31,
and β32. Then solving the minimization problem (8.1) with respect to α13, α23, α33, β21, β31,
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Fig. 5 Stability region SE (thick line), Sπ/2,y for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.7)
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Fig. 6 Stability region SE (thick line), Sπ/2,y for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.8)

β32, l21, β1, and β2, we get

α13 = 0.7048042971366435, α23 = 0.5806806426136659,
α33 = −0.2480689169035659, β21 = 1.0070563539839243,
β31 = −0.7468987663950980 β32 = 1.8201469888045814,
l21 = 0.3204975065570276 β1 = 0.1122368078518682,
β2 = 0.0608031068496574,

(8.7)

and for the corresponding IMEX GLM we have area
(SE ∩ C

−)=36.08, area
(Sπ/2 ∩ C

−)
= 27.77. We have plotted on Fig. 5 stability region SE (thick line), stability regions Sπ/2,y

for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.7).

Solving instead of (8.1) the minimization problem (8.2) corresponding to α = π/2 we
get

α13 = 0.7365201743639271, α23 = 0.5352066674285787,
α33 = −0.0912227599822747, β21 = 1.0209644666461690,
β31 = −0.7823766493497686, β32 = 1.6883120173647104,
l21 = 0.3253104517275260, β1 = 0.0972139372675385,
β2 = 0.0527904208800748,

(8.8)

and for the corresponding IMEX GLM we have area
(SE ∩ C

−)=35.70, area
(Sπ/2 ∩ C

−)
= 31.59. We have plotted on Fig. 6 stability region SE (thick line), stability regions Sπ/2,y

for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.8).
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We will assume next that β1 = β2 = E = −7/192, and as in Sect. 8.1 we will search
for IMEX GLMs with maximal area of SE ∩ C

− and Sα ∩ C
− for α = π/2. Solving the

minimization problem (8.1) with respect to α13, α23, α33, β21, β31, β32, and l21 we get

α13 = −0.2761705959660553, α23 = 1.5886193139724432,
α33 = 0.1251863223310433, β21 = −0.8470086913853645,
β31 = −1.1165856084162047, β32 = 1.5757303345776144,
l21 = −2.0616511332383398,

(8.9)

and for the corresponding IMEX GLM we have area
(SE ∩ C

−)=22.33, area
(Sπ/2 ∩ C

−)
= 5.13. We have plotted on Fig. 7 stability region SE (thick line), stability regions Sπ/2,y

for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.9).

Solving the minimization problem (8.2) corresponding to α = π/2 we get

α13 = −0.3359165568300500, α23 = 1.7118797473647751,
α33 = 0.3698211954156955, β21 = −0.8849999789847105,
β31 = −1.1404848830521810, β32 = 1.5218149707234159,
l21 = −2.0838579492368345,

(8.10)

and for the corresponding IMEX GLM we have area
(SE ∩ C

−)=24.29, area
(Sπ/2 ∩ C

−)
= 22.60. We have plotted on Fig. 8 stability region SE (thick line), stability regions Sπ/2,y

for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.10).
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Fig. 7 Stability region SE (thick line), Sπ/2,y for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.9)
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Fig. 8 Stability region SE (thick line), Sπ/2,y for y = −4.0,−3.2, . . . , 4.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.10)
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8.3 IMEX GLMs with p = q = 3 and r = s = 4

Choosing c = [0, 1/3, 2/3, 1]T , λ = 1/4, ε = 0, and applying the algorithm described in
Sect. 4 lead to the family of A- and L-stable GLMs with error constant E = 1/256, and
coefficients depending on six free parameters β1, β2, β3, l21, l31 and l32. These coefficients
are not listed here, but can be easily computed by symbolic manipulation packages following
the algorithm described in Sect. 4.

As in previous sectionswewill search next for IMEXGLMswithmaximal area ofSE∩C
−

and Sα ∩ C
− for α = π/2. Computing the first three columns α̃ of the matrix α from the

formula (6.4) we obtain a family of methods depending on free parameters α14, α24, α34, α44,
β21, β31, β32, β41, β42, and β43. Then solving the minimization problem (8.1) with respect
to α14, α24, α34, α44, β21, β31, β32, β41, β42, β43, l21, l31, l32, β1, β2, and β3, we get

α14 = −0.0322061844618044, α24 = −0.1371553807868855,
α34 = −0.0475154208159705, α44 = −0.4003970342611661,
β21 = 0.0340371060074856, β31 = −0.0105401588456497,
β32 = 0.6841861506702123, β41 = 0.7866040977985557,
β42 = 0.4197043822869505, β43 = −0.2629538237615239,
l21 = 0.9749809251405265, l31 = 0.0340619859556146
l32 = −0.2435531549748590, β1 = 0.7634506787898878,
β2 = 0.3094061851203284, β3 = 0.0574266399871909,

(8.11)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=6.08, area
(Sπ/2 ∩ C

−)
= 0.44. We have plotted on Fig. 9 stability region SE (thick line), stability regions Sπ/2,y

for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.11).

Solving instead of (8.1) the minimization problem (8.2) corresponding to α = π/2 we
get

α14 = −0.0019343661189984, α24 = −0.1002080612577962,
α34 = −0.1776066045171551 α44 = −0.0245141224985896,
β21 = 0.6059088353566069, β31 = −0.4194105236466259,
β32 = 0.9333216543167162, β41 = 0.5003134666349642,
β42 = 0.5364733937398944, β43 = 0.0414877738155996,
l21 = −0.6952599952291396, l31 = 2.5437820700922353,
l32 = −0.0234149225419190, β1 = 0.2419090231319946,
β2 = 0.0685000212896784, β3 = −0.0607397082621161,

(8.12)
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Fig. 9 Stability region SE (thick line), Sπ/2,y for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.11)
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Fig. 10 Stability region SE (thick line), Sπ/2,y for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.12)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=5.85, area
(Sπ/2 ∩ C

−)
= 3.97. We have plotted on Fig. 10 stability region SE (thick line), stability regions Sπ/2,y

for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.12).

We will assume next that β1 = β2 = β3 = E = 1/256, and as in previous sections we
will search for IMEX GLMs with maximal area of SE ∩ C

− and Sα ∩ C
− for α = π/2.

