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1 Introduction

Let Ω ⊂ R2 be a bounded and connected polygonal domain. We consider the following
Navier–Stokes equations with a time fractional differential operator

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t u − ν�u + u · ∇u + ∇ p = f, in Ω × [0, T ],

∇ · u = 0, in Ω × [0, T ],
u(x, 0) = u0, in Ω

u = 0, on ∂Ω × [0, T ],
(1)

where α ∈ (0, 1) is a fixed number and cDα
t is the Caputo fractional derivative(see Definition

2.1), u = (u1, u2) represents the velocity field, ν > 0 is the viscosity coefficient, p is the
associated pressure, u0 is the initial velocity and f = ( f1, f2) is an external force.

The considered problem (1) is referred to as time-fractional Navier–Stokes equations
(TFNSE for short) thereafter, which have many physical applications in many fields such as
turbulence, heterogeneous flows and materials, viscoelasticity and electromagnetic theory.
Particularly when α = 1, the problem (1) reduces to the classical Navier–Stokes equations,
numerical approximations of which have been studied by many authors [2,7–10,12–14,16–
27,29–32,34,35,40–43]. At the same time, for the time-fractional Navier–Stokes equations
like (1), Carvalho-Neto and Planas [28] have proved the existence, uniqueness, decay, and
regularity properties ofmild solutions to TFNSE.Momani andOdibat [33] have discussed the
analytical solution of a time-fractional Navier–Stokes equations by Adomian decomposition
method in a tube. However, to the best of our knowledge, numerical analysis of such problems
for time-fractional Navier–Stokes equations is missing in the literature. Therefore, this article
aims to fill the gap and investigate the strong approximations of TFNSE like (1).

Recently, fractional calculus have attracted enough attention, because of its non-local prop-
erty of fractional derivative(and integrals). As a result, a number of numerical techniques for
fractional differential equations have been developed and their stability and convergence
have been investigated, see e.g. [3–6,11,15,37–39]. Jin et al. [4], by using piecewise lin-
ear functions, have studied two semidiscrete approximation schemes for the homogeneous
time-fractional diffusion equation. Zeng et al. [15] have studied the second-order accurate
schemes for the time-fractional diffusion equation with unconditional stability. Two fully dis-
crete schemes are firstly proposed for the time-fractional sub-diffusion equation with space
discretized by finite element and time discretized by the fractional linear multistep methods.
Jiang and Ma [37] have proposed high-order methods for solving time-fractional partial dif-
ferential equations. The proposed high-order method is based on high-order finite element
method for space and finite difference method for time. Lin and Xu [38] have proposed the
finite difference scheme in time and Legendre spectral methods in space for the numerical
solution of time-fractional diffusion equation. Liu et al. [39] have discussed the numerical
solutions of a time-fractional fourth-order reaction-diffusion problem with a nonlinear reac-
tion term, which is based on a finite difference approximation in time direction and finite
element method in spatial direction.

Our aim is to obtain strong convergence error estimates for both semidiscrete and fully
discrete schemes for the problem (1). The discretization in space is done by the mixed
finite element method. The main difficulty in the error analysis about space discretization
stems from the term of fractional derivative cDα

t which makes the methods of energy type
estimate and parabolic duality argument no more applicable. Following the idea of Heywood
and Rannacher [25], firstly the velocity is split into two parts by introducing a linearized
discrete problem with solution vh . In particular, by defining certain approximations Shu of
the solution of (1), the role of which is similar to that of a Ritz projection in treating the
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heat equation, using the Laplace transform techniques, as well as combing the propertied
of the operator Eh with the bilinear operator B(·, ·), we derive the error estimate for the
velocity. The time Caputo-fractional derivative is discretized by a finite difference method.
The stability and convergence properties related to the time discretization are discussed and
theoretically proven.

The structure of this paper is as follows: In Sect. 2, we introduce basic notations, give
the definitions of the Caputo fractional differential operator and Mittag-Leffler function. In
Sect. 3, we discuss the weak formulation, describe the semidiscrete Galerkin approximations
about space and establish the error estimate for the velocity. In Sect. 4, we present several
lemmas which play a crucial role in the proof of our main results. By discretizing the time-
fractional derivative, we derive the fully discrete scheme for (1) and then give the error
estimate for the fully discrete scheme. Finally, in Sect. 5, a numerical example is presented
to demonstrate the effectiveness of our numerical methods.

