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Abstract In this note, we present and analyze a special quadratic finite volume scheme over
triangularmeshes for elliptic equations. The scheme is designedwith the second degreeGauss
points on the edges and the barycenters of the triangle elements. With a novel from-the-trial-
to-test-space mapping, the inf–sup condition of the scheme is shown to hold independently
of the minimal angle of the underlying mesh. As a direct consequence, the H1 norm error of
the finite volume solution is shown to converge with the optimal order.
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1 Introduction

The finite volume method (FVM) enjoys a great popularity in scientific and engineering
computations (see, e.g., [10,14,15,20–23]). However, its mathematical theory has not been
developed satisfactorily (cf., [1,2,4,5,7,9,12,13,16,18,19,24]). In particular, the theory for
high order FVMs is a challenging task.

This is one of our series work on the theory of high order FVMs. It is a common sense that
the analysis of stability (or inf–sup condition in general) is challenging in the establishment
of the FVM theory. The linear FV scheme over triangular meshes can be regarded as a small
perturbation of its corresponding finite element (FE) scheme, its stability holds automatically
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when the mesh size is sufficient small, see e.g [3,11]. The stability analysis for high order
finite volume schemes is much more complicated than that for linear schemes. Some earlier
works adopt the so-called elementwise-stiffness-matrix-analysis by calculating eigenvalues
of the stiffness matrix : the stability is established if all eigenvalues of the stiffness matrix
are positive, see, e.g. [6,17,18,25]. This elementwise-stiffness-matrix-analysis technique is
somehow artificial and often requires some additional conditions on the underlying meshes.
For instances, to guarantee the inf–sup condition of their quadratic FV scheme over triangular
mesh, it is required in [18] that the ratio between two adjacent edges of the triangle in the

underlying mesh should be between (

√
2
3 ,

√
3
2 ). Although this restrictive condition on the

mesh has been significantly relaxed in [6,17,25], a common sense is that the inf–sup condition
depends heavily on the shape of the triangularmesh, namely theminimal angle of the triangles
in the underlying mesh.

In a very recent work [26], it is shown that for a class of appropriately designed any order
FV schemes over quadrilateral meshes, the inf–sup condition holds independently of the
minimal angle of the mesh. A natural question is to ask whether we can construct some high
order finite volume schemes over triangular meshes such that their corresponding inf–sup
condition holds independently of the minimal angle of the mesh? In this work, we will give
a confirmatory answer to this question.

Precisely, we will present and analyze a quadratic finite volume scheme of which the
inf–sup condition holds over any shape regular triangular mesh in this paper. To explain our
results, we begin with the construction of our quadratic FV schemes [8]. It is known that the
construction of the FV schemes depends heavily on both the primal and dual mesh, and for
a given primal triangular mesh, there are a variant of methods to construct the quadratic dual
mesh, see e.g. [10,17,18], while a systematic approach was proposed in [25]. Although it
is known that the different choice of dual meshes may influence the validity of the inf–sup
condition of the corresponding FV scheme, the works in the literature focused on studying
the influence of different primal meshes on the inf–sup condition, see e.g. [6,17,18,25]. In
this paper, the dual mesh is constructed with the second-degree Gauss points on the edges
and the barycenters of the triangular elements of the underlying mesh. With these delicate
design of the dual mesh, we can define a special one-to-one mapping from the trial space to
the test space(see Sect. 3.1). This mapping transfers the bilinear form defined on the trial-
test spaces to a bilinear form on the trial space only, and thereby changes the the analysis
framework from a Petrov–Galerkin method to a Galerkin finite element method. Since the
coercivity of a Galerkin FEM is independent of the minimal angle of the mesh, the validity
of inf–sup condition of our quadratic FVM is also independent of the minimal angle of the
primal mesh. As byproducts, we obtain the existence, uniqueness and H1 error estimate of
the corresponding finite volume solution with a routine work.

The rest of the paper is organized as follows. In Sect. 2, we present a special quadratic
finite volume over unstructured mesh. In Sect. 3, we analyze the stability and convergence
properties of the proposed FV scheme. To this end, a novel from-trial-to-test mapping will
be introduced. Some concluding remarks will be given in the final and fourth section.

