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Abstract In this paper we design and analyze a uniform preconditioner for a class of high-
order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting
involving the high-order conforming subspace and results from the interpretation of the prob-
lem as a nearly-singular problem.We show that the proposed preconditioner exhibits spectral
bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the
polynomial degree and the penalization coefficient. The theoretical estimates obtained are
supported by numerical tests.

Keywords Discontinuous Galerkin method · High-order discretizations ·
Uniform preconditioning

1 Introduction

In the last years, the design of efficient solution techniques for the system of equations aris-
ing fromDiscontinuousGalerkin (DG) discretizations of elliptic partial differential equations
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has become an increasingly active field of research. On the one hand, DG methods are char-
acterized by a great versatility in treating a variety of problems and handling, for instance,
non-conforming grids and hp-adaptive strategies. On the other hand, the main drawback
of DG methods is the larger number of degrees of freedom compared to (standard) con-
forming discretizations. In this respect, the case of high-order DG schemes is particularly
representative, since the corresponding linear system of equations is very ill-conditioned:
it can be proved that, for elliptic problems, the spectral condition number of the resulting
stiffness matrix grows like h−2 p4, h and p being the granularity of the underlying mesh and
the polynomial approximation degree, respectively, cf. [6]. As a consequence, the design of
effective tools for the solution of the linear system of equations arising from high-order DG
discretizations becomes particularly challenging.

In the context of elliptic problems, Schwarz methods for low order DG schemes have
been studied in [29], where overlapping and non-overlapping domain decomposition pre-
conditioners are considered, and bounds of O(H/δ) and O(H/h), respectively, are obtained
for the condition number of the preconditioned operator. Here H , h and δ stand for the
granularity of the coarse and fine grids and the size of the overlap, respectively. Further
extensions including inexact local solvers, and the extension of two-level Schwarz methods
to advection–diffusion and fourth-order problems can be found in [1–3,5,12,26,30,38]. In
the field of Balancing Domain Decomposition (BDD) methods, a number of results exist in
literature: exploiting a Neumann–Neumann type method, in [23,24] a conforming discretiza-
tion is used on each subdomain combined with interior penalty method on non-conforming
boundaries, thus obtaining a bound for the condition number of the resulting preconditioner
of O((1 − log(H/h))2). In [21], using the unified framework of [11] a BDDC method is
designed and analyzed for a wide range of DG methods. The auxiliary space method (ASM)
(see e.g., [32,33,41,49]) is employed in the context of h-version DG methods to develop,
for instance, the two-level preconditioners of [22] and the multilevel method of [15]. In both
cases a stable splitting for the linear DG space is provided by a decomposition consisting of
a conforming subspace and a correction, thus obtaining uniformly bounded preconditioners
with respect to the mesh size.

All the previous results focus on low order (i.e., linear) DG methods. In the context of
preconditioning high-order DGmethods we mention [6,8], where a class of non-overlapping
Schwarz preconditioners is introduced, and [4], where a quasi-optimal (with respect to h and
p) preconditioner is designed in the framework of substructuring methods for hp-Nitsche-
type discretizations.Multigridmethods for high-orderDGdiscretizations have been analyzed
in [9], cf. also [7] for the extension to genereal polygonal/polyhedral meshes. A study of a
BDDC scheme in the case of hp-spectral DG methods is addressed in [19], where the DG
framework is reduced to the conforming one via the ASM. The ASM framework is employed
also in [14], where the high-order conforming space is employed as auxiliary subspace, and
a uniform multilevel preconditioner is designed for hp-DG spectral element methods in the
case of locally varying polynomial degree. To the best of our knowledge, this preconditioner
is the only uniform preconditioner designed for high-order DG discretizations. We note
that, in the framework of high-order methods, the decomposition involving a conforming
subspace was already employed in the case of a-posteriori error analysis, see for example
[17,35,51]. In this paper, we address the issue of preconditioning high-order DG methods
by exploiting this kind of space splitting based on a high-order conforming space and a
correction. However, in our case the space decomposition is suggested by the interpretation
of the high-order DG scheme in terms of a nearly-singular problem, cf. [39]. Even though the
space decomposition is similar to that of [14], the preconditioner and the analysis we present
differs considerably since here we employ the abstract framework of subspace correction
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methods provided by [50]. More precisely, we are able to show that a simple pointwise
Jacobi method paired with an overlapping additive Schwarz method for the conforming
subspace, gives uniform convergence with respect to all the discretization parameters, i.e.,
the mesh size, the polynomial order and the penalization coefficient appearing in the DG
bilinear form.

The rest of the paper is organized as follows. In Sect. 2, we introduce the model problem
and the corresponding discretization through a class of symmetric DG schemes. Section 3
is devoted to few auxiliary results regarding the Gauss–Legendre–Lobatto nodes, whose
properties are fundamental to prove the stability of the space decomposition proposed in
Sect. 4. The analysis of the preconditioner is presented in Sect. 5 and the theoretical results
are supported by the numerical simulations of Sect. 6. We also test the performance of the
proposedmethod in the case of more general diffusion equation, with isotropic discontinuous
as well as anisotropic diffusion tensors.

2 Model Problem and High-Order DG Discretization

In this section we introduce the model problem and its discretization through several Dis-
continuous Galerkin schemes, see also [11].
Throughout the paper, we use the notation x � y and x � y to denote the inequalities x ≤ Cy
and x ≥ Cy, respectively, C being a positive constant independent of the discretization
parameters. Moreover, x ≈ y means that there exist constants C1,C2 > 0 such that C1y ≤
x ≤ C2y. When needed, the constants are written explicitly.
Given a convex polygonal/polyhedral domain � ∈ R

d , d = 2, 3, and f ∈ L2(�), we
consider the followingweak formulation of the Poisson problemwith homogeneousDirichlet
boundary conditions: find u ∈ V := H1

0 (�), such that∫
�

∇u · ∇v dx =
∫

Ω

f v dx ∀v ∈ V . (1)

Let Th denote a shape-regular, conforming, locally quasi-uniform partition of � into shape-
regular elements κ of diameter hκ , and set h := maxκ∈Th hκ . We also assume that each
element κ ∈ Th results from the mapping, through an affine operator Fκ , of a reference
element κ̂ , which is the open, unit d-hypercube in R

d , d = 2, 3.
We denote by F I

h and F B
h the set of internal and boundary faces (for d = 2 “face” means

“edge”) of Th , respectively, and define Fh := F I
h ∪ F B

h . We associate to any F ∈ Fh a unit
vector nF orthogonal to the face itself and also denote by nF,κ the outward normal vector to
F ⊂ ∂κ with respect to κ . We observe that for any F ∈ F B

h , nF,κ = nF , since F belongs to

a unique element. For any F ∈ F I
h , we assume F = ∂κ+ ∩ ∂κ−, where

κ+ := {κ ∈ Th : F ⊂ ∂κ, nF · nF,κ > 0},
κ− := {κ ∈ Th : F ⊂ ∂κ, nF · nF,κ < 0}.