2 Preliminaries

Throughout the paper, we denote as C a constant that may not be of the same form from one
occurrence to another, even in the same line. In this section, we introduce basic notations,
give the definitions of Mittag-Leffler function and the Caputo fractional differential operator.

We use the standard notation Hs(Ω), ‖ · ‖s, (·, ·)s , s ≥ 0 for the Sobolev spaces, the
standard Sobolev norm and inner product, respectively. When s = 0, L2(Ω) is written
instead of H0(Ω), the L2-inner product and L2-norm are separately denoted by (·, ·) and
‖ · ‖. For the mathematical setting of problem (1), the following spaces

X = H1
0 (Ω)2, Y = L2(Ω)2, M = L2

0(Ω) =
{

q ∈ L2(Ω) :
∫

Ω

qdx = 0

}

,

are introduced. Next, let the closed subset V of X be given by

V = {v ∈ X, div v = 0},
and denote by H the closed subset of Y , i.e.,

H = {v ∈ Y, div v = 0, v · n|∂Ω = 0} .

Moreover, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M ,
respectively, by

a(u, φ) = ν (∇u,∇φ) , ∀u, v ∈ X, d(φ, p) = (divφ, p), ∀φ ∈ X, ∀p ∈ M,

and a bilinear operator B(·, ·) on X × X by

B(u, v) = (u · ∇)v + 1

2
(divu)v, ∀u, v ∈ X.

At the same time, a trilinear form b(·, ·, ·) on X × X × X is introduced by

b(u, v, w) = (u · ∇v,w), u, v, w ∈ X,

which has the following properties(cf.,[25,35]):

b(u, v, w) = −b(u, w, v), b(u, v, v) = 0, ∀u, v, w ∈ X,

‖b(u, v, w)‖ ≤ M‖∇u‖‖∇v‖‖∇w‖, ∀u, v, w ∈ X.
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For the readers convenience, we recall the definitions of Mittag-Leffler function and the
Caputo fractional differential operator. We shall use extensively the Mittag-Leffler function
Eα,β(z) [1] defined by

Eα,β(z) =
∞∑

k=0

zk

Γ (kα + β)
, z ∈ C,

where Γ (.) is the standard Gamma function defined as

Γ (z) =
∫ ∞

0
t z−1e−tdt, R(z) > 0.

Definition 1 [1] Let α ∈ (0, 1), the expression

cDα
t u(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−α d

ds
u(s)ds

is called the Caputo fractional derivative of order α of the function u.

3 Space Semi-discretization

In this section, we will give the weak formulation of (1), describe the semidiscrete Galerkin
approximations and then derive the error estimates for the velocity about space discretization.
From now on, we denote by h with 0 < h < 1 a real positive discretization parameter tending
to zero.

3.1 Semidiscrete Fractional Navier–Stokes Equations

With the notations in Sect. 2, the variational formulation of (1) is as follows: find (u, p) ∈
(X, M) for all t ∈ [0, T ] such that for all (φ, q) ∈ (X, M)

{(
cDα

t u, φ
) + a(u, φ) + b(u, u, φ) − d(φ, p) + d(u, q) = ( f, φ),

u(x, 0) = u0.
(2)

We introduce the finite element subspace (Xh, Mh) of (X, M), Yh ⊂ Y and define the
subspace Vh of Xh given by

Vh = {vh ∈ Xh, divvh = 0}.
We assume that the couple (Xh, Mh) satisfies the discrete LBB(or named inf-sup) condition

sup
vh∈Xh

(ϕh, divvh)

‖vh‖1 ≥ β‖ϕh‖, ∀ϕh ∈ Mh, (3)

where β > 0 is a constant.
Let Ph : Y → Vh denotes the L2-orthogonal projection defined by

(Phv, vh) = (v, vh), v ∈ Y, vh ∈ Vh .