In the rest of this paper, “A � B” means that A can be bounded by B multiplied by a
constant which is independent of the parameters which A and B may depend on. “A ∼ B”
means “A � B” and “B � A”.
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2 A Special Quadratic Finite Volume Scheme

We consider the following second-order elliptic boundary value problem

− � · (α�u) = f in �, (2.1)

u = 0 on �, (2.2)

where � ⊂ R
2 is a polygonal bounded domain, � = ∂� and α is a bounded and piecewise

continuous function that is bounded below: There exists a constant α0 > 0 such that α(x) ≥
α0 for almost all x ∈ �.

Let T h be a conforming and shape-regular triangulation of �. With respect to Th , we
define a finite element space

Uk
h =

{
v ∈ C(�) : v|τ ∈ Pk, for all τ ∈ Th, v|∂� = 0

}
(2.3)

wherePk is the set of all polynomials of degree equal or less than k. Apparently,Uk
h ⊂ H1

0 (�).
For simplicity, we denote Uh = U2

h .
We next explain the construction of control volumes associated with the primal mesh Th .

Let Nh andMh be the set of interior vertices and the set of mid-points of the internal edges
respectively. Generally speaking, a control volume is a polygon Kp0 surrounding a vertex
p0 ∈ Nh or a polygon Km surrounding m ∈ Mh . Let us now give some details on their
construction. For each triangle τ = �p1 p2 p3 ∈ Th , we denote by O its barycenter and by
m1,m2,m3 the midpoints of the edges p2 p3, p3 p1, p1 p2, respectively. Let gi j , g ji be the
two second-degree Gauss points on the edge pi p j , i, j = 1, 2, 3 such that

|pi gi j |
|pi p j | = 1

2

(
1 − 1√

3

)
,

|pi g ji |
|pi p j | = 1

2

(
1 + 1√

3

)
. (2.4)

Note that by this definition, gi j is closer to pi than to p j . We denote by q1, q2, q3 the
mid-points of the segments g12g13, g21g23, g31g32, respectively. By connecting with O to
qi , i = 1, 2, 3, the element τ is split into six portions, see Fig. 1. With this construction, it is
easy to verify that

|Vpi ∩ τ | =
(
1

3
− 1

2
√
3

)
|τ |, |Vmi ∩ τ | = 1

2
√
3
|τ |. (2.5)

Based on this splitting, we are now ready to construct our control volumes.
First, the control volume Vp0 associated with a vertex p0 ∈ Nh is a polygon sur-

rounding p0 by successively connecting the Gauss points g01, g02, . . . , g0m, g01, where
pi (i = 1, 2, . . . ,m) are the adjacent vertices of p0, see Fig. 2 for an example of Vp0 where
m = 6. Secondly the control volume Vm associated with a midpoint m ∈ Mh is a polygon
surrounding m which can be described as below. Suppose m is the midpoint of the common
side of two adjacent triangular elements τ1 = �p1 p2 p3 and τ2 = �p1 p2 p4. We denote by
O1 and O2 the barycenter of τ1 and τ2 respectively. Let q11, q12, q21, q22 be the midpoints of
g12g13, g21g23, g12g14 and g21g24, respectively. The volume Vm is a polygon surrounding m
obtained by connecting successively the points q11, g12, q21, O2, q22, g21, q12, O1, q11 with
straight segments, see Fig. 3.

We define the dual partition T ′
h = {Vp, Vm : p ∈ Nh,m ∈ Mh}. The test function space

V ′
T contains all the piecewise constant functions with respect to T ′ :

V ′
h = span

{
ψp, ψm : p ∈ Nh,m ∈ Mh

}
, (2.6)
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Fig. 1 Partition of a primal triangle

Fig. 2 Control volume Vp0
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where ψP and ψM are characteristic functions of Vp and Vm , respectively.
The quadratic finite volume solution of (2.1)–(2.2) is a function uh ∈ Uh satisfying the

following local conservation laws:

−
∫

∂Vp

α
∂uh
∂n

=
∫

Vp

f, ∀ p ∈ Nh; −
∫

∂Vm
α

∂uh
∂n

=
∫

Vm
f, ∀m ∈ Mh, (2.7)

where n is the outward unit normal to ∂DP or ∂DM . If we define the bilinear form for all
u ∈ H1

0 (�), v ∈ V ′
h as

ah(u, v) = −
∑

p∈Nh

∫

∂Vp

α
∂u

∂n
v(p)ds −

∑

m∈Mh

∫

∂Vm
α

∂u

∂n
v(m)ds, (2.8)
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Fig. 3 Control volume Vm
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The quadratic finite volume solution satisfies the following Petrov–Galerkin scheme

ah(uh, v) = ( f, v), ∀v ∈ V ′
h . (2.9)

3 Analysis

Following a technique in [25], the theoretic results in this section will be obtained using the
following strategy: We first analyze our problem in a simple case that the coefficient α is
piecewise constant with respect to Th and then extend our analysis to a general case that α is
piecewise in W 1,∞.