Solving the minimization problem (8.1) with respect to α14, α24, α34, α44, β21, β31, β32, β41,
β42, β43, l21, l31, and l32 we get

α14 = 2.4913016363912952, α24 = −0.3263777127054882,
α34 = −0.0337355771614116, α44 = −0.1960110025688487,
β21 = −0.3357508741005324, β31 = −0.5501933294865551,
β32 = 0.6562982997350197, β41 = −0.0599065394156352,
β42 = −0.3575046987978234, β43 = 1.2793832728383250,
l21 = −1.2579071563931954, l31 = 1.3920885377139143,
l32 = −3.6453949643924055,

(8.13)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=1.50, area
(Sπ/2 ∩ C

−)
= 0.41. We have plotted on Fig. 11 stability region SE (thick line), stability regions Sπ/2,y

for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.13).
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Fig. 11 Stability region SE (thick line), Sπ/2,y for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.13)
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Solving the minimization problem (8.2) corresponding to α = π/2 we get

α14 = 1.5424196324308657, α24 = −4.1167439198814524,
α34 = −1.6702155839518298, α44 = −1.1675407400567321,
β21 = −1.6179065072363725, β31 = −1.5992858415405253,
β32 = 0.1496219631792377, β41 = 0.2487036951180054,
β42 = −1.3275472729892113, β43 = 1.7236437628213972,
l21 = −1.1601015500948186, l31 = −0.9375050588633353,
l32 = −0.0640870397984420,

(8.14)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=1.06, area
(Sπ/2 ∩ C

−)
= 0.48. We have plotted on Fig. 12 stability region SE (thick line), stability regions Sπ/2,y

for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.14).

8.4 IMEX GLMs with p = q = 4 and r = s = 5

Choosing c = [0, 1/4, 1/2, 3/4, 1]T , λ = 1/2, ε = 0, and applying the algorithm described
in Sect. 4 lead to the family of A- and L-stable GLMs with error constant E = −11/480,
(there is a misprint in [33] where the error constant E = −11/48 was reported), and coef-
ficients depending on ten free parameters β1, β2, β3, β4, l21, l31, l32, l41, l42, and l43. These
coefficients are not listed here, but can be easily computed by symbolic manipulation pack-
ages following the algorithm described in Sect. 4.

As in previous sections we will search next for IMEX GLMs with maximal area of
SE ∩ C

− and Sα ∩ C
− for α = π/2. Computing the first four columns α̃ of the matrix α

from the formula (6.4), and then computing the coefficient matrices A, A∗, B, and B∗ from
(5.3) we obtain a family of IMEX schemes depending on free parameters α15, α25, α35, α45,
α55, β21, β31, β32, β41, β42, β43, β51, β52, β53, β54, β1, β2, β3, β4, l21, l31, l32, l41, l42,
and l43. Then solving the minimization problem (8.1) with respect to these parameters we
get

α15 = 0.0923741849195715, α25 = 0.0028604913471628,
α35 = −0.0279944894113296, α45 = 0.0744140295424507,
α55 = −0.8876038729025343, β21 = 0.3434117281181724,
β31 = 0.3184480901895457, β32 = 0.4437862773506412,
β41 = 0.0237584066604190, β42 = 0.8704911982416659,
β43 = 0.2673995304638158, β51 = −0.1482175175698811,
β52 = 5.3309724955200162, β53 = −0.7134521837118601,
β54 = −0.5317915290823025, l21 = −0.8161576100361232,
l31 = −0.5420772764208202, l32 = 0.1698222174580972,
l41 = 0.3086160843412334, l42 = −0.0142677947828854,
l43 = 0.3818368601311756, β1 = 0.2293632290779495,
β2 = −0.5819713279357461, β3 = −0.1079195809643189,
β4 = 0.1390683810799995,

(8.15)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=2.08, area
(Sπ/2 ∩ C

−)
= 0.31. We have plotted on Fig. 13 stability region SE (thick line), stability regions Sπ/2,y
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Fig. 12 Stability region SE (thick line), Sπ/2,y for y = −6.0,−4.8, . . . , 6.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.14)
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Fig. 13 Stability region SE (thick line), Sπ/2,y for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.15)

for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.15).

Solving instead of (8.1) the minimization problem (8.2) corresponding to α = π/2 we
get

α15 = −1.2114571208369744, α25 = 0.0884241105232028,
α35 = 0.8467139943266520, α45 = 0.9534329964232042,
α55 = 2.3902208001689269, β21 = −1.1297348700159846,
β31 = −1.2988168436128529, β32 = 0.6205202797503988,
β41 = −0.2206138517333536, β42 = 0.7496647677233477,
β43 = 0.5455160580650258, β51 = −0.5264456434481564,
β52 = 0.1844183845443656, β53 = 1.2264032883145131,
β54 = 0.0535874163121930, l21 = 0.0272112145389444,
l31 = 0.8885922249897176, l32 = 2.1709933522310738,
l41 = −2.6275666492736693, l42 = 1.8497574700032668,
l43 = 0.2768774661581863, β1 = 0.3104914332552080,
β2 = −0.3072308116407267, β3 = −0.2380997038887391,
β4 = 0.1045726706019693,

(8.16)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=1.04, area
(Sπ/2 ∩ C

−)
= 0.84. We have plotted on Fig. 14 stability region SE (thick line), stability regions Sπ/2,y

for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.16).
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Fig. 14 Stability region SE (thick line), Sπ/2,y for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.16)
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Fig. 15 Stability region SE (thick line), Sπ/2,y for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.17)

We will assume next that β1 = β2 = β3 = β4 = E = −11/480, and as in previous
sections we will search for IMEX GLMs with maximal area of SE ∩ C

− and Sα ∩ C
−

for α = π/2. Solving the minimization problem (8.1) with respect to α15, α25, α35, α45,
α55, β21, β31, β32, β41, β42, β43, β51, β52, β53, β54, l21, l31, l32, l41, l42, and l43, we
get