For regular enough vector-valued and scalar functions τ and v, we denote by τ± and v± the
corresponding traces taken from the interior of κ±, respectively, and define the jumps and
averages across the face F ∈ F I

h as follows

�τ � := τ+ · nF,κ+ + τ− · nF,κ− , {{τ }} := τ+ + τ−

2
,

�v� := v+nF,κ+ + v−nF,κ− , {{v}} := v+ + v−

2
,
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For F ∈ F B
h , the previous definitions reduce to �v� := vnF and {{τ }} := τ .

We now associate to the partition Th , the high-order Discontinuous Galerkin finite element
space Vhp defined as

Vhp := {v ∈ L2(�) : v ◦ Fκ ∈ Q
p(κ̂) ∀κ ∈ Th},

with Q
p denoting the space of all tensor-product polynomials on κ̂ of degree p > 1 in each

coordinate direction. We define the lifting operators R(τ ) := ∑
F∈Fh

rF (τ ) and L(v) :=∑
F∈F I

h
lF (v), where

rF : [L2(F)]d → [Vhp]d ,
∫

Ω

rF (τ ) · η dx := −
∫
F

τ · {{η}} ds ∀F ∈ Fh .

lF : L2(F) → [Vhp]d ,
∫

Ω

lF (v) · η dx := −
∫
F

v�η� ds ∀F ∈ F I
h ,

for any η ∈ [Vhp]d .
We then introduce the DG finite element formulation: find u ∈ Vhp such that

A(u, v) =
∫

Ω

f v dx ∀v ∈ Vhp, (2)

with A(·, ·) : Vhp × Vhp → R defined as

A(u, v) :=
∑
κ∈Th

∫
κ

∇u · ∇v dx +
∑
κ∈Th

∫
κ

∇u · (R(�v�) + L(β · �v�)) dx

+
∑
κ∈Th

∫
κ

(R(�u�) + L(β · �u�)) · ∇v dx +
∑
F∈Fh

∫
F

σ �u� · �v�ds

+ θ

∫
Ω

(R(�u�) + L(β · �u�)) · (R(�v�) + L(β · �v�))dx, (3)

where θ = 0 for the SIPG method of [10] and θ = 1 for the LDG method of [20]. With
regard to the vector function β, we have β = 0 for the SIPG method, while β ∈ R

d is a
uniformly bounded (and possibly null) vector for the LDGmethod. The penalization function
σ ∈ L∞(Fh) is defined as

σ |F := α
p2

min(hκ+ , hκ−)
, F ∈ F I

h , σ |F := α
p2

hκ

F ∈ F B
h ,

being α ≥ 1 and hκ± the diameters of the neighboring elements κ± ∈ Th sharing the face
F ∈ F I

h .
We endow the DG space Vhp with the following norm

‖v‖2DG :=
∑
κ∈Th

‖∇v‖2L2(κ)
+

∑
F∈Fh

‖σ 1/2�v�‖2L2(F)
,

and state the following result, cf. [6,36,44,45].

Lemma 1 The following results hold

A(u, v) � ‖u‖DG‖v‖DG ∀u, v ∈ Vhp,

A(u, u) � ‖u‖2DG ∀u ∈ Vhp. (4)

For the SIPG formulation coercivity holds provided the penalization coefficient α is chosen
large enough.
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From Lemma 1 and using the Poincaré inequality for piecewise H1 functions of [13], the
following spectral bounds hold, cf. [6].

Lemma 2 For any u ∈ Vhp it holds that

∑
κ∈Th

‖u‖2L2(κ)
� A(u, u) �

∑
κ∈Th

α
p4

h2κ
‖u‖2L2(κ)

. (5)

3 Gauss–Legendre–Lobatto Nodes and Quadrature Rule

In this section we provide some details regarding the choice of the basis functions spanning
the space Vhp and the corresponding degrees of freedom. On the reference d-hypercube
[−1, 1]d , we choose the basis obtained by the tensor product of the one-dimensional Lagrange
polynomials on the reference interval [−1, 1], based on Gauss–Legendre–Lobatto (GLL)
nodes. We denote by NI(κ̂) (NB(κ̂)) the set of interior (boundary) nodes of κ̂ , and define
N (κ̂) := NI(κ̂) ∪ NB(κ̂). The analogous sets in the physical frame are denoted by NI(κ),
NB(κ) and N (κ), where any ξp ∈ N (κ) is obtained by applying the linear mapping Fκ :
κ̂ → κ to the corresponding ξ̂p ∈ N (κ̂). The choice of GLL points as degrees of freedom
allow us to exploit the properties of the associated quadrature rule. We recall that, given
(p + 1)d GLL quadrature nodes {ξ̂p} and weights {ŵξp }, we have

∑
ξ̂p∈N (κ̂)

v(ξ̂p)ŵξp =
∫

κ̂

v dx ∀v ∈ Q
2p−1(κ̂),

which implies that

∑
ξ̂p∈N (κ̂)

v(ξ̂p)
2ŵξp �=

∫
κ̂

v2 dx ∀v ∈ Q
p(κ̂).

However, by defining, for v ∈ Q
p(κ̂), the following norm

‖v‖20,p,κ̂ :=
∑

ξp∈N (κ̂)

v(ξ̂p)
2ŵξp ,

it can be proved that
‖v‖20,p,κ̂ ≈ ‖v‖2L2(κ̂)

, (6)

cf. [18, Section 5.3]. The same result holds for the physical frame κ , i.e., ‖v‖20,p,κ ≈ ‖v‖2
L2(κ)

.

Considering the Lagrange basis {φξp }, ξp ∈ ⋃
κ∈Th

N (κ), we can write any v ∈ Vhp as

v =
∑
κ∈Th

∑
ξp∈N (κ)

v(ξp)φξp =
∑
κ∈Th

∑
ξp∈N (κ)

vξp , (7)

where we note that vξp = v(ξp)φξp .

Lemma 3 For any v ∈ Vhp, given the decomposition (7), the following equivalence holds

‖v‖2L2(�)
≈

∑
κ∈Th

∑
ξp∈N (κ)

‖vξp‖2L2(κ)
.
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Proof The proof can be restricted to the case of a single element κ ∈ Th . We write v ∈ Vhp
as in (7), and observe that

‖vξp‖20,p,κ =
∑

ξ ′
p∈N (κ)

vξp (ξ ′
p)

2wξp = vξp (ξp)
2wξp ,

hence, by (6),

‖v‖2L2(κ)
≈

∑
ξp∈N (κ)

v(ξp)
2wξp =

∑
ξp∈N (κ)

vξp (ξp)
2wξp

=
∑

ξp∈N (κ)

‖vξp‖20,p,κ ≈
∑

ξp∈N (κ)