The operator Eh(t) is introduced by

Eh(t)vh =
∞∑

j=1

tα−1Eα,α

(
−λhj t

α
) (

v, ϕh
j

)
ϕh
j , vh ∈ Xh, (4)
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where {λhj }Nj=1 and {ϕh
j }Nj=1 are respectively the eigenvalues and the eigenfunctions of the

discrete Laplace operator −Δh defined by −(Δhψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Xh .

For later use, we need the regularity result which is related to the operator Eh(t) and
collect the result in the next lemma.

Lemma 1 [3] Let Eh(t) be defined by (4) and ψ ∈ Xh. Then it holds that

‖Eh(t)ψ‖p ≤
{
Ct−1+α(1+ q−p

2 )‖ψ‖q , p − 2 ≤ q ≤ p,

Ct−1+α‖ψ‖q , p < q.
(5)

The discrete analogue of weak formulation (2) now reads as follows: find (uh, ph) ∈
(Xh, Mh) such that for all (φh, qh) ∈ (Xh, Mh),

(
cDα

t uh, φh
) + a(uh, φh) + b (uh, uh, φh) − d(φh, ph) + d(uh, qh) = ( f, φh), (6)

with uh(0) = Phu0.
For the discrete approximation, it is straightforward to verify that the trilinear term

b(uh, vh, wh) enjoys the following properties (cf. [41]):

b (uh, vh, wh) = −b(uh, wh, vh), b(uh, vh, vh) = 0, ∀uh, vh, wh ∈ Xh, (7)

‖b (uh, vh, wh) ‖ ≤ c0‖∇uh‖‖∇vh‖‖∇wh‖, ∀uh, vh, wh ∈ Xh . (8)

3.2 Error Estimate for the Velocity

With Vh as above, we now introduce an equivalent Galerkin formulation. Find uh ∈ Vh such
that uh(0) = Phu0 and for t > 0

(
cDα

t uh, φh
) + a(uh, φh) + b(uh, uh, φh) = ( f, φh), ∀φh ∈ Vh . (9)

Theorem 1 (Error estimate for space discretization) Let u and uh be the solutions of (2) and
(9), respectively. We suppose that the solution {u, p} of (2) satisfies the following regularity
condition: sup

t∈[0,T ]
{‖u‖2 + ‖∇ p‖} ≤ C, then the following estimate holds

‖u − uh‖ ≤ Ch2.

We firstly dissociate the non-linearity by introducing an intermediate solution vh . Let
vh be a finite element Galerkin approximation to a linearised time-fractional Navier-Stokes
equation satisfying

(
cDα

t vh, φh
) + a(vh, φh) + b(u, u, φh) = ( f, φh), ∀φh ∈ Vh, (10)

with vh(0) = Phu0.
Subsequently, the error is split as

e := u − uh = (u − vh) + (vh − uh) = ξ + η.

Note that ξ is the error committed by approximating a linearized(Stokes) problem and η

represents the error due to the presence of the nonlinearity in the equation.
Below, the estimate for ξ is derived. Firstly ξ is split into two parts ζ , the estimate of

which is given, and θ . Because of the presence of the term of fractional derivative cDα
t , the

methods of energy type estimate and parabolic duality argument for θ are no more suitable.
By making use of the Laplace transform techniques and the property of analytic contraction
semigroup that the Stokes operator Ah generates, we derive the error estimate for the ξ .
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Lemma 2 We suppose that the solution {u, p} of (2) satisfies the following regularity con-
dition: sup

t∈[0,T ]
{‖u‖2 + ‖∇ p‖} ≤ C, then for ξ = u − vh, we have the following estimate

‖ξ‖ ≤ Ch2.

Proof Subtracting (10) from (2), the equation in ξ is written as
(
cDα

t ξ, φh
) + a(ξ, φh) = (p,∇ · φh), φh ∈ Vh .

We now decompose ξ as

ξ := (u − Shu) + (Shu − vh) = ζ + θ,

where Shu is given by (4.52), [25]. Lemma 4.7, [25] tells us that

‖u − Shu‖ + h‖u − Shu‖1 ≤ Ch2.