α15 = −0.4274525221028934, α25 = −0.2582571710558640,
α35 = −0.1291872683142936, α45 = −0.3299694472868494,
α55 = −0.0737098285813478, β21 = 0.2180451276692885,
β31 = 0.5039672089986353, β32 = −0.1119314668217859,
β41 = 0.4010004394225283, β42 = 0.2028234562476922,
β43 = −0.2229723433280797, β51 = 0.5824815163627148,
β52 = −0.8592788525419057, β53 = 0.4355708332749956,
β54 = −0.0745288186133695, l21 = −0.2563143235341758,
l31 = 0.0451848220006013, l32 = −0.7423539897154100,
l41 = 0.1894838040143801, l42 = −1.9589403098423417,
l43 = −3.7612248865480944,

(8.17)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=0.34, area
(Sπ/2 ∩ C

−)
= 0.18. We have plotted on Fig. 15 stability region SE (thick line), stability regions Sπ/2,y

for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.17).
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Solving the minimization problem (8.2) corresponding to α = π/2 we get

α15 = −0.4166609648529102, α25 = −0.2613010013324336,
α35 = −0.1278859963954986, α45 = −0.3290333912717879,
α55 = −0.0734594546946313, β21 = 0.2187775334418260,
β31 = 0.5037687681777114, β32 = −0.1120670630938067,
β41 = 0.4014719362836769, β42 = 0.2031160072843976,
β43 = −0.2228262082299665, β51 = 0.5816599966564926,
β52 = −0.8584475361360557, β53 = 0.4358509993886504,
β54 = −0.0743512326250040, l21 = −0.2500327894252148,
l31 = 0.0450118523274493, l32 = −0.7491539813690300,
l41 = 0.1883635069360757, l42 = −1.9865695985325744,
l43 = −3.7498849269761640,

(8.18)

and for the corresponding IMEXGLMwehave that area
(SE ∩ C

−)=0.27, area
(Sπ/2 ∩ C

−)
= 0.24. We have plotted on Fig. 16 stability region SE (thick line), stability regions Sπ/2,y

for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability region Sπ/2 (shaded region),
of the IMEX GLM corresponding to (8.18).

8.5 Comparison of IMEX GLMs with IRKS with Other Classes of Extrapolated
IMEX Methods

In this section we compare areas of stability regions SE ∩C
− and Sπ/2 ∩C

− of extrapolated
IMEX GLMs with IRKS investigated in this paper with the corresponding areas of extrap-
olated IMEX DIMSIMs investigated in [19,20] and extrapolated IMEX SDIRK methods
investigated in [21]. The areas of SE ∩ C

− and Sπ/2 ∩ C
− of extrapolated IMEX DIM-

SIMs constructed in [19,20] are listed in Table 1 and the corresponding areas of extrapolated
IMEX SDIRK methods constructed in [21] are listed in Table 2. The areas of SE ∩ C

− and
Sπ/2 ∩C

− of the IMEX GLMs with IRKS are listed in Table 3 for methods where the para-
meters β1, β2, . . . , βs were used to maximize the area of stability of the explicit GLM or of
the IMEX scheme assuming that the implicit part of the method is A-stable, and in Table 4
for methods with β1 = β2 = · · · = βs = E (compare Sect. 4).

We can observe that IMEX GLMs with IRKS, where the free parameters β1, β2, . . . , βs

were used to maximize the region of stability of explicit part of the method assuming that the
implicit part is A-stable, have with one exception, larger areas of SE ∩ C

− and Sπ/2 ∩ C
−

than the extrapolated IMEXDIMSIMs constructed in [19,20] and extrapolated IMEXSDIRK
methods for p = s = 1 and p = s = 2. These areas are smaller as compared with IMEX

5.005.0-1-

Re(z
0
)

0

0.5

1

Im
(z

0
)

Fig. 16 Stability region SE (thick line), Sπ/2,y for y = −8.0,−6.4, . . . , 8.0 (thin dotted lines), and stability
region Sπ/2 (shaded region), of the IMEX GLM corresponding to (8.18)
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SDIRK methods for p = s = 3 and s = 5, p = 4. However, all methods constructed in this
paper have stage order q equal to the order p, and contrary to IMEX SDIRK methods which
have low stage order, they do not suffer from order reduction phenomenon when applied to
stiff differential systems.

The better stability properties of the IMEX GLMs constructed in this paper do not come
for free. The new schemes take one additional internal stage and one additional external stage
as compared to the extrapolated DIMSIMs constructed in [19,20].

9 Numerical Experiments

The IMEX GLMs with IRKS constructed in this paper have order p and stage order q = p
and, as a result, they do not suffer from order reduction phenomenon which affects, for
example, some classes of IMEX RK methods [5,28,35,38,39]. IMEX RK methods of third
order which do not suffer from order reduction were constructed in [6,8].

A useful test problem to investigate a possible order reduction of numerical schemes is
the van der Pol equation

y′ =
[
y′
1
y′
2

]
=
[
y2
0

]
︸ ︷︷ ︸
f (y)

+
[

0(
(1 − y21 )y2 − y1

)
/ε

]
︸ ︷︷ ︸

g(y)

, (9.1)

which is splitted into the non-stiff part f (y) and the stiff part g(y) for 0 < ε � 1. As in
[5,21,22] this system was integrated on the time interval [0, tend ] with tend = 0.55139, and
with initial values given by

y1(0) = 2, y2(0) = −2

3
+ 10

81
ε − 292

2187
ε2 − 1814

19683
ε3 + O(ε4).