‖vξp‖2L2(κ)
,

and the thesis follows summing over all κ ∈ Th . ��

4 Space Decomposition for High-Order DG Methods

The design of our preconditioner is based on a two-stage space decomposition: we first split
the high-order DG space as Vhp = V B

hp + VC
hp , with V B

hp denoting a proper subspace of Vhp ,

to be defined later, and VC
hp denoting the high-order conforming subspace. As a second step,

both spaces are further decomposed to build two corresponding additive Schwarz methods
in each of the subspaces. The final preconditioner on Vhp is then obtained by combining the
two subspace preconditioners. The first space splitting is suggested by the interpretation of
the high-order DG formulation (2) as a nearly-singular problem. To present the motivation
behind this choice, we briefly introduce the theoretical framework of [39] regarding space
decomposition methods for this class of equations. Given a finite dimensional Hilbert space
V , we consider the following problem: find U ∈ V such that

AU = (A0 + εA1)U = F, (8)

where F is a given vector and where A0 is symmetric and positive semi-definite and A1 is
symmetric and positive definite. As a consequence, if ε = 0, the problem is singular, but
here we are interested in the case ε > 0 (with ε small, ε � 1), i.e., (8) is nearly-singular.
In general, the conditioning of problem (8) degenerates for decreasing ε, and this affects
the performance of standard preconditioned iterative methods, unless proper initial guess are
chosen. In the framework of space decomposition methods, in order to obtain a ε-uniform
preconditioner, a key assumption on the space splitting Vhp = ∑N

i=1 Vi is needed.

Assumption 1 ([39]) The decomposition Vhp = ∑N
i=1 Vi satisfies

ker(A0) =
N∑
i=1

(Vi ∩ ker(A0)),

where ker(A0) is the kernel of A0.

We now turn to our DG framework, and show that a high-order DG formulation can be indeed
read as a nearly-singular problem with a suitable choice of ε. For the sake of simplicity, and
without any loss of generality, we retrieve Eq. (8) working directly on a bilinear form that
is spectrally equivalent to A(·, ·). To this aim, let the bilinear forms A∇(·, ·), AJ (·, ·) and
Ã(·, ·) be defined as
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A∇(u, v) :=
∑
κ∈Th

∫
κ

∇u · ∇v dx,

AJ (u, v) :=
∑
F∈Fh

∫
F
�u� · �v� ds,

Ã(u, v) := A∇(u, v) + α
p2

h
AJ (u, v),

and let A∇ , AJ , and Ã be their corresponding operators. Clearly, A∇ and AJ are both
symmetric and positive semi-definite, and Ã is symmetric and positive definite. Moreover,
thanks to Lemma 1, and the local quasi-uniformity of the partition, the following spectral
equivalence result holds

A(u, u) ≈ ‖u‖2DG ≈ Ã(u, u).

From the spectral equivalence shown above, it is immediate to conclude that any optimal
preconditioner for Ã is automatically an optimal preconditioner for A. Therefore, in the
following we focus our attention on the following problem

Ãũ =
(
A∇ + 1

ε
AJ

)
ũ = f , (9)

with ε := h/(αp2) < 1. After some simple calculations, we can write (9) as

[ε(A∇ + AJ ) + (1 − ε)AJ ] ũ = ε f,

which corresponds to (8) with A1 = A∇ + AJ and A0 = (1 − ε)AJ . In order to obtain a
suitable space splitting satisfying Assumption 1, we observe that, according to the definition
above, the kernel of A0 is given by the space of continuous polynomial functions of degree
p vanishing on the boundary ∂�. We then derive the first space decomposition

Vhp = V B
hp + VC

hp, (10)

with

V B
hp :=

⎧⎨
⎩v ∈ Vhp : v(ξp) = 0 ∀ξp ∈

⋃
κ∈Th

NI(κ)

⎫⎬
⎭ ,

VC
hp := {v ∈ C0(Ω) : v ◦ Fκ ∈ Q

p(κ̂) ∀κ ∈ Th, v|∂� = 0} ⊆ H1
0 (Ω),

i.e., V B
hp consists of the functions in Vhp that are null in any degree of freedom in the interior

of any κ ∈ Th . Moreover, we observe that V B
hp ⊂ Vhp , and V B

hp ∩ VC
hp ⊂ VC

hp , hence
Assumption 1 is satisfied by decomposition (10), which is the basis to develop the analysis
of our preconditioner for problem (2).

4.1 Technical Results

In this subsection we present several results, which are fundamental for the forthcoming
analysis. We introduce a suitable interpolation operator Qh : Vhp → VC

hp , consisting of the
Oswald operator, cf. [16,17,28,34,37]. For any v ∈ Vhp , we can define on each κ ∈ Th the
action of the operator Qh, by prescribing the value of Qhv in any ξp ∈ N (κ):
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Qhv(ξp) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if ξp ∈ ∂�,

1

card(Tξp )

∑
κ∈Tξp

v|κ (ξp) otherwise, (11)

with Tξp := {κ ′ ∈ Th : ξp ∈ κ ′}. Note that from the above definition it follows that
v − Qhv ∈ V B

hp , for any v ∈ Vhp . In addition to the space of polynomials Qp(κ), we define

Q
p
0 (κ) as

Q
p
0 (κ) := {v ∈ Q

p(κ) : v(ξp) = 0 ∀ξp ∈ NI(κ)},
and state the following trace and inverse trace inequalities.

Lemma 4 ([17, Lemma 3.1]) The following trace and inverse trace inequalities hold

‖v‖2L2(∂κ)
�

p2

hκ

‖v‖2L2(κ)
∀v ∈ Q

p(κ),

‖v‖2L2(κ)
�

hκ

p2
‖v‖2L2(∂κ)

∀v ∈ Q
p
0 (κ). (12)

The next result is a keypoint for the forthcoming analysis, and can be found in [34] and [17,
Lemma 3.2].

Lemma 5 ([34] and [17, Lemma 3.2]) For any v ∈ Vhp, the following estimate holds

‖v − Qhv‖2L2(κ)
�

hκ

p2
∑

F∈Fh(κ)

‖�v�‖2L2(F)
,

with Fh(κ) := {F ∈ Fh : F ∩ κ �= ∅}.
Thanks to Lemma 5 we can prove the following theorem.

Theorem 1 For any v ∈ Vhp, it holds that

A(v − Qhv, v − Qhv) + A(Qhv,Qhv) � A(v, v), (13)

where Qhv ∈ VC
hp is defined as in (11). Then the space decomposition defined in (10) is

stable.

Proof We observe that, from (5), the quasi-uniformity of the mesh and Lemma 5, we obtain

A(v − Qhv, v − Qhv) �
∑
κ∈Th

α
p4

h2κ
‖v − Qhv‖2L2(κ)

� α
∑
κ∈Th

p4

h2κ

hκ

p2
∑

F∈Fh(κ)

‖�v�‖2L2(F)

�
∑
F∈Fh

‖σ 1/2�v�‖2L2(F)
� A(v, v).

The upper bound (13) follows from the triangle inequality and the above estimate

A(Qhv,Qhv) ≤ A(v − Qhv, v − Qhv) + A(v, v) � A(v, v).