In order to complete the estimate for ξ , we only need to estimate θ . The equation in θ

reads as
(
cDα

t ζ, φh
) + (

cDα
t θ, φh

) + a(ζ, φh) + a(θ, φh) = (p,∇ · φh), ∀φh ∈ Vh .

Making use of the definition of Shu, that is, a(ζ, φh) = (p,∇ · φh), then the above equation
can be simplified as

(
cDα

t θ, φh
) + a(θ, φh) = − (

cDα
t ζ, φh

)
, ∀φh ∈ Vh .

Let A = −νΔ and Ah is the discrete analogue of A, there holds

cDα
t θ + Ahθ = −cDα

t ζ, θ(0) = 0.

Taking the Laplace transform on both sides of the above equation, we recover

zαθ̂(z) + Ah θ̂ (z) = −zαζ̂ (z).

Therefore,

θ̂ (z) = −(zα I + Ah)
−1zαζ̂ (z).

Because the Stokes operator Ah generates an analytic contraction semigroup [44] and then
there exists a constant c which depends only on φ and α such that

‖ (
zα I + Ah

)−1 ‖ ≤ cz−α, ∀z ∈ Σφ,

where Σθ = {z ∈ C : |argz| ≤ φ}.
So there holds

‖ (
zα I + Ah

)−1
zα‖ ≤ c.

Using the inverse Laplace transform yields

‖θ‖ ≤ c‖ζ‖ = c‖u − Shu‖ ≤ Ch2.

By the triangle inequality, we have

‖ξ‖ ≤ ‖ζ‖ + ‖θ‖ ≤ Ch2,

which completes the proof. �
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Subsequently, we give the main result in this section. By making use of the properties of
the operator Eh and the standard duality arguments, the methods of which are different from
classical Navier-Stokes equations, we derive the error estimate for the velocity.

Proof of Theorem 1 Since e = u − uh = (u − vh) + (vh − uh) = ξ + η and the estimate of
ξ is known from Lemma 2, it is enough to estimate η. From (9) and (10), the equation for η

becomes
(
cDα

t η, φh
) + a(η, φh) + b(u, u, φh) − b(uh, uh, φh) = 0,

with η(0) = 0.
Equivalently, the above equation can be recast as

cDα
t η + Aη + B(u, u) − B(uh, uh) = 0, η(0) = 0.

By Duhamel’s principle(cf.[36]) and Lemma 1, one can derive that

‖η‖ =
∥
∥
∥
∥

∫ t

0
Eh(t − s) (B(u, u) − B(uh, uh)) ds

∥
∥
∥
∥

≤
∫ t

0
‖A1/2

h Eh(t − s)A−1/2
h (B(u, u) − B(uh, uh)) ‖ds

≤
∫ t

0
(t − s)−1+α/2‖A−1/2

h (B(u, u) − B(uh, uh)) ‖ds. (11)

Thus it is enough to estimate ‖A−1/2
h (B(u, u) − B(uh, uh))‖. We proceed by the standard

duality arguments, using the splitting

B(u, u) − B(uh, uh) = B(u, e) + B(e, uh).

By the triangle inequality it yields

‖A−1/2
h (B(u, u) − B(uh, uh)) ‖ ≤ ‖B(u, e)‖−1 + ‖B(e, uh)‖−1, (12)

so that the proof is reduced to estimate each of the above negative norms on the right-hand
side. Using the skew-symmetry property (7) and noticing divu = 0, one obtains for the first
term:

‖B(u, e)‖−1 = sup
‖φ‖=1

∣
∣
∣
∣−((u · ∇)φ, e) − 1

2
((∇ · u)φ, e)

∣
∣
∣
∣

≤ sup
‖φ‖=1

(‖e‖‖u‖∞‖φ‖1 + ‖e‖‖∇ · u‖L4‖φ‖L4
)

≤ C‖e‖.
Regarding the other term in (12), we derive

‖B(e, uh)‖−1 = sup
‖φ‖=1

∣
∣
∣
∣
1

2
((e · ∇)uh, φ) − 1

2
((e · ∇)φ, uh)

∣
∣
∣
∣

≤ sup
‖φ‖=1

(‖e‖‖∇uh‖L4‖φ‖L4 + ‖e‖‖φ‖1‖uh‖∞
)

≤ C‖e‖,
where, in the last inequality, we have used the Sobolev’s imbeddings ‖φ‖L4 ≤ C‖φ‖1 and
the regularity condition of the solution uh .
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It is obvious that there holds

‖A−1/2
h (B(u, u) − B(uh, uh)) ‖ ≤ C‖e‖. (13)

Substituting (13) into (11), it is show that

‖η‖ ≤ C
∫ t

0
(t − s)−1+α/2‖u(s) − uh(s)‖ds.