Table 1 Areas of SE ∩ C
− and Sπ/2 ∩ C

− for extrapolated IMEX DIMSIMs investigated in [19,20]

p=q=r =s −area(SE ∩ C
−) → min −area(Sπ/2 ∩ C

−) → min

area(SE ∩ C
−) area(Sπ/2 ∩ C

−) area(SE ∩ C
−) area(Sπ/2 ∩ C

−)

1 4.27 3.98 4.21 4.03

2 7.15 5.74 7.14 5.75

3 3.54 0.39 1.04 0.50

4 2.82 0.0069 0.18 0.16

Table 2 Areas of SE ∩ C
− and Sπ/2 ∩ C

− for extrapolated IMEX SDIRK methods investigated in [21]

p, s −area(SE ∩ C
−) → min −area(Sπ/2 ∩ C

−) → min

area(SE ∩ C
−) area(Sπ/2 ∩ C

−) area(SE ∩ C
−) area(Sπ/2 ∩ C

−)

p = s = 1 4.27 3.98 4.21 4.03

p = s = 2 8.83 7.18 8.81 7.20

p = s = 3 14.19 5.00 13.42 10.65

p = 4, s = 5 2.82 1.06 2.47 1.50
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Table 3 Areas of SE ∩C
− and Sπ/2 ∩C

− for extrapolated IMEX GLMs with IRKS, where the parameters
β1, β2, . . . , βs were used to maximize the area of stability of the explicit GLM or of the IMEX scheme
assuming that the implicit part of the method is A-stable

p, s −area(SE ∩ C
−) → min −area(Sπ/2 ∩ C

−) → min

area(SE ∩ C
−) area(Sπ/2 ∩ C

−) area(SE ∩ C
−) area(Sπ/2 ∩ C

−)

p = 1, s = 2 24.45 16.49 21.75 19.19

p = 2, s = 3 36.08 27.77 35.70 31.59

p = 3, s = 4 6.08 0.44 5.85 3.97

p = 4, s = 5 2.08 0.31 1.04 0.84

Table 4 Areas of SE ∩ C
− and Sπ/2 ∩ C

− for extrapolated IMEX GLMs with IRKS, where β1 = β2 =
· · · = βs = E

p, s −area(SE ∩ C
−) → min −area(Sπ/2 ∩ C

−) → min

area(SE ∩ C
−) area(Sπ/2 ∩ C

−) area(SE ∩ C
−) area(Sπ/2 ∩ C

−)

p = 1, s = 2 4.50 2.58 3.73 2.85

p = 2, s = 3 22.33 5.13 24.29 22.60

p = 3, s = 4 1.50 0.41 1.06 0.48

p = 4, s = 5 0.34 0.18 0.27 0.24

As discussed in [5,36] for these initial values the system (9.1) is stiff for small values of ε on
the whole interval of integration [0, tend ] (there are no initial transients on which the problem
is non-stiff). (Observe that in [28,35–37,50] this problem was integrated on the time interval
[0, 0.5]). Integrating (9.1) we treated the non-stiff part f (y) by the explicit method and the
stiff part g(y) by the implicit method. The required starting values Y [1]

i ≈ y(t0 + ci h), i =
1, 2, . . . , s, were computed using theMatlab code ode15swith tolerances AbsTol = 10−14

and RelTol = 10−12. We also need approximations to

y[1]
i ≈ hi−1

[
y(i−1)
1 (t0 + h)

y(i−1)
2 (t0 + h)

]
, i = 1, 2, . . . , p + 1.

As in [16], putting yi = y(i−1)
1 = y(i−2)

2 , i = 3, 4, . . . , p + 2, p = 1, 2, 3, 4, the successive
derivatives of the vector function y = [y1, y2]T are given by

y′ =
[
y2
y3

]
, y′′ =

[
y3
y4

]
, y′′′ =

[
y4
y5

]
, y(4) =

[
y5
y6

]
,

where y3, y4, y5, and y6, can be computed from the recurrence relations

y3 = (
(1 − y21 )y2 − y1

)
/ε,

y4 = (
(1 − y21 )y3 − 2y1y22 − y2

)
/ε,

y5 = (
(1 − y21 )y4 − 6y1y2y3 − 2y32 − y3

)
/ε,

y6 = (
(1 − y21 )y5 − 8y1y2y4 − 12y22 y3 − 6y1y23 − y4

)
/ε.

(Observe that there are some small misprints in [16]). To solve the nonlinear systems of
equations with respect to Y [n+1]

i , resulting from the application of IMEX schemes (5.2) to
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(9.1), we have used the exact Jacobian of the function g(y) given by

Jg(y) = ∂g

∂y
=
⎡
⎢⎣

∂g1
∂y1

∂g1
∂y2

∂g2
∂y1

∂g2
∂y2

⎤
⎥⎦ =

⎡
⎣ 0 0

−2y1y2 − 1

ε

1 − y21
ε

⎤
⎦ .

The results of numerical experiments with IMEX schemes (8.4), (8.8), (8.12), and (8.16) are
presented in Figs. 17, 18, 19, and 20. On these figures we have plotted in double logarithmic
scale the norm of the error at the end of the interval of integration versus stepsize h for
ε = 10−1 and ε = 10−6, and the theoretical slope of convergence corresponding to the
order of the method p, p = 1, 2, 3, 4. Similar results were obtained for the other methods
listed in Sect. 8. We can observe that all IMEX GLMs with IRKS achieve the expected order
of accuracy, and that there is no order reduction for these methods. We have also listed in
Table 5 the stepsizes h, L1-norm of errors at the endpoint tend , the ratios ‖error‖1/h4, and
the observed order of accuracy p for the IMEX scheme (8.16) of order p = 4 and stage order
q = p = 4. The approximation to the reference solution y(tend) = [y1(tend), y2(tend)]T was
computed by Matlab code ode15s with AbsTol = 10−14 and RelTol = 10−12.

Consider next the linear advection-reaction equation [19,20,29]⎧⎪⎨
⎪⎩

∂u

∂t
+ α1

∂u

∂x
= −k1u + k2v + s1,

∂v

∂t
+ α2

∂v

∂x
= k1u − k2v + s2,

(9.2)

h
10 -5 10 -4 10 -3

er
ro

r

10 -6

10 -5

10 -4

10 -3

slope p=1
epsilon=10e-6
epsilon=10e-1

Fig. 17 Error versus stepsize for IMEX GLM with IRKS (8.4) of order p = 1 and stage order q = p = 1

h
10 -5 10 -4 10 -3

er
ro

r

10 -12

10 -10

10 -8

10 -6

slope p=2
epsilon=10e-6
epsilon=10e-1

Fig. 18 Error versus stepsize for IMEX GLM with IRKS (8.8) of order p = 2 and stage order q = p = 2
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h
10 -4 10 -3 10 -2 10 -1

er
ro

r

10 -15

10 -10

10 -5

10 0

slope p=3
epsilon=10e-6
epsilon=10e-1

Fig. 19 Error versus stepsize for IMEX GLM with IRKS (8.12) of order p = 3 and stage order q = p = 3

h
10 -3 10 -2 10 -1

er
ro

r

10 -15

10 -10

10 -5

10 0

slope p=4
epsilon=10e-6
epsilon=10e-1

Fig. 20 Error versus stepsize for IMEX GLM with IRKS (8.16) of order p = 4 and stage order q = p = 4