3.1 A Novel from-Trial-to-Test-Space Mapping

The finite volume method is a Petrov–Galerkin method due to the fact that its test space is
different from its test space. Since the analysis for a Petrov–Galerkin method is often more
complicated than that for a Galerkin method, we transform the FVM to a Galerkin method
by establishing a mapping from the trial space to test space. The choice of this from-trial-to-
test-space mapping has a significant influence on the analysis of the FVM. Unlike the classic
one proposed in [18], here we propose a novel mapping which can be roughly described as
below.

Let 	 map a v ∈ Uh to v∗ = 	v ∈ V ′
h such that for each vertex p ∈ Nh ,

v∗(p) = v(p), (3.1)

and for each midpoint m ∈ Mh ,

v∗(m) = v(p1) + v(p2)

2

(
1 − 2√

3

)
+ 2√

3
v(m), (3.2)
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where the edge p1 p2 ∈ Eh has m as its midpoint. Note that the classic from-trial-to-test
mapping requires [18]

v∗(m) = v(m)

instead of (3.2) for the midpoint value. We denote by t the unit tangent direction pointing
from p1 to p2, by g12 the second degree Gauss point on p1 p2 which is closer to p1 than to
p2, and by w12 = 1

2 |p1 p2| the weight of Gauss quadrature. Then, a direct calculation yields
that

v∗(m) = v∗(p1) + ω12
∂v

∂t
(g12).

In other words, the definition of 	 here is consistent with that defined in [26].
With this definition, it is easy to verify that the mapping 	 has the following properties.

Theorem 3.1 Let Eh be the set of all internal edges of Th. Then for all E ∈ Eh,∫

E
(v − v∗) = 0, ∀v ∈ U2

h , (3.3)
∫

E
v(w − w∗) = 0, ∀v ∈ U1

h , w ∈ U2
h . (3.4)

And for all τ ∈ Th, ∫

τ

(w − w∗) = 0, ∀w ∈ U2
h . (3.5)

Proof We first prove (3.4) and (3.3). For all E ∈ Eh , we denote by mE the midpoint and by
p1, p2 the two vertices of E . Let λ1, λ2 be the two barycenter coordinates corresponding to
p1, p2, respectively.

We next show (3.3). On the edge E , each v ∈ U2
h can be represented as

v = v(p1)λ1 + v(p2)λ2 +
(

v(mE ) − v(p1) + v(p2)

2

)
4λ1λ2.

Therefore,
∫

E
v = v(p1) + v(p2)

6
|E | + 2

3
v(mE )|E |.

On the other hand, the facts that

v∗ = v(p1) on p1g12,

v∗ = v(p2) on p2g21,

and

v∗ = v∗(mE ) = v(p1) + v(p2)

2

(
1 − 2√

3

)
+ 2√

3
v(mE ) on g12g21

yield that
∫

E
v∗ = v(p1) + v(p2)

2

(
1 − 1√

3

)
|E |

+
(

v(p1) + v(p2)

2

(
1 − 2√

3

)
+ 2√

3
v(mE )

)
· 1√

3
|E |

= v(p1) + v(p2)

6
|E | + 2

3
v(mE )|E |.
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Namely, (3.3) is verified. We next show (3.4). The fact that for all i, j ∈ {1, 2}, i = j ,

λ∗
i (pi ) = 1,

λ∗
i (p j ) = 0,

λ∗
i (mE ) = 1

2

yields that for i, j ∈ {1, 2},
∫

E
λiλ j =

∫

E
λiλ

∗
j =

{ 1
3 |E |, i = j,
1
6 |E |, i = j.

Thus the equality (3.4) is valid for all v,w ∈ U1
h . To prove (3.4) for all v ∈ U1

h , w ∈ U2
h ,

it is sufficient to verify (3.4) for v = λ1 and w = λ1λ2. Note that for this special w, we have

w∗ = 0 on p1g12 ∪ p2g21,

and

w∗ = 1

2
√
3
on g12g21.

Then,
∫

E
λ1(λ1λ2)

∗ = 1

2
√
3

∫

g12g21
λ1 = 1

12
|p1 p2|.