For any v ∈ Vhp , we recall that v − Qhv ∈ V B
hp , which implies

inf
vB∈V B

hp,v
C∈VC

hp

vB+vC=v

A(vB , vB)+A(vC , vC ) ≤ A(v−Qhv, v−Qhv)+A(Qhv,Qhv) � A(v, v).

��
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5 Construction and Analysis of the Preconditioner

In this section we introduce our preconditioner and analyze the condition number of the
preconditioned system. Employing the nomencalture of [48], the preconditioner is a parallel
subspace correctionmethod (also knownas additiveSchwarz preconditioner, see. e.g., [27,40,
47]). Our construction uses a decomposition in two subspaces, cf. (10), and inexact subspace
solvers. Each of the subspace solvers is a parallel subspace correction method itself.

5.1 Canonical Representation of a Parallel Subspace Correction Method

The main ingredients needed for the analysis of the parallel subspace correction (PSC)
preconditioners are suitable space splittings and the corresponding subspace solvers (see
[27,31,40,46–48,50]). In our analysis we use the notation and the general setting from [50].
We have the following abstract result.

Lemma 6 ([50, Lemma 2.4]) Let V be a Hilbert space which is decomposed as V =∑N
i=1 Vi , Vi ⊂ V , i = 1, . . . , N, and Ti : V → Vi , i = 1, . . . , N be operators whose

restrictions on Vi are symmetric and positive definite. For T := ∑N
i=1 Ti the following

identity holds

A(T−1v, v) = inf
vi∈Vi∑

vi=v

N∑
i=1

A(T−1
i vi , vi ). (14)

According to the above lemma, to show a bound on the condition number of the precondi-
tioned system we need to show that there exist positive constants c and C such that

cA(v, v) ≤ A(T−1v, v) ≤ CA(v, v).

Remark 1 In many cases we have Ti = Pi , i = 1, . . . , N , where Pi : V → Vi are the
elliptic projections defined as follows: for v ∈ V , its projection Piv is the unique element
of Vi satisfying A(Piv, vi ) := A(v, vi ), for all vi ∈ Vi . Note that by definition, Pi is the
identity on Vi , namely, Pivi = vi = P−1

i vi , for all vi ∈ Vi . Hence, for T = ∑N
i=1 Pi , the

relation (14) gives

A(T−1v, v) = inf
vi∈Vi∑

vi=v

N∑
i=1

A(vi , vi ). (15)

5.2 Space Splitting and Subspace Solvers

To fix the notation, let us point out that in what follows we use T (with subscript when
necessary) to denote (sub)space solvers and preconditioners. Accordingly, P with subscript
or superscript denotes elliptic projection on the corresponding subspace.

We now define the space splitting and the corresponding subspace solvers. We recall the
space decomposition from Sect. 4, Vhp = V B

hp + VC
hp , where V

B
hp are all functions in Vhp for

which the degrees of freedom in the interior of any κ ∈ Th vanish, and VC
hp is the space of

high-order continuous polynomials vanishing on ∂�. Note that V B
hp ∩ VC

hp �= {0}, and that

V B
hp contains non-smooth and oscillatory functions, while VC

hp contains the smooth part of the

space Vhp . Next, on each of these subspaces we define approximate solvers TB : Vhp → V B
hp

and TC : Vhp → VC
hp .
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First, we decompose V B
hp as follows

V B
hp =

∑
κ∈Th

∑
ξp∈NB(κ)

V ξp , (16)

where

V ξp :=
⎧⎨
⎩v ∈ V B

hp : v(ξp
′) = 0 for any ξp

′ ∈
⎛
⎝ ⋃

κ∈Th

NB(κ)

⎞
⎠ \ {ξp}

⎫⎬
⎭ .

The approximate solver on VB then is a simple Jacobi method, defined as

TB : Vhp → V B
hp, TB :=

⎡
⎣ ∑

κ∈Th

∑
ξp∈NB(κ)

Pξp

⎤
⎦ PB .

where PB and Pξp are the elliptic projections on V B
hp and V ξp , respectively. Note that TB is

defined on all of Vhp and is also an isomorphism when restricted to V B
hp , because the elliptic

projection PB and Pξp are the identity onV B
hp andV

ξp , respectively. In addition, the splitting is

a direct sum, and, hence, any v ∈ V B
hp is uniquely represented as v = ∑

κ∈Th

∑
ξp∈NB(κ) vξp ,

vξp ∈ V ξp . Then, taking Pi = Pξp PB : Vhp → V ξp , from (15), we have

A(T−1
B vB , vB) =

∑
κ∈Th

∑
ξp∈NB(κ)

A(vξp , vξp ), ∀ vB ∈ V B
hp. (17)

Next, we introduce the preconditioner TC on VC
hp . This is the two-level overlapping addi-

tive Schwarz method introduced in [42,43] for high-order conforming discretizations. If we
denote by NV the number of interior vertices of Th , then this preconditioner corresponds to
the following decomposition of VC

hp:

VC
hp =

NV∑
i=0

VC
i . (18)

Here VC
0 is the (coarse) space of continuous piecewise linear functions on Th , and for i =

1, . . . , NV ,VC
i := VC

hp∩H1
0 (�i ), where�i is the union of the elements sharing the i-th vertex

(see Fig. 1 for a two-dimensional example).We recall that, in the case of Neumann andmixed
boundary conditions, in order to obtain a uniform preconditioner, the decomposition (18)
should be enriched with the subdomains associated to those vertices not lying on a Dirichlet
boundary, see [42,43] for details.

Ωi

Ωi

Fig. 1 Examples of subdomains in a two-dimensional setting
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Then, for any VC
i , i = 0, . . . , NV , we denote by PC

i : VC
hp → VC

i the elliptic projections on

VC
i and define the two-level overlapping additive Schwarz operator as

TC : Vhp → VC
hp, TC :=

⎡
⎣PC

0 +
NV∑
i=1

PC
i

⎤
⎦ PC = (P0 + PV )PC , (19)

where PC is the elliptic projection on VC
hp . As in the case of TB , we have that the restriction

of TC on VC
hp is an isomorphism. In addition, from (15) with Pi = PC

i PC : Vhp → VC
i , we

have

A(T−1
C v, v) = inf

vi∈VC
i∑

vi=v

NV∑
i=0

A(vi , vi ). (20)

Observe that, especially for three dimensional problems, the dimension of the coarse space
can be quite large, for example when the underlyingmesh is very fine. In these cases, the solu-
tion of the corresponding coarse subproblem through a direct method can be computationally
unfeasible. However, since the coarse level is the piece-wise linear conforming subspace, the
associated linear system of equations can be efficiently solved by further preconditioning it
with one of the efficient techniques already available for this class of problems, for example
(Algebraic) Multigrid methods.