Table 5 L1-norm of errors, ratios ‖error‖1/h4, and observed orders of convergence p versus stepsize h for
IMEX GLM with IRKS (8.16) applied to (9.1) with ε = 10−1 and ε = 10−6

h ‖error‖1 ‖error‖1/h4 p

ε = 10−1 ε = 10−6 ε = 10−1 ε = 10−6 ε = 10−1 ε = 10−6

5.51e−02 7.17e−06 4.28e−02 0.78 4633

2.76e−02 4.97e−07 3.03e−04 0.86 524 3.85 7.14

1.39e−02 3.71e−08 1.73e−05 1.03 479 3.74 4.13

6.89e−03 2.69e−09 6.29e−07 1.19 279 3.79 4.78

3.45e−03 1.62e−10 6.88e−08 1.15 488 4.05 3.19

1.72e−03 1.09e−11 8.54e−10 1.24 96.9 3.90 6.33

0 ≤ x ≤ 1, 0 ≤ t ≤ 1, with parameters

α1 = 1, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1,

and with initial and boundary values

u(x, 0) = 1 + s2x, v(x, 0) = k1
k2

u(x, 0) + s2
k2

, 0 ≤ x ≤ 1,

u(0, t) = γ1(t), v(0, t) = γ2(t), 0 ≤ t ≤ 1.
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Table 6 L1-norm of errors versus stepsize for IMEX-GLM1, IMEX-GLM2, IMEX-GLM3, and
IMEX-GLM4 applied to the discretization of (9.2) by first-order spatial discretization with N = 100 points

h 1.00e−02 5.00e−03 2.50e−03 1.25e−03

IMEX-GLM1 4.19e−11 7.60e−12 1.61e−12 8.63e−13

IMEX-GLM2 5.15e−11 9.55e−12 2.76e−12 3.52e−13

IMEX-GLM3 3.80e−10 1.41e−10 6.38e−11 2.84e−11

IMEX-GLM4 ∗ 2.92e−09 1.45e−09 6.56e−10

The entry ∗ indicates no convergence

(Observe that the condition v(0, t) = γ2(t) does not have to be specified since α2 = 0).
Discretization of (9.2) in space variable x on the uniform grid xi = iΔx , i = 0, 1, . . . , N ,
NΔx = 1, leads to the initial value problem for the system of ODEs of dimension 2N ,
with non-stiff part corresponding to the advection terms, and stiff part corresponding to the
reaction terms.

As in [29] we consider two discretizations of (9.2). The first one is based on the first-order
upwind spatial discretization

Δx w′(xi ) = w(xi ) − w(xi−1) + O(Δx2), i = 1, 2, . . . , N .

Assuming that γ1(t) ≡ 1, 0 ≤ t ≤ 1, the initial values provide a stationary solution to
the problem (9.2) and its discretization, compare [29]. The resulting system of ODEs was
solved by IMEX GLMs (8.4), (8.8), (8.12), and (8.16) of order p = 1, 2, 3, 4, and the
numerical results are presented in Table 6. These methods are referred to as IMEX-GLM1,
IMEX-GLM2, IMEX-GLM3, and IMEX-GLM4.

The second discretization of (9.2) corresponds to the time dependentDirichlet data γ1(t) =
1 − sin(12t)4 at the left boundary, and it is based on the fourth-order central differences in
the interior domain

Δx w′(xi ) = 1

12
w(xi−2) − 2

3
w(xi−1) + 2

3
w(xi+1) − 1

12
w(xi+2) + O(Δx5),

i = 2, 3, . . . , N − 2, third-order finite differences

Δx w′(xi ) = −1

3
w(xi−1) − 1

2
w(xi ) + w(xi+1 − 1

6
w(xi+2) + O(Δx4),

Δx w′(xi ) = 1

6
w(xi−2) − w(xi−1) + 1

2
w(xi ) + 1

3
w(xi+1) + O(Δx4),

at i = 1 and i = N −1, respectively, and on the one-sided finite difference of the third-order

Δx w′(xi ) = −1

3
w(xi−3) + 3

2
w(xi−2) − 3w(xi−1) + 11

6
w(xi ) + O(Δx4),

at the right boundary point corresponding to i = N .
The solution to the resulting system of ODEs is smooth. This solution is plotted on Fig. 21,

where the plot on the left corresponds to the approximation to the u(x, t) component and
plot on the right corresponds to the approximation to the v(x, t) component of the solution
to (9.2). The selection of numerical results is presented in Table 7 for the discretization of
(9.2) with N = 400 spatial points, where ux and vx are approximated by fourth-order central
differences in the interior domain and by third-order finite differences at the boundaries as
described above. The required starting values and the reference solution was computed by
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Fig. 21 The approximation to the solution u(x, t) (left) and v(x, t) (right) of the discretization of (9.2) with
N = 400 spatial points, where ux and vx are approximated by fourth-order central differences in the interior
domain and by third-order finite differences at the boundaries