Since we also have
∫

E
λ21λ2 = 1

12
|p1 p2|,

(3.4) is valid for v = λ1 and w = λ1λ2. Consequently, (3.4) is valid for all v ∈ U1
h and

w ∈ U2
h .

Next we prove (3.5). Let τ = �p1 p2 p3 be an arbitrary element in T . As in Fig. 1, we use
mi to denote the midpoint of the edge opposing the vertex pi . For all i = 1, 2, 3, we have

∫

τ

λi = 1

3
|τ | =

∫

τ

λ∗
i .

Then (3.5) is valid for w ∈ U1
h . Since U2

h = Span{λ1, λ2, λ3, 4λ1λ2, 4λ2λ3, 4λ3λ1} in
τ , to prove the validity of (3.5) for all w ∈ U2

h , we only need to verify (3.5) for the special
function w = 4λ1λ2. It is easy to check that

∫

τ

w = 4
∫

τ

λ1λ2 = 1

3
|τ |.

By the definition of the mapping 	, we have that

w∗(m3) = 2√
3
,

and

w∗(pi ) = w∗(m j ) = 0, ∀i = 1, 2, 3; j = 1, 2.

Therefore, by (2.5)
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∫

τ

w∗ =
∫

τ∩Vm3

w∗

= 2√
3
|τ ∩ Vm3 |

= 2√
3

· 1

2
√
3
|τ | = 1

3
|τ |.

In other words, (3.5) holds for w = 4λ1λ2. By the same arguments, (3.5) holds also for
w = 4λ2λ3 or w = 4λ2λ3. Consequently, (3.5) is valid for all w ∈ U2

h .

3.2 FV and FE Bilinear Forms

In this subsection, we study the relationship between the FV bilinear form ah(·, ·) and the
classic Galerkin bilinear form (finite element method bilinear form) defined for all v,w ∈
H1
0 (�) by

a(v,w) =
∫

�

α�v · �w. (3.6)

Theorem 3.2 Let the coefficient α be piecewise constant with respect to Th. Then

ah(v,w∗) = a(v,w), ∀v,w ∈ Uh . (3.7)

Proof We will prove the theorem by comparing the element-wise bilinear forms defined for
all τ ∈ T by

aτ (v,w) =
∫

τ

α�v · �w (3.8)

and

aτ
h (v,w) = −

∑

p∈Nh

∫

∂Vp∩τ

α
∂v

∂n
w(p)ds −

∑

m∈Mh

∫

∂Vm∩τ

α
∂v

∂n
w(m)ds, (3.9)

respectively.
Since α is piecewise constant with respect to Th , it is easy to use the Green’s formulae to

rewrite these two elementwise forms as

aτ (v,w) = −α

∫

τ

(�v)w + α

∫

∂τ

∂v

∂n
w,

aτ
h (v,w∗) = −α

∫

τ

(�v)w∗ + α

∫

∂τ

∂v

∂n
w∗.

Note that for all v ∈ Uh = U2
h , �v is a constant in τ and ∂v

∂n is linear along each edge of
τ . Then by (3.4) and (3.5), we have

∫

τ

(�v)w∗ =
∫

τ

(�v)w ∀v,w ∈ Uh

and ∫

∂τ

∂v

∂n
w∗ =

∫

∂τ

∂v

∂n
w, ∀v,w ∈ Uh

respectively. Namely, we obtain the identity

aτ
h (v,w∗) = aτ (v,w), ∀v,w ∈ Uh

for all τ ∈ Th . Thus, (3.7) is valid. ��
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The theorem implies that if α is piecewise constant, the stiffness matrix of the quadratic
FVM can be obtained by multiplying the corresponding quadratic FEM stiffness matrix with
a given matrix. In fact, it is known that on each triangle τ = �p1 p2 p3, the nodal basis are
given by φpi = 2λ2i − λi and φmi = 4λi+1λi+2, i = 1, 2, 3 with λi+3 = λi , i = 1, 2, 3.
Then the stiffness matrix of the quadratic finite element method reads as