By fractionalGronwall’s lemma [45], a use of the triangle inequalitywith Lemma2 completes
the rest of the proof. �

4 Full Discretization

In this section, we will give the discretization of time Caputo-fractional derivative by a finite
difference method, as well as the stability and convergence properties related to the time
discretization. By collecting the convergence results for the space discretization and for the
time discretization, the error estimate for fully discrete scheme of (1) has been obtained.

The time-fractional derivative cDα
t u is discretized by the first-order backward Euler

scheme. We suppose tn = n�t, n = 0, 1, . . . , N , in which �t = T
N denotes the step of

time. Then the time-fractional derivative in Eq. (1) at time point t = tn+1 can be approxi-
mated as [38]

cDα
t u = 1

Γ (1 − α)

∫ tn+1

0

∂u(x, s)

∂s

ds

(tn+1 − s)α

= 1

Γ (2 − α)

n∑

j=0

b j
u

(
x, tn+1− j

) − u(x, tn− j )

(Δt)α
+ rn+1

Δt , (14)

where b j = ( j + 1)1−α − j1−α . The coefficients b j possess the following properties:

(1) b j > 0, j = 0, 1, 2, . . . , n,
(2) 1 = b0 > b1 > b2 > . . . > bn, bn → 0 as n → ∞,
(3)

∑n
j=0(b j − b j+1) + bn+1 = 1.

Let

Lα
t uh (x, tn+1) := 1

Γ (2 − α)

n∑

j=0

b j
uh

(
x, tn+1− j

) − uh(x, tn− j )

(Δt)α
,

then cDα
t uh = Lα

t uh(x, tn+1) + rn+1
Δt , where

rn+1
Δt ≤ cuΔt2−α. (15)

And cu depends on the the second derivative of u in time.
Using Lα

t uh(x, tn+1) as an approximation of cDα
t uh in theEq. (6), thenwewill get the fully

discrete scheme of (1): find (un+1
h , pn+1

h ) ∈ (Xh, Mh) such that for all (φh, qh) ∈ (Xh, Mh),
(
un+1
h , φh

)
+ a0a

(
un+1
h , φh

)
+ a0b

(
un+1
h , un+1

h , φh

)
− a0d

(
φh, p

n+1
h

)

+ a0d
(
un+1
h , qh

)
= (1 − b1)

(
unh, φh

) +
n−1∑

j=1

(
b j − b j+1

) (
un− j
h , φh

)

+ bn
(
Phu

0, φh
) + a0

(
f n+1, φh

)
, (16)
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where a0 = Γ (2 − α)�tα , f n+1 is the value of f at point tn+1.
Following [38], it will be useful to define the error term rn+1 by

rn+1 := a0
(
cDα

t uh − Lα
t uh(x, tn+1)

)
. (17)

Using (15), the error term rn+1 becomes

|rn+1| = Γ (2 − α)�tα|rn+1
�t | ≤ C�t2. (18)

The stability analysis for the full discrete problem is given in the following lemma.