5.3 Definition of the Global Preconditioner

Finally, we define the global preconditioner on Vhp by setting

TDG : Vhp → Vhp, TDG := TB + TC , (21)

We remark that from Lemma 6, with N = 2, T1 = TB , V1 = V B
hp , T2 = TC , V2 = VC

hp , we
have

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈VC
hp

vB+vC=v

[
A(T−1

B vB , vB) + A(T−1
C vC , vC )

]
. (22)

5.4 Condition Number Estimates: Subspace Solvers

We now show the estimates on the conditioning of the subspace solvers needed to bound the
condition number of TDG . The first result that we prove is on the conditioning of TB .

Lemma 7 Let TB denote the Jacobi preconditioner defined in (5.2). Then there exist two
positive constants CJ

1 and CJ
2 , independent of the granularity of the mesh h, the polynomial

approximation degree p and the penalization coefficient α, such that

A(T−1
B vB , vB) ≥ CJ

1A(vB , vB) ∀vB ∈ V B
hp (23)

A(T−1
B (v − Qhv), v − Qhv) ≤ CJ

2A(v − Qhv, v − Qhv) ∀v ∈ Vhp, (24)

with Qhv defined in (11).

Proof We refer to the space decomposition (16) and write

vB =
∑
κ∈Th

∑
ξp∈NB(κ)

vξp .
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For the lower bound (23), we employ the eigenvalue estimate (5) and Lemma 3, thus
obtaining

A(vB , vB) �
∑
κ∈Th

α
p4

h2κ
‖vB‖2L2(κ)

�
∑
κ∈Th

α
p4

h2κ

∑
ξp∈NB(κ)

‖vξp‖2L2(κ)
.

We now observe that for any ξp ∈ NB(κ), vξp ∈ Q
p
0 (κ), and we can thus apply the inverse

trace inequality (12) to obtain

A(vB , vB) �
∑
κ∈Th

α
p4

h2κ

∑
ξp∈NB(κ)

‖vξp‖2L2(κ)
�

∑
κ∈Th

α
p2

hκ

∑
ξp∈NB(κ)

‖vξp‖2L2(∂κ)
.

Noting that ‖vξp‖2
L2(∂κ)

= ‖�vξp �‖2
L2(∂κ)

, it follows that

A(vB , vB) �
∑
κ∈Th

α
p2

hκ

∑
ξp∈NB(κ)

‖vξp‖2L2(∂κ)
�

∑
κ∈Th

∑
ξp∈NB(κ)

‖σ 1/2�vξp �‖2L2(∂κ)

�
∑
κ∈Th

∑
ξp∈NB(κ)

‖vξp‖2DG ,

and the thesis follows from the coercivity bound (4) and (17). With regard to the upper
bound (24), for the sake of simplicity we denote w = (I − Qh)v, and observe that w =
(I − Qh)w. Since w ∈ V B

hp , we write

w =
∑
κ∈Th

∑
ξp∈NB(κ)

wξp ,

and, from (17),

A(T−1
B w,w) =

∑
κ∈Th

∑
ξp∈NB(κ)

A(wξp , wξp ).

Applying again the estimate (5) and Lemma 3, we obtain

∑
κ∈Th

∑
ξp∈NB(κ)

A(wξp , wξp ) �
∑
κ∈Th

∑
ξp∈NB(κ)

α
p4

h2κ
‖wξp‖2L2(κ)

�
∑
κ∈Th

α
p4

h2κ
‖w‖2L2(κ)

�
∑
κ∈Th

α
p4

h2κ
‖(I − Qh)w‖2L2(κ)

� A(w,w),

where the last steps follows from Lemma 5 and the quasi-uniformity of the mesh. ��
For the analysis of the additive preconditioner TC given in (19), we need several preliminary
results (see [42,43] for additional details). First of all, given the decomposition

v = v0 +
NV∑
i=1

vi ∀v ∈ VC
hp, v0 ∈ VC

0 , vi ∈ VC
i , (25)

we define the coarse function v0 as the L2-projection on the space VC
0 , i.e., v0 := I0v with

I0v satisfying

‖v − 0v‖2L2(�)
� h2|v|2H1(�)

, (26)
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Fig. 2 Values of the partition of unity θi for d = 2

|I0v|2H1(�)
� |v|2H1(�)

, (27)

for any v ∈ H1
0 (�). For any i = 1, . . . , NV , the functions vi appearing in (25) are defined

as

vi := Ip(θi (v − v0)),

where θi is a proper partition of unity and Ip is an interpolation operator, described in the
following. For any �i , i = 1, . . . , NV , the partition of unity θi is such that θi ∈ VC

h1 and it
can be defined by prescribing its values at the vertices {v} belonging to �i , and imposing it
to be zero on �\�i , see Fig. 2 for d = 2. More precisely,

θi (v) =
{
1 if v is the internal vertex or Fv ⊂ F B

h ,

0 otherwise,

with Fv := {F ∈ Fh, F ⊆ ∂�i : v ∈ F}.
It follows that:

supp(θi ) = �i , 0 ≤ θi ≤ 1,
NV∑
i=1

θi = 1, |∇θi | �
1

h
. (28)

As interpolation operator Ip , we make use of the operator defined in [42,43]: setting z :=
v − v0, we define

Ip(θi z)(ξp) = (θi z)(ξp) ∀ξp ∈ N (κ),∀κ ∈ �i . (29)

Notice that, despite defined locally, Ip(θi z) belongs to VC
i since the interelement conti-

nuity is guaranteed by the fact that the (p + 1)d−1 GLL points on a face uniquely determine
a tensor product polynomial of degree p defined on that face. The following result holds.

Lemma 8 ([42, Lemma 3.1, Lemma 3.3]) The interpolation operator Ip : Q
p+1(κ̂) →

Q
p(κ̂), defined in (29), is bounded uniformly in the H1 seminorm, i.e.,

|Ip(u)|H1(κ̂) � |u|H1(κ̂) ∀u ∈ Q
p+1(κ̂). (30)

Once the partition of unity and the interpolation operator are defined, we are able to complete
the analysis of TC . In analogy to Lemma 7, which is based on (17), we now use (20) and the
above auxiliary results to show the following lemma.

Lemma 9 Let TC denote the two-level overlapping additive Schwarz preconditioner defined
in (19). Then there exist two positive constantsCC

1 andCC
2 , independent of the discretization
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parameters, i.e., the granularity of the mesh h and the polynomial approximation degree p,
such that

A(T−1
C v, v) ≥ CC

1 A(v, v) (31)

A(T−1
C v, v) ≤ CC

2 A(v, v), (32)

for any v ∈ VC
hp.

Proof We first prove the lower bound (31), and given the decomposition (25), we can write

A(v, v) =
NV∑

i, j=0

A(vi , v j ) � A(v0, v0) +
NV∑

i, j=1

A(vi , v j ).

We now note that A(vi , v j ) �= 0 only if i = j and �i ∩ � j �= ∅, and since each �i is
overlapped by a limited number of neighboring subdomains, we conclude that

A(v, v) � A(v0, v0) +
NV∑

i, j=1

A(vi , v j ) � A(v0, v0) +
NV∑
i=1

A(vi , vi ).