Ae
τ =

⎛
⎜⎜⎜⎜⎜⎜⎝

aτ (φp1 , φp1 ) aτ (φp1 , φp2 ) aτ (φp1 , φp3 ) aτ (φp1 , φm1 ) aτ (φp1 , φm2 ) aτ (φp1 , φm3 )

aτ (φp2 , φp1 ) aτ (φp2 , φp2 ) aτ (φp2 , φp3 ) aτ (φp2 , φm1 ) aτ (φp2 , φm2 ) aτ (φp2 , φm3 )

aτ (φp3 , φp1 ) aτ (φp3 , φp2 ) aτ (φp3 , φp3 ) aτ (φp3 , φm1 ) aτ (φp3 , φm2 ) aτ (φp3 , φm3 )

aτ (φm1 , φp1 ) aτ (φm1 , φp2 ) aτ (φm1 , φp3 ) aτ (φm1 , φm1 ) aτ (φm1 , φm2 ) aτ (φm1 , φm3 )

aτ (φm2 , φp1 ) aτ (φm2 , φp2 ) aτ (φm2 , φp3 ) aτ (φm2 , φm1 ) aτ (φm2 , φm2 ) aτ (φm2 , φm3 )

aτ (φm3 , φp1 ) aτ (φm3 , φp2 ) aτ (φm3 , φp3 ) aτ (φm3 , φm1 ) aτ (φm3 , φm2 ) aτ (φm3 , φm3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

For all subset A ⊂ �, let ψA be the characteristic function defined by ψA(x) = 1, if
x ∈ A and ψA(x) = 0 if x /∈ A. Then the stiffness matrix of the quadratic finite volume
reads as

Av
τ =

⎛
⎜⎜⎜⎜⎜⎜⎝

aτ
h (φp1 , ψp1 ) aτ

h (φp1 , ψp2 ) aτ
h (φp1 , ψp3 ) aτ

h (φp1 , ψm1 ) aτ
h (φp1 , ψm2 ) aτ

h (φp1 , ψm3 )

aτ
h (φp2 , ψp1 ) aτ

h (φp2 , ψp2 ) aτ
h (φp2 , ψp3 ) aτ

h (φp2 , ψm1 ) aτ
h (φp2 , ψm2 ) aτ

h (φp2 , ψm3 )

aτ
h (φp3 , ψp1 ) aτ

h (φp3 , ψp2 ) aτ
h (φp3 , ψp3 ) aτ

h (φp3 , ψm1 ) aτ
h (φp3 , ψm2 ) aτ

h (φp3 , ψm3 )

aτ
h (φm1 , ψp1 ) aτ

h (φm1 , ψp2 ) aτ
h (φm1 , ψp3 ) aτ

h (φm1 , ψm1 ) aτ
h (φm1 , ψm2 ) aτ

h (φm1 , ψm3 )

aτ
h (φm2 , ψp1 ) aτ

h (φm2 , ψp2 ) aτ
h (φm2 , ψp3 ) aτ

h (φm2 , ψm1 ) aτ
h (φm2 , ψm2 ) aτ

h (φm2 , ψm3 )

aτ
h (φm3 , ψp1 ) aτ

h (φm3 , ψp2 ) aτ
h (φm3 , ψp3 ) aτ

h (φm3 , ψm1 ) aτ
h (φm3 , ψm2 ) aτ

h (φm3 , ψm3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where we have used the abbreviation ψpi = ψVpi
and ψmi = ψVmi

, i = 1, 2, 3. By the
definition of 	, on τ , there hold

φ∗
pi = ψVpi

+
(
1

2
− 1√

3

) (
ψVmi+1

+ ψVmi+2

)

and

φ∗
mi

= 2√
3
ψVmi

.

Therefore, for all v ∈ Uh and all j = 1, 2, 3,

aτ (v, φp j ) = aτ
h

(
v, φ∗

p j

)

= aτ
h

(
v,ψ∗

Vp j

)
+

(
1

2
− 1√

3

) (
aτ
h

(
v,ψ∗

Vm j+1

)
+ aτ

h

(
v,ψ∗

Vm j+2

))
,

aτ
(
v, φm j

) = aτ
h

(
v, φ∗

m j

)
= 2√

3
aτ
h

(
v,ψVm j

)
.

Namely, we have the relationship

Av
τCτ = Ae

τ
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with the invertible matrix

Cτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1

2 − 1√
3

1
2 − 1√

3
2√
3

0 0
1
2 − 1√

3
0 1

2 − 1√
3

0 2√
3

0
1
2 − 1√

3
1
2 − 1√

3
0 0 0 2√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Consequently, the global stiffness matrix of the quadratic FVM can be obtained by multi-
plying its corresponding FEM stiffness matrix with a given low-triangular matrix C . Since C
is invertible and the existence and uniqueness of the FE solution solutions are well-known,
we immediately obtain the existence and uniqueness of the quadratic FV solution.

3.3 The Inf–Sup Condition

With the previous preparations, we are ready to show the following stability result.