Lemma 3 The full discrete scheme (16) is unconditionally stable for 0 < �t < T, and

‖un+1
h ‖ ≤

⎛

⎝‖Phu0‖ + a0

n+1∑

j=1

‖ f j‖
⎞

⎠ (19)

holds.
Further, we have

√
a0‖∇un+1

h ‖ ≤
⎛

⎝‖Phu0‖ + a0

n+1∑

j=1

‖ f j‖
⎞

⎠ . (20)

Proof Mathematical induction is used to prove the lemma. When n = 0, the formulation
(16) can be written as

(
u1h, φh

) + a0a
(
u1h, φh

) + a0b
(
u1h, u

1
h, φh

) − a0d
(
φh, p

1
h

) + a0d
(
u1h, qh

)

= (
Phu

0, φh
) + a0

(
f 1, φh

)
. (21)

Taking φh = u1h ∈ Xh and qh = p1h ∈ Mh in (21) and making use of the property (7) of
b(uh, vh, wh), there holds

(
u1h, u

1
h

) + a0a
(
u1h, u

1
h

) = (
Phu

0, u1h
) + a0

(
f 1, u1h

)
.

Using the coercivity of a(u1h, u
1
h) and Schwarz inequality yield

‖u1h‖2 ≤ ‖Phu0‖‖u1h‖ + a0‖ f 1‖‖u1h‖,
that is,

‖u1h‖ ≤ ‖Phu0‖ + a0‖ f 1‖.
Suppose φh = u j

h ∈ Xh, qh = p j
h ∈ Mh , we have

‖u j
h‖ ≤

⎛

⎝‖Phu0‖ + a0

j∑

i=1

‖ f i‖
⎞

⎠ , j = 2, 3, . . . , n. (22)

Next, setting φh = un+1
h ∈ Xh and qh = pn+1

h ∈ Mh in (16), and using the property (7) of
b(uh, vh, wh), one arrives at

(
un+1
h , un+1

h

)
+ a0a

(
un+1
h , un+1

h

)
= (1 − b1)

(
unh, u

n+1
h

)

+
n−1∑

j=1

(
b j − b j+1

) (
un− j
h , un+1

h

)
+ bn

(
Phu

0, un+1
h

)
+ a0

(
f n+1, un+1

h

)
.
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Using the property of the coercivity of a(un+1
h , un+1

h ) and Schwarz inequality once again,
we deduce

‖un+1
h ‖2 ≤ (1 − b1)‖unh‖‖un+1

h ‖ +
n−1∑

j=1

(
b j − b j+1

) ‖un− j
h ‖‖un+1

h ‖

+bn‖Phu0‖‖un+1
h ‖ + a0‖ f n+1‖‖un+1

h ‖,
which can be simplified as

‖un+1
h ‖ ≤ (1 − b1)‖unh‖ +

n−1∑

j=1

(
b j − b j+1

) ‖un− j
h ‖ + bn‖Phu0‖ + a0‖ f n+1‖.

Hence, by using the inductive hypothesis (22), we get

‖un+1
h ‖ ≤

⎛

⎝(1 − b1) +
n−1∑

j=1

(
b j − b j+1

) + bn

⎞

⎠

⎛

⎝‖Phu0‖ + a0

n∑

j=1

‖ f n‖
⎞

⎠ + a0‖ f n+1‖.

Making use of the properties of the coefficients b j , we obtain

‖un+1
h ‖ ≤

⎛

⎝‖Phu0‖ + a0

n+1∑

j=1

‖ f j‖
⎞

⎠ ,

which is (19).
The proof of (20) is similar to the proof of (19) by mathematical induction. Hence, we

can omit it. The proof is completed. �
The following lemma will play an important role in proving the error estimate about the

time discretization.

Lemma 4 Let ν > 0 is the viscosity coefficient and c0 is defined by (8). Suppose that

n∑

j=1

‖ f j‖ + 1

a0
‖Phu0‖ ≤ ν√

a0c0
, (23)

then we have

a
(
en, en

) + b
(
en, unh, e

n) ≥ 0,

where a0 = Γ (2 − α)�tα, en = uh(tn) − unh.

Proof Under the assumption of (23), there holds

1√
a0

‖Phu0‖ + √
a0

n∑

j=1

‖ f j‖ ≤ ν

c0
.

By making use of (20), we know that

‖unh‖1 ≤ ν

c0
,

in other words,

ν − c0‖unh‖1 ≥ 0.
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Besides, using the coercivity of a(en, en) and the property (8) of b, we obtain

a
(
en, en

) + b
(
en, unh, e

n) ≥ (
ν − c0‖unh‖1

) ‖en‖21
≥ 0.