Inequality (31) follows from the bound above and (20), denoting with CC
1 the hidden

constant. Note that, from (20), the upper bound (32) is proved provided the following
inequality holds

NV∑
i=0

A(vi , vi ) ≤ CC
2 A(v, v) ∀v ∈ VC

hp. (33)

We recall that v0 = I0v, and from (27) it follows that

A(v0, v0) = A(0v, 0v) � A(v, v). (34)

For i = 1, . . . , NV , we have vi = Ip(θi z), with z = v − v0, and by (30), we obtain

|vi |2H1(κ ′) � |θi z|2H1(κ ′) �
d∑
j=1

∥∥∥∥ ∂θi

∂x j
z + θi

∂z

∂x j

∥∥∥∥
2

L2(κ ′)
,

for any κ ′ ∈ �i . By (28) it holds that

|∇θi | �
1

h
, ‖θi‖L∞ ≤ 1,

hence,

|vi |2H1(κ ′) �
1

h2
‖z‖2L2(κ ′) +

d∑
j=1

‖ ∂z

∂x j
‖2L2(κ ′) �

1

h2
‖v − v0‖2L2(κ ′) + |v − v0|2H1(κ ′).

On any element κ ′, a limited number of components vi are different from zero (at most
four for d = 2, and eight for d = 3), which implies that we can sum over all the components
vi , i = 1, . . . , NV , and then over all the elements, thus obtaining

NV∑
i=1

|vi |2H1(�)
�

1

h2
‖v − v0‖2L2(�)

+ |v − v0|2H1(�)
� |v|2H1(�)

,
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where the last step follows from (26) and (27). The addition of the above result and (34),
gives (33), denoting with CC

2 the resulting hidden constant. ��
5.5 Condition Number Estimates: Global Preconditioner

We are now ready to prove the main result of the paper regarding the condition number of
the preconditioned problem.

Theorem 2 Let TDG be defined as in (21). Then, for any v ∈ Vhp, it holds that

A(v, v) � A(T−1
DGv, v) � A(v, v), (35)

where the hidden constants are independent of the discretization parameters, i.e., the mesh
size h, the polynomial approximation degree p, and the penalization coefficient α.

Before proving Theorem 2, we note the following: As the operator TDG is symmetric and
positive definite, from Theorem 2 it immediately follows that the spectral condition number
of the preconditioned operator TDG

κ(TDG) := λmax(TDG)

λmin(TDG)
(36)

is uniformly bounded, i.e. κ(TDG) � 1, where the hidden constant is independent of the
the mesh size h, the polynomial approximation degree p, and the penalization coefficient α.
In (36) λmax(TDG) and λmin(TDG) denotes the extremal eigenvalues of TDG defined as

λmax(TDG) := sup
0 �=v∈Vhp

A(TDGv, v)

A(v, v)
,

λmin(TDG) := inf
0 �=v∈Vhp

A(TDGv, v)

A(v, v)
.

As a consequence, the conjugate gradient algorithm can be employed to solve the pre-
conditioned linear system of equations and the number of iterations needed to reduce the
norm of the (relative) residual below a given threshold is expected to be uniformly constant
independently of the size of the underlying matrix, see, e.g., [46] for more details.

Proof (Proof of Theorem 2). To prove the upper bound, we first consider the identity (22).
Recalling that, by definition (11), v − Qhv ∈ V B

hp , for any v ∈ Vhp , we obtain

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈VC
hp

vB+vC=v

[
A(T−1

B vB , vB) + A(T−1
C vC , vC )

]

≤ A(T−1
B (v − Qhv), v − Qhv) + A(T−1

C Qhv,Qhv).

From the bounds (24) and (32) for Qhv, it follows that

A(T−1
DGv, v) ≤ A(T−1

B (v − Qhv), v − Qhv) + A(T−1
C Qhv,Qhv)

� A(v − Qhv, v − Qhv) + A(Qhv,Qhv) � A(v, v),
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where the last step follows from (13). The lower bound follows from (22), the bounds (23)
and (31), and a triangle inequality

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈VC
hp

vB+vC=v

[
A(T−1

B vB , vB) + A(T−1
C vC , vC )

]

� inf
vB∈V B

hp,v
C∈VC

hp

vB+vC=v

[
A(vB , vB) + A(vC , vC )

]
� A(v, v).

��

6 Numerical Experiments

In this section we present some numerical tests to verify the theoretical estimates provided in
Lemma 7, Lemma 9 and Theorem 2, as well as to test the performance of our preconditioner
in the case of a variable diffusion tensor. To this aimwe present several tests with anisotropies
and/or heterogeneities in the diffusion coefficients following the lines of those proposed in
[25]. As these tests show, the preconditioner is robust for problems with tensor coefficients,
even when strong anisotropies are presented, as long as the variation of these coefficients
throughout the domain is bounded. As expected, a deterioration in the condition number of
the preconditioned system is observed when the coefficients have large jumps. This behavior
is due to the use of a standard conforming coarse space. More complex constructions of
coarse spaces depending on the coefficient variation are possible, but they are beyond the
scope of our considerations here.

Before presenting the numerical results assessing the practical performance of our precon-
ditioner, we briefly provide some implementation details. The preconditioner is composed
by the sum of two operators: i) a (block) Jacobi preconditioner acting on the degrees of
freedom (dofs) of the DG space with the exclusion of the dofs associated to the interior
of the elements (i.e., the bubble modes) and ii) a classical two-level overlapping Schwarz
preconditioner acting on the space of high-order continuous polynomials vanishing on ∂Ω .
Implementing the action of the first operator is straightforward as it requires only a multi-
plication by a (block) diagonal matrix associated to the vertex/edge/face dofs. Regarding the
action of the second operator, associated to the smooth part of the space Vhp , it is easily seen
that the computationally demanding part is the construction of the projector from the discon-
tinuous space Vhp to the conforming space. For example, in two-dimensions, it consists in
constructing a matrix that averages the values at the vertex and edge dofs. Clearly, the projec-
tion matrix has a highly sparse structure. Once the conforming stiffness matrix is available, it
is enough to apply the classical overlapping Schwarz preconditioner of [42,43], with coarse
space from piecewise continuous linear polynomials, for which efficient implementations are
available.