Table 7 L1-norm of errors and observed orders of convergence p for IMEX GLMs with IRKS (8.4), (8.8),
(8.12), and (8.16) applied to the discretization of (9.2) with N = 400 by fourth-order central differences in
the interior domain and by third-order finite differences at the boundaries

h IMEX-GLM1 IMEX-GLM2 IMEX-GLM3 IMEX-GLM4

‖error‖1 p ‖error‖1 p ‖error‖1 p ‖error‖1 p

1.0000e−03 4.94e−01 8.14e−03 3.50e−04

5.0000e−04 1.23e−01 2.00 1.02e−03 3.00 2.16e−05 4.02

2.5000e−04 3.08e−02 2.00 1.27e−04 3.00 1.35e−06 4.00

1.2500e−04 2.56e00 7.71e−03 2.00 1.59e−05 3.00 8.61e−08 3.97

6.2500e−05 1.27e00 1.02 1.93e−03 2.00 1.97e−06 3.01 2.51e−08 1.78

3.1250e−05 6.29e−01 1.01 4.82e−04 2.00 2.35e−07 3.07 2.47e−08 0.02

1.5625e−05 3.14e−01 1.00 1.20e−04 2.00 2.65e−08 3.15

7.8125e−06 1.57e−01 1.00 3.01e−05 2.00

ode15swith AbsTol = 10−14 and RelTol = 10−12. In this table we have listed L1-norm of
the errors at the end of the interval of integration and the observed orders of convergence for
IMEX GLMs (8.4), (8.8), (8.12), and (8.16) of order p = 1, 2, 3, and 4. We can see that all
these methods achieve the expected order of convergence and that there is no order reduction
for this stiff system of ODEs. For this problem the ‘limiting accuracy’ is about 10−8 and
we can see that IMEX-GLM4 does not show significant improvement in accuracy consistent
with order p = 4 for stepsizes h < 1.25 · 10−4. The numerical results for other methods
listed in Sect. 8 are similar to those presented in Table 7.

Our next example is the CUSP problem from [27] which is often used to test codes for stiff
differential systems. This is a combination of Zeeman’s cusp catastrophe model for the nerve
impulse mechanism [48] and the classical van der Pol oscillator. This problem is described
by the system of PDEs of the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂y

∂t
= −1

ε

(
y3 + ay + b

)
σ

∂2y

∂x2
,

∂a

∂t
= b + 0.07 v + σ

∂2a

∂x2
,

∂b

∂t
= (

1 − a2
)
b − a − 0.4 y + 0.035 v + σ

∂2b

∂x2
,

(9.3)
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0 ≤ x ≤ 1, t ∈ [0, tend ], where v = u/(u + 0.1), u = (y − 0.7)(y − 1.3). As in [27] we
choose σ = 1/144 and ε = 10−4. We discretize this problem by the method of lines on
the uniform grid xi = iΔx , i = 1, 2, . . . , N , NΔx = 1, which leads to the large system of
ODEs of the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩

y′
i = −1

ε

(
y3i + ai yi + bi

) + σ

Δx2
(yi+1 − 2yi + yi−1) ,

a′
i = bi + 0.07 vi + σ

Δx2
(ai+1 − 2ai + ai−1) ,

b′
i = (1 − a2i )bi − ai − 0.4 yi + 0.035 vi + σ

Δx2
(bi+1 − 2bi + bi−1) ,

(9.4)

i = 1, 2, . . . , N , where vi = ui/(ui + 0.1), ui = (yi − 0.7)(yi − 1.3), and

yi = yi (t) ≈ y(xi , t), ai = ai (t) ≈ a(xi , t), bi = bi (t) ≈ b(xi , t).

We assume periodic boundary conditions

y0 := yN , a0 := aN , b0 := bN , yN+1 := y1, aN+1 := a1, bN+1 := b1,

and the initial conditions

yi (0) = 0, ai (0) = −2 sin

(
2iπ

N

)
, bi (0) = 2 sin

(
2iπ

N

)
, i = 1, 2, . . . , N .

We also choose N = 32 and tend = 1.1. The stiffness in this problem comes from a small
parameter ε and the discretization of the diffusion terms ∂2y/∂x2, ∂2a/∂x2, and ∂2b/∂x2,
by central finite differences of the second order. In the IMEX schemes we treat the stiff terms
in (9.4) by the implicit method and the remaining terms by the explicit method.

The solution to (9.4) is plotted in Fig. 22 in the coordinate system (y, a, b), where we
denoted by small black balls the beginnings and by small black squares the endings of
the trajectories (yi (t), ai (t), bi (t)), i = 1, 2, . . . , N . We can see that these trajectories are

Fig. 22 The approximation to the solutions (yi (t), ai (t), bi (t)) of the CUSP problem (9.4) for i =
1, 2, . . . , N , N = 32, and t ∈ [0, 1.1]
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Table 8 L1-norm of errors and observed orders of convergence p for IMEX GLMs with IRKS (8.4), (8.8),
(8.12), and (8.16) applied to the discretization (9.4) of the CUSP problem (9.3) with N = 32 by second-order
central differences

h IMEX-GLM1 IMEX-GLM2 IMEX-GLM3 IMEX-GLM4

‖error‖1 p ‖error‖1 p ‖error‖1 p ‖error‖1 p

1.0000e−04 4.96e−03 5.09e−04 1.43e−03

5.0000e−05 2.51e−03 0.99 1.29e−04 1.98 2.50e−04 2.51

2.5000e−05 1.26e−03 0.99 6.34e−05 1.03 1.00e−04 1.32 1.60e−03

1.2500e−05 6.25e−04 1.01 1.52e−05 2.06 1.80e−05 2.48 1.56e−04 3.35

6.2500e−06 3.12e−04 1.00 1.97e−06 2.95 9.02e−07 4.32 4.15e−06 5.23

3.1250e−06 1.56e−04 1.00 4.98e−07 1.99 1.13e−08 6.32 3.12e−08 7.06

1.5625e−06 7.81e−05 1.00 1.25e−07 2.00 2.65e−10 5.41 7.31e−10 5.41

changing rapidly for some values of the parameter t and the use of rather small stepsizes h was
necessary to resolve accurately these rapid changes. The results of numerical experiments for
this problem are presented in Table 8 for time stepsizes h ranging from 1.0 · 10−4 to 1.5625 ·
10−6. We can see again that all IMEX schemes attain the expected order of convergence and
there is no order reduction for any of these methods.

Following Hundsdorfer and Ruuth [28] (see also [29]) we consider next the adsorption–
desorption problem given by the equations

{
ut + a(t)ux = κ (v − φ(u)) ,

vt = −κ (v − φ(u)) ,
(9.5)

0 ≤ x ≤ 1, t ∈ [0, tend ], tend = 1.25, where φ(u) = k1u/(1 + k2u). The initial values are
u(x, 0) = v(x, 0) = 0, 0 ≤ x ≤ 1, and the boundary values are

{
u(0, t) = 1 − cos2(6π t) if a > 0.
u(1, t) = 0 if a < 0.