The proof of the lemma is completed. �
Remark 1 The condition (23) means that it requires a small initial data and small time step
size.

The error analysis for the solution of the semi-discrete problem about time is discussed
in the following theorem.

Theorem 2 (Error estimate for time discretization) Let uh(tn) be the solution of (6), {unh}Nn=1
be the time-discrete solution of (16). Under the assumption of Lemma 4, then we have the
following error estimate

‖uh(tn) − unh‖ ≤ CT αΔt2−α, n = 1, 2, . . . , N .

The proof of Theorem 2 needs the following lemma.

Lemma 5 Under the assumption of Theorem 2, we have

‖uh(tn) − unh‖ ≤ Cb−1
n−1Δt2, n = 1, 2, . . . , N .

Proof Let en = uh(tn) − unh, ẽ
n = ph(tn) − pnh .

For n = 0, by combining (6), (16) and (17), the error equation can be read as
(
e1, φh

) + a0a
(
e1, φh

) + a0b
(
e1, u1h, e

1) − a0d
(
φh, ẽ

1) + a0d
(
e1, qh

)

= (
e0, φh

) + (
r1, φh

)
.

Taking φh = e1 ∈ Xh and qh = ẽ1 ∈ Mh in the above equation and noting e0 = 0, we
obtain

(
e1, e1

) + a0a
(
e1, e1

) + a0b
(
e1, u1h, e

1) = (
r1, e1

)
.

By Lemma 4 and Schwarz inequality, we get

‖e1‖ ≤ ‖r1‖.
This together with (18), gives

‖uh − u1h‖ ≤ Cb−1
0 Δt2.

Suppose ‖uh − unh‖ ≤ Cb−1
n−1Δt2 for n = 1, 2, 3, . . . , s. Next we prove n = s + 1. By

combining (6), (16) and (17), the error equation can be written as

(
en+1, φh

) + a0a
(
en+1, φh

) + a0b
(
en+1, un+1

h , en+1
)

− a0d
(
φh, ẽ

n+1)

+a0d
(
en+1, qh

) = (1 − b1)
(
en, φh

) +
n−1∑

j=1

(
b j − b j+1

) (
en− j , φh

)

+bn(e
0, v) + (

rn+1, φh
)
. (24)
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Let φh = en+1 ∈ Xh, qh = ẽn+1 ∈ Mh in the Eq. (24), then we have

(
en+1, en+1) + a0a

(
en+1, en+1) + a0b

(
en+1, un+1

h , en+1
)

= (1 − b1)
(
en, en+1)

+
n−1∑

j=1

(
b j − b j+1

) (
en− j , en+1

)
+ bn

(
e0, en+1) + (

rn+1, en+1) .

By Lemma 4 and Schwarz inequality, we deduce

‖en+1‖2 ≤ (1 − b1)‖en‖‖en+1‖ +
n−1∑

j=1

(
b j − b j+1

) ‖en− j‖‖en+1‖

+‖rn+1‖‖en+1‖.

By the induction assumption, the fact that b−1
j /b−1

j+1 < 1 for all non-negative integer j and
the properties of b j , it can be written as

‖en+1‖ ≤ (1 − b1)‖en‖ +
n−1∑

j=1

(
b j − b j+1

) ‖en− j‖ + ‖rn+1‖

≤
⎡

⎣(1 − b1)b
−1
n−1 +

n−1∑

j=1

(
b j − b j+1

)
b−1
n− j−1

⎤

⎦CΔt2 + CΔt2

≤
⎡

⎣(1 − b1) +
n−1∑

j=1

(
b j − b j+1

) + bn

⎤

⎦Cb−1
n Δt2

= Cb−1
n Δt2.

The proof is completed. �

Proof of Theorem 2 As in the way of [38], by the definition of bn , it can be obtained that

lim
n→∞ n−αb−1

n−1 = lim
n→∞

n−α

n1−α − (n − 1)1−α

= lim
n→∞

n−1

1 − (1 − 1
n )1−α

= 1

(1 − α)
.