Finally, let us briefly comment on the actual cost of the proposed preconditioner rela-
tive to other strategies. Since the proposed approach is based on an overlapping partition
of the computational domain, each application of the preconditioner is more expensive
than the Schwarz preconditioners proposed in [1,2,6,8], that feature a high-level of scal-
ability and load balancing because they are built using a non-overlapping approach. On
the other hand, our preconditioner is uniform with respect to the polynomial approxi-
mation degree p whereas the preconditioner of [6,8] exhibit spectral bounds that depend
on p.
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Table 1 Left and middle: numerical evaluation of the constants CJ
1 and CJ

2 of Lemma 7 as a function of p

for the SIPG and LDG methods; right: numerical evaluation of the constants CC
1 and CC

2 of Lemma 9 as a
function of p

SIPG (α = 10, β = 0) LDG (α = 10, β = 1)

CJ
1 CJ

2 CJ
1 CJ

2 CC
1 CC

2

p = 2 0.4036 3.0084 0.3844 3.6393 0.2500 1.1606

p = 3 0.4343 2.9133 0.4129 3.3232 0.2500 1.0742

p = 4 0.4502 2.8304 0.4298 3.1487 0.2500 1.0934

p = 5 0.4605 2.7633 0.4410 3.0321 0.2500 1.0820

p = 6 0.4674 2.7088 0.4489 2.9467 0.2500 1.0854

Table 2 Condition number of the unpreconditioned (K(A)) and preconditioned (K(TDG )) linear systems of
equations and corresponding CG (NCG

iter ) and PCG (N PCG
iter ) iteration counts as a function of p for the SIPG

and LDG methods

SIPG (α = 10, β = 0) LDG (α = 10, β = 1)

K(A) NCG
iter K(TDG ) N PCG

iter K(A) NCG
iter K(TDG ) N PCG

iter

p = 2 5.26 × 103 284 14.26 27 8.88 × 103 392 35.02 36

p = 3 1.52 × 104 450 14.22 25 2.29 × 104 556 38.29 31

p = 4 3.38 × 104 684 14.72 26 4.89 × 104 851 37.74 33

p = 5 6.27 × 104 919 15.35 24 8.83 × 104 1137 38.37 30

p = 6 1.05 × 105 1200 15.98 25 1.45 × 105 1482 42.65 32

6.1 Example 1

We consider problem (2) in the two dimensional case with � = (−1, 1)2 and SIPG and
LDG discretizations. For the first experiment, we set h = 0.0625, the penalization parameter
α = 10 and β = 1 for the LDG method. In Table 1, we show the numerical evaluation
of the constants CJ

1 and CJ
2 of Lemma 7 and CC

1 and CC
2 of Lemma 9, as a function of

the polynomial order employed in the discretization: the constants are independent of p, as
expected from theory.With regard to the constantsCC

1 andCC
2 , we observe that the values are

the same for both the SIPG and LDG methods, since the preconditioner on the conforming
subspace reduces to the same operator regardless of the DG scheme employed.

Table 2 shows a comparison of the spectral condition number of the original system (K(A))
and of the preconditioned one (K(TDG)). While the former grows as p4, cf. [6], the latter
is constant with p, as stated in (35). The theoretical results are further confirmed by the
number of iterations N PCG

iter and NCG
iter of the Preconditioned Conjugate Gradient (PCG) and

the Conjugate Gradient (CG), respectively, needed to reduce the initial relative residual of a
factor of 10−8.
In the second numerical experiment, we consider the same test case presented above, but
we now fix the polynomial approximation degree p = 6 and decrease the mesh-size h. The
computed results obtainedwith theSIPG (β = 0,α = 10) andLDG(β = 1,α = 10)methods
are shown in Table 3. For the sake of comparison, Table 3 also shows the computed spectral
condition numbers of the unpreconditioned system as well as the number of CG iterations
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Table 3 Condition number of the unpreconditioned (K(A)) and preconditioned (K(TDG )) linear systems of
equations and corresponding CG (NCG

iter ) and PCG (N PCG
iter ) iteration counts as a function of the mesh-size h

for the SIPG and LDG methods for p = 6

SIPG (α = 10, β = 0) LDG (α = 10, β = 1)

K(A) NCG
iter K(TDG ) N PCG

iter K(A) NCG
iter K(TDG ) N PCG

iter

h = 1/4 6.62 × 103 275 14.25 25 9.26 × 103 347 30.70 31

h = 1/8 2.64 × 104 593 15.60 25 3.64 × 104 739 35.37 32

h = 1/16 1.05 × 105 1199 15.98 25 1.45 × 105 1482 36.67 32

Table 4 Condition number of the unpreconditioned (K(A)) and preconditioned (K(TDG )) linear systems of
equations and corresponding CG (NCG

iter ) and PCG (N PCG
iter ) iteration counts as a function of α for the SIPG

and LDG methods

SIPG (p = 2, β = 0) LDG (p = 2, β = 1)

K(A) NCG
iter K(TDG ) N PCG

iter K(A) NCG
iter K(TDG ) N PCG

iter

α = 2 1.04 × 103 137 12.66 28 4.55 × 103 297 62.54 47

α = 5 2.62 × 103 205 13.02 28 6.17 × 103 338 41.94 39

α = 10 5.26 × 103 284 14.26 27 8.88 × 103 392 35.02 36

α = 102 5.41 × 104 690 15.73 28 5.78 × 104 717 29.32 31

α = 103 5.44 × 105 1116 15.90 28 5.47 × 105 1142 28.92 30

α = 104 5.44 × 106 1509 15.91 28 5.44 × 106 1518 28.89 30

needed to reduced the relative residual below the given tolerance 10−8. As predicted from
our theoretical results, the condition number of the preconditioned system is insensitive to
the the mesh-size, whereas K(A) grows quadratically as h tends to zero.
The last numerical experiment of this section aims at verifying the uniformity of the proposed
preconditionerwith respect to the penalization coefficientα. In this case,we consider the same
test case presented above, but we now fix the polynomial approximation degree p = 2 and
increase α. The numerical data obtained are reported in Table 4: as done before, we compare
the spectral condition numbers of the unpreconditioned and preconditioned systems and the
iteration counts of the CG and PCG methods. As predicted from theory, while K(A) grows
like α, the values of K(TDG) are constant.

6.2 Example 2

We now address a more general model problem by introducing a diffusion tensor ρ in (1).
We then rewrite the weak formulation (1) as follows: find u ∈ V , such that

∫
�

ρ∇u · ∇v dx =
∫

Ω

f v dx ∀v ∈ V,

where, for simplicity we assume that

ρ ≡ ρ(x) =
[
ρ11(x) 0

0 ρ22(x)

]
,
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with ρ11(x) and ρ22(x) (possibly discontinuous) positive constants a.e. inΩ . We also assume
that there exists an initial partition Th0 such that the (possible) discontinuities of ρ11(x) and
ρ22(x) are aligned with Th0 . We then modify the bilinear form (3) as follows, restricting, for
simplicity, ourselves to the SIPG bilinear form, i.e., θ = 0 and β = 0,

Aρ(u, v) :=
∑
κ∈Th

∫
κ

ρ∇u · ∇v dx +
∑
κ∈Th

∫
κ

(∇u · R({{ρ}}A�v�) + R({{ρ}}A�u�) · ∇v) dx

+
∑
F∈Fh

∫
F

σ {{ρ}}A�u� · �v�ds

where, on each face F ∈ Fh , {{ρ}}A is defined as

{{ρ}}A :=

⎧⎪⎪⎨
⎪⎪⎩
2
(nT

F,κ+ρ+nF,κ+)(nT
F,κ−ρ−nF,κ−)

nT
F,κ+ρ+nF,κ+ + nT

F,κ−ρ−nF,κ−
if F ∈ F I

h ,

nT
FρnF if F ∈ F B

h ,

see, e.g., [25]. We then consider the following DG formulation:

Aρ(u, v) =
∫

Ω

f v dx ∀v ∈ Vhp. (37)

The numerical results reported in this section have been obtained choosing piecewise
quadratic elements, i.e., p = 2 and the penalization parameter α = 10.