As in [28] we choose the parameters κ = 106, k1 = 50, k2 = 100, and the velocity
a = a(t) = − arctan (100(t − 1)) /π. Then a(t) > 0 for 0 ≤ t ≤ 1, which corresponds to
the adsorption phase, and a(t) < 0 for t > 1, which corresponds to the desorption phase.

For the spatial discretization of ux we have implemented the WENO5 scheme [44] fol-
lowing the presentation in [45]. Using the method of lines approach on the uniform grid
xi = iΔx , i = 0, 1, . . . , N , NΔx = 1, we discretize ut = −a(t)ux by

u′
i = − 1

Δx

(
f̂i+ 1

2
− f̂i− 1

2

)
,

where f̂i+ 1
2
is the numerical flux, which for our problem is just equal to f̂ (u) = f (u) =

a(t)u. As in [45] we consider the Lax–Friedrichs splitting f (u) = f +(u) + f −(u), where

f +(u) = 1

2
( f (u) + m u) , f −(u) = 1

2
( f (u) − m u) ,
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and m = max | f (u)|. This leads to f +(u) = f (u) and f −(u) = 0. We calculate next the
indicators of smoothness

I S0 = 13

12
a2 (ui−2 − 2ui−1 + ui )

2 + 1

4
a2 (ui−2 − 4ui−1 + 3ui )

2 ,

I S1 = 13

12
a2 (ui−1 − 2ui + ui+1)

2 + 1

4
a2 (ui−1 − ui+1)

2 ,

I S2 = 13

12
a2 (ui − 2ui+1 + ui+2)

2 + 1

4
a2 (3ui − 4ui+1 + ui+2)

2 ,

and the non normalized stencil weights

α0 = 1

10

(
1

ε + I S0

)2

, α1 = 3

5

(
1

ε + I S1

)2

, α2 = 3

10

(
1

ε + I S2

)2

,

where ε is a small positive number which is chosen, following the recommendation in [28],
as ε = 10−12. We compute next the normalized WENO stencil weights from the relations

w0 = α0

α0 + α1 + α2
, w1 = α1

α0 + α1 + α2
, w2 = α2

α0 + α1 + α2
.

The numerical fluxes for WENO5 scheme are then given by

f̂i+ 1
2

= w0 a

(
1

3
ui−2 − 7

6
ui−1 + 11

6
ui

)
+ w1 a

(
−1

6
ui−1 + 5

6
ui + 1

3
ui+1

)

+w2 a

(
1

3
ui + 5

6
ui+1 − 1

6
ui+2

)
.

The discretization of (9.5) is then given by the following system of ODEs
{
u′
i = − 1

Δx

(
f̂i+ 1

2
− f̂i− 1

2

)
+ κ (vi − φ(ui )) ,

v′
i = −κ (vi − φ(ui )) ,

(9.6)

i = 1, 2, . . . , N , t ∈ [0, 1], where u0 = 1 − cos2(6π t). The initial conditions are ui (0) =
vi (0) = 0, i = 1, 2, . . . , N . This system has to be modified for t ≥ 1, where we consider the
discretization of the problem (9.5) by the method of lines on the spatial grid xi = (i −1)Δx ,
i = 1, 2, . . . , N , NΔx = 1, and assume that uN+1 = 0, which corresponds to the boundary
condition u(1, t) = 0. This condition has to be taken into account for t ≥ 1 when the velocity
a(t) becomes negative.

We have plotted on Fig. 23 the approximations to ui (t) ≈ u(xi , t) and vi (t) ≈ v(xi , t)
corresponding to N = 800 and i = 200. We can see that these trajectories are changing
rapidly (there are smooth regions between the shocks) and we had to use quite small stepsizes
to resolve them accurately. The selection of numerical results is presented in Table 9 for
stepsizes h ranging from 2.5000 · 10−4 to 7.8125 · 10−6. In this table the error is defined by

error =
⎡
⎢⎣

y(x1, tend) − y1(tend)
...

y(xN , tend) − yN (tend)

⎤
⎥⎦ , y(x, t) =

[
u(x, t)
v(x, t)

]
, yi (t) =

[
ui (t)
vi (t)

]
,

where y = [u, v]T is the solution to (9.5). The approximation to this reference solution was
computed using ode15s from Matlab with AbsTol = 10−14 and RelTol = 10−12. These
results demonstrate again that all methods achieve the expected order of accuracy and do not
exhibit the order reduction phenomenon.
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   u
200

Fig. 23 Approximations to the trajectories u200(t) and (u+v)200(t) of the discretization (9.6) of the problem
(9.5) with N = 800 spatial points, where ux is approximated by WENO5 scheme

Following [29] our next test model for the IMEX schemes is the system of reaction–
diffusion equations

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= D1

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ κ

(
a − u + u2v

)
,

∂v

∂t
= D2

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ κ

(
b − u2v

)
,

(9.7)

0 ≤ x, y ≤ 1, t ≥ 0, with initial conditions

u(x, y, 0) = a + b + 10−3 exp
(
−100

((
x − 1

2

)2 + (
y − 1

3

)2))
,

v(x, y, 0) = b

(a + b)2
,

and the homogeneous Neumann boundary conditions

∂u

∂x
(0, y, t) = ∂u

∂x
(1, y, t) = 0,

∂u

∂y
(x, 0, t) = ∂u

∂y
(x, 1, t) = 0,

∂v

∂x
(0, y, t) = ∂v

∂x
(1, y, t) = 0,

∂v

∂y
(x, 0, t) = ∂v

∂y
(x, 1, t) = 0.

The parameter values are a = 0.1305, b = 0.7695, D1 = 0.05, D2 = 1, κ = 100. This
model is due to Schnackenberg [43] and, as observed in [29], it is related to the Gray-Scott
model for pattern formation described in [40].