Introduce a function Ψ (x) := x−α/(x1−α − (x − 1)1−α). Since Ψ ′(x) ≥ 0 for ∀x ≥ 1,
therefore Ψ (x) is increasing about x for all x > 1. This means that n−αb−1

n−1 increasingly

tends to 1/(1 − α) as 1 < n → ∞. It is to be noted that n−αb−1
n−1 = 1 for n = 1, hence it

can be written as

n−αb−1
n−1 ≤ 1

(1 − α)
, n = 1, 2, . . . , N .
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For all n such that n�t ≤ T , we obtain

‖uh(tn) − unh‖ ≤ Cb−1
n−1�t2

= Cn−αb−1
n−1n

α�t2−α+α

≤ C
1

1 − α
(n�t)α(�t)2−α

≤ CT α(�t)2−α.

The proof is completed. �
Next we will give the error estimate for the fully discrete scheme by collecting the con-

vergence results for the space discretization and for the time discretization.

Theorem 3 (Error estimate for fully discrete scheme) Let {u(tn)}t∈[0,T ] be the solution of
(1) and let {unh}Nn=1 be the solution of the scheme (16) with T = N�t . Under the assumption
of Lemma 4, then there is C > 0 such that

‖u(tn) − unh‖ ≤ C(h2 + T αΔt2−α).

Proof The proof follows from Theorem 1 and Theorem 2 by the triangle inequality. We are
no longer to repeat here. �

5 Numerical Example

In order to demonstrate the effectiveness of our numerical methods, a numerical example is
presented. The main purpose is to check the convergence behavior of the numerical solution
with respect to the time step Δt and the space step h used in the calculation.

We consider the following fractional burger equation

Dα
t u − uxx + uux = f (x, t), x ∈ Ω, t ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],
u(x, 0) = 0, x ∈ Ω,

in which Ω = [0, 1], and the source term f is chosen as

2

Γ (3 − α)
t2−αsin(πx) + π2t2sin(πx) + π t4sin(πx)cos(πx).

Then the exact solution is t2sin(πx).

Table 1 The errors and space convergence rates for u with fixed time step Δt = 1/500

h α = 0.1 α = 0.5 α = 0.9

‖u(T ) − uNh ‖ cv.rate ‖u(T ) − uNh ‖ cv.rate ‖u(T ) − uNh ‖ cv.rate

1/4 3.6133E−2 - 3.5156E−2 – 3.4046E−2 –

1/8 9.0654E−3 1.9949 8.8026E−3 1.9978 8.4645E−3 2.008

1/16 2.2682E−3 1.9988 2.1997E−3 2.0006 2.0724E−3 2.0301

1/32 5.6708E−4 1.9999 5.4807E−4 2.0049 4.7538E−4 2.1241
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Table 2 The errors and time convergence rates for u with fixed space step h = 1/800

Δt α = 0.1 α = 0.5 α = 0.9

‖u(T ) − uNh ‖ cv.rate ‖u(T ) − uNh ‖ cv.rate ‖u(T ) − uNh ‖ cv.rate

1/8 3.9463E−3 – 4.1439E−3 – 7.4059E−3 –

1/16 1.1278E−3 1.8070 1.2272E−3 1.7556 3.1508E−3 1.233

1/32 3.0075E−4 1.9069 3.4803E−4 1.8181 1.4024E−3 1.1678

1/64 7.7580E−5 1.9548 9.9239E−5 1.8102 6.4191E−4 1.1275

We compute the errors in L2 discrete norm. And all the numerical results in the tables
below are evaluated at T=1. The spatial and temporal meshes are taken uniform. The finite
element method using piecewise-linear polynomials is used for the space and the scheme for
time described in previous sections is used in the example.

For the 0 < α < 1 case, the theoretical convergence order is O(h2 + Δt2−α). In Table 1,
for a fixed time step Δt = 1/500 and some different spatial meshes, we can see the orders of
convergence for u in L2-norms are close to 2 which are accord with the spatial convergence
order O(h2). In Table 2, it shows that the errors between the exact solution and numerical
solution and the convergence orders about �t with different α values for a fixed spatial step
h = 1/800. The numerical results are consistent with our theoretical results in Theorem 3.
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