Theorem 3.3 The following inf–sup condition

inf
v∈Uh

sup
w∈Uh

ah(v,w∗)
|v|1|w|1 ≥ α0

2
(3.10)

holds for all h > 0 if α is piecewise constant with respect to Th and holds for sufficiently
small h > 0 if α is piecewise in W 1,∞ with respect to Th.

Proof In the simple case that α is piecewise constant with respect to Th .

sup
w∈Uh

ah(v,w∗)
|v|1|w|1 ≥ a(v, v)

|v|21
≥ α0.

In the case α is only piecewise in W 1,∞, we define the average of α in τ as

ατ = 1

|τ |
∫

τ

α, τ ∈ Th

and let

āh(v,w∗) = −
∑

τ∈Th

⎛
⎝ ∑

p∈Nh

∫

∂Vp∩τ

ατ

∂v

∂n
w(p)ds −

∑

m∈Mh

∫

∂Vm∩τ

ατ

∂u

∂n
v(m)ds

⎞
⎠ .

Then the validity of (3.10) for piecewise constant coefficient yields

inf
v∈Uh

sup
w∈Uh

āh(v,w∗)
|v|1|w|1 ≥ α0.

On the other hand, since

|α(x) − ατ | � h|α|1,∞,

we have (see e.g. [25])
∣∣āh(v,w∗) − ah(v,w∗)

∣∣ � h|v|1|w|1.
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Thus for sufficiently small h,

ah(v, v∗) ≥ ah(v, v∗) − h|v|21 ≥ α0

2
|v|21

which implies the inf–sup condition (3.10) for all piecewise W 1,∞ coefficient α. ��
Remark 3.4 The theorem tells us that just as the quadratic FEM, the stability of our quadratic
FVM is independent of the shape of the mesh, i.e. the minimal angle of the triangles in the
mesh. Noticing that the high order FV schemes over triangular meshes in the literature is not
unconditional stable (see e.g. [6,10,17,18,25], The quadratic FV scheme in the paper might
be the first unconditional stable high order FV scheme.

Remark 3.5 Combining the stability in this subsection and the existence and uniqueness in
the previous subsection, our quadratic FV scheme is well-posed.

3.4 H1 Error Estimates

The error estimate under H1 norm of the finite volume solution can be obtained by the
following routine work.

Theorem 3.6 If α is piecewise W 1,∞, then for sufficiently small h

|u − uh |1 � h2‖u‖3 (3.11)

holds with the hidden constant independent of the mesh size h.

Proof By the inf–sup condition (3.10), for all vh ∈ Uh , there holds

|uh − vh |1 � sup
wh∈Uh

ah
(
uh − vh, w

∗
h

)

|wh |1 = sup
wh∈Uh

ah
(
u − vh, w

∗
h

)

|wh |1 .

On the other hand, the following continuity of ah(·, ·) has been shown in [25] :

ah(v,w∗
h) � (|v|1 + h|v|2)|wh |1,∀v ∈ H1(�),wh ∈ Uh .

Then by the triangle inequality, we have the following Céa type’s inequality

|u − uh |1 � |u − vh |1 + h|u − vh |2,∀vh ∈ Uh .

Choosing vh = uI , the interpolation of u in Uh , we obtain the estimate (3.11). ��

4 Concluding Remarks

The stability analysis for high order schemes is a challenging task in the mathematical theory
of the finite volume method. The paper [26] set up a framework for the stability analysis of
the finite volume schemes over quadrilateral meshes by using some novel ideas. This works
attempt to shed some light on the stability analysis of the high order finite volume schemes
over triangular meshes. The novelty here is a new one-to-one mapping from the trial space to
the test space. With this mapping, an identity between the FV and FE bilinear forms has been
set up. This identity can be regarded as a natural extension of the corresponding identity of
the linear FV scheme established in [1,25]. Note that unlike the somehow artificial analysis
in [17,18,25], the analysis in this paper might fit the aesthetical standard of some rigorous
mathematicians.
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Our ongoing project includes the extension of the approach in this paper to other high
order finite volume schemes. Especially, we will investigate the stability and convergence
properties for any order finite volume schemes over triangular or tetrahedron meshes. It is
expected that by delicate designation, any order finite volume schemes over triangular or
tetrahedron meshes have optimal convergence orders both under H1 and L2 norms.

Acknowledgements The author is indebted to Dr. Hailong Guo of Wayne State University for the figures
designed in the paper.
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