The system (9.7) was discretized on the uniform grids in space variables x and y, xi = (i−
1)Δx , i = 1, 2, . . . , N , (N−1)Δx = 1, y j = ( j−1)Δy, j = 1, 2, . . . , M , (M−1)Δy = 1,
using standard second order finite differences in space for the diffusion terms. This leads to
the system of ODEs of dimension 2NM for the unknown functions ui j (t) ≈ u(xi , y j , t) and
vi j (t) ≈ v(xi , y j , t) of the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
i j = D1

(
ui+1, j − 2ui j + ui−1, j

Δx2
+ ui, j+1 − 2ui j + ui−1, j

Δy2

)

− ui jv2i j + γ
(
1 − ui j

)
,

v′
i j = D2

(
vi+1, j − 2vi j + vi−1, j

Δx2
+ vi, j+1 − 2vi j + vi−1, j

Δy2

)

+ ui jv2i j − (γ + κ)vi j ,

(9.8)
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Table 9 L1-norm of errors and observed orders of convergence p for IMEX GLMs with IRKS (8.4), (8.8),
(8.12), and (8.16) applied to the discretization (9.6) of the adsorption–desorption Eq. (9.5) with N = 800
spatial points by WENO5 scheme

h IMEX-GLM1 IMEX-GLM2 IMEX-GLM3 IMEX-GLM4

‖error‖1 p ‖error‖1 p ‖error‖1 p ‖error‖1 p

2.5000e−04 1.33e01 5.94e−01 3.98e−02

1.2500e−04 7.21e00 0.88 1.48e−01 2.00 4.07e−03 3.29 8.62e−04

6.2500e−05 4.56e00 0.66 3.68e−02 2.01 5.10e−04 3.00 6.11e−05 3.82

3.1250e−05 2.18e00 1.06 9.18e−03 2.00 6.36e−05 3.00 3.39e−06 4.17

1.5625e−05 1.01e00 1.11 2.29e−03 2.00 7.86e−06 3.02 4.20e−07 3.01

7.8125e−06 4.92e−01 1.04 5.73e−04 2.00 9.93e−07 2.98 3.62e−07 0.21

1

x

0.5

00

0.5

y

4

2

0
1

u

1

x

0.5

00

0.5

y

2

1

0
1

v

Fig. 24 The approximation to the solution u(x, y, t) (left) and v(x, y, t) (right) of the discretization (9.8) of
the system (9.7) by second order finite differences with N = M = 41 spatial points in x and y variables

i = 1, 2, . . . , N , j = 1, 2, . . . , M , with initial conditions

ui j (0) = a + b + 10−3 exp
(
−100

((
xi − 1

2

)2 + (
y j − 1

3

)2))
,

vi j (0) = b

(a + b)2
,

i = 1, 2, . . . , N , j = 1, 2, . . . , M . Because of the boundary conditions we have

u0, j = u2, j , uN+1, j = uN−1, j , ui,0 = ui,2, ui,M+1 = ui,M−1,

v0, j = v2, j , vN+1, j = vN−1, j , vi,0 = vi,2, vi,M+1 = vi,M−1.

This system of ODEs (9.8) was then solved by IMEX schemes (8.4), (8.8), (8.12), and
(8.16), where the diffusion terms were treated by implicit method and the reaction terms by
the explicit methods. The reference solution at t = 1 is plotted on Fig. 24, and the selection of
the results of numerical experiments are presented in Table 10. We can see that the methods
IMEX-GLM1, IMEX-GLM2, IMEX-GLM3, achieve the expected order of convergence, and
the observed order of the method IMEX-GLM4 for small stepsizes is more than four, and that
there is no order reduction for some range of stepsizes on the whole interval of integration.

The order reduction phenomenon for GLMs of order p and stage order q is discussed in
a recent paper [9]. It was proved in this paper that if the GLM, whose region of absolute
stabilityA is closed in C, is applied to the Prothero–Robinson problem (6.9), then the global
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Table 10 L1-norm of errors and observed orders of convergence p for IMEX GLMs with IRKS (8.4), (8.8),
(8.12), and (8.16) applied to the discretization of reaction–diffusion Eq. (9.7) by second order finite differences
in space variables for the diffusion terms

h IMEX-GLM1 IMEX-GLM2 IMEX-GLM3 IMEX-GLM4

‖error‖1 p ‖error‖1 p ‖error‖1 p ‖error‖1 p

1.0000e−03 1.15e02 7.01e−01 1.38e−01 2.07e00

5.0000e−04 5.59e01 1.04 1.94e−01 1.85 1.73e−02 3.00 5.80e−01 1.83

2.5000e−04 3.60e01 0.63 5.19e−02 1.90 2.11e−03 3.03 3.37e−02 4.11

1.2500e−04 1.09e01 1.72 1.35e−02 1.95 2.58e−04 3.03 1.32e−03 4.68

6.2500e−05 4.83e00 1.18 3.43e−03 1.97 3.19e−05 3.02 4.50e−05 4.87

3.1250e−05 2.37e00 1.03 8.66e−04 1.99 3.95e−06 3.01 1.48e−06 4.92

error e[n] satisfies

∥∥e[n]∥∥ = O(hq) + O(h p) as h → 0 and hμ → −∞.

Moreover, if the GLM has RK stability and R(∞) �= 1, where R(z) is the stability function
of the underlying RK method, then we have a better estimate

∥∥e[n]∥∥ = O(hq+1) + O(h p) as h → 0 and hμ → −∞.

In particular, there is no order reduction for GLMswith RK stability and such that R(∞) �= 1
of order p and stage order q = p − 1, i.e., for such methods ‖e[n]‖ = O(h p) as h → 0 and
hμ → −∞.

10 Concluding Remarks

We described a construction of a new class of IMEX GLMs with IRKS. This construction
starts with a highly stable diagonally implicit GLMs of order p and stage order q = p,
and then we ‘remove’ the implicitness of the terms corresponding to the non-stiff part of
the differential system by extrapolating stage derivatives in the current step by the stage
derivatives in the previous step and those already computed in the current step. The new
methods have order p and stage order q = p and, contrary to some classes of IMEX Runge–
Kutta methods, they do not suffer from order reduction phenomenon. This is confirmed by
numerical experiments on a wide range of nontrivial test problems from real life applications.

Future work will address the implementation issues related to these methods such as con-
struction of appropriate starting and finishing procedures, estimation of local discretization
errors, step size and order changing strategies, construction of continuous extensions, and
efficient solution of nonlinear systems of equations corresponding to the stiff part of the
method at each step of integration.
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