For the first test we choose an elementwise discontinuous isotropic diffusion coefficient,
i.e.

ρ(x) =
[
ρ11(x) 0

0 ρ11(x)

]
,

where ρ11(x) follows an elementwise red–black partitioning of the computational domain,
which means ρ11 = 1 in red regions and ρ11 = 10γ , γ = 0, 1, . . . , 7, in the black ones. In
Fig. 3, we numerically evaluate the constant appearing in the inequality

Aρ(Qhv,Qhv) ≤ CQhAρ(v, v), (38)

which is the analogous of (13), and observe that the presence of a discontinuous diffusion
coefficient introduces a linear dependence of CQh on the ratio between the maximum and
minimum value of ρ. In Table 5 we report the estimated values of the constants CJ

1 and CJ
2

appearing in Lemma 7, and CC
1 and CC

2 appearing in Lemma 9, respectively, as a function
of ρ11. Here, we note that the two preconditioners, built on the corresponding subspaces, are
robust with respect to the contrast in the diffusion tensor. From the results obtained by these
numerical tests we can conclude that the condition number of the preconditioned operator
TDG depends linearly on the jumps of the diffusion coefficient, as further confirmed by the
numerical tests reported in Table 6 where the spectral condition number of TDG as well as
the PCG iteration counts as a function of ρ11 are shown. For the sake of comparison, the
same quantities are also shown for the unpreconditioned system, showing that, as expected
also the unpreconditioned operator has a spectral condition number that depends linearly on
the contrast of the diffusion coefficient.
Next, we investigate the behavior of the proposed technique whenever the diffusion tensor
features a strong anisotropy. For this set of experiments we set

ρ(x) =
[
1 0
0 ρ22

]
,
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Fig. 3 Numerical evaluation of the constant CQh
in (38) as a function of ρ11. SIPG method (37) (p = 2,

α = 10)

Table 5 Left: numerical
evaluation of the constants CJ

1
and CJ

2 of Lemma 7 as a function
of ρ11 for the SIPG method (37)
(p = 2, α = 10); right: numerical
evaluation of the constants CC

1
and CC

2 of Lemma 9 as a function
of ρ11

CJ
1 CJ

2 CC
1 CC

2

ρ11 = 1 0.4036 3.0084 0.2500 1.1606

ρ11 = 10 0.4277 2.2562 0.2500 1.6160

ρ11 = 102 0.5497 1.9874 0.2500 2.0718

ρ11 = 103 0.6732 2.0199 0.2500 2.1414

ρ11 = 104 0.6989 2.0366 0.2500 2.1487

ρ11 = 105 0.7024 2.0390 0.2500 2.1494

ρ11 = 106 0.7028 2.0393 0.2500 2.1495

ρ11 = 107 0.7028 2.0393 0.2500 2.1495

Table 6 Condition number of
the unpreconditioned (K(A)) and
preconditioned (K(TDG )) linear
systems of equations and
corresponding CG (NCG

iter ) and

PCG (N PCG
iter ) iteration counts as

a function of ρ11 for the SIPG
method (37) (p = 2, α = 10)

K(A) NCG
iter K(TDG ) N PCG

iter

ρ11 = 1 5.26 × 103 260 1.43 × 101 25

ρ11 = 10 7.02 × 103 293 1.26 × 102 32

ρ11 = 102 2.51 × 104 401 7.94 × 102 52

ρ11 = 103 1.96 × 105 703 7.04 × 103 84

ρ11 = 104 1.90 × 106 908 6.96 × 104 109

ρ11 = 105 1.89 × 107 1064 6.95 × 105 135

ρ11 = 106 1.89 × 108 1197 6.95 × 106 160

ρ11 = 107 1.89 × 109 1400 6.95 × 107 185

where ρ22 is a positive constant over the whole computational domain. We have repeated
the same set of experiments as before, again with p = 2. In Fig. 4 we report the estimated
constant CQh in (38) as a function of ρ22 = 10γ , γ = 0, 1, . . . , 7. We observe that CQh

seems to be independent of the anisotropy of ρ(x).
The computed constantsCJ

1 andCJ
2 of Lemma 7 andCC

1 andCC
2 of Lemma 9 as a function

of ρ22 are reported in Table 7.We note thatCJ
2 andCC

2 seem to be asymptotically independent
of ρ22.
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Fig. 4 Numerical evaluation of
the constant CQh

in (38) as a
function of ρ22. SIPG
method (37) (p = 2, α = 10)

Table 7 Left: numerical
evaluation of the constants CJ

1
and CJ

2 of Lemma 7 as a function
of ρ22 for the SIPG method in
(37) (p = 2); right: numerical
evaluation of the constants CC

1
and CC

2 of Lemma 9 as a function
of ρ22

CJ
1 CJ

2 CC
1 CC

2

ρ22 = 100 0.4036 3.01 × 100 0.2500 1.1606

ρ22 = 101 0.4036 8.24 × 100 0.2294 2.2934

ρ22 = 102 0.4035 3.70 × 101 0.2103 10.8578

ρ22 = 103 0.4035 2.77 × 102 0.2072 33.6278

ρ22 = 104 0.4035 1.32 × 103 0.2069 51.2373

ρ22 = 105 0.4035 2.47 × 103 0.2069 57.6207

ρ22 = 106 0.4035 2.86 × 103 0.2069 58.3918

ρ22 = 107 0.4035 2.91 × 103 0.2069 58.4702

Table 8 Condition number of
the unpreconditioned (K(A)) and
preconditioned (K(TDG )) linear
systems of equations and
corresponding CG (NCG

iter ) and

PCG (N PCG
iter ) iteration counts as

a function of ρ22 for the SIPG
method

K(A) NCG
iter K(TDG ) N PCG

iter

ρ22 = 100 5.26 × 103 284 1.43 × 101 27

ρ22 = 101 9.28 × 103 460 4.24 × 101 43

ρ22 = 102 1.09 × 104 588 2.11 × 102 87

ρ22 = 103 1.98 × 104 654 1.68 × 103 164

ρ22 = 104 3.66 × 104 860 8.69 × 103 332

ρ22 = 105 4.11 × 104 684 1.72 × 104 418

ρ22 = 106 4.17 × 104 497 2.02 × 104 489

ρ22 = 107 4.18 × 104 387 2.06 × 104 490

The numerical data shown in Fig. 4 and Table 7 again suggest the expected behavior of
the final preconditioner. Indeed the condition number K(TDG) seems to be asymptotically
constant as ρ22 grows, as confirmed by the results reported in Table 8. Notice however that
also the unpreconditioned DG discretization seems to be itself asymptotically robust with
respect to the anisotropy.
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